Frameworked electrolytes: Ionic transport behavior and high mobility for solid state batteries

All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especial...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 6; no. 2
Main Authors Sun, Jianguo, Yuan, Hao, Yang, Jing, Wang, Tuo, Gao, Yulin, Zhao, Qi, Liu, Ximeng, Wang, Haimei, Zhang, Yong‐Wei, Wang, John
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.02.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications. A new class of frameworked electrolytes (FEs), where the “macroscopically solid” frameworks are purposely laden with 3D channels of high ionic mobility in sub‐nano‐scale in the extensive pore networks, giving rise to both high ionic conductivity and desirable interface with the electrode solids.
AbstractList Abstract All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications.
All solid-state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid-state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long-term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub-nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)-nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid-electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub-nano cages of the network structure are highly mobile and diffuse rather independently, where the rate-limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li-ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti-flammability, which are among the key requirements of large-scale applications.
All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li + ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li + ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO 4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications. image
All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications. A new class of frameworked electrolytes (FEs), where the “macroscopically solid” frameworks are purposely laden with 3D channels of high ionic mobility in sub‐nano‐scale in the extensive pore networks, giving rise to both high ionic conductivity and desirable interface with the electrode solids.
Author Zhao, Qi
Zhang, Yong‐Wei
Wang, John
Gao, Yulin
Liu, Ximeng
Wang, Haimei
Wang, Tuo
Yuan, Hao
Yang, Jing
Sun, Jianguo
Author_xml – sequence: 1
  givenname: Jianguo
  orcidid: 0000-0002-2222-2478
  surname: Sun
  fullname: Sun, Jianguo
  organization: National University of Singapore
– sequence: 2
  givenname: Hao
  surname: Yuan
  fullname: Yuan, Hao
  organization: Agency for Science, Technology and Research (ASTAR)
– sequence: 3
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Agency for Science, Technology and Research (ASTAR)
– sequence: 4
  givenname: Tuo
  surname: Wang
  fullname: Wang, Tuo
  organization: National University of Singapore
– sequence: 5
  givenname: Yulin
  surname: Gao
  fullname: Gao, Yulin
  organization: ST Engineering Advanced Material Engineering Pte. Ltd
– sequence: 6
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
  organization: National University of Singapore
– sequence: 7
  givenname: Ximeng
  surname: Liu
  fullname: Liu, Ximeng
  organization: National University of Singapore
– sequence: 8
  givenname: Haimei
  surname: Wang
  fullname: Wang, Haimei
  organization: National University of Singapore
– sequence: 9
  givenname: Yong‐Wei
  surname: Zhang
  fullname: Zhang, Yong‐Wei
  email: zhangyw@ihpc.a-star.edu.sg
  organization: Agency for Science, Technology and Research (ASTAR)
– sequence: 10
  givenname: John
  orcidid: 0000-0001-6059-8962
  surname: Wang
  fullname: Wang, John
  email: msewangj@nus.edu.sg
  organization: Agency for Science, Technology and Research (ASTAR)
BookMark eNp9kV9LHDEUxUOxULW-9BMEfCuszf_M-FbEbRekfWlfG-5M7rjZzk7WJCr77RudCiLiSxIuv3PuvTlH5GCKExLyibMzzpj4EqZBnHGhGvuOHApt7EJyow-evT-Qk5w3rMKaKaH5IfmzTLDF-5j-oqc4Yl9SHPcF8zldxSn0tCSY8i6mQjtcw12IicLk6Tpcr-k2dmEMZU-HWs1xDJ7mAgVpB6VgCpg_kvcDjBlP_t_H5Pfy8tfF98XVz2-ri69Xi15pa-uJvOUd89D2cjDMGmsbBWJgGkC0RlthQTeeM2GgFbxFraQBDppbYN7IY7KafX2EjdulsIW0dxGCeyzEdO0gldCP6KRQtam3zdAphbWL7LyQpmk1QzM0XfU6nb12Kd7cYi5uE2_TVMd3opVcWq2VrhSbqT7FnBMOrg919xCn-mNhdJy5h1DcQyjuMZQq-fxC8jToqzCf4fsw4v4N0q1-LMWs-QeKK51o
CitedBy_id crossref_primary_10_1021_acsami_4c06551
crossref_primary_10_1142_S1793604724510226
crossref_primary_10_1021_acs_langmuir_4c01845
crossref_primary_10_1016_j_jpowsour_2024_235438
crossref_primary_10_1002_adfm_202416389
crossref_primary_10_1002_adfm_202405699
crossref_primary_10_1002_aenm_202403082
crossref_primary_10_1016_j_cclet_2024_110307
crossref_primary_10_1002_adfm_202409403
crossref_primary_10_1088_2053_1591_ad431c
crossref_primary_10_1021_acs_langmuir_4c04641
Cites_doi 10.1038/nenergy.2016.30
10.1039/D1EE00049G
10.1002/inf2.12359
10.1063/1.3382344
10.1063/1.1329672
10.1515/secm-2020-0022
10.1038/nenergy.2016.42
10.1103/PhysRevB.59.1758
10.1063/1.447334
10.1021/jacs.2c01612
10.1016/j.nxmate.2023.100024
10.1016/j.nanoen.2019.103881
10.1039/C6CP07215A
10.1016/j.cpc.2021.108033
10.1103/PhysRevB.50.17953
10.1038/ncomms2513
10.1002/aenm.202101228
10.1002/adfm.201904232
10.1103/PhysRevB.54.11169
10.1002/anie.201912145
10.1039/c1cp20157c
10.1002/adfm.202008165
10.1016/0032-3861(87)90394-6
10.1016/j.jpowsour.2020.228468
10.1038/s41586-021-03410-9
10.1021/jacs.7b06197
10.1021/acsnano.8b05038
10.1039/C7CS00547D
10.1002/adma.201704436
10.1002/adma.202303730
10.1038/s41578-019-0103-6
10.1016/j.matt.2020.03.015
10.1038/s41560-018-0312-z
10.1149/2.0051514jes
10.1039/C8TA10124H
10.1021/jacs.9b12233
10.1002/aenm.202002869
10.1039/C9CP02430A
10.1038/451652a
10.1016/j.nanoms.2022.03.005
10.1002/smll.201804413
10.1103/PhysRevLett.77.3865
10.1038/s41578-021-00401-0
10.1039/c2ee22258b
10.1007/b114546
10.1021/jacs.9b10346
10.1016/j.nanoms.2022.03.004
10.1021/jp068691u
10.1021/j100313a022
10.1007/BF02708775
ContentType Journal Article
Copyright 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1002/inf2.12487
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_324c45d78fb44e84a3bd2368950e6f8b
10_1002_inf2_12487
INF212487
Genre article
GrantInformation_xml – fundername: Singapore Ministry of Education
  funderid: A‐8000186‐01‐00
– fundername: A*STAR SERC CRF Award
– fundername: National Research Foundation (NRF) Singapore
  funderid: CRP NRF‐CRP26‐2021‐0003; NRF‐CRP24‐2020‐0002
GroupedDBID 0R~
1OC
24P
AAMMB
ABJCF
ACCMX
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c4577-c4e191b0da9c3f60767784a2f05aa2965727a58d1026a9219e5436a1a517a0d63
IEDL.DBID DOA
ISSN 2567-3165
IngestDate Wed Aug 27 01:32:12 EDT 2025
Wed Aug 13 08:33:45 EDT 2025
Tue Jul 01 01:33:44 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Wed Aug 20 07:26:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4577-c4e191b0da9c3f60767784a2f05aa2965727a58d1026a9219e5436a1a517a0d63
Notes Jianguo Sun and Hao Yuan contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6059-8962
0000-0002-2222-2478
OpenAccessLink https://doaj.org/article/324c45d78fb44e84a3bd2368950e6f8b
PQID 2931375545
PQPubID 5068510
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_324c45d78fb44e84a3bd2368950e6f8b
proquest_journals_2931375545
crossref_citationtrail_10_1002_inf2_12487
crossref_primary_10_1002_inf2_12487
wiley_primary_10_1002_inf2_12487_INF212487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 162
2019; 7
2019; 4
2023; 35
2013; 4
1984; 81
2021; 267
2000; 113
2023; 5
2020; 142
2019; 15
1998
2020; 59
2011; 13
2023; 1
2019; 141
2006; 118
1988; 92
1996; 54
2017; 139
2018; 47
1996; 77
2021; 14
2020; 3
2021; 31
2016; 1
2021; 11
2020; 471
2019; 64
2022; 4
2022
2019; 21
2022; 7
2007; 111
1999; 59
2010; 132
2020; 27
2019; 29
2018; 30
2017; 19
2021; 592
2013
2018; 12
2008; 451
1994; 50
2012; 5
1987; 28
2022; 19
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Li J (e_1_2_7_5_1) 2022
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Perram JW (e_1_2_7_20_1) 2013
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 92
  start-page: 354
  issue: 2
  year: 1988
  end-page: 357
  article-title: Raman spectroscopy of zeolite A: influence of silicon/aluminum ratio
  publication-title: J Phys Chem
– year: 2022
  article-title: Addressing cation mixing in layered structured cathodes for lithium‐ion batteries: a critical review
  publication-title: Nano Mater Sci
– volume: 5
  start-page: 210
  issue: 2
  year: 2023
  end-page: 227
  article-title: Solid‐state mechanochemistry advancing two dimensional materials for lithium‐ion storage applications: a mini review
  publication-title: Nano Mater Sci
– volume: 7
  start-page: 389
  issue: 5
  year: 2022
  end-page: 405
  article-title: Exploiting the paddle‐wheel mechanism for the design of fast ion conductors
  publication-title: Nat Rev Mater
– volume: 142
  start-page: 2497
  issue: 5
  year: 2020
  end-page: 2505
  article-title: Fast Li conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte
  publication-title: J Am Chem Soc
– volume: 118
  start-page: 135
  issue: 1
  year: 2006
  end-page: 154
  article-title: Ionic conduction in the solid state
  publication-title: J Chem Sci
– volume: 59
  start-page: 8991
  issue: 23
  year: 2020
  end-page: 8997
  article-title: Abnormal ionic conductivities in halide NaBi O Cl induced by absorbing water and a derived oxhydryl group
  publication-title: Angew Chem Int ed
– volume: 4
  start-page: 322
  issue: 4
  year: 2022
  end-page: 338
  article-title: Oxygen redox chemistry in lithium‐rich cathode materials for Li‐ion batteries: understanding from atomic structure to nano‐engineering
  publication-title: Nano Mater Sci
– volume: 1
  issue: 4
  year: 2016
  article-title: Batteries: Getting solid
  publication-title: Nat Energy
– volume: 4
  start-page: 187
  issue: 3
  year: 2019
  end-page: 196
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat Energy
– volume: 19
  start-page: 8669
  issue: 19
  year: 2022
  end-page: 8675
  article-title: Super Mg conductivity around 10 S cm observed in a porous metal–organic framework
  publication-title: J Am Chem Soc
– volume: 132
  issue: 15
  year: 2010
  article-title: A consistent and accurateab initioparametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu
  publication-title: J Chem Phys
– year: 1998
– volume: 13
  issue: 30
  year: 2011
  article-title: Zeolites X and a crystallization compared by simultaneous UV/VIS‐Raman and x‐ray diffraction
  publication-title: Phys Chem Chem Phys
– volume: 21
  start-page: 23833
  issue: 43
  year: 2019
  end-page: 23842
  article-title: Kerr gated Raman spectroscopy of LiPF salt and LiPF ‐based organic carbonate electrolyte for Li‐ion batteries
  publication-title: Phys Chem Chem Phys
– volume: 31
  issue: 13
  year: 2021
  article-title: Inorganic solid electrolytes for all‐solid‐state sodium batteries: fundamentals and strategies for battery optimization
  publication-title: Adv Funct Mater
– volume: 47
  start-page: 1250
  issue: 4
  year: 2018
  end-page: 1284
  article-title: “Solvent‐in‐salt” systems for design of new materials in chemistry, biology and energy research
  publication-title: Chem Soc Rev
– volume: 451
  start-page: 652
  issue: 7179
  year: 2008
  end-page: 657
  article-title: Building better batteries
  publication-title: Nature
– volume: 267
  year: 2021
  article-title: VASPKIT: a user‐friendly interface facilitating high‐throughput computing and analysis using VASP code
  publication-title: Comput Phys Commun
– volume: 30
  issue: 2
  year: 2018
  article-title: A metal–organic‐framework‐based electrolyte with nanowetted interfaces for high‐energy‐density solid‐state lithium battery
  publication-title: Adv Mater
– volume: 28
  start-page: 2324
  issue: 13
  year: 1987
  end-page: 2328
  article-title: Electrochemical measurement of transference numbers in polymer electrolytes
  publication-title: Polymer
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  end-page: 11186
  article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set
  publication-title: Phys Rev B
– volume: 139
  start-page: 13260
  issue: 38
  year: 2017
  end-page: 13263
  article-title: Single‐ion Li , Na , and Mg solid electrolytes supported by a mesoporous anionic Cu azolate metal–organic framework
  publication-title: J Am Chem Soc
– volume: 64
  year: 2019
  article-title: The influence of FEC on the solvation structure and reduction reaction of LiPF /EC electrolytes and its implication for solid electrolyte interphase formation
  publication-title: Nano Energy
– volume: 1
  start-page: 1‐7
  issue: 4
  year: 2016
  article-title: High‐power all‐solid‐state batteries using sulfide superionic conductors
  publication-title: Nat Energy
– volume: 81
  start-page: 511
  issue: 1
  year: 1984
  end-page: 519
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J Chem Phys
– volume: 14
  start-page: 3510
  issue: 6
  year: 2021
  end-page: 3521
  article-title: A flame‐retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature
  publication-title: Energy Environ Sci
– volume: 27
  start-page: 236
  issue: 1
  year: 2020
  end-page: 244
  article-title: Mixed matrix membranes prepared from polysulfone and Linde type a zeolite
  publication-title: Sci Eng Compos Mater
– volume: 11
  issue: 3
  year: 2021
  article-title: Solid electrolytes for high‐temperature stable batteries and supercapacitors
  publication-title: Adv Energy Mater
– volume: 113
  start-page: 9901
  issue: 22
  year: 2000
  end-page: 9904
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J Chem Phys
– volume: 7
  start-page: 2653
  issue: 6
  year: 2019
  end-page: 2659
  article-title: MOF‐derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid‐state lithium batteries
  publication-title: J Mater Chem A
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  end-page: 17979
  article-title: Projector augmented‐wave method
  publication-title: Phys Rev B
– volume: 15
  issue: 5
  year: 2019
  article-title: Nanostructured metal–organic framework (MOF)‐derived solid electrolytes realizing fast lithium ion transportation kinetics in solid‐state batteries
  publication-title: Small
– volume: 162
  start-page: A2424
  issue: 14
  year: 2015
  end-page: A2438
  article-title: Review—development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions
  publication-title: J Electrochem Soc
– volume: 4
  start-page: 312
  issue: 5
  year: 2019
  end-page: 330
  article-title: Designing polymers for advanced battery chemistries
  publication-title: Nat Rev Mater
– volume: 1
  issue: 3
  year: 2023
  article-title: Electrolytes for better and safer batteries: liquid, solid or frameworked, what's next?
  publication-title: Next Mater
– volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  end-page: 1775
  article-title: From ultrasoft pseudopotentials to the projector augmented‐wave method
  publication-title: Phys Rev B
– volume: 3
  start-page: 57
  issue: 1
  year: 2020
  end-page: 94
  article-title: Lithium dendrite in all‐solid‐state batteries: growth mechanisms, suppression strategies, and characterizations
  publication-title: Matter
– volume: 35
  year: 2023
  article-title: Liquid‐like Li‐ion conduction in oxides enabling anomalously stable charge transport across the Li/electrolyte interface in all‐solid‐state batteries
  publication-title: Adv Mater
– volume: 471
  year: 2020
  article-title: Decomposition failure of Li A Ge (PO ) solid electrolytes induced by electric field: a multi‐scenario study using scanning probe microscopy‐based techniques
  publication-title: J Power Sources
– volume: 141
  start-page: 20318
  issue: 51
  year: 2019
  end-page: 20324
  article-title: Critical role of tricyclic bridges including neighboring rings for understanding Raman spectra of zeolites
  publication-title: J Am Chem Soc
– volume: 11
  issue: 32
  year: 2021
  article-title: A robust solid–solid Interface using sodium–tin alloy modified metallic sodium anode paving way for all‐solid‐state battery
  publication-title: Adv Energy Mater
– volume: 19
  start-page: 574
  issue: 1
  year: 2017
  end-page: 586
  article-title: Solvation behavior of carbonate‐based electrolytes in sodium ion batteries
  publication-title: Phys Chem Chem Phys
– volume: 29
  issue: 37
  year: 2019
  article-title: A new lithium‐ion conductor LiTaSiO : theoretical prediction, materials synthesis, and ionic conductivity
  publication-title: Adv Funct Mater
– volume: 4
  issue: 9
  year: 2022
  article-title: Will lithium‐sulfurbatteries be the nextbeyond‐lithiumion batteries and even much better?
  publication-title: InfoMat
– volume: 111
  start-page: 7411
  issue: 20
  year: 2007
  end-page: 7421
  article-title: Solvation sheath of Li in nonaqueous electrolytes and its implication of graphite/electrolyte Interface chemistry
  publication-title: J Phys Chem C
– volume: 5
  start-page: 8572
  issue: 9
  year: 2012
  end-page: 8583
  article-title: In search of an optimized electrolyte for Na‐ion batteries
  publication-title: Energy Environ Sci
– volume: 592
  start-page: 551
  issue: 7855
  year: 2021
  end-page: 557
  article-title: A highly stable and flexible zeolite electrolyte solid‐state Li–air battery
  publication-title: Nature
– volume: 12
  start-page: 10159
  issue: 10
  year: 2018
  end-page: 10170
  article-title: Electrolyte solvation structure at solid–liquid Interface probed by nanogap surface‐enhanced Raman spectroscopy
  publication-title: ACS Nano
– volume: 4
  start-page: 1481
  issue: 1
  year: 2013
  article-title: A new class of solvent‐in‐salt electrolyte for high‐energy rechargeable metallic lithium batteries
  publication-title: Nat Commun
– year: 2013
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  end-page: 3868
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– ident: e_1_2_7_15_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_7_45_1
  doi: 10.1039/D1EE00049G
– ident: e_1_2_7_3_1
  doi: 10.1002/inf2.12359
– ident: e_1_2_7_50_1
  doi: 10.1063/1.3382344
– ident: e_1_2_7_53_1
  doi: 10.1063/1.1329672
– ident: e_1_2_7_40_1
  doi: 10.1515/secm-2020-0022
– ident: e_1_2_7_13_1
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_7_47_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_7_51_1
  doi: 10.1063/1.447334
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.2c01612
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nxmate.2023.100024
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nanoen.2019.103881
– ident: e_1_2_7_43_1
  doi: 10.1039/C6CP07215A
– ident: e_1_2_7_52_1
  doi: 10.1016/j.cpc.2021.108033
– ident: e_1_2_7_46_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_7_27_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.202101228
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201904232
– ident: e_1_2_7_48_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201912145
– ident: e_1_2_7_37_1
  doi: 10.1039/c1cp20157c
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.202008165
– ident: e_1_2_7_32_1
  doi: 10.1016/0032-3861(87)90394-6
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jpowsour.2020.228468
– ident: e_1_2_7_24_1
  doi: 10.1038/s41586-021-03410-9
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.7b06197
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.8b05038
– year: 2022
  ident: e_1_2_7_5_1
  article-title: Addressing cation mixing in layered structured cathodes for lithium‐ion batteries: a critical review
  publication-title: Nano Mater Sci
– volume-title: The Physics of Superionic Conductors and Electrode Materials
  year: 2013
  ident: e_1_2_7_20_1
– ident: e_1_2_7_30_1
  doi: 10.1039/C7CS00547D
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201704436
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202303730
– ident: e_1_2_7_21_1
  doi: 10.1038/s41578-019-0103-6
– ident: e_1_2_7_7_1
  doi: 10.1016/j.matt.2020.03.015
– ident: e_1_2_7_8_1
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_7_41_1
  doi: 10.1149/2.0051514jes
– ident: e_1_2_7_22_1
  doi: 10.1039/C8TA10124H
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.9b12233
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.202002869
– ident: e_1_2_7_39_1
  doi: 10.1039/C9CP02430A
– ident: e_1_2_7_2_1
  doi: 10.1038/451652a
– ident: e_1_2_7_4_1
  doi: 10.1016/j.nanoms.2022.03.005
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.201804413
– ident: e_1_2_7_49_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_18_1
  doi: 10.1038/s41578-021-00401-0
– ident: e_1_2_7_14_1
  doi: 10.1039/c2ee22258b
– ident: e_1_2_7_29_1
  doi: 10.1007/b114546
– ident: e_1_2_7_36_1
  doi: 10.1021/jacs.9b10346
– ident: e_1_2_7_6_1
  doi: 10.1016/j.nanoms.2022.03.004
– ident: e_1_2_7_28_1
  doi: 10.1021/jp068691u
– ident: e_1_2_7_35_1
  doi: 10.1021/j100313a022
– ident: e_1_2_7_19_1
  doi: 10.1007/BF02708775
SSID ssj0002504251
Score 2.3318272
Snippet All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state...
All solid-state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid-state...
Abstract All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cages
Concentration gradient
Diffusion
Electrochemical analysis
Electrodes
Electrolytes
Electrons
Energy storage
Flammability
frameworked electrolyte
Interface stability
Ion currents
Lithium
Lithium-ion batteries
macroscopically solid with 3D ionic channels in sub‐nano‐scales
Molten salt electrolytes
Phase transitions
Polymers
Rechargeable batteries
Room temperature
Solid electrodes
Solid electrolytes
Solid state
solid‐state battery
Solvents
space confinement of Li ions
Temperature
Transport phenomena
Zeolites
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qXvRB_MTqlIC-KFS7fLXxRZw4pg9DxIFPhjRJRZibuvngf-8lS-cE8aWUEkpzl9z97nr5HUJH1IKbcJKl1hmSssqJVDoIVpyutJFWU6ED22dPdPvs9pE_xoTbOJZV1jYxGGo7Mj5HfgZuqUVzcH784u099V2j_N_V2EJjETXABBcQfDXa1727-1mWxRN0gQef8ZKSM9AbOQWn5mvo5jxRIOz_hTLnsWpwNp01tBpRIr6cqnUdLbjhBlqZ4w7cRE-duqzKWRyb2Qy-ADie4xtPd4snNW05ro_iYz202PMT49dRqIn9wgBZMay-F4vDySJcBrpNiJ63UL9z_XDVTWOzhNQwnudwdRB6lZnV0tBKZLlnhmOaVBnXmkjBAahoXlgAFEJLsFOOM1BES_NWrjMr6DZaGo6GbgdhYwpZME6183xsRuoyKwGFALDKMsepTdBxLThlIpO4b2gxUFMOZKK8kFUQcoIOZ2PfpvwZf45qe_nPRnjO6_Bg9PGs4hZSAP1gqjYvqpIxB3OjpSVUFJJnTlRFmaBmrT0VN-JY_SybBJ0Ejf7zGeqm1yHhbvf_d-2hZQLgZlq93URLk49Ptw_gZFIexBX4DX6y45k
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHHxc9iE9cXwT0olDt5tVGvKi4uB4WDwp7MiRNKoLuiq4Hv72T9LEKIngppUyhnUky_4TkNwAHzGGa8Ionzhc04aWXifI4WfGmNIVyhkkTaZ8DeX3Pb4ZiOANnzVmYig_RLriFnhHH69DBjX0_mUJDMQD0GLNTns3CfDhbG8j5lN-2KywBzkVj_UVM62ExToqWT0pPpq__yEgR3P9DbX7XrDHp9JZhqVaL5LwK7wrM-NEqLH5jCK7BQ6_ZXuUdqYvaPH-igDwl_YC9JZMGX06aI_nEjBwJnGLyMo57Yz8JSleCrfDJkXjCiNiI3cRZ9Drc967uLq-TumhCUnCRZXj1OAWzqTOqYKVMs0CI44aWqTCGKilQsBiROxQW0igcr7zgGJCuEd3MpE6yDZgbjUd-E0hR5CrnghkfuGyFMja1qEZQYKWpF8x14LBxnC5qongobPGsKxYy1cHJOjq5A_ut7WvF0fjV6iL4v7UI7Ov4YPz2qOuupFEC4q-6LC8t5x7_jVlHmcyVSL0sc9uBnSZ6uu6Q7xpVTZdlqJ1EB45iRP_4DN0f9Gi82_qP8TYsUJQ81Z7uHZibvH34XZQsE7sXW-YXY7nkuA
  priority: 102
  providerName: Wiley-Blackwell
Title Frameworked electrolytes: Ionic transport behavior and high mobility for solid state batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12487
https://www.proquest.com/docview/2931375545
https://doaj.org/article/324c45d78fb44e84a3bd2368950e6f8b
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMcHXS96EJ-4PpaAXhSq3bzaeFOxPg6LiAt7MqRNCoKuouthv72TtF0qiF68lFJyCDPTzH9g8huAA2YxTTjFI-sKGvHSyUg5LFacKU2hrGHSBNrnQF4P-e1IjFqjvnxPWIUHrgx3ggm_4MImaZlz7lJuWG4pk6kSsZNlmvvTF3Neq5jyZ7AHc2HmnvFI6Qn6ix5jMvO9c60MFED939RlW6OGJJOtwHKtDslZtatVmHPjNVhqMQPX4TFr2qmcJfUQm-cpCsZTcuMxt2TS4MpJcwWfmLElnktMXl5DL-yUoFQlGHVPloQbRSQPmE2smjdgmF0-XFxH9ZCECM2SJPh0WHLlsTWqYKWME0-E44aWsTCGKilQoBiRWhQS0ig8n5zg6IC-Ef3ExFayTeiMX8duC0hRpCrlghnnOWyFMnmco_pAQRXHTjDbhcPGcLqoCeJ-kMWzrtjHVHsj62DkLuzP1r5V3IwfV517-89WeNZ1-IARoOsI0H9FQBd2G-_p-gf80Khi-ixBrSS6cBQ8-ss29M0go-Ft-z82tAOLFKVP1du9C53J-6fbQ-kyyXswT_kdPtPsqgcL55eDu_teiNwvAJjt2Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKqCtuhRaS9BDkdLN-pUYCVX0EXYL3RNInOo6toOQYJfHVtX-KX5jx06yXaSKG5coiizLHs94vnHG3wBsM4duwiueOG9pwisvE-UxWPGmMlY5w6SJbJ9D2T_h30_F6QLctXdhQlpluyfGjdqNbTgj76Jb6rEMnZ_4dHWdhKpR4e9qW0KjVotDP_2DIdvt3uArru97Sotvx1_6SVNVILFcZBk-PcYoZeqMsqySGMdnWc4NrVJhDFVSoEc3InfoeaVRaNBecBxxz4heZlInGfb7BJY4YypYVF4czM50Ah0Y4oUZCyrtopbQj-hCQ8benN-L5QHuYdp5ZBxdW7ECzxtMSvZrJVqFBT9ag-U5psIX8LNok7i8I03pnIspwtRdMgjkumTSkqST9uI_MSNHAhsyuRzHDNwpQYBMUNfPHYn3mEgZyT0xVn8JJ48ixFewOBqP_Gsg1uYq54IZH9jfrDJlWiLmQRiXpl4w14EPreC0bXjLQ_mMC10zLlMdhKyjkDuwNWt7VbN1_LfV5yD_WYvAsB0_jG_OdGOwGoEmTtVleVVy7nFurHSUyVyJ1MsqLzuw0a6ebsz-Vv9T0g7sxBV9YBh6MCxofFt_uK938LR__ONIHw2Gh2_gGUVYVeeNb8Di5Oa330RYNCnfRl0k8Ouxlf8vyEUchA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fSxwxEB7sCdI-lFYtPWvbQPXBwvb28ms3Qim1ungqhxQFn4zZJFsKemf1Srl_rX-dk-zu9YTimy_LsoSQTL5kvtmd_QZggzl0E17xxHlLE155mSiPwYo3lbHKGSZNVPscyv1TfnAmzhbgb_svTEirbM_EeFC7sQ3vyHvolvosQ-cnelWTFnG8W3y5_pWEClLhS2tbTqOGyKGf_sHw7fbzYBfXepPSYu_k237SVBhILBdZhleP8UqZOqMsqyTG9FmWc0OrVBhDlRTo3Y3IHXphaRRubi84jr5vRD8zqZMM-30CixlGRWkHFnf2hsffZ294gjgYsoeZJirtIWboJ3SoIX9vzgvGYgH3GO48T46OrngBzxuGSr7WkHoJC360DM_mdAtX4LxoU7q8I00hncspktZtMghSu2TSSqaTVgaAmJEjQRuZXI1jPu6UIF0miPyfjsS_mkgZpT4xcl-F00cx4yvojMYj_xqItbnKuWDGBy04q0yZlsiAkNSlqRfMdWGrNZy2jYp5KKZxqWv9ZaqDkXU0chc-zNpe19od_221E-w_axH0tuOD8c0P3WxfjbQTp-qyvCo59zg3VjrKZK5E6mWVl11Yb1dPN4fArf4H2S58jCv6wDD0YFjQeLf2cF_vYQmBr48Gw8M38JQix6qTyNehM7n57d8iR5qU7xowErh4bPzfAeMBIhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frameworked+electrolytes%3A+Ionic+transport+behavior+and+high+mobility+for+solid+state+batteries&rft.jtitle=InfoMat&rft.au=Jianguo+Sun&rft.au=Hao+Yuan&rft.au=Jing+Yang&rft.au=Tuo+Wang&rft.date=2024-02-01&rft.pub=Wiley&rft.eissn=2567-3165&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Finf2.12487&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_324c45d78fb44e84a3bd2368950e6f8b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon