Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin

Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, l...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 9; pp. np - n/a
Main Authors Wang, Qi, Jian, Muqiang, Wang, Chunya, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 03.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa−1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. Using carbonized electrospun silk nanofiber membranes and planar polydimethylsiloxane films, a skin‐like ultrasensitive pressure sensor is fabricated. The sensor shows superior performance, including high sensitivity (34.47 kPa−1), an ultralow detection limit (0.8 Pa), fast response time (<16.7 ms), and high stability and durability (>10 000 cycles), enabling its wide application in real‐time biomedical monitoring and smart equipment.
AbstractList Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin-like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost-effective, large-area-capable, and biocompatible approach for fabrication of high-performance skin-like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin-like pressure sensors is demonstrated using SF-derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost-effective and large-scale capable approach. Due to the unique N-doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa-1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated.
Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin-like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost-effective, large-area-capable, and biocompatible approach for fabrication of high-performance skin-like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin-like pressure sensors is demonstrated using SF-derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost-effective and large-scale capable approach. Due to the unique N-doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa super(-1)) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. Using carbonized electrospun silk nanofiber membranes and planar polydimethylsiloxane films, a skin-like ultrasensitive pressure sensor is fabricated. The sensor shows superior performance, including high sensitivity (34.47 kPa super(-1)), an ultralow detection limit (0.8 Pa), fast response time (<16.7 ms), and high stability and durability (>10 000 cycles), enabling its wide application in real-time biomedical monitoring and smart equipment.
Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa−1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated. Using carbonized electrospun silk nanofiber membranes and planar polydimethylsiloxane films, a skin‐like ultrasensitive pressure sensor is fabricated. The sensor shows superior performance, including high sensitivity (34.47 kPa−1), an ultralow detection limit (0.8 Pa), fast response time (<16.7 ms), and high stability and durability (>10 000 cycles), enabling its wide application in real‐time biomedical monitoring and smart equipment.
Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa −1 ) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated.
Author Wang, Qi
Wang, Chunya
Zhang, Yingying
Jian, Muqiang
Author_xml – sequence: 1
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Tsinghua University
– sequence: 2
  givenname: Muqiang
  surname: Jian
  fullname: Jian, Muqiang
  organization: Tsinghua University
– sequence: 3
  givenname: Chunya
  surname: Wang
  fullname: Wang, Chunya
  organization: Tsinghua University
– sequence: 4
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkMlLAzEUh4MouF49D3jx0pplJpkcpa5QF1DBW8hkXiDtNKnJVNG_3pRKhYJ4eu_wfW_57aNtHzwgdEzwkGBMz3RrZ0OKCccVr8QW2iOc8AHDtN5e9-R1F-2nNMGYCMHKPfQ40rEJ3n1BWzy5blrcax-sayAWdzBrovZQ2BCL59yluY7g-0L7zIJPrnfvUFx2YPqYR5jiaer8Idqxuktw9FMP0MvV5fPoZjB-uL4dnY8HpqyEGOjWNII2DQC0VhiQTFZSMs6NrZualKSsecusASxMW9OKMkNMYyzkL7mRlB2g09XceQxvC0i9mrlkoOvyxWGRFKklq6UoSZ3Rkw10EhbR5-sUkRSXhFHJMzVcUSaGlCJYNY9upuOnIlgtA1bLgNU64CyUG4Jxve5d8H3Urvtbkyvtw3Xw-c8SdX5xdffrfgPidZM3
CitedBy_id crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1002_slct_202104427
crossref_primary_10_1016_j_mee_2018_05_003
crossref_primary_10_1021_acsmaterialslett_3c00144
crossref_primary_10_1021_acs_langmuir_3c01669
crossref_primary_10_1038_s41598_018_31628_7
crossref_primary_10_1039_D2SM00786J
crossref_primary_10_2174_1872212118666230519161338
crossref_primary_10_1039_D0TA06775J
crossref_primary_10_1016_j_microc_2025_113251
crossref_primary_10_1002_adma_201805630
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1007_s12598_024_03157_y
crossref_primary_10_1016_j_bios_2023_115449
crossref_primary_10_1002_admi_201901507
crossref_primary_10_1109_JSEN_2023_3329879
crossref_primary_10_1002_admi_202202169
crossref_primary_10_1007_s12274_022_5162_0
crossref_primary_10_1021_acsaelm_2c01654
crossref_primary_10_15251_JOBM_2023_151_43
crossref_primary_10_3390_polym16020295
crossref_primary_10_1002_adfm_202102108
crossref_primary_10_1002_admt_202101312
crossref_primary_10_1039_C9TB02685A
crossref_primary_10_1016_j_nanoen_2018_04_059
crossref_primary_10_1021_acsami_1c19334
crossref_primary_10_3390_coatings13010031
crossref_primary_10_1039_D2MH01079H
crossref_primary_10_1002_advs_202301590
crossref_primary_10_3390_nano15050367
crossref_primary_10_1007_s00542_020_04889_4
crossref_primary_10_1002_adfm_201806395
crossref_primary_10_1002_adfm_201808695
crossref_primary_10_1080_15583724_2022_2158467
crossref_primary_10_1002_admt_201700241
crossref_primary_10_1016_j_cej_2024_150204
crossref_primary_10_1002_advs_202200560
crossref_primary_10_1021_acsanm_2c04844
crossref_primary_10_1007_s10853_021_05909_y
crossref_primary_10_1039_D3BM00801K
crossref_primary_10_1088_1361_6528_acdde7
crossref_primary_10_1039_D2TC01104B
crossref_primary_10_1007_s42765_023_00338_9
crossref_primary_10_1021_acs_iecr_1c03981
crossref_primary_10_1021_acsami_0c03697
crossref_primary_10_1080_14658011_2020_1747158
crossref_primary_10_1080_19475411_2022_2091059
crossref_primary_10_1016_j_jallcom_2021_160680
crossref_primary_10_1007_s40843_022_2397_y
crossref_primary_10_1002_smll_202000128
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1039_D0RA03964K
crossref_primary_10_1088_1361_6528_ad4158
crossref_primary_10_1021_acsami_1c05478
crossref_primary_10_1016_j_clay_2022_106650
crossref_primary_10_1016_j_compscitech_2022_109751
crossref_primary_10_1007_s10570_023_05635_5
crossref_primary_10_1021_acsami_2c00384
crossref_primary_10_1039_C9NR02672J
crossref_primary_10_1021_acs_accounts_9b00333
crossref_primary_10_1007_s42765_022_00186_z
crossref_primary_10_1002_adfm_201808509
crossref_primary_10_1021_acsami_0c05819
crossref_primary_10_1007_s10853_020_05736_7
crossref_primary_10_1016_j_nanoen_2022_107099
crossref_primary_10_1016_j_nanoen_2023_108244
crossref_primary_10_1002_smll_202300895
crossref_primary_10_1021_acs_chemmater_8b04572
crossref_primary_10_1021_acsami_2c01345
crossref_primary_10_1039_C8MH01188E
crossref_primary_10_1021_acs_biomac_2c00753
crossref_primary_10_1002_admi_201801061
crossref_primary_10_3390_micro4040049
crossref_primary_10_1186_s11671_024_04001_z
crossref_primary_10_1007_s44211_023_00283_y
crossref_primary_10_1016_j_nanoen_2017_09_038
crossref_primary_10_1007_s10570_019_02313_3
crossref_primary_10_1021_acsami_4c01414
crossref_primary_10_1002_aelm_201901360
crossref_primary_10_1002_adfm_201704641
crossref_primary_10_1016_j_trac_2020_115813
crossref_primary_10_1039_D0TC02539A
crossref_primary_10_1002_adma_202003464
crossref_primary_10_1021_acssuschemeng_1c02857
crossref_primary_10_2174_1573413718666220329220551
crossref_primary_10_1002_admi_202101998
crossref_primary_10_1007_s40820_020_00459_5
crossref_primary_10_1002_aisy_202000113
crossref_primary_10_3390_s20092459
crossref_primary_10_1002_admi_202100430
crossref_primary_10_1016_j_eng_2021_02_014
crossref_primary_10_1016_j_nanoen_2017_10_007
crossref_primary_10_1002_smll_202203491
crossref_primary_10_1002_smll_202008079
crossref_primary_10_1016_j_microc_2020_105506
crossref_primary_10_1021_acsami_9b19721
crossref_primary_10_1002_adma_202000982
crossref_primary_10_1016_j_carbpol_2024_121870
crossref_primary_10_1039_D3TB00639E
crossref_primary_10_1021_acsnano_2c02609
crossref_primary_10_1016_j_apsusc_2019_04_271
crossref_primary_10_1021_acsami_9b02049
crossref_primary_10_1002_aenm_201803183
crossref_primary_10_1021_acssuschemeng_2c05540
crossref_primary_10_1016_j_compositesa_2022_107177
crossref_primary_10_1002_admt_202200322
crossref_primary_10_1002_adfm_202411177
crossref_primary_10_1039_D3MH01362F
crossref_primary_10_1002_adem_202100195
crossref_primary_10_1002_smll_202104810
crossref_primary_10_1021_acsami_7b06119
crossref_primary_10_1039_C9NR08632C
crossref_primary_10_1016_j_cej_2023_145534
crossref_primary_10_1016_j_matdes_2017_04_096
crossref_primary_10_1021_acsami_3c14445
crossref_primary_10_1007_s10853_019_03951_5
crossref_primary_10_1002_admi_201901223
crossref_primary_10_1002_smll_202205291
crossref_primary_10_1002_smtd_201700374
crossref_primary_10_1021_acsnano_1c00472
crossref_primary_10_1002_mame_201900492
crossref_primary_10_1021_acsami_7b10820
crossref_primary_10_1126_sciadv_abn2156
crossref_primary_10_1021_acs_biomac_2c00553
crossref_primary_10_1016_j_matlet_2019_127198
crossref_primary_10_1002_admi_201700496
crossref_primary_10_1002_app_51367
crossref_primary_10_1002_aelm_201900916
crossref_primary_10_1021_acsami_4c14400
crossref_primary_10_1021_acsami_9b10928
crossref_primary_10_1039_C7MH00933J
crossref_primary_10_1007_s12221_024_00655_9
crossref_primary_10_1021_acsami_8b11926
crossref_primary_10_1021_acs_langmuir_8b04007
crossref_primary_10_1007_s00542_022_05269_w
crossref_primary_10_1002_adfm_201707538
crossref_primary_10_1007_s10853_018_3022_9
crossref_primary_10_1039_D3TA01132A
crossref_primary_10_1088_2631_7990_acdc66
crossref_primary_10_1002_adma_201902343
crossref_primary_10_1016_j_cej_2020_127960
crossref_primary_10_2139_ssrn_4093867
crossref_primary_10_1016_j_sna_2018_05_036
crossref_primary_10_1039_D0TC02983A
crossref_primary_10_1063_5_0060344
crossref_primary_10_1021_acsami_0c19512
crossref_primary_10_1039_D2TC03822F
crossref_primary_10_1016_j_cej_2021_130197
crossref_primary_10_1021_acssuschemeng_8b06009
crossref_primary_10_1002_inf2_12527
crossref_primary_10_1016_j_nano_2019_01_002
crossref_primary_10_1039_C8TC04549F
crossref_primary_10_1002_adhm_201901860
crossref_primary_10_1016_j_ijbiomac_2024_132185
crossref_primary_10_1002_app_50048
crossref_primary_10_1002_adma_201805921
crossref_primary_10_1002_adma_202310505
crossref_primary_10_1016_j_susmat_2022_e00447
crossref_primary_10_1088_1361_665X_ad31cc
crossref_primary_10_1007_s11664_025_11784_z
crossref_primary_10_1016_j_cossms_2018_11_001
crossref_primary_10_1002_smll_201702933
crossref_primary_10_1016_j_compositesb_2021_109431
crossref_primary_10_1002_adfm_201902127
crossref_primary_10_1007_s12200_022_00051_2
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_7498_aps_69_20200818
crossref_primary_10_1039_D0TC00593B
crossref_primary_10_1002_adma_201801754
crossref_primary_10_1002_adma_202306144
crossref_primary_10_1002_er_6589
crossref_primary_10_1021_acsami_2c06524
crossref_primary_10_1080_07388551_2020_1853030
crossref_primary_10_1016_j_eml_2020_100714
crossref_primary_10_3390_polym13050813
crossref_primary_10_1039_C9TC01331H
crossref_primary_10_1016_j_carbon_2020_07_042
crossref_primary_10_1016_j_cej_2021_130091
crossref_primary_10_1021_acsami_0c01298
crossref_primary_10_1002_adem_201801361
crossref_primary_10_1021_acsnano_2c06069
crossref_primary_10_1002_adfm_201808241
crossref_primary_10_1002_adhm_201700889
crossref_primary_10_1080_10584587_2024_2324683
crossref_primary_10_1088_1361_665X_ab1adf
crossref_primary_10_1515_ntrev_2023_0219
crossref_primary_10_1021_acsami_3c18714
crossref_primary_10_7498_aps_70_20210023
crossref_primary_10_1021_acsbiomaterials_4c00254
crossref_primary_10_1002_smll_202300242
crossref_primary_10_1002_admt_201900475
crossref_primary_10_1016_j_memsci_2019_117349
crossref_primary_10_1021_acsami_8b17020
crossref_primary_10_1039_D1TC03856G
crossref_primary_10_1002_celc_202300293
crossref_primary_10_1002_app_47928
crossref_primary_10_1016_j_polymer_2021_124299
crossref_primary_10_1021_acsami_9b17371
crossref_primary_10_1021_acsomega_1c02535
crossref_primary_10_1007_s40843_017_9077_x
crossref_primary_10_1016_j_bios_2018_08_018
crossref_primary_10_1021_acsami_8b06496
crossref_primary_10_1021_acsami_9b04060
crossref_primary_10_1002_adma_202005910
crossref_primary_10_1002_admt_202101097
crossref_primary_10_1007_s40820_021_00591_w
crossref_primary_10_1007_s40843_019_9445_9
crossref_primary_10_3390_app13010128
crossref_primary_10_1021_acsnano_0c04686
crossref_primary_10_1016_j_ultsonch_2023_106690
crossref_primary_10_1002_smll_202004129
crossref_primary_10_3390_mi12060600
crossref_primary_10_3390_polym15204067
crossref_primary_10_1021_acs_macromol_2c02312
crossref_primary_10_1088_1361_6528_aa8746
crossref_primary_10_1002_adem_202401988
crossref_primary_10_1002_advs_202403724
crossref_primary_10_1109_LED_2018_2835467
crossref_primary_10_1002_adma_201705122
crossref_primary_10_1109_JPHOT_2017_2779605
crossref_primary_10_1002_advs_201903802
crossref_primary_10_1021_acsami_4c16217
crossref_primary_10_1002_adfm_201802576
crossref_primary_10_1007_s40843_019_1173_3
crossref_primary_10_1038_s41467_022_28901_9
crossref_primary_10_1007_s12274_021_3390_3
crossref_primary_10_1021_acsnano_8b08911
crossref_primary_10_1038_s41570_023_00486_x
crossref_primary_10_1002_smll_201804779
crossref_primary_10_1063_5_0077959
crossref_primary_10_1016_j_bios_2019_111595
crossref_primary_10_1016_j_cej_2020_128199
crossref_primary_10_1021_acsami_7b07935
crossref_primary_10_1039_C8TA08276F
crossref_primary_10_1038_s41467_019_11803_8
crossref_primary_10_1016_j_compstruct_2024_118041
crossref_primary_10_1021_acs_energyfuels_0c03370
crossref_primary_10_1016_j_eurpolymj_2021_110980
crossref_primary_10_1177_0040517519849451
crossref_primary_10_2139_ssrn_4190842
crossref_primary_10_1021_acs_jpcc_7b10601
crossref_primary_10_3390_polym14112219
crossref_primary_10_1021_acsami_0c08114
crossref_primary_10_1021_acsami_1c24257
crossref_primary_10_1039_D0RA10803K
crossref_primary_10_1088_2053_1591_acc1c6
crossref_primary_10_1021_acs_jpclett_4c00869
crossref_primary_10_1002_adfm_202110417
crossref_primary_10_1016_j_ijbiomac_2022_10_134
crossref_primary_10_1002_advs_202103981
crossref_primary_10_1016_j_cej_2023_147899
crossref_primary_10_1002_adma_201805093
crossref_primary_10_1016_j_isci_2021_102716
crossref_primary_10_1016_j_cej_2020_124855
crossref_primary_10_2139_ssrn_4162449
crossref_primary_10_1039_D2TA02913H
crossref_primary_10_1021_acsami_2c22727
crossref_primary_10_1039_D1MA01114F
crossref_primary_10_1007_s11468_023_01828_7
crossref_primary_10_1016_j_bios_2021_113690
crossref_primary_10_1002_elan_202300216
crossref_primary_10_1126_sciadv_aax2805
crossref_primary_10_1016_j_matdes_2020_109178
crossref_primary_10_1039_C8GC01609G
crossref_primary_10_1039_C8TC02230E
crossref_primary_10_1002_aisy_201900180
crossref_primary_10_1039_D1TC01587G
crossref_primary_10_1002_adfm_201802762
crossref_primary_10_1002_aisy_201900179
crossref_primary_10_1021_acssensors_1c01734
crossref_primary_10_1002_adfm_201909603
crossref_primary_10_1021_acsaelm_0c00644
crossref_primary_10_1021_acsami_8b17085
crossref_primary_10_1186_s11671_024_03971_4
crossref_primary_10_1039_D3PY00282A
crossref_primary_10_1002_adma_202414620
crossref_primary_10_1021_acsaelm_3c01854
crossref_primary_10_1109_JSEN_2020_3034453
crossref_primary_10_1016_j_ijbiomac_2024_130135
crossref_primary_10_1016_j_ijbiomac_2024_130373
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1002_adsu_202000108
crossref_primary_10_1002_slct_202000092
crossref_primary_10_1039_C7CS00278E
crossref_primary_10_1002_crat_202300119
crossref_primary_10_1002_admt_202201503
crossref_primary_10_1021_acsami_1c22001
crossref_primary_10_1002_admi_202200621
crossref_primary_10_1126_sciadv_aax0649
crossref_primary_10_1021_acsami_8b08014
crossref_primary_10_1002_eem2_12041
crossref_primary_10_1002_nano_202100003
crossref_primary_10_1002_adfm_202407975
crossref_primary_10_1002_slct_202302316
crossref_primary_10_1021_acsami_2c07202
crossref_primary_10_1002_adma_201902434
crossref_primary_10_1039_D2TA06402B
crossref_primary_10_1021_acsami_0c10516
crossref_primary_10_1007_s42765_024_00471_z
crossref_primary_10_1016_j_nantod_2022_101723
crossref_primary_10_1002_adsu_202000216
crossref_primary_10_1002_smll_202305418
crossref_primary_10_1088_1674_4926_39_1_011012
crossref_primary_10_1109_JSEN_2020_3008159
crossref_primary_10_1016_j_ijbiomac_2023_124757
crossref_primary_10_29026_oea_2022_210029
crossref_primary_10_1007_s11581_024_05507_3
crossref_primary_10_1038_s41427_020_00267_8
crossref_primary_10_52711_0974_360X_2021_00410
crossref_primary_10_1021_acsami_8b15809
crossref_primary_10_1002_adma_201902301
crossref_primary_10_1016_j_eurpolymj_2024_112895
crossref_primary_10_1039_C8TB02862A
crossref_primary_10_1021_acsnano_9b10230
crossref_primary_10_1021_acsami_9b07846
crossref_primary_10_1002_adfm_201705291
crossref_primary_10_1002_aelm_201900826
crossref_primary_10_1016_j_mtnano_2024_100452
crossref_primary_10_1002_adfm_201802547
crossref_primary_10_1007_s42114_021_00292_3
crossref_primary_10_1021_acsbiomaterials_1c00699
crossref_primary_10_1016_j_snb_2018_04_046
crossref_primary_10_1039_C9CC00298G
crossref_primary_10_1002_adma_202106570
crossref_primary_10_1021_acsami_1c07058
crossref_primary_10_3390_bios13030393
crossref_primary_10_3390_polym11071120
crossref_primary_10_1007_s42765_024_00479_5
crossref_primary_10_1021_acs_nanolett_8b03085
crossref_primary_10_1021_acsami_0c21392
crossref_primary_10_1039_D3NR05522A
crossref_primary_10_1021_acsanm_4c00286
crossref_primary_10_1016_j_apsusc_2023_156962
crossref_primary_10_3390_polym16131781
crossref_primary_10_1002_aelm_202200012
crossref_primary_10_1002_adhm_202100460
crossref_primary_10_1007_s11706_022_0597_5
crossref_primary_10_1007_s11431_018_9403_8
crossref_primary_10_2174_1876402912666200319152508
crossref_primary_10_1002_adfm_201808829
crossref_primary_10_1002_smll_201901124
crossref_primary_10_1016_j_carbpol_2020_116960
crossref_primary_10_1021_acsbiomaterials_2c00667
crossref_primary_10_1039_C9TB02570G
crossref_primary_10_1002_smtd_202201340
crossref_primary_10_1021_acsami_3c18247
crossref_primary_10_1002_inf2_12060
crossref_primary_10_1016_j_cej_2021_130869
crossref_primary_10_1039_C9CY00804G
crossref_primary_10_1002_wnan_1961
crossref_primary_10_1021_acsnano_1c06695
crossref_primary_10_1021_acsami_8b15848
crossref_primary_10_1002_smll_201904758
crossref_primary_10_1016_j_cej_2022_135003
crossref_primary_10_1002_smtd_202100869
crossref_primary_10_1002_smll_202002681
crossref_primary_10_1155_2021_9970518
crossref_primary_10_1016_j_ceramint_2022_01_191
crossref_primary_10_1002_agt2_522
crossref_primary_10_1002_jssc_201900426
crossref_primary_10_1088_1674_4926_41_4_041605
crossref_primary_10_1002_adma_202002695
crossref_primary_10_1021_acsami_0c12561
crossref_primary_10_1016_j_cej_2024_150962
crossref_primary_10_1088_1674_4926_41_4_041601
crossref_primary_10_1016_j_cej_2024_158799
crossref_primary_10_1021_acsami_8b13535
crossref_primary_10_1016_j_cej_2020_126191
crossref_primary_10_1016_j_pmatsci_2023_101139
crossref_primary_10_1016_j_nanoen_2018_05_020
crossref_primary_10_1016_j_mtnano_2023_100358
crossref_primary_10_1016_j_nanoen_2022_107077
crossref_primary_10_1016_j_orgel_2020_106044
crossref_primary_10_1039_D0TA02010A
crossref_primary_10_1088_1361_6528_aba3db
crossref_primary_10_1007_s11431_022_2190_y
crossref_primary_10_1016_j_compositesb_2022_110386
crossref_primary_10_1002_adma_202413929
crossref_primary_10_1002_slct_201803526
crossref_primary_10_1021_acsami_8b12363
crossref_primary_10_1016_j_cej_2020_124805
crossref_primary_10_1002_adma_201801072
crossref_primary_10_1002_pc_28382
crossref_primary_10_1002_admi_202102588
crossref_primary_10_1149_2_0162003JES
crossref_primary_10_1002_aelm_202000168
crossref_primary_10_1002_adhm_202301811
crossref_primary_10_1002_adma_201901408
crossref_primary_10_1016_j_cej_2021_130418
crossref_primary_10_1016_j_nanoen_2023_108881
crossref_primary_10_1039_C9RA08188G
crossref_primary_10_1021_acsami_8b03639
crossref_primary_10_1016_j_carbpol_2025_123220
crossref_primary_10_1007_s42114_024_00857_y
crossref_primary_10_1002_aelm_201901426
crossref_primary_10_1007_s12274_018_2219_1
crossref_primary_10_1021_acsami_2c22634
crossref_primary_10_1021_acsnano_8b09651
crossref_primary_10_1088_1361_665X_ac5454
crossref_primary_10_1007_s00289_023_04949_5
crossref_primary_10_1021_acsapm_1c00805
crossref_primary_10_1002_cssc_201902979
crossref_primary_10_1002_adfm_202104686
crossref_primary_10_1021_acsnano_9b09533
crossref_primary_10_1088_1361_6528_aafe4c
crossref_primary_10_3390_polym15030764
crossref_primary_10_1021_acsami_9b21068
crossref_primary_10_1016_j_electacta_2018_08_030
crossref_primary_10_1038_s41378_021_00261_2
crossref_primary_10_1039_C9NR00488B
crossref_primary_10_1088_2631_6331_ab7a8c
crossref_primary_10_1021_acsami_7b16611
crossref_primary_10_1007_s40843_018_9348_8
crossref_primary_10_1021_acsmaterialslett_9b00461
crossref_primary_10_1002_cctc_202300387
crossref_primary_10_1016_j_nanoen_2019_104436
crossref_primary_10_1039_D5RA00167F
crossref_primary_10_1088_1361_6528_ac137e
crossref_primary_10_1002_smll_202308527
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_1002_admt_202301659
crossref_primary_10_1002_advs_201701010
crossref_primary_10_1007_s40820_022_00874_w
crossref_primary_10_1039_D1TA08727D
crossref_primary_10_1109_RBME_2020_3043623
crossref_primary_10_1016_j_scib_2020_05_002
crossref_primary_10_1063_5_0010766
crossref_primary_10_1007_s13577_021_00588_y
crossref_primary_10_1021_acsomega_1c04279
crossref_primary_10_1007_s10570_019_02432_x
crossref_primary_10_1016_j_nanoen_2022_108129
crossref_primary_10_1002_cphc_202100279
crossref_primary_10_3390_polym14193935
Cites_doi 10.1038/nmat2835
10.1002/adma.201302869
10.1093/aje/kws342
10.1007/s12274-016-1145-3
10.1038/nnano.2011.36
10.1016/j.synthmet.2005.02.010
10.1038/ncomms7269
10.1002/adma.201601572
10.1021/nn502702a
10.1002/smll.201402985
10.1038/am.2012.34
10.1002/adma.201600408
10.1016/j.progpolymsci.2015.02.001
10.1126/science.1206157
10.1002/adma.201304248
10.1002/adfm.201401527
10.1002/adma.201305182
10.6023/A12070478
10.1002/adfm.201502960
10.1002/adma.201504276
10.1063/1.2830815
10.1073/pnas.0502392102
10.1021/acs.nanolett.6b03597
10.1021/bm049717v
10.1038/nmat2834
10.1126/science.1234855
10.1002/adma.201401364
10.1002/adma.201403807
10.1038/ncomms5496
10.1002/adma.201402574
10.1038/ncomms8145
10.1038/ncomms4132
10.1126/science.1226325
10.1038/nprot.2011.379
10.1016/j.amjhyper.2004.10.009
10.1126/science.1188936
10.1016/j.carbon.2006.12.015
10.1016/j.carbon.2011.03.045
10.1038/468177a
10.1038/nnano.2011.184
10.1103/PhysRevB.76.195406
10.1021/nn500441k
10.1002/bip.20472
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201605657
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201605657
ADFM201605657
Genre article
GrantInformation_xml – fundername: NSF of China
  funderid: 51672153; 51422204; 51372132
– fundername: National Key Basic Research and Development Program
  funderid: 2016YFA0200103; 2013CB228506
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4577-adcb72bbeeedf7ce939599366cf8b8141486d3fce07cd82523c1cbcfeadf6c923
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 08:36:01 EDT 2025
Fri Jul 25 07:19:43 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Jul 01 04:11:37 EDT 2025
Wed Aug 20 07:24:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4577-adcb72bbeeedf7ce939599366cf8b8141486d3fce07cd82523c1cbcfeadf6c923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920413296
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_miscellaneous_1893897418
proquest_journals_1920413296
crossref_primary_10_1002_adfm_201605657
crossref_citationtrail_10_1002_adfm_201605657
wiley_primary_10_1002_adfm_201605657_ADFM201605657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 3, 2017
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 03
  year: 2017
  text: March 3, 2017
  day: 03
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 333
2015; 6
2005; 150
2010; 329
2010; 468
2015; 11
2014; 26
2014; 24
2004; 5
2013; 340
2007; 76
2011; 6
2008; 92
2016; 16
2015; 46
2006; 82
2012; 70
2015; 25
2014; 5
2015; 28
2015; 27
2005; 102
2013; 177
2014; 8
2016; 28
2011; 49
2012; 4
2012; 337
2007; 45
2005; 18
2016; 9
2008; 294
2010; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
Munir S. (e_1_2_6_42_1) 2008; 294
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 26
  start-page: 7324
  year: 2014
  publication-title: Adv. Mater.
– volume: 26
  start-page: 796
  year: 2014
  publication-title: Adv. Mater.
– volume: 18
  start-page: 3S
  year: 2005
  publication-title: Am. J. Hypertens.
– volume: 177
  start-page: 1006
  year: 2013
  publication-title: Am. J. Epidemiol.
– volume: 337
  start-page: 1640
  year: 2012
  publication-title: Science
– volume: 26
  start-page: 3451
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6545
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 294
  start-page: H1645
  year: 2008
  publication-title: Am. J. Hypertens.
– volume: 92
  start-page: 013506
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 468
  start-page: 177
  year: 2010
  publication-title: Nature
– volume: 9
  start-page: 859
  year: 2010
  publication-title: Nat. Mater.
– volume: 329
  start-page: 528
  year: 2010
  publication-title: Science
– volume: 8
  start-page: 5707
  year: 2014
  publication-title: ACS Nano
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 5300
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: e19
  year: 2012
  publication-title: NPG Asia Mater.
– volume: 70
  start-page: 2293
  year: 2012
  publication-title: Acta Chim. Sin.
– volume: 6
  start-page: 7145
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2247
  year: 2004
  publication-title: Biomacromolecules
– volume: 8
  start-page: 4689
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 1612
  year: 2011
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 2590
  year: 2016
  publication-title: Nano Res.
– volume: 340
  start-page: 952
  year: 2013
  publication-title: Science
– volume: 5
  start-page: 4496
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6269
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4250
  year: 2015
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1039
  year: 2015
  publication-title: Small
– volume: 16
  start-page: 6695
  year: 2016
  publication-title: Nano Lett.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 6195
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 102
  start-page: 12321
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: 3141
  year: 2011
  publication-title: Carbon
– volume: 27
  start-page: 634
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 821
  year: 2010
  publication-title: Nat. Mater.
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 46
  start-page: 86
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 76
  start-page: 195406
  year: 2007
  publication-title: Phys. Rev. B
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 82
  start-page: 144
  year: 2006
  publication-title: Biopolymers
– volume: 150
  start-page: 265
  year: 2005
  publication-title: Synth. Met.
– volume: 6
  start-page: 788
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 45
  start-page: 1035
  year: 2007
  publication-title: Carbon
– volume: 26
  start-page: 4825
  year: 2014
  publication-title: Adv. Mater.
– ident: e_1_2_6_3_1
  doi: 10.1038/nmat2835
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201302869
– ident: e_1_2_6_43_1
  doi: 10.1093/aje/kws342
– ident: e_1_2_6_29_1
  doi: 10.1007/s12274-016-1145-3
– ident: e_1_2_6_5_1
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_6_40_1
  doi: 10.1016/j.synthmet.2005.02.010
– ident: e_1_2_6_8_1
  doi: 10.1038/ncomms7269
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_6_15_1
  doi: 10.1021/nn502702a
– ident: e_1_2_6_30_1
  doi: 10.1002/smll.201402985
– ident: e_1_2_6_39_1
  doi: 10.1038/am.2012.34
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201600408
– ident: e_1_2_6_31_1
  doi: 10.1016/j.progpolymsci.2015.02.001
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1206157
– ident: e_1_2_6_18_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_6_14_1
  doi: 10.1002/adfm.201401527
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201305182
– ident: e_1_2_6_35_1
  doi: 10.6023/A12070478
– ident: e_1_2_6_21_1
  doi: 10.1002/adfm.201502960
– volume: 294
  start-page: H1645
  year: 2008
  ident: e_1_2_6_42_1
  publication-title: Am. J. Hypertens.
– ident: e_1_2_6_23_1
  doi: 10.1002/adma.201504276
– ident: e_1_2_6_12_1
  doi: 10.1063/1.2830815
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.0502392102
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.nanolett.6b03597
– ident: e_1_2_6_34_1
  doi: 10.1021/bm049717v
– ident: e_1_2_6_7_1
  doi: 10.1038/nmat2834
– ident: e_1_2_6_9_1
  doi: 10.1126/science.1234855
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201401364
– ident: e_1_2_6_44_1
  doi: 10.1002/adma.201403807
– ident: e_1_2_6_11_1
  doi: 10.1038/ncomms5496
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201402574
– ident: e_1_2_6_26_1
  doi: 10.1038/ncomms8145
– ident: e_1_2_6_22_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_6_25_1
  doi: 10.1126/science.1226325
– ident: e_1_2_6_28_1
  doi: 10.1038/nprot.2011.379
– ident: e_1_2_6_41_1
  doi: 10.1016/j.amjhyper.2004.10.009
– ident: e_1_2_6_24_1
  doi: 10.1126/science.1188936
– ident: e_1_2_6_32_1
  doi: 10.1016/j.carbon.2006.12.015
– ident: e_1_2_6_36_1
  doi: 10.1016/j.carbon.2011.03.045
– ident: e_1_2_6_2_1
  doi: 10.1038/468177a
– ident: e_1_2_6_4_1
  doi: 10.1038/nnano.2011.184
– ident: e_1_2_6_38_1
  doi: 10.1103/PhysRevB.76.195406
– ident: e_1_2_6_20_1
  doi: 10.1021/nn500441k
– ident: e_1_2_6_37_1
  doi: 10.1002/bip.20472
SSID ssj0017734
Score 2.6578774
Snippet Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Biocompatibility
Carbon fibers
carbonized silk nanofibers
Durability
Electronics
flexible sensors
Human performance
Materials science
Membranes
Nanofibers
Nanomaterials
Nanostructure
Polydimethylsiloxane
Pressure sensors
Redundancy
Response time
Sensors
Signal monitoring
Silicone resins
Silk
Silk fibroin
Skin
Spatial distribution
Stress concentration
transparent conducting films
wearable electronics
Title Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201605657
https://www.proquest.com/docview/1920413296
https://www.proquest.com/docview/1893897418
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EL3rwLa4vIgieqm3aJu1xURcRV8QH7K0kkxRErbLuXvz1zmx36yqIoMfSCWmTmcyXZOYbgAPltHRcJjVUZczXjFFg8iQP0KcGUTksDW8Uu1fq_D656KW9qSz-mh-iOXBjyxit12zgxr4df5KGGldyJnlEeFylnE7OAVuMim4a_qhI6_paWUUc4BX1JqyNoTz-2vyrV_qEmtOAdeRxOktgJt9aB5o8Hg0H9gjfv9E4_udnlmFxDEdFu9afFZjx1SosTJEUrsH1ielbsvx378Ttw9OjoAWZNNL6vuj6Z-q08oKQr6hp0jm3bCBMRbIcGs-LqThrSu0IrvW1Dveds7uT82BchyHAJNU6MA6tltZ68qelRp_HeUqwRiksM5tFCe2olItL9KFGRztOGWOEFktS0lIhIcgNmK1eKr8JIksTlNJKH5owsdJlDB98YjONmU1c3oJgMg8FjknKuVbGU1HTK8uCR6poRqoFh438a03P8aPkzmRai7GZvhUEb0Py4jJXLdhvXpOB8a0JDd_LkGQI0WU5k_y0QI7m8JeeivZpp9s8bf2l0TbMS4YPHOsW78DsoD_0uwR-BnYP5tqn3cvbvZGifwDzp_4D
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hemg59EnFAm1dCcQpkDiJnRx6QCyr5bEI8ZD2lsZjR6qAgJZdVeVf9a_0F3Vm8-AhVZWQOHCMMlGSsWfmG3v8DcCKslpabpPqqyLkbcbAy9Mo9dDFOaKyWOScKA4OVP802h3Gwxn43ZyFqfgh2gU3toypv2YD5wXpjVvW0NwWfJQ8IECuYl3XVe65Xz8pa7v-ttOlIV6Vsrd9stX36sYCHkax1l5u0WhpjKMAUWh0aZjGFKeVwiIxSRBRiqBsWKDzNVpKoWSIARosSOuFwpS5Dsjrv-A24kzX3z1qGasCrauNbBVwSVkwbHgifblx_3vvx8FbcHsXIk9jXO8N_Gm0U5W2nK1PxmYdbx4QRz4r9b2F1zXiFpuVibyDGVe-h7k7PIwf4HArHxlybjfOiuMf52eCYg4ZnXEjMXAX9JelEwTuRcUEz8fnxiIvSZar_zleiO22m5DgdmbzcPokv_QRZsvL0i2ASOIIpTTS-bkfGWkTRkguMonGxEQ27YDXDHyGNQ87twM5zyoGaZnxyGTtyHRgrZW_qhhI_im53MyjrPZE1xkheJ-AikxVB762t8mH8MYQqe9yQjIEWpOUeYw6IKeT5j9vyja7vUF7tfiYh77Ay_7JYD_b3znYW4JXktESl_aFyzA7Hk3cJ8J6Y_N5al0Cvj_1fPwLyrpejw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fa9RAEB9KBdEH6196tuoKik9pk02ym33wofR6tNYrRS3cW8zO7oK0puV6h9hP5VfxGzlz-dNWEEHog48hE5Kd2Zn5bXb2NwCvlNPScZvUWIWUtxmTqDKZidDnFaJyGCpeKI4P1O5R9m6ST5bgR3cWpuGH6H-4sWcs4jU7-JkLm5ekoZULfJI8ITyuct2WVe77799o0Xb-dm9IFn4t5Wjn0_Zu1PYViDDLtY4qh1ZLaz3lh6DRm9TklKaVwlDYIslohaBcGtDHGh2toGSKCVoMpPSg0DDVAQX9W5mKDTeLGH7oCasSrZt9bJVwRVky6WgiY7l5_Xuvp8FLbHsVIS9S3GgFfnbKaSpbjjfmM7uBF7_xRv5P2rsP91q8LbYaB3kAS75-CHevsDA-gsPtamoptF14Jz5-OTkWlHHI5ayfirH_SoOsvSBoLxoeeD48NxNVTbJc-8_ZQuz0vYQENzN7DEc3MqQnsFyf1n4VRJFnKKWVPq7izEpXMD7ymS00FjZzZgBRZ_cSWxZ2bgZyUjb80bJky5S9ZQbwppc_a_hH_ii53k2jso1D5yXh95hgijRqAC_72xRBeFuI1Hc6JxmCrIVhFqMByMWc-cubyq3haNxfPf2Xh17A7cPhqHy_d7C_BnckQyWu60vXYXk2nftnBPRm9vnCtwR8vunp-As83V0-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized+Silk+Nanofiber+Membrane+for+Transparent+and+Sensitive+Electronic+Skin&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Qi&rft.au=Jian%2C+Muqiang&rft.au=Wang%2C+Chunya&rft.au=Zhang%2C+Yingying&rft.date=2017-03-03&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=9&rft_id=info:doi/10.1002%2Fadfm.201605657&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon