Frailty models for pneumonia to death with a left-censored covariate

Frailty models are multiplicative hazard models for studying association between survival time and important clinical covariates. When some values of a clinical covariate are unobserved but known to be below a threshold called the limit of detection (LOD), naive approaches ignoring this problem, suc...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 34; no. 14; pp. 2266 - 2280
Main Authors Sattar, Abdus, Sinha, Sanjoy K., Wang, Xiao-Feng, Li, Yehua
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 30.06.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6466

Cover

More Information
Summary:Frailty models are multiplicative hazard models for studying association between survival time and important clinical covariates. When some values of a clinical covariate are unobserved but known to be below a threshold called the limit of detection (LOD), naive approaches ignoring this problem, such as replacing the undetected value by the LOD or half of the LOD, often produce biased parameter estimate with larger mean squared error of the estimate. To address the LOD problem in a frailty model, we propose a flexible smooth nonparametric density estimator along with Simpson's numerical integration technique. This is an extension of an existing method in the likelihood framework for the estimation and inference of the model parameters. The proposed new method shows the estimators are asymptotically unbiased and gives smaller mean squared error of the estimates. Compared with the existing method, the proposed new method does not require distributional assumptions for the underlying covariates. Simulation studies were conducted to evaluate the performance of the new method in realistic scenarios. We illustrate the use of the proposed method with a data set from Genetic and Inflammatory Markers of Sepsis study in which interlekuin‐10 was subject to LOD. Copyright © 2015 John Wiley & Sons, Ltd.
Bibliography:ark:/67375/WNG-6QG8PVGH-7
ArticleID:SIM6466
istex:632EBDAEE326E403D0F8810FFA4468C506233DF7
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.6466