Reelin/DAB-1 Signaling in the Embryonic Limb Regulates the Chondrogenic Differentiation of Digit Mesodermal Progenitors

Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very‐low‐density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This ind...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 229; no. 10; pp. 1397 - 1404
Main Authors Diaz-Mendoza, Manuel J., Lorda-Diez, Carlos I., Montero, Juan A., Garcia-Porrero, Juan A., Hurle, Juan M.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very‐low‐density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This induces phosphorylation of the intracellular adaptor protein Disabled‐1 (Dab‐1), which subsequently activates downstream effectors to regulate important aspects of neuroblast biology. Here, we show that the components of the Reelin signaling pathway exhibit a dynamic expression pattern during the development of the digits in chick and mouse embryonic limbs. Reelin and Dab‐1 are highly expressed in the differentiating digit cartilages and tendinous blastemas. Immunolabeling of phospho‐Dab‐1 indicates that the pattern of gene expression correlates with zones of active signaling. Intense signaling is also present in the early stages of cartilage differentiation in micromass cultures of digit mesodermal progenitors. In this in vitro assay, disruption of the Reelin signaling pathway by gene silencing causes cystoskeletal and cell shape modifications accompanied by reduced chondrogenesis and down‐regulation of specific cartilage molecular markers. Of note, Scleraxis and Six2, which are master genes of tendinous blastemas, become up‐regulated in these experiments. We further show that the receptors ApoER2 and VLDLR are differentially expressed in cartilage and tendons and that these receptors show temporal expression differences in the micromass cultures. Sox9 and other chondrogenic markers were downregulated in micromass cultures after ApoER2 gene silencing, while gene silencing of VLDLR up‐regulates Scleraxis. In summary, our findings provide evidence of a role for Reelin signaling in skeletogenesis that promotes chondrogenesis through ApoER2 and inhibits tenogenic differentiation through VLDLR. J. Cell. Physiol. 229: 1397–1404, 2014. © 2014 Wiley Periodicals, Inc.
AbstractList Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very-low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This induces phosphorylation of the intracellular adaptor protein Disabled-1 (Dab-1), which subsequently activates downstream effectors to regulate important aspects of neuroblast biology. Here, we show that the components of the Reelin signaling pathway exhibit a dynamic expression pattern during the development of the digits in chick and mouse embryonic limbs. Reelin and Dab-1 are highly expressed in the differentiating digit cartilages and tendinous blastemas. Immunolabeling of phospho-Dab-1 indicates that the pattern of gene expression correlates with zones of active signaling. Intense signaling is also present in the early stages of cartilage differentiation in micromass cultures of digit mesodermal progenitors. In this in vitro assay, disruption of the Reelin signaling pathway by gene silencing causes cystoskeletal and cell shape modifications accompanied by reduced chondrogenesis and down-regulation of specific cartilage molecular markers. Of note, Scleraxis and Six2, which are master genes of tendinous blastemas, become up-regulated in these experiments. We further show that the receptors ApoER2 and VLDLR are differentially expressed in cartilage and tendons and that these receptors show temporal expression differences in the micromass cultures. Sox9 and other chondrogenic markers were downregulated in micromass cultures after ApoER2 gene silencing, while gene silencing of VLDLR up-regulates Scleraxis. In summary, our findings provide evidence of a role for Reelin signaling in skeletogenesis that promotes chondrogenesis through ApoER2 and inhibits tenogenic differentiation through VLDLR.
Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very‐low‐density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This induces phosphorylation of the intracellular adaptor protein Disabled‐1 (Dab‐1), which subsequently activates downstream effectors to regulate important aspects of neuroblast biology. Here, we show that the components of the Reelin signaling pathway exhibit a dynamic expression pattern during the development of the digits in chick and mouse embryonic limbs. Reelin and Dab‐1 are highly expressed in the differentiating digit cartilages and tendinous blastemas. Immunolabeling of phospho‐Dab‐1 indicates that the pattern of gene expression correlates with zones of active signaling. Intense signaling is also present in the early stages of cartilage differentiation in micromass cultures of digit mesodermal progenitors. In this in vitro assay, disruption of the Reelin signaling pathway by gene silencing causes cystoskeletal and cell shape modifications accompanied by reduced chondrogenesis and down‐regulation of specific cartilage molecular markers. Of note, Scleraxis and Six2, which are master genes of tendinous blastemas, become up‐regulated in these experiments. We further show that the receptors ApoER2 and VLDLR are differentially expressed in cartilage and tendons and that these receptors show temporal expression differences in the micromass cultures. Sox9 and other chondrogenic markers were downregulated in micromass cultures after ApoER2 gene silencing, while gene silencing of VLDLR up‐regulates Scleraxis. In summary, our findings provide evidence of a role for Reelin signaling in skeletogenesis that promotes chondrogenesis through ApoER2 and inhibits tenogenic differentiation through VLDLR. J. Cell. Physiol. 229: 1397–1404, 2014. © 2014 Wiley Periodicals, Inc.
Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very‐low‐density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This induces phosphorylation of the intracellular adaptor protein Disabled‐1 (Dab‐1), which subsequently activates downstream effectors to regulate important aspects of neuroblast biology. Here, we show that the components of the Reelin signaling pathway exhibit a dynamic expression pattern during the development of the digits in chick and mouse embryonic limbs. Reelin and Dab‐1 are highly expressed in the differentiating digit cartilages and tendinous blastemas. Immunolabeling of phospho‐Dab‐1 indicates that the pattern of gene expression correlates with zones of active signaling. Intense signaling is also present in the early stages of cartilage differentiation in micromass cultures of digit mesodermal progenitors. In this in vitro assay, disruption of the Reelin signaling pathway by gene silencing causes cystoskeletal and cell shape modifications accompanied by reduced chondrogenesis and down‐regulation of specific cartilage molecular markers. Of note, Scleraxis and Six2 , which are master genes of tendinous blastemas, become up‐regulated in these experiments. We further show that the receptors ApoER2 and VLDLR are differentially expressed in cartilage and tendons and that these receptors show temporal expression differences in the micromass cultures. Sox9 and other chondrogenic markers were downregulated in micromass cultures after ApoER2 gene silencing, while gene silencing of VLDLR up‐regulates Scleraxis . In summary, our findings provide evidence of a role for Reelin signaling in skeletogenesis that promotes chondrogenesis through ApoER2 and inhibits tenogenic differentiation through VLDLR. J. Cell. Physiol. 229: 1397–1404, 2014. © 2014 Wiley Periodicals, Inc.
Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous system, where Reelin binds to the very-low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) of target cells. This induces phosphorylation of the intracellular adaptor protein Disabled-1 (Dab-1), which subsequently activates downstream effectors to regulate important aspects of neuroblast biology. Here, we show that the components of the Reelin signaling pathway exhibit a dynamic expression pattern during the development of the digits in chick and mouse embryonic limbs. Reelin and Dab-1 are highly expressed in the differentiating digit cartilages and tendinous blastemas. Immunolabeling of phospho-Dab-1 indicates that the pattern of gene expression correlates with zones of active signaling. Intense signaling is also present in the early stages of cartilage differentiation in micromass cultures of digit mesodermal progenitors. In this in vitro assay, disruption of the Reelin signaling pathway by gene silencing causes cystoskeletal and cell shape modifications accompanied by reduced chondrogenesis and down-regulation of specific cartilage molecular markers. Of note, Scleraxis and Six2, which are master genes of tendinous blastemas, become up-regulated in these experiments. We further show that the receptors ApoER2 and VLDLR are differentially expressed in cartilage and tendons and that these receptors show temporal expression differences in the micromass cultures. Sox9 and other chondrogenic markers were downregulated in micromass cultures after ApoER2 gene silencing, while gene silencing of VLDLR up-regulates Scleraxis. In summary, our findings provide evidence of a role for Reelin signaling in skeletogenesis that promotes chondrogenesis through ApoER2 and inhibits tenogenic differentiation through VLDLR. J. Cell. Physiol. 229: 1397-1404, 2014. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Lorda-Diez, Carlos I.
Montero, Juan A.
Diaz-Mendoza, Manuel J.
Garcia-Porrero, Juan A.
Hurle, Juan M.
Author_xml – sequence: 1
  givenname: Manuel J.
  surname: Diaz-Mendoza
  fullname: Diaz-Mendoza, Manuel J.
– sequence: 2
  givenname: Carlos I.
  surname: Lorda-Diez
  fullname: Lorda-Diez, Carlos I.
– sequence: 3
  givenname: Juan A.
  surname: Montero
  fullname: Montero, Juan A.
– sequence: 4
  givenname: Juan A.
  surname: Garcia-Porrero
  fullname: Garcia-Porrero, Juan A.
– sequence: 5
  givenname: Juan M.
  surname: Hurle
  fullname: Hurle, Juan M.
  email: Correspondence to: Prof. Juan M. Hurlé, Departamento de Anatomía y Biología Celular, Facultad de Medicina, C/ Cardenal Herrera Oria s/n, Santander 39011, Spain., hurlej@unican.es
  organization: Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24519818$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS1URLeFA18AReICh3T9J47jY9mWFthCtUDLzXKSydZLYi92ona_PU7T9oDEaTTzfvOkmXeA9qyzgNBrgo8IxnS-qbZHNOMif4ZmBEuRZjmne2gWNZJKnpF9dBDCBmMsJWMv0H6EiSxIMUO3K4DW2PnJ8YeUJN_N2urYrhNjk_4GktOu9DtnTZUsTVcmK1gPre4h3IuLG2dr79Yw6iemacCD7Y3ujbOJa-JobfrkAoKrwXe6TS4nuHc-vETPG90GePVQD9HPj6c_Fufp8tvZp8XxMq3Ge9JSFjkvma4r3hS4pIWIjRA845BJQSpaVw3VAmtCGCOsanIhMklBcFGXBFN2iN5Nvlvv_gwQetWZUEHbagtuCIrwjGLMZM4j-vYfdOMGH_8xUpyRLKd8NHw_UZV3IXho1NabTvudIliNaaiYhrpPI7JvHhyHsoP6iXx8fwTmE3BrWtj930l9Xlw-WqbThgk93D1taP9b5YIJrq6_nqnVl6tf11fyQkn2F4DWo8E
CitedBy_id crossref_primary_10_1371_journal_pone_0269558
crossref_primary_10_1002_dvdy_24462
crossref_primary_10_1016_j_celrep_2023_112669
crossref_primary_10_1016_j_bbadis_2017_05_026
crossref_primary_10_1007_s13277_015_3456_5
crossref_primary_10_1007_s10911_017_9373_z
crossref_primary_10_1038_s41419_020_2572_3
crossref_primary_10_1089_gtmb_2023_0360
crossref_primary_10_1002_dvdy_349
crossref_primary_10_1002_mrd_22579
crossref_primary_10_1152_physrev_00013_2016
crossref_primary_10_1155_2017_2484303
crossref_primary_10_3390_biomedicines10030589
Cites_doi 10.1523/JNEUROSCI.4872-08.2009
10.1016/j.cub.2006.10.029
10.1038/cr.2013.7
10.1006/bbrc.2000.3831
10.1016/S0168-0102(97)00088-6
10.1101/gad.1547407
10.1139/y2012-001
10.1016/j.arr.2013.01.005
10.1089/ten.tea.2012.0050
10.1038/cddis.2013.322
10.1016/j.neuron.2005.04.019
10.1083/jcb.200105046
10.1007/s11626-999-0070-0
10.1016/0012-1606(73)90269-8
10.1371/journal.pone.0031802
10.1093/nar/gks1231
10.1074/jbc.M109.014811
10.2353/ajpath.2010.100209
10.1242/dev.057588
10.1242/dev.005447
10.1002/(SICI)1097-0177(199703)208:3<406::AID-AJA11>3.0.CO;2-Y
10.1080/10495390600867515
10.1128/MCB.00928-07
10.1016/S0960-9822(02)01403-3
10.1016/j.ydbio.2006.11.019
10.1016/j.matbio.2004.06.005
10.1523/JNEUROSCI.1656-05.2005
10.1371/journal.pone.0024546
10.1111/j.1471-4159.2007.04804.x
10.1523/JNEUROSCI.2934-08.2009
10.1016/S0896-6273(00)00007-6
10.1016/0922-3371(89)90740-5
10.1016/S0092-8674(00)80782-5
10.1038/cdd.2011.114
10.1007/s00702-009-0228-7
10.1016/j.bbrc.2012.02.130
10.1016/j.ydbio.2008.06.022
10.1016/S0960-9822(02)01397-0
10.1083/jcb.201110132
10.1002/bies.20607
10.1007/s10495-009-0444-5
10.1053/j.gastro.2005.11.008
10.1016/j.biocel.2009.10.003
10.1002/dvg.20667
10.1523/JNEUROSCI.0958-09.2009
10.1016/S0736-0266(01)00169-3
10.1006/meth.2001.1262
10.1002/(SICI)1097-0029(19960615)34:3<236::AID-JEMT6>3.0.CO;2-N
10.1021/cb400713v
10.1016/j.mcn.2010.12.001
10.1523/JNEUROSCI.17-01-00023.1997
10.1111/j.1440-169X.2009.01102.x
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.24576
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 1404
ExternalDocumentID 3402334041
10_1002_jcp_24576
24519818
JCP24576
ark_67375_WNG_RKVXWV9M_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Spanish Science and Innovation Ministry
  funderid: BFU2011‐24169
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABIJN
ABJNI
ABPPZ
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AETEA
AEUQT
AEUYR
AFBPY
AFDAS
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGHSJ
AGJLS
AHBTC
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XFK
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZA5
ZGI
ZXP
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4576-b9865b3adc5f80b287b3a77545e4971c2dcf2a70a113313cf677492e757db1023
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Fri Aug 16 03:55:23 EDT 2024
Thu Oct 10 21:03:40 EDT 2024
Thu Sep 26 17:27:50 EDT 2024
Sat Sep 28 07:59:43 EDT 2024
Sat Aug 24 00:50:27 EDT 2024
Wed Jan 17 05:05:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4576-b9865b3adc5f80b287b3a77545e4971c2dcf2a70a113313cf677492e757db1023
Notes istex:D411EA1AFBEA1BB646D5BB60EF76D42726A7A187
ArticleID:JCP24576
ark:/67375/WNG-RKVXWV9M-9
Spanish Science and Innovation Ministry - No. BFU2011-24169
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24519818
PQID 1553146252
PQPubID 1006363
PageCount 8
ParticipantIDs proquest_miscellaneous_1542003965
proquest_journals_1553146252
crossref_primary_10_1002_jcp_24576
pubmed_primary_24519818
wiley_primary_10_1002_jcp_24576_JCP24576
istex_primary_ark_67375_WNG_RKVXWV9M_9
PublicationCentury 2000
PublicationDate October 2014
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: October 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J. Cell. Physiol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Sato N, Fukushima N, Chang R, Matsubayashi H, Goggins M. 2006. Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548-565.
Lorda-Diez CI, Montero JA, Diaz-Mendoza MJ, Garcia-Porrero JA, Hurle JM. 2011. Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLoS ONE 6:e24546.
Montero JA, Hurle JM. 2010. Sculpturing digit shape by cell death. Apoptosis 15:365-375.
Montero JA, Zuzarte-Luis V, Garcia-Martinez V, Hurle JM. 2007. Role of RhoC in digit morphogenesis during limb development. Dev Biol 303:325-335.
Khialeeva E, Lane TF, Carpenter EM. 2011. Disruption of reelin signaling alters mammary gland morphogenesis. Development 138:767-776.
Ohkubo N, Vitek MP, Morishima A, Suzuki Y, Miki T, Maeda N, Mitsuda N. 2007. Reelin signals survival through Src-family kinases that inactivate BAD activity. J Neurochem 103:820-830.
Montero JA, Lorda-Diez CI, Ganan Y, Macias D, Hurle JM. 2008. Activin/TGFbeta and BMP crosstalk determines digit chondrogenesis. Dev Biol 321:343-356.
Montero JA, Hurle JM. 2007. Deconstructing digit chondrogenesis. Bioessays 29:725-737.
Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. 2010. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol 42:148-156.
D'Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. 1997. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23-31.
Arnaud L, Ballif BA, Forster E, Cooper JA. 2003. Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13:9-17.
Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA, Anton ES. 2000. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.
Hoe HS, Lee KJ, Carney RS, Lee J, Markova A, Lee JY, Howell BW, Hyman BT, Pak DT, Bu G, Rebeck GW. 2009. Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci 29:7459-7473.
Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. 2009. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem 284:29988-29996.
Rowe DA, Fallon JF. 1982. The proximodistal determination of skeletal parts in the developing chick leg. J Embryol Exp Morphol 68:1-7.
Haller R, Schwanbeck R, Martini S, Bernoth K, Kramer J, Just U, Rohwedel J. 2012. Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ 19:461-469.
MacCabe JA, Saunders JW. 1973. Jr, Pickett M.. The control of the anteroposterior and dorsoventral axes in embryonic chick limbs constructed of dissociated and reaggregated limb-bud mesoderm. Dev Biol 31:323-335.
Stein T, Cosimo E, Yu X, Smith PR, Simon R, Cottrell L, Pringle MA, Bell AK, Lattanzio L, Sauter G, Lo Nigro C, Crook T, Machesky LM, Gusterson BA. 2010. Loss of reelin expression in breast cancer is epigenetically controlled and associated with poor prognosis. Am J Pathol 177:2323-2333.
Zhang QC, Petrey D, Garzon JI, Deng L, Honig B. 2012. PrePPI: A structure-informed database of protein-protein interactions. Nucleic Acids Res 41:D828-833.
Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M. 2007. Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons. Development 134:3883-3891.
Jossin Y, Goffinet AM. 2007. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol 27:7113-7124.
Díaz-Mendoza MJ, Lorda-Diez CI, Montero JA, García-Porrero JA, Hurlé JM. 2013. Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix. Cell Death Dis 4:e800.
Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. 2010. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 48:635-644.
Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F. 2001. Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275-281.
Chai X, Forster E, Zhao S, Bock HH, Frotscher M. 2009. Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29:288-299.
Lutter S, Xie S, Tatin F, Makinen T. 2012. Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J Cell Biol 197:837-849.
Hurle JM, Hinchliffe JR, Ros MA, Critchlow MA, Genis-Galvez JM. 1989. The extracellular matrix architecture relating to myotendinous pattern formation in the distal part of the developing chick limb: An ultrastructural, histochemical and immunocytochemical analysis. Cell Differ Dev 27:103-120.
Sibbe M, Forster E, Basak O, Taylor V, Frotscher M. 2009. Reelin and Notch1 cooperate in the development of the dentate gyrus. J Neurosci 29:8578-8585.
Kambe Y, Hayashi N, Tomita N. 2012. Adhesive force behavior of single ATDC5 cells in chondrogenic culture. Biochem Biophys Res Commun 420:241-246.
Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J. 1999. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.
Soriano E, Del Rio JA. 2005. The cells of cajal-retzius: Still a mystery one century after. Neuron 46:389-394.
Stranahan AM, Erion JR, Wosiski-Kuhn M. 2013. Reelin signaling in development, maintenance, and plasticity of neural networks. Ageing Res Rev 12:815-822.
Tabin C, Wolpert L. 2007. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev 21:1433-1442.
Peterziel H, Sackmann T, Strelau J, Kuhn PH, Lichtenthaler SF, Marom K, Klar A, Unsicker K. 2011. F-spondin regulates neuronal survival through activation of disabled-1 in the chicken ciliary ganglion. Mol Cell Neurosci 46:483-497.
Kuo G, Arnaud L, Kronstad-O'Brien P, Cooper JA. 2005. Absence of Fyn and Src causes a reeler-like phenotype. J Neurosci 25:8578-8586.
Katsuyama Y, Terashima T. 2009. Developmental anatomy of reeler mutant mouse. Dev Growth Differ 51:271-286.
Bang OS, Kim EJ, Chung JG, Lee SR, Park TK, Kang SS. 2000. Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem Biophys Res Commun 278:522-529.
Asou Y, Nifuji A, Tsuji K, Shinomiya K, Olson EN, Koopman P, Noda M. 2002. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res 20:827-833.
Yuan Y, Chen H, Ma G, Cao X, Liu Z. 2012. Reelin is involved in transforming growth factor-beta1-induced cell migration in esophageal carcinoma cells. PLoS ONE 7:e31802.
Ros MA, Piedra ME, Fallon JF, Hurle JM. 1997. Morphogenetic potential of the chick leg interdigital mesoderm when diverted from the cell death program. Dev Dyn 208:406-419.
Bock HH, Herz J. 2003. Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18-26.
Hurle JM, Ros MA, Climent V, Garcia-Martinez V. 1996. Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo. Microsc Res Tech 34:236-246.
Garcia-Miranda P, Vazquez-Carretero MD, Sesma P, Peral MJ, Ilundain AA. 2013. Reelin is involved in the crypt-villus unit homeostasis. Tissue Eng Part A 19:188-198.
Frotscher M, Chai X, Bock HH, Haas CA, Forster E, Zhao S. 2009. Role of Reelin in the development and maintenance of cortical lamination. J Neural Transm 116:1451-1455.
Wise TG, Schafer DJ, Lambeth LS, Tyack SG, Bruce MP, Moore RJ, Doran TJ. 2007. Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs. Anim Biotechnol 18:153-162.
Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. 2014. ACS Chem Biol. 9:72-79.
Yoneshima H, Nagata E, Matsumoto M, Yamada M, Nakajima K, Miyata T, Ogawa M, Mikoshiba K. 1997. A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci Res 29:217-223.
Keilani S, Healey D, Sugaya K. 2012. Reelin regulates differentiation of neural stem cells by activation of notch signaling through Disabled-1 tyrosine phosphorylation. Can J Physiol Pharmacol 90:361-369.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
Mello MA, Tuan RS. 1999. High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim 35:262-269.
Beffert U, Nematollah Farsian F, Masiulis I, Hammer RE, Yoon SO, Giehl KM, Herz J. 2006. ApoE receptor 2 controls neuronal survival in the adult brain. Curr Biol 16:2446-2452.
Maurin JC, Couble ML, Didier-Bazes M, Brisson C, Magloire H, Bleicher F. 2004. Expression and localization of reelin in human odontoblasts. Matrix Biol 23:277-285.
Bouche E, Romero-Ortega MI, Henkemeyer M, Catchpole T, Leemhuis J, Frotscher M, May P, Herz J, Bock HH. 2013. Reelin induces EphB activation. Cell Res 23:473-490.
2007; 103
2013; 4
2010; 15
2007; 303
2013; 23
2004; 23
2003; 13
2006; 130
2012; 19
2009; 116
1996; 34
2005; 25
2013; 19
2007; 29
1982; 68
2007; 134
2009; 51
2013; 12
1997; 17
1999; 97
2009; 284
2014; 9
2007; 21
2007; 27
2011; 138
2007; 18
2000; 27
2012; 420
1973; 31
2000; 278
2006; 16
1997; 29
2008; 321
1989; 27
2011; 6
2001; 25
2009; 29
2005; 46
2001; 154
2010; 42
2012; 197
2012; 90
2010; 48
1997; 208
2002; 20
1999; 35
2010; 177
2011; 46
2012; 7
2012; 41
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
Rowe DA (e_1_2_6_42_1) 1982; 68
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 27
  start-page: 103
  year: 1989
  end-page: 120
  article-title: The extracellular matrix architecture relating to myotendinous pattern formation in the distal part of the developing chick limb: An ultrastructural, histochemical and immunocytochemical analysis
  publication-title: Cell Differ Dev
– volume: 27
  start-page: 7113
  year: 2007
  end-page: 7124
  article-title: Reelin signals through phosphatidylinositol 3‐kinase and Akt to control cortical development and through mTor to regulate dendritic growth
  publication-title: Mol Cell Biol
– volume: 420
  start-page: 241
  year: 2012
  end-page: 246
  article-title: Adhesive force behavior of single ATDC5 cells in chondrogenic culture
  publication-title: Biochem Biophys Res Commun
– volume: 20
  start-page: 827
  year: 2002
  end-page: 833
  article-title: Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage
  publication-title: J Orthop Res
– volume: 130
  start-page: 548
  year: 2006
  end-page: 565
  article-title: Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers
  publication-title: Gastroenterology
– volume: 46
  start-page: 483
  year: 2011
  end-page: 497
  article-title: F‐spondin regulates neuronal survival through activation of disabled‐1 in the chicken ciliary ganglion
  publication-title: Mol Cell Neurosci
– volume: 18
  start-page: 153
  year: 2007
  end-page: 162
  article-title: Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs
  publication-title: Anim Biotechnol
– volume: 46
  start-page: 389
  year: 2005
  end-page: 394
  article-title: The cells of cajal‐retzius: Still a mystery one century after
  publication-title: Neuron
– volume: 103
  start-page: 820
  year: 2007
  end-page: 830
  article-title: Reelin signals survival through Src‐family kinases that inactivate BAD activity
  publication-title: J Neurochem
– volume: 16
  start-page: 2446
  year: 2006
  end-page: 2452
  article-title: ApoE receptor 2 controls neuronal survival in the adult brain
  publication-title: Curr Biol
– volume: 25
  start-page: 8578
  year: 2005
  end-page: 8586
  article-title: Absence of Fyn and Src causes a reeler‐like phenotype
  publication-title: J Neurosci
– volume: 138
  start-page: 767
  year: 2011
  end-page: 776
  article-title: Disruption of reelin signaling alters mammary gland morphogenesis
  publication-title: Development
– volume: 4
  start-page: e800
  year: 2013
  article-title: Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix
  publication-title: Cell Death Dis
– volume: 34
  start-page: 236
  year: 1996
  end-page: 246
  article-title: Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo
  publication-title: Microsc Res Tech
– volume: 177
  start-page: 2323
  year: 2010
  end-page: 2333
  article-title: Loss of reelin expression in breast cancer is epigenetically controlled and associated with poor prognosis
  publication-title: Am J Pathol
– volume: 13
  start-page: 18
  year: 2003
  end-page: 26
  article-title: Reelin activates SRC family tyrosine kinases in neurons
  publication-title: Curr Biol
– volume: 134
  start-page: 3883
  year: 2007
  end-page: 3891
  article-title: Divergent roles of ApoER2 and Vldlr in the migration of cortical neurons
  publication-title: Development
– volume: 29
  start-page: 217
  year: 1997
  end-page: 223
  article-title: A novel neurological mutant mouse, yotari, which exhibits reeler‐like phenotype but expresses CR‐50 antigen/reelin
  publication-title: Neurosci Res
– volume: 51
  start-page: 271
  year: 2009
  end-page: 286
  article-title: Developmental anatomy of reeler mutant mouse
  publication-title: Dev Growth Differ
– volume: 13
  start-page: 9
  year: 2003
  end-page: 17
  article-title: Fyn tyrosine kinase is a critical regulator of disabled‐1 during brain development
  publication-title: Curr Biol
– volume: 284
  start-page: 29988
  year: 2009
  end-page: 29996
  article-title: Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme
  publication-title: J Biol Chem
– volume: 23
  start-page: 277
  year: 2004
  end-page: 285
  article-title: Expression and localization of reelin in human odontoblasts
  publication-title: Matrix Biol
– volume: 15
  start-page: 365
  year: 2010
  end-page: 375
  article-title: Sculpturing digit shape by cell death
  publication-title: Apoptosis
– volume: 303
  start-page: 325
  year: 2007
  end-page: 335
  article-title: Role of RhoC in digit morphogenesis during limb development
  publication-title: Dev Biol
– volume: 21
  start-page: 1433
  year: 2007
  end-page: 1442
  article-title: Rethinking the proximodistal axis of the vertebrate limb in the molecular era
  publication-title: Genes Dev
– volume: 27
  start-page: 33
  year: 2000
  end-page: 44
  article-title: Reelin binds alpha3beta1 integrin and inhibits neuronal migration
  publication-title: Neuron
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method
  publication-title: Methods
– volume: 29
  start-page: 8578
  year: 2009
  end-page: 8585
  article-title: Reelin and Notch1 cooperate in the development of the dentate gyrus
  publication-title: J Neurosci
– volume: 116
  start-page: 1451
  year: 2009
  end-page: 1455
  article-title: Role of Reelin in the development and maintenance of cortical lamination
  publication-title: J Neural Transm
– volume: 90
  start-page: 361
  year: 2012
  end-page: 369
  article-title: Reelin regulates differentiation of neural stem cells by activation of notch signaling through Disabled‐1 tyrosine phosphorylation
  publication-title: Can J Physiol Pharmacol
– volume: 35
  start-page: 262
  year: 1999
  end-page: 269
  article-title: High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development
  publication-title: In Vitro Cell Dev Biol Anim
– volume: 278
  start-page: 522
  year: 2000
  end-page: 529
  article-title: Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells
  publication-title: Biochem Biophys Res Commun
– volume: 31
  start-page: 323
  year: 1973
  end-page: 335
  article-title: Jr, Pickett M.. The control of the anteroposterior and dorsoventral axes in embryonic chick limbs constructed of dissociated and reaggregated limb‐bud mesoderm
  publication-title: Dev Biol
– volume: 23
  start-page: 473
  year: 2013
  end-page: 490
  article-title: Reelin induces EphB activation
  publication-title: Cell Res
– volume: 42
  start-page: 148
  year: 2010
  end-page: 156
  article-title: Scleraxis and E47 cooperatively regulate the Sox9‐dependent transcription
  publication-title: Int J Biochem Cell Biol
– volume: 29
  start-page: 725
  year: 2007
  end-page: 737
  article-title: Deconstructing digit chondrogenesis
  publication-title: Bioessays
– volume: 321
  start-page: 343
  year: 2008
  end-page: 356
  article-title: Activin/TGFbeta and BMP crosstalk determines digit chondrogenesis
  publication-title: Dev Biol
– volume: 29
  start-page: 7459
  year: 2009
  end-page: 7473
  article-title: Interaction of reelin with amyloid precursor protein promotes neurite outgrowth
  publication-title: J Neurosci
– volume: 97
  start-page: 689
  year: 1999
  end-page: 701
  article-title: Reeler/disabled‐like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2
  publication-title: Cell
– volume: 19
  start-page: 188
  year: 2013
  end-page: 198
  article-title: Reelin is involved in the crypt‐villus unit homeostasis
  publication-title: Tissue Eng Part A
– volume: 154
  start-page: 275
  year: 2001
  end-page: 281
  article-title: Regulation of limb patterning by extracellular microfibrils
  publication-title: J Cell Biol
– volume: 9
  start-page: 72
  year: 2014
  end-page: 79
  publication-title: ACS Chem Biol.
– volume: 197
  start-page: 837
  year: 2012
  end-page: 849
  article-title: Smooth muscle‐endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation
  publication-title: J Cell Biol
– volume: 6
  start-page: e24546
  year: 2011
  article-title: Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb
  publication-title: PLoS ONE
– volume: 208
  start-page: 406
  year: 1997
  end-page: 419
  article-title: Morphogenetic potential of the chick leg interdigital mesoderm when diverted from the cell death program
  publication-title: Dev Dyn
– volume: 48
  start-page: 635
  year: 2010
  end-page: 644
  article-title: Sox9‐expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons
  publication-title: Genesis
– volume: 19
  start-page: 461
  year: 2012
  end-page: 469
  article-title: Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation
  publication-title: Cell Death Differ
– volume: 7
  start-page: e31802
  year: 2012
  article-title: Reelin is involved in transforming growth factor‐beta1‐induced cell migration in esophageal carcinoma cells
  publication-title: PLoS ONE
– volume: 29
  start-page: 288
  year: 2009
  end-page: 299
  article-title: Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n‐cofilin phosphorylation at serine3
  publication-title: J Neurosci
– volume: 17
  start-page: 23
  year: 1997
  end-page: 31
  article-title: Reelin is a secreted glycoprotein recognized by the CR‐50 monoclonal antibody
  publication-title: J Neurosci
– volume: 41
  start-page: D828
  year: 2012
  end-page: 833
  article-title: PrePPI: A structure‐informed database of protein‐protein interactions
  publication-title: Nucleic Acids Res
– volume: 68
  start-page: 1
  year: 1982
  end-page: 7
  article-title: The proximodistal determination of skeletal parts in the developing chick leg
  publication-title: J Embryol Exp Morphol
– volume: 12
  start-page: 815
  year: 2013
  end-page: 822
  article-title: Reelin signaling in development, maintenance, and plasticity of neural networks
  publication-title: Ageing Res Rev
– ident: e_1_2_6_18_1
  doi: 10.1523/JNEUROSCI.4872-08.2009
– ident: e_1_2_6_6_1
  doi: 10.1016/j.cub.2006.10.029
– ident: e_1_2_6_8_1
  doi: 10.1038/cr.2013.7
– ident: e_1_2_6_5_1
  doi: 10.1006/bbrc.2000.3831
– ident: e_1_2_6_52_1
  doi: 10.1016/S0168-0102(97)00088-6
– ident: e_1_2_6_49_1
  doi: 10.1101/gad.1547407
– ident: e_1_2_6_24_1
  doi: 10.1139/y2012-001
– ident: e_1_2_6_48_1
  doi: 10.1016/j.arr.2013.01.005
– ident: e_1_2_6_15_1
  doi: 10.1089/ten.tea.2012.0050
– ident: e_1_2_6_11_1
  doi: 10.1038/cddis.2013.322
– ident: e_1_2_6_46_1
  doi: 10.1016/j.neuron.2005.04.019
– ident: e_1_2_6_3_1
  doi: 10.1083/jcb.200105046
– ident: e_1_2_6_34_1
  doi: 10.1007/s11626-999-0070-0
– ident: e_1_2_6_32_1
  doi: 10.1016/0012-1606(73)90269-8
– ident: e_1_2_6_53_1
  doi: 10.1371/journal.pone.0031802
– ident: e_1_2_6_54_1
  doi: 10.1093/nar/gks1231
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.M109.014811
– volume: 68
  start-page: 1
  year: 1982
  ident: e_1_2_6_42_1
  article-title: The proximodistal determination of skeletal parts in the developing chick leg
  publication-title: J Embryol Exp Morphol
  contributor:
    fullname: Rowe DA
– ident: e_1_2_6_47_1
  doi: 10.2353/ajpath.2010.100209
– ident: e_1_2_6_25_1
  doi: 10.1242/dev.057588
– ident: e_1_2_6_16_1
  doi: 10.1242/dev.005447
– ident: e_1_2_6_41_1
  doi: 10.1002/(SICI)1097-0177(199703)208:3<406::AID-AJA11>3.0.CO;2-Y
– ident: e_1_2_6_51_1
  doi: 10.1080/10495390600867515
– ident: e_1_2_6_21_1
  doi: 10.1128/MCB.00928-07
– ident: e_1_2_6_7_1
  doi: 10.1016/S0960-9822(02)01403-3
– ident: e_1_2_6_37_1
  doi: 10.1016/j.ydbio.2006.11.019
– ident: e_1_2_6_33_1
  doi: 10.1016/j.matbio.2004.06.005
– ident: e_1_2_6_26_1
  doi: 10.1523/JNEUROSCI.1656-05.2005
– ident: e_1_2_6_29_1
  doi: 10.1371/journal.pone.0024546
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1471-4159.2007.04804.x
– ident: e_1_2_6_9_1
  doi: 10.1523/JNEUROSCI.2934-08.2009
– ident: e_1_2_6_12_1
  doi: 10.1016/S0896-6273(00)00007-6
– ident: e_1_2_6_19_1
  doi: 10.1016/0922-3371(89)90740-5
– ident: e_1_2_6_50_1
  doi: 10.1016/S0092-8674(00)80782-5
– ident: e_1_2_6_17_1
  doi: 10.1038/cdd.2011.114
– ident: e_1_2_6_13_1
  doi: 10.1007/s00702-009-0228-7
– ident: e_1_2_6_22_1
  doi: 10.1016/j.bbrc.2012.02.130
– ident: e_1_2_6_38_1
  doi: 10.1016/j.ydbio.2008.06.022
– ident: e_1_2_6_2_1
  doi: 10.1016/S0960-9822(02)01397-0
– ident: e_1_2_6_31_1
  doi: 10.1083/jcb.201110132
– ident: e_1_2_6_35_1
  doi: 10.1002/bies.20607
– ident: e_1_2_6_36_1
  doi: 10.1007/s10495-009-0444-5
– ident: e_1_2_6_43_1
  doi: 10.1053/j.gastro.2005.11.008
– ident: e_1_2_6_14_1
  doi: 10.1016/j.biocel.2009.10.003
– ident: e_1_2_6_45_1
  doi: 10.1002/dvg.20667
– ident: e_1_2_6_44_1
  doi: 10.1523/JNEUROSCI.0958-09.2009
– ident: e_1_2_6_4_1
  doi: 10.1016/S0736-0266(01)00169-3
– ident: e_1_2_6_27_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_6_20_1
  doi: 10.1002/(SICI)1097-0029(19960615)34:3<236::AID-JEMT6>3.0.CO;2-N
– ident: e_1_2_6_30_1
  doi: 10.1021/cb400713v
– ident: e_1_2_6_40_1
  doi: 10.1016/j.mcn.2010.12.001
– ident: e_1_2_6_10_1
  doi: 10.1523/JNEUROSCI.17-01-00023.1997
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1440-169X.2009.01102.x
SSID ssj0009933
Score 2.2660246
Snippet Reelin is a bioactive component of some extracellular matrices. Most studies on this signaling glycoprotein have been performed in the developing nervous...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1397
SubjectTerms Animals
Avian Proteins - genetics
Avian Proteins - metabolism
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Cell Adhesion Molecules, Neuronal - genetics
Cell Adhesion Molecules, Neuronal - metabolism
Cell Shape
Cells, Cultured
Chick Embryo
Chondrocytes - metabolism
Chondrogenesis
Cytoskeleton - metabolism
Extracellular Matrix Proteins - genetics
Extracellular Matrix Proteins - metabolism
Gene Expression Regulation, Developmental
Gestational Age
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
LDL-Receptor Related Proteins - genetics
LDL-Receptor Related Proteins - metabolism
Limb Buds - cytology
Limb Buds - metabolism
Mesoderm - cytology
Mesoderm - metabolism
Mice
Mice, Inbred C57BL
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Receptors, LDL - genetics
Receptors, LDL - metabolism
RNA Interference
Serine Endopeptidases - genetics
Serine Endopeptidases - metabolism
Signal Transduction
SOX9 Transcription Factor - genetics
SOX9 Transcription Factor - metabolism
Stem Cells - metabolism
Tendons - embryology
Tendons - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transfection
Title Reelin/DAB-1 Signaling in the Embryonic Limb Regulates the Chondrogenic Differentiation of Digit Mesodermal Progenitors
URI https://api.istex.fr/ark:/67375/WNG-RKVXWV9M-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.24576
https://www.ncbi.nlm.nih.gov/pubmed/24519818
https://www.proquest.com/docview/1553146252
https://search.proquest.com/docview/1542003965
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahpB44bJxCQxkEJp4Sds4dlKLp9JtTINOU2FbH5CiOHVKmZpObSpRnvgJ_EZ-CefYSaYhkBBvSWwnvpxjf8c5_g7ASymiVIpM-SlXXV8oE_o65tIfB5GOYh6awB4KGxxHh6fiaCRHG_C6Pgvj-CGaDTfSDDtfk4Knetm-Ig39kl22uEC4jPMvEekRIBpeUUepKoy8dUGQIqhZhTq83ZS8thbdoG79-iegeR232oXn4A58qqvs_E0uWqtSt7Jvv7E5_meb7sLtCpCynpOge7Bhii3Y7hVojM_WbJdZF1G7974FN13kyvU2rIeGDrK393pvfn7_EbAP0wkh-mLCpgVDTMn2Z3qxJtpd9n4602zoQt6bpU3sf54TTwLKLqbvVSFaSickbJ7jo8m0ZAOzpEBtM6zdictMkYHuw-nB_sf-oV9FcfAzaomvVTeSOkzHmcy7HY0WGt4Q7540QsVBxsdZztO4kwZoLgdhlkeISBU3sYzHmoglHsBmMS_MI2ChUVgWLbYwJFpDoXNuMk6vEnkY69iDF_V4JpeOrCNxtMw8wa5NbNd6sGtHusmRLi7Iuy2Wyfnx22T47mx0fqYGifJgpxaFpFLsZUJhlnBx4ZJ78LxJRpWk_yxpYeYryiPI5U9F0oOHToSaj3Gi80GQ5MErKwh_r2dy1D-xF4__PesTuIWATjhnwx3YLBcr8xRBU6mfWe34BeirEGA
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amxC8cNm4BAYYhCZe0jaOndQSL6XdKFtbTWWXviArTp1SpqZTm0qUJ34Cv5Ffgo_ddBoCCfGWxCeJL-fE33GOvwPwmrMo4SwVfkJF3WdCh76KKfeHQaSimIY6sJvCur2ofcoOB3ywAW_LvTCOH2K94IaWYb_XaOC4IF29Yg39kl5WKDN4-QZsGXPnaJat_hV5lFglkrdBCJwFJa9QjVbXt16bjbawY7_-CWpeR6526jm4C5_KSruIk4vKolCV9NtvfI7_26p7cGeFSUnDKdF92ND5Nuw0cuOPT5Zkj9goUbv8vg03XfLK5Q4s-xr3sldbjXc_v_8IyMfxCEF9PiLjnBhYSfYnarZE5l3SGU8U6bus93puC5ufp0iVYNTXlLdWWVoKpydkmplLo3FBunqOudompnbHThiTAz2A04P9k2bbXyVy8FNsia9EPeIqTIYpz-o1ZZw0c4LUe1wzEQcpHaYZTeJaEhiPOQjTLDKgVFAd83iokFviIWzm01w_BhJqYe41TlsYIrMhUxnVKcVHsSyMVezBq3JA5aXj65COmZlK07XSdq0He3ao1xLJ7AID3GIuz3vvZf_obHB-JrpSeLBb6oJc2fZcYqYlM79QTj14uS42Vom_WpJcTxcowzDqT0Tcg0dOh9Yvo8joY3CSB2-sJvy9nvKweWwPnvy76Au41T7pdmTnQ-_oKdw2-I652MNd2CxmC_3MYKhCPbem8gvwdxSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0B74bIxFhhgEJp4Sds4dlKLp9KujG2tqsK2PiBZceKUMjWtepEoT_wEfiO_BB-77TQEEuItiU8SX86Jv-McfwfgFWdRwlkq_ISKqs-EDn0VU-5nQaSimIY6sJvCWu3o-Jyd9HhvA96s9sI4foj1ghtahv1eo4GPs7x8TRr6JR2XKDNw-RZssSik6Hk1utfcUWKZR97GIHAWrGiFKrS8vvXGZLSF_fr1T0jzJnC1M0_zHnxa1dkFnFyV5jNVSr_9Ruf4n426D3eXiJTUnAo9gA1d7MBurTDe-HBBDomNEbWL7ztw26WuXOzCoqtxJ3u5UXv78_uPgHwY9BHSF30yKIgBleRoqCYL5N0lZ4OhIl2X815PbWH98wiJEozymvLGMkfLzGkJGeXmUn8wIy09xUxtQ1O7jhPG1EAP4bx59LF-7C_TOPgptsRXohpxFSZZyvNqRRkXzZwg8R7XTMRBSrM0p0lcSQLjLwdhmkcGkgqqYx5nCpkl9mCzGBV6H0iohbnXuGxhiLyGTOVUpxQfxfIwVrEHL1fjKceOrUM6XmYqTddK27UeHNqRXkskkysMb4u5vGy_k93Ti97lhWhJ4cHBShXk0rKnEvMsmdmFcurBi3WxsUn80ZIUejRHGYYxfyLiHjxyKrR-GUU-H4OSPHhtFeHv9ZQn9Y49ePzvos_hTqfRlGfv26dPYNuAO-YCDw9gczaZ66cGQM3UM2sovwCjyhMv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reelin%2FDAB-1+Signaling+in+the+Embryonic+Limb+Regulates+the+Chondrogenic+Differentiation+of+Digit+Mesodermal+Progenitors&rft.jtitle=Journal+of+cellular+physiology&rft.au=Diaz-Mendoza%2C+Manuel+J.&rft.au=Lorda-Diez%2C+Carlos+I.&rft.au=Montero%2C+Juan+A.&rft.au=Garcia-Porrero%2C+Juan+A.&rft.date=2014-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=229&rft.issue=10&rft.spage=1397&rft.epage=1404&rft_id=info:doi/10.1002%2Fjcp.24576&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_RKVXWV9M_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon