Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin
Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, l...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 9; pp. np - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
03.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa−1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated.
Using carbonized electrospun silk nanofiber membranes and planar polydimethylsiloxane films, a skin‐like ultrasensitive pressure sensor is fabricated. The sensor shows superior performance, including high sensitivity (34.47 kPa−1), an ultralow detection limit (0.8 Pa), fast response time (<16.7 ms), and high stability and durability (>10 000 cycles), enabling its wide application in real‐time biomedical monitoring and smart equipment. |
---|---|
AbstractList | Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin-like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost-effective, large-area-capable, and biocompatible approach for fabrication of high-performance skin-like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin-like pressure sensors is demonstrated using SF-derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost-effective and large-scale capable approach. Due to the unique N-doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa-1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin-like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost-effective, large-area-capable, and biocompatible approach for fabrication of high-performance skin-like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin-like pressure sensors is demonstrated using SF-derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost-effective and large-scale capable approach. Due to the unique N-doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa super(-1)) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. Using carbonized electrospun silk nanofiber membranes and planar polydimethylsiloxane films, a skin-like ultrasensitive pressure sensor is fabricated. The sensor shows superior performance, including high sensitivity (34.47 kPa super(-1)), an ultralow detection limit (0.8 Pa), fast response time (<16.7 ms), and high stability and durability (>10 000 cycles), enabling its wide application in real-time biomedical monitoring and smart equipment. Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa−1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. Using carbonized electrospun silk nanofiber membranes and planar polydimethylsiloxane films, a skin‐like ultrasensitive pressure sensor is fabricated. The sensor shows superior performance, including high sensitivity (34.47 kPa−1), an ultralow detection limit (0.8 Pa), fast response time (<16.7 ms), and high stability and durability (>10 000 cycles), enabling its wide application in real‐time biomedical monitoring and smart equipment. Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa −1 ) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. |
Author | Wang, Qi Wang, Chunya Zhang, Yingying Jian, Muqiang |
Author_xml | – sequence: 1 givenname: Qi surname: Wang fullname: Wang, Qi organization: Tsinghua University – sequence: 2 givenname: Muqiang surname: Jian fullname: Jian, Muqiang organization: Tsinghua University – sequence: 3 givenname: Chunya surname: Wang fullname: Wang, Chunya organization: Tsinghua University – sequence: 4 givenname: Yingying surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkMlLAzEUh4MouF49D3jx0pplJpkcpa5QF1DBW8hkXiDtNKnJVNG_3pRKhYJ4eu_wfW_57aNtHzwgdEzwkGBMz3RrZ0OKCccVr8QW2iOc8AHDtN5e9-R1F-2nNMGYCMHKPfQ40rEJ3n1BWzy5blrcax-sayAWdzBrovZQ2BCL59yluY7g-0L7zIJPrnfvUFx2YPqYR5jiaer8Idqxuktw9FMP0MvV5fPoZjB-uL4dnY8HpqyEGOjWNII2DQC0VhiQTFZSMs6NrZualKSsecusASxMW9OKMkNMYyzkL7mRlB2g09XceQxvC0i9mrlkoOvyxWGRFKklq6UoSZ3Rkw10EhbR5-sUkRSXhFHJMzVcUSaGlCJYNY9upuOnIlgtA1bLgNU64CyUG4Jxve5d8H3Urvtbkyvtw3Xw-c8SdX5xdffrfgPidZM3 |
CitedBy_id | crossref_primary_10_1002_sstr_202100120 crossref_primary_10_1002_slct_202104427 crossref_primary_10_1016_j_mee_2018_05_003 crossref_primary_10_1021_acsmaterialslett_3c00144 crossref_primary_10_1021_acs_langmuir_3c01669 crossref_primary_10_1038_s41598_018_31628_7 crossref_primary_10_1039_D2SM00786J crossref_primary_10_2174_1872212118666230519161338 crossref_primary_10_1039_D0TA06775J crossref_primary_10_1016_j_microc_2025_113251 crossref_primary_10_1002_adma_201805630 crossref_primary_10_1002_smll_202207879 crossref_primary_10_1007_s12598_024_03157_y crossref_primary_10_1016_j_bios_2023_115449 crossref_primary_10_1002_admi_201901507 crossref_primary_10_1109_JSEN_2023_3329879 crossref_primary_10_1002_admi_202202169 crossref_primary_10_1007_s12274_022_5162_0 crossref_primary_10_1021_acsaelm_2c01654 crossref_primary_10_15251_JOBM_2023_151_43 crossref_primary_10_3390_polym16020295 crossref_primary_10_1002_adfm_202102108 crossref_primary_10_1002_admt_202101312 crossref_primary_10_1039_C9TB02685A crossref_primary_10_1016_j_nanoen_2018_04_059 crossref_primary_10_1021_acsami_1c19334 crossref_primary_10_3390_coatings13010031 crossref_primary_10_1039_D2MH01079H crossref_primary_10_1002_advs_202301590 crossref_primary_10_3390_nano15050367 crossref_primary_10_1007_s00542_020_04889_4 crossref_primary_10_1002_adfm_201806395 crossref_primary_10_1002_adfm_201808695 crossref_primary_10_1080_15583724_2022_2158467 crossref_primary_10_1002_admt_201700241 crossref_primary_10_1016_j_cej_2024_150204 crossref_primary_10_1002_advs_202200560 crossref_primary_10_1021_acsanm_2c04844 crossref_primary_10_1007_s10853_021_05909_y crossref_primary_10_1039_D3BM00801K crossref_primary_10_1088_1361_6528_acdde7 crossref_primary_10_1039_D2TC01104B crossref_primary_10_1007_s42765_023_00338_9 crossref_primary_10_1021_acs_iecr_1c03981 crossref_primary_10_1021_acsami_0c03697 crossref_primary_10_1080_14658011_2020_1747158 crossref_primary_10_1080_19475411_2022_2091059 crossref_primary_10_1016_j_jallcom_2021_160680 crossref_primary_10_1007_s40843_022_2397_y crossref_primary_10_1002_smll_202000128 crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1039_D0RA03964K crossref_primary_10_1088_1361_6528_ad4158 crossref_primary_10_1021_acsami_1c05478 crossref_primary_10_1016_j_clay_2022_106650 crossref_primary_10_1016_j_compscitech_2022_109751 crossref_primary_10_1007_s10570_023_05635_5 crossref_primary_10_1021_acsami_2c00384 crossref_primary_10_1039_C9NR02672J crossref_primary_10_1021_acs_accounts_9b00333 crossref_primary_10_1007_s42765_022_00186_z crossref_primary_10_1002_adfm_201808509 crossref_primary_10_1021_acsami_0c05819 crossref_primary_10_1007_s10853_020_05736_7 crossref_primary_10_1016_j_nanoen_2022_107099 crossref_primary_10_1016_j_nanoen_2023_108244 crossref_primary_10_1002_smll_202300895 crossref_primary_10_1021_acs_chemmater_8b04572 crossref_primary_10_1021_acsami_2c01345 crossref_primary_10_1039_C8MH01188E crossref_primary_10_1021_acs_biomac_2c00753 crossref_primary_10_1002_admi_201801061 crossref_primary_10_3390_micro4040049 crossref_primary_10_1186_s11671_024_04001_z crossref_primary_10_1007_s44211_023_00283_y crossref_primary_10_1016_j_nanoen_2017_09_038 crossref_primary_10_1007_s10570_019_02313_3 crossref_primary_10_1021_acsami_4c01414 crossref_primary_10_1002_aelm_201901360 crossref_primary_10_1002_adfm_201704641 crossref_primary_10_1016_j_trac_2020_115813 crossref_primary_10_1039_D0TC02539A crossref_primary_10_1002_adma_202003464 crossref_primary_10_1021_acssuschemeng_1c02857 crossref_primary_10_2174_1573413718666220329220551 crossref_primary_10_1002_admi_202101998 crossref_primary_10_1007_s40820_020_00459_5 crossref_primary_10_1002_aisy_202000113 crossref_primary_10_3390_s20092459 crossref_primary_10_1002_admi_202100430 crossref_primary_10_1016_j_eng_2021_02_014 crossref_primary_10_1016_j_nanoen_2017_10_007 crossref_primary_10_1002_smll_202203491 crossref_primary_10_1002_smll_202008079 crossref_primary_10_1016_j_microc_2020_105506 crossref_primary_10_1021_acsami_9b19721 crossref_primary_10_1002_adma_202000982 crossref_primary_10_1016_j_carbpol_2024_121870 crossref_primary_10_1039_D3TB00639E crossref_primary_10_1021_acsnano_2c02609 crossref_primary_10_1016_j_apsusc_2019_04_271 crossref_primary_10_1021_acsami_9b02049 crossref_primary_10_1002_aenm_201803183 crossref_primary_10_1021_acssuschemeng_2c05540 crossref_primary_10_1016_j_compositesa_2022_107177 crossref_primary_10_1002_admt_202200322 crossref_primary_10_1002_adfm_202411177 crossref_primary_10_1039_D3MH01362F crossref_primary_10_1002_adem_202100195 crossref_primary_10_1002_smll_202104810 crossref_primary_10_1021_acsami_7b06119 crossref_primary_10_1039_C9NR08632C crossref_primary_10_1016_j_cej_2023_145534 crossref_primary_10_1016_j_matdes_2017_04_096 crossref_primary_10_1021_acsami_3c14445 crossref_primary_10_1007_s10853_019_03951_5 crossref_primary_10_1002_admi_201901223 crossref_primary_10_1002_smll_202205291 crossref_primary_10_1002_smtd_201700374 crossref_primary_10_1021_acsnano_1c00472 crossref_primary_10_1002_mame_201900492 crossref_primary_10_1021_acsami_7b10820 crossref_primary_10_1126_sciadv_abn2156 crossref_primary_10_1021_acs_biomac_2c00553 crossref_primary_10_1016_j_matlet_2019_127198 crossref_primary_10_1002_admi_201700496 crossref_primary_10_1002_app_51367 crossref_primary_10_1002_aelm_201900916 crossref_primary_10_1021_acsami_4c14400 crossref_primary_10_1021_acsami_9b10928 crossref_primary_10_1039_C7MH00933J crossref_primary_10_1007_s12221_024_00655_9 crossref_primary_10_1021_acsami_8b11926 crossref_primary_10_1021_acs_langmuir_8b04007 crossref_primary_10_1007_s00542_022_05269_w crossref_primary_10_1002_adfm_201707538 crossref_primary_10_1007_s10853_018_3022_9 crossref_primary_10_1039_D3TA01132A crossref_primary_10_1088_2631_7990_acdc66 crossref_primary_10_1002_adma_201902343 crossref_primary_10_1016_j_cej_2020_127960 crossref_primary_10_2139_ssrn_4093867 crossref_primary_10_1016_j_sna_2018_05_036 crossref_primary_10_1039_D0TC02983A crossref_primary_10_1063_5_0060344 crossref_primary_10_1021_acsami_0c19512 crossref_primary_10_1039_D2TC03822F crossref_primary_10_1016_j_cej_2021_130197 crossref_primary_10_1021_acssuschemeng_8b06009 crossref_primary_10_1002_inf2_12527 crossref_primary_10_1016_j_nano_2019_01_002 crossref_primary_10_1039_C8TC04549F crossref_primary_10_1002_adhm_201901860 crossref_primary_10_1016_j_ijbiomac_2024_132185 crossref_primary_10_1002_app_50048 crossref_primary_10_1002_adma_201805921 crossref_primary_10_1002_adma_202310505 crossref_primary_10_1016_j_susmat_2022_e00447 crossref_primary_10_1088_1361_665X_ad31cc crossref_primary_10_1007_s11664_025_11784_z crossref_primary_10_1016_j_cossms_2018_11_001 crossref_primary_10_1002_smll_201702933 crossref_primary_10_1016_j_compositesb_2021_109431 crossref_primary_10_1002_adfm_201902127 crossref_primary_10_1007_s12200_022_00051_2 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_7498_aps_69_20200818 crossref_primary_10_1039_D0TC00593B crossref_primary_10_1002_adma_201801754 crossref_primary_10_1002_adma_202306144 crossref_primary_10_1002_er_6589 crossref_primary_10_1021_acsami_2c06524 crossref_primary_10_1080_07388551_2020_1853030 crossref_primary_10_1016_j_eml_2020_100714 crossref_primary_10_3390_polym13050813 crossref_primary_10_1039_C9TC01331H crossref_primary_10_1016_j_carbon_2020_07_042 crossref_primary_10_1016_j_cej_2021_130091 crossref_primary_10_1021_acsami_0c01298 crossref_primary_10_1002_adem_201801361 crossref_primary_10_1021_acsnano_2c06069 crossref_primary_10_1002_adfm_201808241 crossref_primary_10_1002_adhm_201700889 crossref_primary_10_1080_10584587_2024_2324683 crossref_primary_10_1088_1361_665X_ab1adf crossref_primary_10_1515_ntrev_2023_0219 crossref_primary_10_1021_acsami_3c18714 crossref_primary_10_7498_aps_70_20210023 crossref_primary_10_1021_acsbiomaterials_4c00254 crossref_primary_10_1002_smll_202300242 crossref_primary_10_1002_admt_201900475 crossref_primary_10_1016_j_memsci_2019_117349 crossref_primary_10_1021_acsami_8b17020 crossref_primary_10_1039_D1TC03856G crossref_primary_10_1002_celc_202300293 crossref_primary_10_1002_app_47928 crossref_primary_10_1016_j_polymer_2021_124299 crossref_primary_10_1021_acsami_9b17371 crossref_primary_10_1021_acsomega_1c02535 crossref_primary_10_1007_s40843_017_9077_x crossref_primary_10_1016_j_bios_2018_08_018 crossref_primary_10_1021_acsami_8b06496 crossref_primary_10_1021_acsami_9b04060 crossref_primary_10_1002_adma_202005910 crossref_primary_10_1002_admt_202101097 crossref_primary_10_1007_s40820_021_00591_w crossref_primary_10_1007_s40843_019_9445_9 crossref_primary_10_3390_app13010128 crossref_primary_10_1021_acsnano_0c04686 crossref_primary_10_1016_j_ultsonch_2023_106690 crossref_primary_10_1002_smll_202004129 crossref_primary_10_3390_mi12060600 crossref_primary_10_3390_polym15204067 crossref_primary_10_1021_acs_macromol_2c02312 crossref_primary_10_1088_1361_6528_aa8746 crossref_primary_10_1002_adem_202401988 crossref_primary_10_1002_advs_202403724 crossref_primary_10_1109_LED_2018_2835467 crossref_primary_10_1002_adma_201705122 crossref_primary_10_1109_JPHOT_2017_2779605 crossref_primary_10_1002_advs_201903802 crossref_primary_10_1021_acsami_4c16217 crossref_primary_10_1002_adfm_201802576 crossref_primary_10_1007_s40843_019_1173_3 crossref_primary_10_1038_s41467_022_28901_9 crossref_primary_10_1007_s12274_021_3390_3 crossref_primary_10_1021_acsnano_8b08911 crossref_primary_10_1038_s41570_023_00486_x crossref_primary_10_1002_smll_201804779 crossref_primary_10_1063_5_0077959 crossref_primary_10_1016_j_bios_2019_111595 crossref_primary_10_1016_j_cej_2020_128199 crossref_primary_10_1021_acsami_7b07935 crossref_primary_10_1039_C8TA08276F crossref_primary_10_1038_s41467_019_11803_8 crossref_primary_10_1016_j_compstruct_2024_118041 crossref_primary_10_1021_acs_energyfuels_0c03370 crossref_primary_10_1016_j_eurpolymj_2021_110980 crossref_primary_10_1177_0040517519849451 crossref_primary_10_2139_ssrn_4190842 crossref_primary_10_1021_acs_jpcc_7b10601 crossref_primary_10_3390_polym14112219 crossref_primary_10_1021_acsami_0c08114 crossref_primary_10_1021_acsami_1c24257 crossref_primary_10_1039_D0RA10803K crossref_primary_10_1088_2053_1591_acc1c6 crossref_primary_10_1021_acs_jpclett_4c00869 crossref_primary_10_1002_adfm_202110417 crossref_primary_10_1016_j_ijbiomac_2022_10_134 crossref_primary_10_1002_advs_202103981 crossref_primary_10_1016_j_cej_2023_147899 crossref_primary_10_1002_adma_201805093 crossref_primary_10_1016_j_isci_2021_102716 crossref_primary_10_1016_j_cej_2020_124855 crossref_primary_10_2139_ssrn_4162449 crossref_primary_10_1039_D2TA02913H crossref_primary_10_1021_acsami_2c22727 crossref_primary_10_1039_D1MA01114F crossref_primary_10_1007_s11468_023_01828_7 crossref_primary_10_1016_j_bios_2021_113690 crossref_primary_10_1002_elan_202300216 crossref_primary_10_1126_sciadv_aax2805 crossref_primary_10_1016_j_matdes_2020_109178 crossref_primary_10_1039_C8GC01609G crossref_primary_10_1039_C8TC02230E crossref_primary_10_1002_aisy_201900180 crossref_primary_10_1039_D1TC01587G crossref_primary_10_1002_adfm_201802762 crossref_primary_10_1002_aisy_201900179 crossref_primary_10_1021_acssensors_1c01734 crossref_primary_10_1002_adfm_201909603 crossref_primary_10_1021_acsaelm_0c00644 crossref_primary_10_1021_acsami_8b17085 crossref_primary_10_1186_s11671_024_03971_4 crossref_primary_10_1039_D3PY00282A crossref_primary_10_1002_adma_202414620 crossref_primary_10_1021_acsaelm_3c01854 crossref_primary_10_1109_JSEN_2020_3034453 crossref_primary_10_1016_j_ijbiomac_2024_130135 crossref_primary_10_1016_j_ijbiomac_2024_130373 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_1002_adsu_202000108 crossref_primary_10_1002_slct_202000092 crossref_primary_10_1039_C7CS00278E crossref_primary_10_1002_crat_202300119 crossref_primary_10_1002_admt_202201503 crossref_primary_10_1021_acsami_1c22001 crossref_primary_10_1002_admi_202200621 crossref_primary_10_1126_sciadv_aax0649 crossref_primary_10_1021_acsami_8b08014 crossref_primary_10_1002_eem2_12041 crossref_primary_10_1002_nano_202100003 crossref_primary_10_1002_adfm_202407975 crossref_primary_10_1002_slct_202302316 crossref_primary_10_1021_acsami_2c07202 crossref_primary_10_1002_adma_201902434 crossref_primary_10_1039_D2TA06402B crossref_primary_10_1021_acsami_0c10516 crossref_primary_10_1007_s42765_024_00471_z crossref_primary_10_1016_j_nantod_2022_101723 crossref_primary_10_1002_adsu_202000216 crossref_primary_10_1002_smll_202305418 crossref_primary_10_1088_1674_4926_39_1_011012 crossref_primary_10_1109_JSEN_2020_3008159 crossref_primary_10_1016_j_ijbiomac_2023_124757 crossref_primary_10_29026_oea_2022_210029 crossref_primary_10_1007_s11581_024_05507_3 crossref_primary_10_1038_s41427_020_00267_8 crossref_primary_10_52711_0974_360X_2021_00410 crossref_primary_10_1021_acsami_8b15809 crossref_primary_10_1002_adma_201902301 crossref_primary_10_1016_j_eurpolymj_2024_112895 crossref_primary_10_1039_C8TB02862A crossref_primary_10_1021_acsnano_9b10230 crossref_primary_10_1021_acsami_9b07846 crossref_primary_10_1002_adfm_201705291 crossref_primary_10_1002_aelm_201900826 crossref_primary_10_1016_j_mtnano_2024_100452 crossref_primary_10_1002_adfm_201802547 crossref_primary_10_1007_s42114_021_00292_3 crossref_primary_10_1021_acsbiomaterials_1c00699 crossref_primary_10_1016_j_snb_2018_04_046 crossref_primary_10_1039_C9CC00298G crossref_primary_10_1002_adma_202106570 crossref_primary_10_1021_acsami_1c07058 crossref_primary_10_3390_bios13030393 crossref_primary_10_3390_polym11071120 crossref_primary_10_1007_s42765_024_00479_5 crossref_primary_10_1021_acs_nanolett_8b03085 crossref_primary_10_1021_acsami_0c21392 crossref_primary_10_1039_D3NR05522A crossref_primary_10_1021_acsanm_4c00286 crossref_primary_10_1016_j_apsusc_2023_156962 crossref_primary_10_3390_polym16131781 crossref_primary_10_1002_aelm_202200012 crossref_primary_10_1002_adhm_202100460 crossref_primary_10_1007_s11706_022_0597_5 crossref_primary_10_1007_s11431_018_9403_8 crossref_primary_10_2174_1876402912666200319152508 crossref_primary_10_1002_adfm_201808829 crossref_primary_10_1002_smll_201901124 crossref_primary_10_1016_j_carbpol_2020_116960 crossref_primary_10_1021_acsbiomaterials_2c00667 crossref_primary_10_1039_C9TB02570G crossref_primary_10_1002_smtd_202201340 crossref_primary_10_1021_acsami_3c18247 crossref_primary_10_1002_inf2_12060 crossref_primary_10_1016_j_cej_2021_130869 crossref_primary_10_1039_C9CY00804G crossref_primary_10_1002_wnan_1961 crossref_primary_10_1021_acsnano_1c06695 crossref_primary_10_1021_acsami_8b15848 crossref_primary_10_1002_smll_201904758 crossref_primary_10_1016_j_cej_2022_135003 crossref_primary_10_1002_smtd_202100869 crossref_primary_10_1002_smll_202002681 crossref_primary_10_1155_2021_9970518 crossref_primary_10_1016_j_ceramint_2022_01_191 crossref_primary_10_1002_agt2_522 crossref_primary_10_1002_jssc_201900426 crossref_primary_10_1088_1674_4926_41_4_041605 crossref_primary_10_1002_adma_202002695 crossref_primary_10_1021_acsami_0c12561 crossref_primary_10_1016_j_cej_2024_150962 crossref_primary_10_1088_1674_4926_41_4_041601 crossref_primary_10_1016_j_cej_2024_158799 crossref_primary_10_1021_acsami_8b13535 crossref_primary_10_1016_j_cej_2020_126191 crossref_primary_10_1016_j_pmatsci_2023_101139 crossref_primary_10_1016_j_nanoen_2018_05_020 crossref_primary_10_1016_j_mtnano_2023_100358 crossref_primary_10_1016_j_nanoen_2022_107077 crossref_primary_10_1016_j_orgel_2020_106044 crossref_primary_10_1039_D0TA02010A crossref_primary_10_1088_1361_6528_aba3db crossref_primary_10_1007_s11431_022_2190_y crossref_primary_10_1016_j_compositesb_2022_110386 crossref_primary_10_1002_adma_202413929 crossref_primary_10_1002_slct_201803526 crossref_primary_10_1021_acsami_8b12363 crossref_primary_10_1016_j_cej_2020_124805 crossref_primary_10_1002_adma_201801072 crossref_primary_10_1002_pc_28382 crossref_primary_10_1002_admi_202102588 crossref_primary_10_1149_2_0162003JES crossref_primary_10_1002_aelm_202000168 crossref_primary_10_1002_adhm_202301811 crossref_primary_10_1002_adma_201901408 crossref_primary_10_1016_j_cej_2021_130418 crossref_primary_10_1016_j_nanoen_2023_108881 crossref_primary_10_1039_C9RA08188G crossref_primary_10_1021_acsami_8b03639 crossref_primary_10_1016_j_carbpol_2025_123220 crossref_primary_10_1007_s42114_024_00857_y crossref_primary_10_1002_aelm_201901426 crossref_primary_10_1007_s12274_018_2219_1 crossref_primary_10_1021_acsami_2c22634 crossref_primary_10_1021_acsnano_8b09651 crossref_primary_10_1088_1361_665X_ac5454 crossref_primary_10_1007_s00289_023_04949_5 crossref_primary_10_1021_acsapm_1c00805 crossref_primary_10_1002_cssc_201902979 crossref_primary_10_1002_adfm_202104686 crossref_primary_10_1021_acsnano_9b09533 crossref_primary_10_1088_1361_6528_aafe4c crossref_primary_10_3390_polym15030764 crossref_primary_10_1021_acsami_9b21068 crossref_primary_10_1016_j_electacta_2018_08_030 crossref_primary_10_1038_s41378_021_00261_2 crossref_primary_10_1039_C9NR00488B crossref_primary_10_1088_2631_6331_ab7a8c crossref_primary_10_1021_acsami_7b16611 crossref_primary_10_1007_s40843_018_9348_8 crossref_primary_10_1021_acsmaterialslett_9b00461 crossref_primary_10_1002_cctc_202300387 crossref_primary_10_1016_j_nanoen_2019_104436 crossref_primary_10_1039_D5RA00167F crossref_primary_10_1088_1361_6528_ac137e crossref_primary_10_1002_smll_202308527 crossref_primary_10_1039_D4CS00286E crossref_primary_10_1002_admt_202301659 crossref_primary_10_1002_advs_201701010 crossref_primary_10_1007_s40820_022_00874_w crossref_primary_10_1039_D1TA08727D crossref_primary_10_1109_RBME_2020_3043623 crossref_primary_10_1016_j_scib_2020_05_002 crossref_primary_10_1063_5_0010766 crossref_primary_10_1007_s13577_021_00588_y crossref_primary_10_1021_acsomega_1c04279 crossref_primary_10_1007_s10570_019_02432_x crossref_primary_10_1016_j_nanoen_2022_108129 crossref_primary_10_1002_cphc_202100279 crossref_primary_10_3390_polym14193935 |
Cites_doi | 10.1038/nmat2835 10.1002/adma.201302869 10.1093/aje/kws342 10.1007/s12274-016-1145-3 10.1038/nnano.2011.36 10.1016/j.synthmet.2005.02.010 10.1038/ncomms7269 10.1002/adma.201601572 10.1021/nn502702a 10.1002/smll.201402985 10.1038/am.2012.34 10.1002/adma.201600408 10.1016/j.progpolymsci.2015.02.001 10.1126/science.1206157 10.1002/adma.201304248 10.1002/adfm.201401527 10.1002/adma.201305182 10.6023/A12070478 10.1002/adfm.201502960 10.1002/adma.201504276 10.1063/1.2830815 10.1073/pnas.0502392102 10.1021/acs.nanolett.6b03597 10.1021/bm049717v 10.1038/nmat2834 10.1126/science.1234855 10.1002/adma.201401364 10.1002/adma.201403807 10.1038/ncomms5496 10.1002/adma.201402574 10.1038/ncomms8145 10.1038/ncomms4132 10.1126/science.1226325 10.1038/nprot.2011.379 10.1016/j.amjhyper.2004.10.009 10.1126/science.1188936 10.1016/j.carbon.2006.12.015 10.1016/j.carbon.2011.03.045 10.1038/468177a 10.1038/nnano.2011.184 10.1103/PhysRevB.76.195406 10.1021/nn500441k 10.1002/bip.20472 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201605657 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201605657 ADFM201605657 |
Genre | article |
GrantInformation_xml | – fundername: NSF of China funderid: 51672153; 51422204; 51372132 – fundername: National Key Basic Research and Development Program funderid: 2016YFA0200103; 2013CB228506 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4577-adcb72bbeeedf7ce939599366cf8b8141486d3fce07cd82523c1cbcfeadf6c923 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 08:36:01 EDT 2025 Fri Jul 25 07:19:43 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Jul 01 04:11:37 EDT 2025 Wed Aug 20 07:24:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4577-adcb72bbeeedf7ce939599366cf8b8141486d3fce07cd82523c1cbcfeadf6c923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920413296 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1893897418 proquest_journals_1920413296 crossref_primary_10_1002_adfm_201605657 crossref_citationtrail_10_1002_adfm_201605657 wiley_primary_10_1002_adfm_201605657_ADFM201605657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 3, 2017 |
PublicationDateYYYYMMDD | 2017-03-03 |
PublicationDate_xml | – month: 03 year: 2017 text: March 3, 2017 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 333 2015; 6 2005; 150 2010; 329 2010; 468 2015; 11 2014; 26 2014; 24 2004; 5 2013; 340 2007; 76 2011; 6 2008; 92 2016; 16 2015; 46 2006; 82 2012; 70 2015; 25 2014; 5 2015; 28 2015; 27 2005; 102 2013; 177 2014; 8 2016; 28 2011; 49 2012; 4 2012; 337 2007; 45 2005; 18 2016; 9 2008; 294 2010; 9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 Munir S. (e_1_2_6_42_1) 2008; 294 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 26 start-page: 7324 year: 2014 publication-title: Adv. Mater. – volume: 26 start-page: 796 year: 2014 publication-title: Adv. Mater. – volume: 18 start-page: 3S year: 2005 publication-title: Am. J. Hypertens. – volume: 177 start-page: 1006 year: 2013 publication-title: Am. J. Epidemiol. – volume: 337 start-page: 1640 year: 2012 publication-title: Science – volume: 26 start-page: 3451 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 6545 year: 2015 publication-title: Adv. Funct. Mater. – volume: 294 start-page: H1645 year: 2008 publication-title: Am. J. Hypertens. – volume: 92 start-page: 013506 year: 2008 publication-title: Appl. Phys. Lett. – volume: 468 start-page: 177 year: 2010 publication-title: Nature – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 329 start-page: 528 year: 2010 publication-title: Science – volume: 8 start-page: 5707 year: 2014 publication-title: ACS Nano – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 5300 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: e19 year: 2012 publication-title: NPG Asia Mater. – volume: 70 start-page: 2293 year: 2012 publication-title: Acta Chim. Sin. – volume: 6 start-page: 7145 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 2247 year: 2004 publication-title: Biomacromolecules – volume: 8 start-page: 4689 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 1612 year: 2011 publication-title: Nat. Protoc. – volume: 9 start-page: 2590 year: 2016 publication-title: Nano Res. – volume: 340 start-page: 952 year: 2013 publication-title: Science – volume: 5 start-page: 4496 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 6269 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 4250 year: 2015 publication-title: Adv. Mater. – volume: 11 start-page: 1039 year: 2015 publication-title: Small – volume: 16 start-page: 6695 year: 2016 publication-title: Nano Lett. – volume: 6 start-page: 296 year: 2011 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 6195 year: 2014 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 102 start-page: 12321 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: 3141 year: 2011 publication-title: Carbon – volume: 27 start-page: 634 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 821 year: 2010 publication-title: Nat. Mater. – volume: 28 start-page: 6640 year: 2016 publication-title: Adv. Mater. – volume: 46 start-page: 86 year: 2015 publication-title: Prog. Polym. Sci. – volume: 76 start-page: 195406 year: 2007 publication-title: Phys. Rev. B – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 82 start-page: 144 year: 2006 publication-title: Biopolymers – volume: 150 start-page: 265 year: 2005 publication-title: Synth. Met. – volume: 6 start-page: 788 year: 2011 publication-title: Nat. Nanotechnol. – volume: 45 start-page: 1035 year: 2007 publication-title: Carbon – volume: 26 start-page: 4825 year: 2014 publication-title: Adv. Mater. – ident: e_1_2_6_3_1 doi: 10.1038/nmat2835 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201302869 – ident: e_1_2_6_43_1 doi: 10.1093/aje/kws342 – ident: e_1_2_6_29_1 doi: 10.1007/s12274-016-1145-3 – ident: e_1_2_6_5_1 doi: 10.1038/nnano.2011.36 – ident: e_1_2_6_40_1 doi: 10.1016/j.synthmet.2005.02.010 – ident: e_1_2_6_8_1 doi: 10.1038/ncomms7269 – ident: e_1_2_6_27_1 doi: 10.1002/adma.201601572 – ident: e_1_2_6_15_1 doi: 10.1021/nn502702a – ident: e_1_2_6_30_1 doi: 10.1002/smll.201402985 – ident: e_1_2_6_39_1 doi: 10.1038/am.2012.34 – ident: e_1_2_6_19_1 doi: 10.1002/adma.201600408 – ident: e_1_2_6_31_1 doi: 10.1016/j.progpolymsci.2015.02.001 – ident: e_1_2_6_1_1 doi: 10.1126/science.1206157 – ident: e_1_2_6_18_1 doi: 10.1002/adma.201304248 – ident: e_1_2_6_14_1 doi: 10.1002/adfm.201401527 – ident: e_1_2_6_17_1 doi: 10.1002/adma.201305182 – ident: e_1_2_6_35_1 doi: 10.6023/A12070478 – ident: e_1_2_6_21_1 doi: 10.1002/adfm.201502960 – volume: 294 start-page: H1645 year: 2008 ident: e_1_2_6_42_1 publication-title: Am. J. Hypertens. – ident: e_1_2_6_23_1 doi: 10.1002/adma.201504276 – ident: e_1_2_6_12_1 doi: 10.1063/1.2830815 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.0502392102 – ident: e_1_2_6_33_1 doi: 10.1021/acs.nanolett.6b03597 – ident: e_1_2_6_34_1 doi: 10.1021/bm049717v – ident: e_1_2_6_7_1 doi: 10.1038/nmat2834 – ident: e_1_2_6_9_1 doi: 10.1126/science.1234855 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201401364 – ident: e_1_2_6_44_1 doi: 10.1002/adma.201403807 – ident: e_1_2_6_11_1 doi: 10.1038/ncomms5496 – ident: e_1_2_6_13_1 doi: 10.1002/adma.201402574 – ident: e_1_2_6_26_1 doi: 10.1038/ncomms8145 – ident: e_1_2_6_22_1 doi: 10.1038/ncomms4132 – ident: e_1_2_6_25_1 doi: 10.1126/science.1226325 – ident: e_1_2_6_28_1 doi: 10.1038/nprot.2011.379 – ident: e_1_2_6_41_1 doi: 10.1016/j.amjhyper.2004.10.009 – ident: e_1_2_6_24_1 doi: 10.1126/science.1188936 – ident: e_1_2_6_32_1 doi: 10.1016/j.carbon.2006.12.015 – ident: e_1_2_6_36_1 doi: 10.1016/j.carbon.2011.03.045 – ident: e_1_2_6_2_1 doi: 10.1038/468177a – ident: e_1_2_6_4_1 doi: 10.1038/nnano.2011.184 – ident: e_1_2_6_38_1 doi: 10.1103/PhysRevB.76.195406 – ident: e_1_2_6_20_1 doi: 10.1021/nn500441k – ident: e_1_2_6_37_1 doi: 10.1002/bip.20472 |
SSID | ssj0017734 |
Score | 2.6578774 |
Snippet | Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Biocompatibility Carbon fibers carbonized silk nanofibers Durability Electronics flexible sensors Human performance Materials science Membranes Nanofibers Nanomaterials Nanostructure Polydimethylsiloxane Pressure sensors Redundancy Response time Sensors Signal monitoring Silicone resins Silk Silk fibroin Skin Spatial distribution Stress concentration transparent conducting films wearable electronics |
Title | Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201605657 https://www.proquest.com/docview/1920413296 https://www.proquest.com/docview/1893897418 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EL3rwLa4vIgieqm3aJu1xURcRV8QH7K0kkxRErbLuXvz1zmx36yqIoMfSCWmTmcyXZOYbgAPltHRcJjVUZczXjFFg8iQP0KcGUTksDW8Uu1fq_D656KW9qSz-mh-iOXBjyxit12zgxr4df5KGGldyJnlEeFylnE7OAVuMim4a_qhI6_paWUUc4BX1JqyNoTz-2vyrV_qEmtOAdeRxOktgJt9aB5o8Hg0H9gjfv9E4_udnlmFxDEdFu9afFZjx1SosTJEUrsH1ielbsvx378Ttw9OjoAWZNNL6vuj6Z-q08oKQr6hp0jm3bCBMRbIcGs-LqThrSu0IrvW1Dveds7uT82BchyHAJNU6MA6tltZ68qelRp_HeUqwRiksM5tFCe2olItL9KFGRztOGWOEFktS0lIhIcgNmK1eKr8JIksTlNJKH5owsdJlDB98YjONmU1c3oJgMg8FjknKuVbGU1HTK8uCR6poRqoFh438a03P8aPkzmRai7GZvhUEb0Py4jJXLdhvXpOB8a0JDd_LkGQI0WU5k_y0QI7m8JeeivZpp9s8bf2l0TbMS4YPHOsW78DsoD_0uwR-BnYP5tqn3cvbvZGifwDzp_4D |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hemg59EnFAm1dCcQpkDiJnRx6QCyr5bEI8ZD2lsZjR6qAgJZdVeVf9a_0F3Vm8-AhVZWQOHCMMlGSsWfmG3v8DcCKslpabpPqqyLkbcbAy9Mo9dDFOaKyWOScKA4OVP802h3Gwxn43ZyFqfgh2gU3toypv2YD5wXpjVvW0NwWfJQ8IECuYl3XVe65Xz8pa7v-ttOlIV6Vsrd9stX36sYCHkax1l5u0WhpjKMAUWh0aZjGFKeVwiIxSRBRiqBsWKDzNVpKoWSIARosSOuFwpS5Dsjrv-A24kzX3z1qGasCrauNbBVwSVkwbHgifblx_3vvx8FbcHsXIk9jXO8N_Gm0U5W2nK1PxmYdbx4QRz4r9b2F1zXiFpuVibyDGVe-h7k7PIwf4HArHxlybjfOiuMf52eCYg4ZnXEjMXAX9JelEwTuRcUEz8fnxiIvSZar_zleiO22m5DgdmbzcPokv_QRZsvL0i2ASOIIpTTS-bkfGWkTRkguMonGxEQ27YDXDHyGNQ87twM5zyoGaZnxyGTtyHRgrZW_qhhI_im53MyjrPZE1xkheJ-AikxVB762t8mH8MYQqe9yQjIEWpOUeYw6IKeT5j9vyja7vUF7tfiYh77Ay_7JYD_b3znYW4JXktESl_aFyzA7Hk3cJ8J6Y_N5al0Cvj_1fPwLyrpejw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fa9RAEB9KBdEH6196tuoKik9pk02ym33wofR6tNYrRS3cW8zO7oK0puV6h9hP5VfxGzlz-dNWEEHog48hE5Kd2Zn5bXb2NwCvlNPScZvUWIWUtxmTqDKZidDnFaJyGCpeKI4P1O5R9m6ST5bgR3cWpuGH6H-4sWcs4jU7-JkLm5ekoZULfJI8ITyuct2WVe77799o0Xb-dm9IFn4t5Wjn0_Zu1PYViDDLtY4qh1ZLaz3lh6DRm9TklKaVwlDYIslohaBcGtDHGh2toGSKCVoMpPSg0DDVAQX9W5mKDTeLGH7oCasSrZt9bJVwRVky6WgiY7l5_Xuvp8FLbHsVIS9S3GgFfnbKaSpbjjfmM7uBF7_xRv5P2rsP91q8LbYaB3kAS75-CHevsDA-gsPtamoptF14Jz5-OTkWlHHI5ayfirH_SoOsvSBoLxoeeD48NxNVTbJc-8_ZQuz0vYQENzN7DEc3MqQnsFyf1n4VRJFnKKWVPq7izEpXMD7ymS00FjZzZgBRZ_cSWxZ2bgZyUjb80bJky5S9ZQbwppc_a_hH_ii53k2jso1D5yXh95hgijRqAC_72xRBeFuI1Hc6JxmCrIVhFqMByMWc-cubyq3haNxfPf2Xh17A7cPhqHy_d7C_BnckQyWu60vXYXk2nftnBPRm9vnCtwR8vunp-As83V0- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized+Silk+Nanofiber+Membrane+for+Transparent+and+Sensitive+Electronic+Skin&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Qi&rft.au=Jian%2C+Muqiang&rft.au=Wang%2C+Chunya&rft.au=Zhang%2C+Yingying&rft.date=2017-03-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=9&rft_id=info:doi/10.1002%2Fadfm.201605657&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |