Frameworked electrolytes: Ionic transport behavior and high mobility for solid state batteries
All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especial...
Saved in:
Published in | InfoMat Vol. 6; no. 2 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.02.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications.
A new class of frameworked electrolytes (FEs), where the “macroscopically solid” frameworks are purposely laden with 3D channels of high ionic mobility in sub‐nano‐scale in the extensive pore networks, giving rise to both high ionic conductivity and desirable interface with the electrode solids. |
---|---|
AbstractList | Abstract All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications. All solid-state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid-state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long-term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub-nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)-nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid-electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub-nano cages of the network structure are highly mobile and diffuse rather independently, where the rate-limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li-ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti-flammability, which are among the key requirements of large-scale applications. All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li + ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li + ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO 4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications. image All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state electrolytes. Nevertheless, there is still a long way off to the satisfactorily high (enough) ionic conductivity, long‐term stability and especially being able to form compatible interfaces with the solid electrodes. Herein, we have explored ionic transport behavior and high mobility in the sub‐nano pore networks in the framework structures. Macroscopically, the frameworked electrolyte behaves as a solid, and however in the (sub)‐nano scales, the very limited number of solvent molecules in confinement makes them completely different from that in liquid electrolyte. Differentiated from a liquid‐electrolyte counterpart, the interactions between the mobile ions and surrounding molecules are subject to dramatic changes, leading to a high ionic conductivity at room temperature with a low activation energy. Li+ ions in the sub‐nano cages of the network structure are highly mobile and diffuse rather independently, where the rate‐limiting step of ions crossing cages is driven by the local concentration gradient and the electrostatic interactions between Li+ ions. This new class of frameworked electrolytes (FEs) with both high ionic conductivity and desirable interface with solid electrodes are demonstrated to work with Li‐ion batteries, where the ASSB with LiFePO4 shows a highly stable electrochemical performance of over 450 cycles at 2°C at room temperature, with an almost negligible capacity fade of 0.03‰ each cycle. In addition, the FE shows outstanding flexibility and anti‐flammability, which are among the key requirements of large‐scale applications. A new class of frameworked electrolytes (FEs), where the “macroscopically solid” frameworks are purposely laden with 3D channels of high ionic mobility in sub‐nano‐scale in the extensive pore networks, giving rise to both high ionic conductivity and desirable interface with the electrode solids. |
Author | Zhao, Qi Zhang, Yong‐Wei Wang, John Gao, Yulin Liu, Ximeng Wang, Haimei Wang, Tuo Yuan, Hao Yang, Jing Sun, Jianguo |
Author_xml | – sequence: 1 givenname: Jianguo orcidid: 0000-0002-2222-2478 surname: Sun fullname: Sun, Jianguo organization: National University of Singapore – sequence: 2 givenname: Hao surname: Yuan fullname: Yuan, Hao organization: Agency for Science, Technology and Research (ASTAR) – sequence: 3 givenname: Jing surname: Yang fullname: Yang, Jing organization: Agency for Science, Technology and Research (ASTAR) – sequence: 4 givenname: Tuo surname: Wang fullname: Wang, Tuo organization: National University of Singapore – sequence: 5 givenname: Yulin surname: Gao fullname: Gao, Yulin organization: ST Engineering Advanced Material Engineering Pte. Ltd – sequence: 6 givenname: Qi surname: Zhao fullname: Zhao, Qi organization: National University of Singapore – sequence: 7 givenname: Ximeng surname: Liu fullname: Liu, Ximeng organization: National University of Singapore – sequence: 8 givenname: Haimei surname: Wang fullname: Wang, Haimei organization: National University of Singapore – sequence: 9 givenname: Yong‐Wei surname: Zhang fullname: Zhang, Yong‐Wei email: zhangyw@ihpc.a-star.edu.sg organization: Agency for Science, Technology and Research (ASTAR) – sequence: 10 givenname: John orcidid: 0000-0001-6059-8962 surname: Wang fullname: Wang, John email: msewangj@nus.edu.sg organization: Agency for Science, Technology and Research (ASTAR) |
BookMark | eNp9kV9LHDEUxUOxULW-9BMEfCuszf_M-FbEbRekfWlfG-5M7rjZzk7WJCr77RudCiLiSxIuv3PuvTlH5GCKExLyibMzzpj4EqZBnHGhGvuOHApt7EJyow-evT-Qk5w3rMKaKaH5IfmzTLDF-5j-oqc4Yl9SHPcF8zldxSn0tCSY8i6mQjtcw12IicLk6Tpcr-k2dmEMZU-HWs1xDJ7mAgVpB6VgCpg_kvcDjBlP_t_H5Pfy8tfF98XVz2-ri69Xi15pa-uJvOUd89D2cjDMGmsbBWJgGkC0RlthQTeeM2GgFbxFraQBDppbYN7IY7KafX2EjdulsIW0dxGCeyzEdO0gldCP6KRQtam3zdAphbWL7LyQpmk1QzM0XfU6nb12Kd7cYi5uE2_TVMd3opVcWq2VrhSbqT7FnBMOrg919xCn-mNhdJy5h1DcQyjuMZQq-fxC8jToqzCf4fsw4v4N0q1-LMWs-QeKK51o |
CitedBy_id | crossref_primary_10_1021_acsami_4c06551 crossref_primary_10_1142_S1793604724510226 crossref_primary_10_1021_acs_langmuir_4c01845 crossref_primary_10_1016_j_jpowsour_2024_235438 crossref_primary_10_1002_adfm_202416389 crossref_primary_10_1002_adfm_202405699 crossref_primary_10_1002_aenm_202403082 crossref_primary_10_1016_j_cclet_2024_110307 crossref_primary_10_1002_adfm_202409403 crossref_primary_10_1088_2053_1591_ad431c crossref_primary_10_1021_acs_langmuir_4c04641 |
Cites_doi | 10.1038/nenergy.2016.30 10.1039/D1EE00049G 10.1002/inf2.12359 10.1063/1.3382344 10.1063/1.1329672 10.1515/secm-2020-0022 10.1038/nenergy.2016.42 10.1103/PhysRevB.59.1758 10.1063/1.447334 10.1021/jacs.2c01612 10.1016/j.nxmate.2023.100024 10.1016/j.nanoen.2019.103881 10.1039/C6CP07215A 10.1016/j.cpc.2021.108033 10.1103/PhysRevB.50.17953 10.1038/ncomms2513 10.1002/aenm.202101228 10.1002/adfm.201904232 10.1103/PhysRevB.54.11169 10.1002/anie.201912145 10.1039/c1cp20157c 10.1002/adfm.202008165 10.1016/0032-3861(87)90394-6 10.1016/j.jpowsour.2020.228468 10.1038/s41586-021-03410-9 10.1021/jacs.7b06197 10.1021/acsnano.8b05038 10.1039/C7CS00547D 10.1002/adma.201704436 10.1002/adma.202303730 10.1038/s41578-019-0103-6 10.1016/j.matt.2020.03.015 10.1038/s41560-018-0312-z 10.1149/2.0051514jes 10.1039/C8TA10124H 10.1021/jacs.9b12233 10.1002/aenm.202002869 10.1039/C9CP02430A 10.1038/451652a 10.1016/j.nanoms.2022.03.005 10.1002/smll.201804413 10.1103/PhysRevLett.77.3865 10.1038/s41578-021-00401-0 10.1039/c2ee22258b 10.1007/b114546 10.1021/jacs.9b10346 10.1016/j.nanoms.2022.03.004 10.1021/jp068691u 10.1021/j100313a022 10.1007/BF02708775 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.1002/inf2.12487 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_324c45d78fb44e84a3bd2368950e6f8b 10_1002_inf2_12487 INF212487 |
Genre | article |
GrantInformation_xml | – fundername: Singapore Ministry of Education funderid: A‐8000186‐01‐00 – fundername: A*STAR SERC CRF Award – fundername: National Research Foundation (NRF) Singapore funderid: CRP NRF‐CRP26‐2021‐0003; NRF‐CRP24‐2020‐0002 |
GroupedDBID | 0R~ 1OC 24P AAMMB ABJCF ACCMX ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PTHSS WIN AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 8FE 8FG ABUWG AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c4577-c4e191b0da9c3f60767784a2f05aa2965727a58d1026a9219e5436a1a517a0d63 |
IEDL.DBID | DOA |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Wed Aug 13 08:33:45 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Wed Aug 20 07:26:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4577-c4e191b0da9c3f60767784a2f05aa2965727a58d1026a9219e5436a1a517a0d63 |
Notes | Jianguo Sun and Hao Yuan contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6059-8962 0000-0002-2222-2478 |
OpenAccessLink | https://doaj.org/article/324c45d78fb44e84a3bd2368950e6f8b |
PQID | 2931375545 |
PQPubID | 5068510 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_324c45d78fb44e84a3bd2368950e6f8b proquest_journals_2931375545 crossref_citationtrail_10_1002_inf2_12487 crossref_primary_10_1002_inf2_12487 wiley_primary_10_1002_inf2_12487_INF212487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015; 162 2019; 7 2019; 4 2023; 35 2013; 4 1984; 81 2021; 267 2000; 113 2023; 5 2020; 142 2019; 15 1998 2020; 59 2011; 13 2023; 1 2019; 141 2006; 118 1988; 92 1996; 54 2017; 139 2018; 47 1996; 77 2021; 14 2020; 3 2021; 31 2016; 1 2021; 11 2020; 471 2019; 64 2022; 4 2022 2019; 21 2022; 7 2007; 111 1999; 59 2010; 132 2020; 27 2019; 29 2018; 30 2017; 19 2021; 592 2013 2018; 12 2008; 451 1994; 50 2012; 5 1987; 28 2022; 19 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Li J (e_1_2_7_5_1) 2022 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Perram JW (e_1_2_7_20_1) 2013 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 92 start-page: 354 issue: 2 year: 1988 end-page: 357 article-title: Raman spectroscopy of zeolite A: influence of silicon/aluminum ratio publication-title: J Phys Chem – year: 2022 article-title: Addressing cation mixing in layered structured cathodes for lithium‐ion batteries: a critical review publication-title: Nano Mater Sci – volume: 5 start-page: 210 issue: 2 year: 2023 end-page: 227 article-title: Solid‐state mechanochemistry advancing two dimensional materials for lithium‐ion storage applications: a mini review publication-title: Nano Mater Sci – volume: 7 start-page: 389 issue: 5 year: 2022 end-page: 405 article-title: Exploiting the paddle‐wheel mechanism for the design of fast ion conductors publication-title: Nat Rev Mater – volume: 142 start-page: 2497 issue: 5 year: 2020 end-page: 2505 article-title: Fast Li conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte publication-title: J Am Chem Soc – volume: 118 start-page: 135 issue: 1 year: 2006 end-page: 154 article-title: Ionic conduction in the solid state publication-title: J Chem Sci – volume: 59 start-page: 8991 issue: 23 year: 2020 end-page: 8997 article-title: Abnormal ionic conductivities in halide NaBi O Cl induced by absorbing water and a derived oxhydryl group publication-title: Angew Chem Int ed – volume: 4 start-page: 322 issue: 4 year: 2022 end-page: 338 article-title: Oxygen redox chemistry in lithium‐rich cathode materials for Li‐ion batteries: understanding from atomic structure to nano‐engineering publication-title: Nano Mater Sci – volume: 1 issue: 4 year: 2016 article-title: Batteries: Getting solid publication-title: Nat Energy – volume: 4 start-page: 187 issue: 3 year: 2019 end-page: 196 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat Energy – volume: 19 start-page: 8669 issue: 19 year: 2022 end-page: 8675 article-title: Super Mg conductivity around 10 S cm observed in a porous metal–organic framework publication-title: J Am Chem Soc – volume: 132 issue: 15 year: 2010 article-title: A consistent and accurateab initioparametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu publication-title: J Chem Phys – year: 1998 – volume: 13 issue: 30 year: 2011 article-title: Zeolites X and a crystallization compared by simultaneous UV/VIS‐Raman and x‐ray diffraction publication-title: Phys Chem Chem Phys – volume: 21 start-page: 23833 issue: 43 year: 2019 end-page: 23842 article-title: Kerr gated Raman spectroscopy of LiPF salt and LiPF ‐based organic carbonate electrolyte for Li‐ion batteries publication-title: Phys Chem Chem Phys – volume: 31 issue: 13 year: 2021 article-title: Inorganic solid electrolytes for all‐solid‐state sodium batteries: fundamentals and strategies for battery optimization publication-title: Adv Funct Mater – volume: 47 start-page: 1250 issue: 4 year: 2018 end-page: 1284 article-title: “Solvent‐in‐salt” systems for design of new materials in chemistry, biology and energy research publication-title: Chem Soc Rev – volume: 451 start-page: 652 issue: 7179 year: 2008 end-page: 657 article-title: Building better batteries publication-title: Nature – volume: 267 year: 2021 article-title: VASPKIT: a user‐friendly interface facilitating high‐throughput computing and analysis using VASP code publication-title: Comput Phys Commun – volume: 30 issue: 2 year: 2018 article-title: A metal–organic‐framework‐based electrolyte with nanowetted interfaces for high‐energy‐density solid‐state lithium battery publication-title: Adv Mater – volume: 28 start-page: 2324 issue: 13 year: 1987 end-page: 2328 article-title: Electrochemical measurement of transference numbers in polymer electrolytes publication-title: Polymer – volume: 54 start-page: 11169 issue: 16 year: 1996 end-page: 11186 article-title: Efficient iterative schemes for ab initio total‐energy calculations using a plane‐wave basis set publication-title: Phys Rev B – volume: 139 start-page: 13260 issue: 38 year: 2017 end-page: 13263 article-title: Single‐ion Li , Na , and Mg solid electrolytes supported by a mesoporous anionic Cu azolate metal–organic framework publication-title: J Am Chem Soc – volume: 64 year: 2019 article-title: The influence of FEC on the solvation structure and reduction reaction of LiPF /EC electrolytes and its implication for solid electrolyte interphase formation publication-title: Nano Energy – volume: 1 start-page: 1‐7 issue: 4 year: 2016 article-title: High‐power all‐solid‐state batteries using sulfide superionic conductors publication-title: Nat Energy – volume: 81 start-page: 511 issue: 1 year: 1984 end-page: 519 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J Chem Phys – volume: 14 start-page: 3510 issue: 6 year: 2021 end-page: 3521 article-title: A flame‐retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature publication-title: Energy Environ Sci – volume: 27 start-page: 236 issue: 1 year: 2020 end-page: 244 article-title: Mixed matrix membranes prepared from polysulfone and Linde type a zeolite publication-title: Sci Eng Compos Mater – volume: 11 issue: 3 year: 2021 article-title: Solid electrolytes for high‐temperature stable batteries and supercapacitors publication-title: Adv Energy Mater – volume: 113 start-page: 9901 issue: 22 year: 2000 end-page: 9904 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J Chem Phys – volume: 7 start-page: 2653 issue: 6 year: 2019 end-page: 2659 article-title: MOF‐derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid‐state lithium batteries publication-title: J Mater Chem A – volume: 50 start-page: 17953 issue: 24 year: 1994 end-page: 17979 article-title: Projector augmented‐wave method publication-title: Phys Rev B – volume: 15 issue: 5 year: 2019 article-title: Nanostructured metal–organic framework (MOF)‐derived solid electrolytes realizing fast lithium ion transportation kinetics in solid‐state batteries publication-title: Small – volume: 162 start-page: A2424 issue: 14 year: 2015 end-page: A2438 article-title: Review—development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions publication-title: J Electrochem Soc – volume: 4 start-page: 312 issue: 5 year: 2019 end-page: 330 article-title: Designing polymers for advanced battery chemistries publication-title: Nat Rev Mater – volume: 1 issue: 3 year: 2023 article-title: Electrolytes for better and safer batteries: liquid, solid or frameworked, what's next? publication-title: Next Mater – volume: 59 start-page: 1758 issue: 3 year: 1999 end-page: 1775 article-title: From ultrasoft pseudopotentials to the projector augmented‐wave method publication-title: Phys Rev B – volume: 3 start-page: 57 issue: 1 year: 2020 end-page: 94 article-title: Lithium dendrite in all‐solid‐state batteries: growth mechanisms, suppression strategies, and characterizations publication-title: Matter – volume: 35 year: 2023 article-title: Liquid‐like Li‐ion conduction in oxides enabling anomalously stable charge transport across the Li/electrolyte interface in all‐solid‐state batteries publication-title: Adv Mater – volume: 471 year: 2020 article-title: Decomposition failure of Li A Ge (PO ) solid electrolytes induced by electric field: a multi‐scenario study using scanning probe microscopy‐based techniques publication-title: J Power Sources – volume: 141 start-page: 20318 issue: 51 year: 2019 end-page: 20324 article-title: Critical role of tricyclic bridges including neighboring rings for understanding Raman spectra of zeolites publication-title: J Am Chem Soc – volume: 11 issue: 32 year: 2021 article-title: A robust solid–solid Interface using sodium–tin alloy modified metallic sodium anode paving way for all‐solid‐state battery publication-title: Adv Energy Mater – volume: 19 start-page: 574 issue: 1 year: 2017 end-page: 586 article-title: Solvation behavior of carbonate‐based electrolytes in sodium ion batteries publication-title: Phys Chem Chem Phys – volume: 29 issue: 37 year: 2019 article-title: A new lithium‐ion conductor LiTaSiO : theoretical prediction, materials synthesis, and ionic conductivity publication-title: Adv Funct Mater – volume: 4 issue: 9 year: 2022 article-title: Will lithium‐sulfurbatteries be the nextbeyond‐lithiumion batteries and even much better? publication-title: InfoMat – volume: 111 start-page: 7411 issue: 20 year: 2007 end-page: 7421 article-title: Solvation sheath of Li in nonaqueous electrolytes and its implication of graphite/electrolyte Interface chemistry publication-title: J Phys Chem C – volume: 5 start-page: 8572 issue: 9 year: 2012 end-page: 8583 article-title: In search of an optimized electrolyte for Na‐ion batteries publication-title: Energy Environ Sci – volume: 592 start-page: 551 issue: 7855 year: 2021 end-page: 557 article-title: A highly stable and flexible zeolite electrolyte solid‐state Li–air battery publication-title: Nature – volume: 12 start-page: 10159 issue: 10 year: 2018 end-page: 10170 article-title: Electrolyte solvation structure at solid–liquid Interface probed by nanogap surface‐enhanced Raman spectroscopy publication-title: ACS Nano – volume: 4 start-page: 1481 issue: 1 year: 2013 article-title: A new class of solvent‐in‐salt electrolyte for high‐energy rechargeable metallic lithium batteries publication-title: Nat Commun – year: 2013 – volume: 77 start-page: 3865 issue: 18 year: 1996 end-page: 3868 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett – ident: e_1_2_7_15_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_7_45_1 doi: 10.1039/D1EE00049G – ident: e_1_2_7_3_1 doi: 10.1002/inf2.12359 – ident: e_1_2_7_50_1 doi: 10.1063/1.3382344 – ident: e_1_2_7_53_1 doi: 10.1063/1.1329672 – ident: e_1_2_7_40_1 doi: 10.1515/secm-2020-0022 – ident: e_1_2_7_13_1 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_7_47_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_7_51_1 doi: 10.1063/1.447334 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.2c01612 – ident: e_1_2_7_31_1 doi: 10.1016/j.nxmate.2023.100024 – ident: e_1_2_7_42_1 doi: 10.1016/j.nanoen.2019.103881 – ident: e_1_2_7_43_1 doi: 10.1039/C6CP07215A – ident: e_1_2_7_52_1 doi: 10.1016/j.cpc.2021.108033 – ident: e_1_2_7_46_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_7_27_1 doi: 10.1038/ncomms2513 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.202101228 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201904232 – ident: e_1_2_7_48_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201912145 – ident: e_1_2_7_37_1 doi: 10.1039/c1cp20157c – ident: e_1_2_7_11_1 doi: 10.1002/adfm.202008165 – ident: e_1_2_7_32_1 doi: 10.1016/0032-3861(87)90394-6 – ident: e_1_2_7_16_1 doi: 10.1016/j.jpowsour.2020.228468 – ident: e_1_2_7_24_1 doi: 10.1038/s41586-021-03410-9 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.7b06197 – ident: e_1_2_7_38_1 doi: 10.1021/acsnano.8b05038 – year: 2022 ident: e_1_2_7_5_1 article-title: Addressing cation mixing in layered structured cathodes for lithium‐ion batteries: a critical review publication-title: Nano Mater Sci – volume-title: The Physics of Superionic Conductors and Electrode Materials year: 2013 ident: e_1_2_7_20_1 – ident: e_1_2_7_30_1 doi: 10.1039/C7CS00547D – ident: e_1_2_7_33_1 doi: 10.1002/adma.201704436 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202303730 – ident: e_1_2_7_21_1 doi: 10.1038/s41578-019-0103-6 – ident: e_1_2_7_7_1 doi: 10.1016/j.matt.2020.03.015 – ident: e_1_2_7_8_1 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_7_41_1 doi: 10.1149/2.0051514jes – ident: e_1_2_7_22_1 doi: 10.1039/C8TA10124H – ident: e_1_2_7_34_1 doi: 10.1021/jacs.9b12233 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.202002869 – ident: e_1_2_7_39_1 doi: 10.1039/C9CP02430A – ident: e_1_2_7_2_1 doi: 10.1038/451652a – ident: e_1_2_7_4_1 doi: 10.1016/j.nanoms.2022.03.005 – ident: e_1_2_7_23_1 doi: 10.1002/smll.201804413 – ident: e_1_2_7_49_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_18_1 doi: 10.1038/s41578-021-00401-0 – ident: e_1_2_7_14_1 doi: 10.1039/c2ee22258b – ident: e_1_2_7_29_1 doi: 10.1007/b114546 – ident: e_1_2_7_36_1 doi: 10.1021/jacs.9b10346 – ident: e_1_2_7_6_1 doi: 10.1016/j.nanoms.2022.03.004 – ident: e_1_2_7_28_1 doi: 10.1021/jp068691u – ident: e_1_2_7_35_1 doi: 10.1021/j100313a022 – ident: e_1_2_7_19_1 doi: 10.1007/BF02708775 |
SSID | ssj0002504251 |
Score | 2.3318272 |
Snippet | All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid‐state... All solid-state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal solid-state... Abstract All solid‐state batteries (ASSBs) are the holy grails of rechargeable batteries, where extensive searches are ongoing in the pursuit of ideal... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cages Concentration gradient Diffusion Electrochemical analysis Electrodes Electrolytes Electrons Energy storage Flammability frameworked electrolyte Interface stability Ion currents Lithium Lithium-ion batteries macroscopically solid with 3D ionic channels in sub‐nano‐scales Molten salt electrolytes Phase transitions Polymers Rechargeable batteries Room temperature Solid electrodes Solid electrolytes Solid state solid‐state battery Solvents space confinement of Li ions Temperature Transport phenomena Zeolites |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qXvRB_MTqlIC-KFS7fLXxRZw4pg9DxIFPhjRJRZibuvngf-8lS-cE8aWUEkpzl9z97nr5HUJH1IKbcJKl1hmSssqJVDoIVpyutJFWU6ED22dPdPvs9pE_xoTbOJZV1jYxGGo7Mj5HfgZuqUVzcH784u099V2j_N_V2EJjETXABBcQfDXa1727-1mWxRN0gQef8ZKSM9AbOQWn5mvo5jxRIOz_hTLnsWpwNp01tBpRIr6cqnUdLbjhBlqZ4w7cRE-duqzKWRyb2Qy-ADie4xtPd4snNW05ro_iYz202PMT49dRqIn9wgBZMay-F4vDySJcBrpNiJ63UL9z_XDVTWOzhNQwnudwdRB6lZnV0tBKZLlnhmOaVBnXmkjBAahoXlgAFEJLsFOOM1BES_NWrjMr6DZaGo6GbgdhYwpZME6183xsRuoyKwGFALDKMsepTdBxLThlIpO4b2gxUFMOZKK8kFUQcoIOZ2PfpvwZf45qe_nPRnjO6_Bg9PGs4hZSAP1gqjYvqpIxB3OjpSVUFJJnTlRFmaBmrT0VN-JY_SybBJ0Ejf7zGeqm1yHhbvf_d-2hZQLgZlq93URLk49Ptw_gZFIexBX4DX6y45k priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHHxc9iE9cXwT0olDt5tVGvKi4uB4WDwp7MiRNKoLuiq4Hv72T9LEKIngppUyhnUky_4TkNwAHzGGa8Ionzhc04aWXifI4WfGmNIVyhkkTaZ8DeX3Pb4ZiOANnzVmYig_RLriFnhHH69DBjX0_mUJDMQD0GLNTns3CfDhbG8j5lN-2KywBzkVj_UVM62ExToqWT0pPpq__yEgR3P9DbX7XrDHp9JZhqVaL5LwK7wrM-NEqLH5jCK7BQ6_ZXuUdqYvaPH-igDwl_YC9JZMGX06aI_nEjBwJnGLyMo57Yz8JSleCrfDJkXjCiNiI3cRZ9Drc967uLq-TumhCUnCRZXj1OAWzqTOqYKVMs0CI44aWqTCGKilQsBiROxQW0igcr7zgGJCuEd3MpE6yDZgbjUd-E0hR5CrnghkfuGyFMja1qEZQYKWpF8x14LBxnC5qongobPGsKxYy1cHJOjq5A_ut7WvF0fjV6iL4v7UI7Ov4YPz2qOuupFEC4q-6LC8t5x7_jVlHmcyVSL0sc9uBnSZ6uu6Q7xpVTZdlqJ1EB45iRP_4DN0f9Gi82_qP8TYsUJQ81Z7uHZibvH34XZQsE7sXW-YXY7nkuA priority: 102 providerName: Wiley-Blackwell |
Title | Frameworked electrolytes: Ionic transport behavior and high mobility for solid state batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12487 https://www.proquest.com/docview/2931375545 https://doaj.org/article/324c45d78fb44e84a3bd2368950e6f8b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMcHXS96EJ-4PpaAXhSq3bzaeFOxPg6LiAt7MqRNCoKuouthv72TtF0qiF68lFJyCDPTzH9g8huAA2YxTTjFI-sKGvHSyUg5LFacKU2hrGHSBNrnQF4P-e1IjFqjvnxPWIUHrgx3ggm_4MImaZlz7lJuWG4pk6kSsZNlmvvTF3Neq5jyZ7AHc2HmnvFI6Qn6ix5jMvO9c60MFED939RlW6OGJJOtwHKtDslZtatVmHPjNVhqMQPX4TFr2qmcJfUQm-cpCsZTcuMxt2TS4MpJcwWfmLElnktMXl5DL-yUoFQlGHVPloQbRSQPmE2smjdgmF0-XFxH9ZCECM2SJPh0WHLlsTWqYKWME0-E44aWsTCGKilQoBiRWhQS0ig8n5zg6IC-Ef3ExFayTeiMX8duC0hRpCrlghnnOWyFMnmco_pAQRXHTjDbhcPGcLqoCeJ-kMWzrtjHVHsj62DkLuzP1r5V3IwfV517-89WeNZ1-IARoOsI0H9FQBd2G-_p-gf80Khi-ixBrSS6cBQ8-ss29M0go-Ft-z82tAOLFKVP1du9C53J-6fbQ-kyyXswT_kdPtPsqgcL55eDu_teiNwvAJjt2Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKqCtuhRaS9BDkdLN-pUYCVX0EXYL3RNInOo6toOQYJfHVtX-KX5jx06yXaSKG5coiizLHs94vnHG3wBsM4duwiueOG9pwisvE-UxWPGmMlY5w6SJbJ9D2T_h30_F6QLctXdhQlpluyfGjdqNbTgj76Jb6rEMnZ_4dHWdhKpR4e9qW0KjVotDP_2DIdvt3uArru97Sotvx1_6SVNVILFcZBk-PcYoZeqMsqySGMdnWc4NrVJhDFVSoEc3InfoeaVRaNBecBxxz4heZlInGfb7BJY4YypYVF4czM50Ah0Y4oUZCyrtopbQj-hCQ8benN-L5QHuYdp5ZBxdW7ECzxtMSvZrJVqFBT9ag-U5psIX8LNok7i8I03pnIspwtRdMgjkumTSkqST9uI_MSNHAhsyuRzHDNwpQYBMUNfPHYn3mEgZyT0xVn8JJ48ixFewOBqP_Gsg1uYq54IZH9jfrDJlWiLmQRiXpl4w14EPreC0bXjLQ_mMC10zLlMdhKyjkDuwNWt7VbN1_LfV5yD_WYvAsB0_jG_OdGOwGoEmTtVleVVy7nFurHSUyVyJ1MsqLzuw0a6ebsz-Vv9T0g7sxBV9YBh6MCxofFt_uK938LR__ONIHw2Gh2_gGUVYVeeNb8Di5Oa330RYNCnfRl0k8Ouxlf8vyEUchA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fSxwxEB7sCdI-lFYtPWvbQPXBwvb28ms3Qim1ungqhxQFn4zZJFsKemf1Srl_rX-dk-zu9YTimy_LsoSQTL5kvtmd_QZggzl0E17xxHlLE155mSiPwYo3lbHKGSZNVPscyv1TfnAmzhbgb_svTEirbM_EeFC7sQ3vyHvolvosQ-cnelWTFnG8W3y5_pWEClLhS2tbTqOGyKGf_sHw7fbzYBfXepPSYu_k237SVBhILBdZhleP8UqZOqMsqyTG9FmWc0OrVBhDlRTo3Y3IHXphaRRubi84jr5vRD8zqZMM-30CixlGRWkHFnf2hsffZ294gjgYsoeZJirtIWboJ3SoIX9vzgvGYgH3GO48T46OrngBzxuGSr7WkHoJC360DM_mdAtX4LxoU7q8I00hncspktZtMghSu2TSSqaTVgaAmJEjQRuZXI1jPu6UIF0miPyfjsS_mkgZpT4xcl-F00cx4yvojMYj_xqItbnKuWDGBy04q0yZlsiAkNSlqRfMdWGrNZy2jYp5KKZxqWv9ZaqDkXU0chc-zNpe19od_221E-w_axH0tuOD8c0P3WxfjbQTp-qyvCo59zg3VjrKZK5E6mWVl11Yb1dPN4fArf4H2S58jCv6wDD0YFjQeLf2cF_vYQmBr48Gw8M38JQix6qTyNehM7n57d8iR5qU7xowErh4bPzfAeMBIhY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frameworked+electrolytes%3A+Ionic+transport+behavior+and+high+mobility+for+solid+state+batteries&rft.jtitle=InfoMat&rft.au=Jianguo+Sun&rft.au=Hao+Yuan&rft.au=Jing+Yang&rft.au=Tuo+Wang&rft.date=2024-02-01&rft.pub=Wiley&rft.eissn=2567-3165&rft.volume=6&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Finf2.12487&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_324c45d78fb44e84a3bd2368950e6f8b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |