Carbonized Cotton Fabric for High‐Performance Wearable Strain Sensors
Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been wid...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 2; pp. np - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low‐cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%–80% and that of 64 in strain of 80%–140%), inconspicuous drift, and long‐term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots.
Based on carbonized plain weave cotton fabric, a wearable strain sensor with high sensitivity and large workable strain range (up to 140%) is fabricated through a cost‐effective, scalable, and green process. Its working mechanism is investigated and its application in detection of both subtle and large deformation of the human body is demonstrated, promising great potential in wearable electronics. |
---|---|
AbstractList | Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low‐cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%–80% and that of 64 in strain of 80%–140%), inconspicuous drift, and long‐term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots.
Based on carbonized plain weave cotton fabric, a wearable strain sensor with high sensitivity and large workable strain range (up to 140%) is fabricated through a cost‐effective, scalable, and green process. Its working mechanism is investigated and its application in detection of both subtle and large deformation of the human body is demonstrated, promising great potential in wearable electronics. Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low-cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%-80% and that of 64 in strain of 80%-140%), inconspicuous drift, and long-term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots. Based on carbonized plain weave cotton fabric, a wearable strain sensor with high sensitivity and large workable strain range (up to 140%) is fabricated through a cost-effective, scalable, and green process. Its working mechanism is investigated and its application in detection of both subtle and large deformation of the human body is demonstrated, promising great potential in wearable electronics. Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low-cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%-80% and that of 64 in strain of 80%-140%), inconspicuous drift, and long-term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots. |
Author | Hao, Xiangyang Zhang, Mingchao Wang, Chunya Zhang, Yingying Wang, Huimin Jian, Muqiang |
Author_xml | – sequence: 1 givenname: Mingchao surname: Zhang fullname: Zhang, Mingchao organization: China University of Geosciences – sequence: 2 givenname: Chunya surname: Wang fullname: Wang, Chunya organization: Tsinghua University – sequence: 3 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: Tsinghua University – sequence: 4 givenname: Muqiang surname: Jian fullname: Jian, Muqiang organization: Tsinghua University – sequence: 5 givenname: Xiangyang surname: Hao fullname: Hao, Xiangyang email: haoxy@cugb.edu.cn organization: China University of Geosciences – sequence: 6 givenname: Yingying surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkMFKAzEQhoNUsFWvnhe8eGlNdtNN9liqbQVFQUFvIZtMNGWb1GSL1JOP4DP6JO5SqVAQc5kMfN_M8PdQx3kHCJ0QPCAYp-dSm8UgxSTHlBXDPdQlOcn7GU55Z_snTweoF-McY8JYRrtoOpah9M6-g07Gvq69SyayDFYlxodkZp9fvj4-7yA03UI6BckjyCDLCpL7Okjrkntw0Yd4hPaNrCIc_9RD9DC5fBjP-te306vx6Lqv6JAN-2Ck1tRgxXjJdJazghAKGTdDo0oqOSNSK6NZzgFLDbxUtNA85ZiVhtA8O0Rnm7HL4F9XEGuxsFFBVUkHfhUF4axoHy0a9HQHnftVcM1xghQppiTleUsNNpQKPsYARiyDXciwFgSLNlbRxiq2sTYC3RGUrWVtvWvzqP7Wio32ZitY_7NEjC4mN7_uNwqokAA |
CitedBy_id | crossref_primary_10_1021_acs_est_1c04520 crossref_primary_10_1016_j_ijbiomac_2020_02_225 crossref_primary_10_1021_acsami_8b18823 crossref_primary_10_1002_adfm_201808786 crossref_primary_10_1039_C7TA07010A crossref_primary_10_1021_acsami_2c14642 crossref_primary_10_1016_j_scitotenv_2022_158233 crossref_primary_10_1021_acsanm_0c02494 crossref_primary_10_1002_smll_201704232 crossref_primary_10_1016_j_matdes_2018_02_006 crossref_primary_10_1016_j_sna_2020_112174 crossref_primary_10_1109_JSEN_2022_3211646 crossref_primary_10_1021_acsami_1c18233 crossref_primary_10_1016_j_compositesb_2019_107683 crossref_primary_10_1002_admi_201901507 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1039_D1RA08438K crossref_primary_10_1016_j_bios_2018_08_037 crossref_primary_10_1039_D4TA00176A crossref_primary_10_1021_acsami_2c12479 crossref_primary_10_1080_00405000_2023_2214331 crossref_primary_10_1021_acsami_8b04775 crossref_primary_10_1016_j_nanoen_2019_103898 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_3390_ma16052101 crossref_primary_10_1007_s12274_022_5162_0 crossref_primary_10_3390_mi15040486 crossref_primary_10_3390_nano10040664 crossref_primary_10_1016_j_compscitech_2018_06_019 crossref_primary_10_1016_j_compstruct_2023_117358 crossref_primary_10_1039_C9NR01005J crossref_primary_10_1039_D4TA02279C crossref_primary_10_1007_s10570_018_2080_0 crossref_primary_10_1021_acsami_3c14396 crossref_primary_10_1021_acsaelm_0c00292 crossref_primary_10_1002_mame_202100737 crossref_primary_10_1088_1361_665X_ac251a crossref_primary_10_1021_acsabm_1c00360 crossref_primary_10_1021_acsami_7b19014 crossref_primary_10_1007_s42765_023_00338_9 crossref_primary_10_1016_j_actbio_2021_06_018 crossref_primary_10_1021_acsami_2c08285 crossref_primary_10_1039_C9NR01791G crossref_primary_10_1016_j_matlet_2020_127948 crossref_primary_10_3390_nano11092333 crossref_primary_10_1021_acsami_9b22534 crossref_primary_10_3390_polym12071499 crossref_primary_10_1016_j_cej_2020_126029 crossref_primary_10_1002_admt_202100643 crossref_primary_10_1021_acsami_9b19242 crossref_primary_10_1021_acsami_4c16924 crossref_primary_10_1021_acsami_0c21075 crossref_primary_10_1002_smm2_1151 crossref_primary_10_1007_s40843_022_2397_y crossref_primary_10_1002_smll_202003638 crossref_primary_10_1039_D0TC00238K crossref_primary_10_1021_acs_chemmater_8b01172 crossref_primary_10_1021_acsami_2c14847 crossref_primary_10_1002_aisy_202100213 crossref_primary_10_1007_s10118_023_2905_7 crossref_primary_10_1021_acsaelm_2c01628 crossref_primary_10_1016_j_cej_2021_129949 crossref_primary_10_1002_chem_202002244 crossref_primary_10_1002_adfm_201905808 crossref_primary_10_1021_acsami_9b09459 crossref_primary_10_1002_adfm_202007254 crossref_primary_10_1021_acsanm_2c02642 crossref_primary_10_1002_adma_201801347 crossref_primary_10_1021_acsnano_1c00259 crossref_primary_10_1007_s10853_020_05736_7 crossref_primary_10_3390_s24134321 crossref_primary_10_1021_acsaelm_1c00503 crossref_primary_10_3390_s18020645 crossref_primary_10_1016_j_apsusc_2022_154152 crossref_primary_10_1016_j_cej_2019_123912 crossref_primary_10_1021_acsami_9b23400 crossref_primary_10_1088_1361_6528_aaabfe crossref_primary_10_1002_admt_202100421 crossref_primary_10_1002_smll_201602790 crossref_primary_10_1039_C8MH01188E crossref_primary_10_1039_D2TA02998G crossref_primary_10_1007_s10853_017_1644_y crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1007_s11581_021_04117_7 crossref_primary_10_1016_j_cej_2018_12_025 crossref_primary_10_1007_s10853_018_2432_z crossref_primary_10_1021_acsapm_3c02217 crossref_primary_10_1021_acsapm_3c00037 crossref_primary_10_1007_s42765_025_00512_1 crossref_primary_10_1016_j_ijbiomac_2023_129068 crossref_primary_10_1021_acsami_9b12504 crossref_primary_10_1016_j_nanoen_2019_103990 crossref_primary_10_1039_C8TC02655F crossref_primary_10_1021_acsami_8b17666 crossref_primary_10_1021_acsnano_3c02667 crossref_primary_10_3390_ijms21186531 crossref_primary_10_3390_polym13193435 crossref_primary_10_1007_s12221_023_00104_z crossref_primary_10_1016_j_polymer_2023_126552 crossref_primary_10_1016_j_compositesa_2022_107221 crossref_primary_10_1007_s42765_021_00126_3 crossref_primary_10_1021_acsami_4c13402 crossref_primary_10_1039_C7TC03434B crossref_primary_10_1002_adfm_201903732 crossref_primary_10_1016_j_carbon_2017_10_034 crossref_primary_10_1002_smll_202008079 crossref_primary_10_1021_acsami_7b02985 crossref_primary_10_1039_D1MH00615K crossref_primary_10_3390_polym13010151 crossref_primary_10_1002_adma_201902133 crossref_primary_10_1016_j_cej_2020_124448 crossref_primary_10_1088_1361_665X_acb6c9 crossref_primary_10_1007_s10570_020_03543_6 crossref_primary_10_1002_adfm_202411177 crossref_primary_10_1007_s12274_017_1731_z crossref_primary_10_1039_D0TA02878A crossref_primary_10_1016_j_carbon_2023_02_044 crossref_primary_10_1007_s10854_020_04278_7 crossref_primary_10_1016_j_jmmm_2021_168434 crossref_primary_10_1002_adem_202100195 crossref_primary_10_1002_smll_202104810 crossref_primary_10_1109_JFLEX_2023_3339587 crossref_primary_10_1002_advs_201900813 crossref_primary_10_1016_j_compositesb_2021_108674 crossref_primary_10_1002_adfm_202403788 crossref_primary_10_1039_C8TC04753G crossref_primary_10_3390_mi14101940 crossref_primary_10_1039_D0TC00029A crossref_primary_10_1142_S1793292021500624 crossref_primary_10_1021_acssuschemeng_2c01171 crossref_primary_10_1149_2_0241914jes crossref_primary_10_1021_acsami_3c14327 crossref_primary_10_1021_acsami_0c08840 crossref_primary_10_1021_acs_chemrev_1c00502 crossref_primary_10_1016_j_carbpol_2020_117019 crossref_primary_10_1039_D3TA03213B crossref_primary_10_1021_acsami_9b20612 crossref_primary_10_3390_polym13050824 crossref_primary_10_1021_acsami_1c19850 crossref_primary_10_1007_s42242_018_0002_5 crossref_primary_10_1109_JSEN_2024_3452498 crossref_primary_10_1002_adfm_202010830 crossref_primary_10_1039_C7NR05903E crossref_primary_10_1039_D4TC03214D crossref_primary_10_1021_acsami_9b10928 crossref_primary_10_1177_00405175211044163 crossref_primary_10_1021_acsami_9b20964 crossref_primary_10_1016_j_cej_2020_127966 crossref_primary_10_1016_j_porgcoat_2023_108107 crossref_primary_10_1016_j_ijbiomac_2024_133269 crossref_primary_10_1021_acsami_1c17565 crossref_primary_10_1021_acsami_3c01364 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1007_s12274_022_4440_1 crossref_primary_10_1016_j_ijbiomac_2024_133151 crossref_primary_10_1021_acsaelm_3c00022 crossref_primary_10_1016_j_sna_2024_116158 crossref_primary_10_1016_j_compscitech_2020_108038 crossref_primary_10_1016_j_cossms_2018_11_001 crossref_primary_10_1145_3659588 crossref_primary_10_1039_D4TA07978G crossref_primary_10_1021_acssuschemeng_9b04690 crossref_primary_10_1039_D0TC04659K crossref_primary_10_3390_nano12142458 crossref_primary_10_1021_acsami_0c19704 crossref_primary_10_1021_acsami_8b16167 crossref_primary_10_1021_acsami_9b06208 crossref_primary_10_1002_adfm_201800850 crossref_primary_10_1039_C8NR08589G crossref_primary_10_1177_00405175211069888 crossref_primary_10_1039_D4TC01057D crossref_primary_10_1002_er_7676 crossref_primary_10_1016_j_colsurfa_2022_130752 crossref_primary_10_1021_acssensors_9b01509 crossref_primary_10_1039_C9RA08653F crossref_primary_10_1016_j_matdes_2019_107941 crossref_primary_10_1021_acsami_1c07704 crossref_primary_10_1021_acsami_0c04448 crossref_primary_10_1016_j_carbon_2020_07_042 crossref_primary_10_3390_nano12050871 crossref_primary_10_1002_nano_202000215 crossref_primary_10_1177_24723444231161747 crossref_primary_10_1109_TCPMT_2021_3101910 crossref_primary_10_1038_s41528_024_00301_7 crossref_primary_10_1016_j_eurpolymj_2024_113573 crossref_primary_10_1021_acsami_8b20768 crossref_primary_10_1002_adma_201906994 crossref_primary_10_1007_s00339_019_2765_8 crossref_primary_10_1002_aelm_202100233 crossref_primary_10_1039_D2TC02051C crossref_primary_10_3390_mi10040232 crossref_primary_10_1016_j_sna_2019_05_011 crossref_primary_10_1039_D4MH01136H crossref_primary_10_1021_acsnano_9b00395 crossref_primary_10_1007_s40684_021_00356_1 crossref_primary_10_1002_admt_201900475 crossref_primary_10_1016_j_nanoen_2020_105187 crossref_primary_10_1088_2058_8585_acf774 crossref_primary_10_1016_j_cej_2023_146800 crossref_primary_10_1002_adsu_202100382 crossref_primary_10_1016_j_carbpol_2021_118741 crossref_primary_10_1002_adhm_202404056 crossref_primary_10_1021_acsapm_3c02623 crossref_primary_10_1021_acsami_7b09652 crossref_primary_10_1002_aisy_202100046 crossref_primary_10_1007_s40843_017_9077_x crossref_primary_10_1007_s10854_020_03744_6 crossref_primary_10_1002_adfm_201800409 crossref_primary_10_1021_acsnano_8b07805 crossref_primary_10_1002_adma_201902532 crossref_primary_10_1007_s00339_022_06276_4 crossref_primary_10_1021_acsami_9b04509 crossref_primary_10_1002_admt_202000155 crossref_primary_10_20517_ss_2023_30 crossref_primary_10_1016_j_sna_2018_10_012 crossref_primary_10_1039_C8TC04017F crossref_primary_10_1002_advs_202411584 crossref_primary_10_1002_aelm_201900538 crossref_primary_10_1016_j_apsusc_2020_145260 crossref_primary_10_1109_JSEN_2020_3033047 crossref_primary_10_1021_acsapm_4c03972 crossref_primary_10_1016_j_compscitech_2018_09_006 crossref_primary_10_1002_pc_25632 crossref_primary_10_1007_s42765_022_00212_0 crossref_primary_10_1007_s42765_024_00449_x crossref_primary_10_1007_s42114_021_00226_z crossref_primary_10_1002_adma_201903733 crossref_primary_10_1021_acsami_9b03545 crossref_primary_10_1039_C7TC02429K crossref_primary_10_1063_1_5103274 crossref_primary_10_1016_j_compscitech_2020_108215 crossref_primary_10_3390_nano11040889 crossref_primary_10_1177_00405175221093659 crossref_primary_10_1002_sus2_207 crossref_primary_10_1002_sus2_243 crossref_primary_10_1016_j_compstruct_2024_118041 crossref_primary_10_1016_j_apsusc_2022_155961 crossref_primary_10_1016_j_matdes_2023_111911 crossref_primary_10_1021_acsnano_1c10678 crossref_primary_10_3390_polym14122373 crossref_primary_10_1039_D2MA00960A crossref_primary_10_1016_j_matt_2021_08_009 crossref_primary_10_1016_j_compscitech_2020_108448 crossref_primary_10_1016_j_matdes_2017_05_035 crossref_primary_10_1007_s00339_019_3216_2 crossref_primary_10_1007_s42114_023_00754_w crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_3390_polym14112219 crossref_primary_10_3390_polym10060568 crossref_primary_10_1007_s10853_021_06146_z crossref_primary_10_1016_j_compscitech_2021_108963 crossref_primary_10_1016_j_cej_2019_123036 crossref_primary_10_1016_j_jcis_2023_11_187 crossref_primary_10_1002_admt_201800327 crossref_primary_10_1021_acsnano_8b02162 crossref_primary_10_1002_aelm_202000618 crossref_primary_10_1039_C7QM00497D crossref_primary_10_1109_ACCESS_2019_2961957 crossref_primary_10_3390_s23052479 crossref_primary_10_1016_j_compositesb_2021_108969 crossref_primary_10_1039_D0QM00748J crossref_primary_10_1021_acsami_9b15546 crossref_primary_10_1016_j_jiec_2022_01_031 crossref_primary_10_1039_C9TC02026H crossref_primary_10_1109_JLT_2023_3319693 crossref_primary_10_1016_j_nanoen_2019_104134 crossref_primary_10_1016_j_ijbiomac_2022_10_262 crossref_primary_10_1021_acsami_0c11937 crossref_primary_10_1002_adma_202102332 crossref_primary_10_1002_mame_201900621 crossref_primary_10_1039_D1MA01210J crossref_primary_10_1021_acsami_8b09598 crossref_primary_10_3390_nano11051220 crossref_primary_10_1039_C7TC05571D crossref_primary_10_1007_s10570_021_04023_1 crossref_primary_10_1002_adma_202300576 crossref_primary_10_1126_sciadv_abb7043 crossref_primary_10_1002_adma_202414620 crossref_primary_10_3390_nano9070937 crossref_primary_10_1109_JSEN_2020_3034453 crossref_primary_10_1007_s11706_019_0472_1 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_1039_D0RA00327A crossref_primary_10_1007_s42114_024_01168_y crossref_primary_10_1038_s41928_022_00723_z crossref_primary_10_1039_D0QM00625D crossref_primary_10_1021_acsabm_0c01128 crossref_primary_10_1039_C7TC01962A crossref_primary_10_1002_admt_202201503 crossref_primary_10_1002_admt_202200654 crossref_primary_10_1038_s41378_022_00419_6 crossref_primary_10_1002_eem2_12041 crossref_primary_10_1007_s12274_020_3148_3 crossref_primary_10_1016_j_cjac_2022_100211 crossref_primary_10_1007_s42765_024_00417_5 crossref_primary_10_1007_s40820_021_00615_5 crossref_primary_10_1007_s12274_018_2043_7 crossref_primary_10_1016_j_compstruct_2022_115214 crossref_primary_10_1016_j_bios_2021_113268 crossref_primary_10_1016_j_sna_2023_114846 crossref_primary_10_1021_acs_chemrev_3c00374 crossref_primary_10_1016_j_mee_2021_111631 crossref_primary_10_1002_aelm_201700193 crossref_primary_10_1021_acsami_2c03199 crossref_primary_10_1016_j_compositesa_2019_105724 crossref_primary_10_1002_admt_202000560 crossref_primary_10_1002_slct_201900837 crossref_primary_10_3390_s21113895 crossref_primary_10_1016_j_cej_2022_138285 crossref_primary_10_1080_00405167_2021_1986965 crossref_primary_10_1002_adfm_201802547 crossref_primary_10_1016_j_sna_2024_116077 crossref_primary_10_1109_JSEN_2023_3346816 crossref_primary_10_1021_acsami_9b23083 crossref_primary_10_1039_C9TC02486G crossref_primary_10_1016_j_cej_2017_07_094 crossref_primary_10_3390_polym11071120 crossref_primary_10_1007_s40684_020_00285_5 crossref_primary_10_1007_s40843_022_1986_5 crossref_primary_10_1002_adma_202312596 crossref_primary_10_1021_acsami_0c21392 crossref_primary_10_1109_JSEN_2022_3180081 crossref_primary_10_1021_acssuschemeng_4c05168 crossref_primary_10_1039_D0TA02221G crossref_primary_10_1002_er_6814 crossref_primary_10_1016_j_apsusc_2021_152240 crossref_primary_10_1063_5_0140900 crossref_primary_10_1166_jno_2021_2983 crossref_primary_10_1021_acsami_9b04915 crossref_primary_10_1016_j_carbon_2019_07_010 crossref_primary_10_1021_acsami_0c00564 crossref_primary_10_1021_acsami_8b08055 crossref_primary_10_1002_admt_201800030 crossref_primary_10_1002_smtd_202201340 crossref_primary_10_1016_j_cej_2021_131931 crossref_primary_10_1021_acsami_7b10181 crossref_primary_10_1002_adma_201901958 crossref_primary_10_1016_j_compositesa_2017_06_003 crossref_primary_10_1002_inf2_12060 crossref_primary_10_1016_j_cej_2021_130869 crossref_primary_10_1021_acs_chemrev_2c00192 crossref_primary_10_1016_j_nanoen_2018_10_049 crossref_primary_10_1080_00405000_2023_2228577 crossref_primary_10_12677_MS_2021_112020 crossref_primary_10_3390_app8030345 crossref_primary_10_1177_00405175221143520 crossref_primary_10_1016_S1872_5805_20_60505_4 crossref_primary_10_1155_2020_9231571 crossref_primary_10_1021_acs_iecr_1c01153 crossref_primary_10_1016_j_carbon_2020_04_072 crossref_primary_10_1021_acsaelm_9b00564 crossref_primary_10_1021_acsami_2c14709 crossref_primary_10_1007_s12200_022_00002_x crossref_primary_10_1021_acsnano_9b06354 crossref_primary_10_1021_acsami_0c12440 crossref_primary_10_1002_aenm_202402169 crossref_primary_10_1016_j_cej_2021_130870 crossref_primary_10_1021_acsami_3c07589 crossref_primary_10_1002_aisy_202000039 crossref_primary_10_1021_acsami_1c24649 crossref_primary_10_1007_s00438_020_01743_0 crossref_primary_10_1021_acsami_2c15922 crossref_primary_10_1021_acsami_9b08067 crossref_primary_10_3390_bios13070715 crossref_primary_10_1016_j_nanoen_2020_104560 crossref_primary_10_3390_cryst12040555 crossref_primary_10_1002_admt_201900802 crossref_primary_10_1016_j_seppur_2020_117571 crossref_primary_10_1007_s11431_022_2190_y crossref_primary_10_3390_mi13081309 crossref_primary_10_1016_j_coco_2017_12_007 crossref_primary_10_1007_s11664_021_09388_4 crossref_primary_10_1002_adma_201801072 crossref_primary_10_1002_advs_202203856 crossref_primary_10_1109_JSEN_2022_3166936 crossref_primary_10_1039_D0MH01818J crossref_primary_10_1002_adma_201901408 crossref_primary_10_1021_acsnano_3c04120 crossref_primary_10_1016_j_jpowsour_2018_09_052 crossref_primary_10_1007_s10118_023_2924_4 crossref_primary_10_1002_adfm_201803221 crossref_primary_10_35848_1347_4065_abe2e6 crossref_primary_10_1039_C8MH01062E crossref_primary_10_1021_acsami_7b17975 crossref_primary_10_1021_acsami_1c01961 crossref_primary_10_1007_s12274_019_2505_6 crossref_primary_10_1021_acsnano_2c02149 crossref_primary_10_1002_admt_202000508 crossref_primary_10_1016_j_ijbiomac_2022_09_113 crossref_primary_10_1021_acsami_9b21068 crossref_primary_10_1039_C7RA01837A crossref_primary_10_1039_C9NR00488B crossref_primary_10_1039_C8NR05404E crossref_primary_10_1039_C8TC03702G crossref_primary_10_1002_adfm_202008278 crossref_primary_10_1016_j_cej_2024_158408 crossref_primary_10_1021_acsami_2c20464 crossref_primary_10_1002_aelm_202001235 crossref_primary_10_1021_acsami_3c18397 crossref_primary_10_1016_j_mtcomm_2023_105561 crossref_primary_10_1039_D4AY01127A crossref_primary_10_1016_j_jpowsour_2020_227737 crossref_primary_10_1021_acsami_7b13356 crossref_primary_10_1021_acsami_0c15909 crossref_primary_10_1007_s10570_019_02432_x crossref_primary_10_1021_acsami_2c10679 |
Cites_doi | 10.1016/j.carbpol.2016.03.084 10.1002/adfm.201500628 10.1021/acsami.5b09314 10.1002/adma.201670027 10.1021/acsnano.5b01613 10.1039/C5NR07546G 10.1021/am4053305 10.1002/adfm.201400379 10.1021/acsnano.5b00599 10.1177/1045389X15577651 10.1002/mame.201500447 10.1002/adma.201201886 10.1038/nnano.2011.36 10.1039/C3NR04521H 10.1016/j.jpowsour.2016.07.028 10.1021/acsami.6b06984 10.1002/adma.201304742 10.1039/c3cp51571k 10.1039/C5SM01958C 10.1007/s12274-014-0652-3 10.1021/acs.nanolett.5b01505 10.1021/am509087u 10.3866/PKU.WHXB201607261 10.1039/C6MH00027D 10.1002/aelm.201400063 10.1088/0957-4484/26/37/375501 10.1016/j.carbon.2009.11.020 10.1002/adma.201500311 10.1002/adfm.201570020 10.1038/ncomms4132 10.1002/adma.201500009 10.1016/j.actamat.2008.02.030 10.1016/j.carbon.2016.04.031 10.1002/adma.201500582 10.1088/0964-1726/15/3/009 10.1002/adma.201104101 10.1016/j.sna.2013.11.034 10.1002/adma.201601572 10.1007/s10853-011-6081-8 10.1038/ncomms3435 10.1039/c3nr05496a 10.1063/1.4826496 10.1016/j.carbon.2012.08.029 10.1063/1.4919105 10.1002/adma.201503558 10.1021/nn501204t 10.1039/C5NR04312C 10.1039/c3nr33560g 10.1002/adma.201670016 10.1002/adfm.201504755 10.1016/j.carbon.2012.08.048 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201604795 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201604795 ADFM201604795 |
Genre | article |
GrantInformation_xml | – fundername: NSF of China funderid: 51672153; 51422204; 51372132 – fundername: National Key Basic Research and Development Program funderid: 2016YFA0200103; 2013CB228506 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 1OB |
ID | FETCH-LOGICAL-c4575-efadd4f0c78b7d3679114e38f5fcb4a871adcfd768e0ade8bc49d82807bf1463 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Tue Aug 05 10:22:07 EDT 2025 Fri Jul 25 05:43:36 EDT 2025 Tue Jul 01 01:30:31 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:24:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4575-efadd4f0c78b7d3679114e38f5fcb4a871adcfd768e0ade8bc49d82807bf1463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920412869 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1879999949 proquest_journals_1920412869 crossref_primary_10_1002_adfm_201604795 crossref_citationtrail_10_1002_adfm_201604795 wiley_primary_10_1002_adfm_201604795_ADFM201604795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 1 2015; 15 2013; 4 2013; 84 2006; 15 2016; 32 2014; 26 2008; 56 2014; 24 2016; 326 2016; 105 2015; 106 2016; 301 2016; 147 2015; 9 2013; 5 2015; 8 2011; 6 2015; 7 2016; 12 2014; 206 2015; 26 2015; 25 2013; 15 2014; 5 2015; 27 2010; 48 2016; 3 2013; 51 2012; 47 2016; 28 2014; 8 2012; 24 2016; 26 2014; 6 2016; 8 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Xia K. (e_1_2_6_6_1) 2016; 32 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 105 start-page: 260 year: 2016 publication-title: Carbon – volume: 24 start-page: 4666 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1011 year: 2015 publication-title: J. Intell. Mater. Syst. Struct. – volume: 7 start-page: 16361 year: 2015 publication-title: Nanoscale – volume: 28 start-page: 394 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 1627 year: 2015 publication-title: Nano Res. – volume: 15 start-page: 8042 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 24 start-page: 1321 year: 2012 publication-title: Adv. Mater. – volume: 56 start-page: 2929 year: 2008 publication-title: Acta Mater. – volume: 6 start-page: 296 year: 2011 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 374 year: 2015 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 6252 year: 2015 publication-title: ACS Nano – volume: 12 start-page: 845 year: 2016 publication-title: Soft Matter – volume: 6 start-page: 2345 year: 2014 publication-title: Nanoscale – volume: 27 start-page: 2433 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 3114 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 5154 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 2123 year: 2016 publication-title: Nanoscale – volume: 6 start-page: 699 year: 2014 publication-title: Nanoscale – volume: 9 start-page: 5929 year: 2015 publication-title: ACS Nano – volume: 206 start-page: 75 year: 2014 publication-title: Sens. Actuators, A – volume: 26 start-page: 2022 year: 2014 publication-title: Adv. Mater. – volume: 326 start-page: 428 year: 2016 publication-title: J. Power Sources – volume: 28 start-page: 783 year: 2016 publication-title: Adv. Mater. – volume: 24 start-page: 5117 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 1313 year: 2014 publication-title: ACS Appl. Mater. Interfaces. – volume: 32 start-page: 2427 year: 2016 publication-title: Acta Phys.‐Chim. Sin. – volume: 1 start-page: 1400063 year: 2015 publication-title: Adv. Electron. Mater. – volume: 51 start-page: 236 year: 2013 publication-title: Carbon – volume: 301 start-page: 707 year: 2016 publication-title: Macromol. Mater. Eng. – volume: 147 start-page: 28 year: 2016 publication-title: Carbohydr. Polym. – volume: 15 start-page: 5240 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 20894 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 84 start-page: 105005 year: 2013 publication-title: Rev. Sci. Instrum. – volume: 27 start-page: 7365 year: 2015 publication-title: Adv. Mater. – volume: 106 start-page: 171903 year: 2015 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 1727 year: 2013 publication-title: Nanoscale – volume: 15 start-page: 737 year: 2006 publication-title: Smart Mater. Struct. – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 2472 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 27432 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 4236 year: 2012 publication-title: J. Mater. Sci. – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 51 start-page: 202 year: 2013 publication-title: Carbon – volume: 48 start-page: 1012 year: 2010 publication-title: Carbon – volume: 28 start-page: 6640 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 375501 year: 2015 publication-title: Nanotechnology – volume: 27 start-page: 3411 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 4463 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 248 year: 2016 publication-title: Mater. Horiz. – volume: 4 start-page: 2435 year: 2013 publication-title: Nat. Commun. – ident: e_1_2_6_32_1 doi: 10.1016/j.carbpol.2016.03.084 – ident: e_1_2_6_4_1 doi: 10.1002/adfm.201500628 – ident: e_1_2_6_47_1 doi: 10.1021/acsami.5b09314 – ident: e_1_2_6_51_1 doi: 10.1002/adma.201670027 – ident: e_1_2_6_39_1 doi: 10.1021/acsnano.5b01613 – ident: e_1_2_6_46_1 doi: 10.1039/C5NR07546G – ident: e_1_2_6_44_1 doi: 10.1021/am4053305 – ident: e_1_2_6_30_1 doi: 10.1002/adfm.201400379 – ident: e_1_2_6_41_1 doi: 10.1021/acsnano.5b00599 – ident: e_1_2_6_14_1 doi: 10.1177/1045389X15577651 – ident: e_1_2_6_17_1 doi: 10.1002/mame.201500447 – ident: e_1_2_6_11_1 doi: 10.1002/adma.201201886 – ident: e_1_2_6_29_1 doi: 10.1038/nnano.2011.36 – ident: e_1_2_6_42_1 doi: 10.1039/C3NR04521H – ident: e_1_2_6_36_1 doi: 10.1016/j.jpowsour.2016.07.028 – ident: e_1_2_6_48_1 doi: 10.1021/acsami.6b06984 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201304742 – ident: e_1_2_6_37_1 doi: 10.1039/c3cp51571k – ident: e_1_2_6_43_1 doi: 10.1039/C5SM01958C – ident: e_1_2_6_28_1 doi: 10.1007/s12274-014-0652-3 – ident: e_1_2_6_38_1 doi: 10.1021/acs.nanolett.5b01505 – ident: e_1_2_6_24_1 doi: 10.1021/am509087u – volume: 32 start-page: 2427 year: 2016 ident: e_1_2_6_6_1 publication-title: Acta Phys.‐Chim. Sin. doi: 10.3866/PKU.WHXB201607261 – ident: e_1_2_6_16_1 doi: 10.1039/C6MH00027D – ident: e_1_2_6_12_1 doi: 10.1002/aelm.201400063 – ident: e_1_2_6_21_1 doi: 10.1088/0957-4484/26/37/375501 – ident: e_1_2_6_34_1 doi: 10.1016/j.carbon.2009.11.020 – ident: e_1_2_6_1_1 doi: 10.1002/adma.201500311 – ident: e_1_2_6_2_1 doi: 10.1002/adfm.201570020 – ident: e_1_2_6_50_1 doi: 10.1038/ncomms4132 – ident: e_1_2_6_3_1 doi: 10.1002/adma.201500009 – ident: e_1_2_6_22_1 doi: 10.1016/j.actamat.2008.02.030 – ident: e_1_2_6_35_1 doi: 10.1016/j.carbon.2016.04.031 – ident: e_1_2_6_40_1 doi: 10.1002/adma.201500582 – ident: e_1_2_6_23_1 doi: 10.1088/0964-1726/15/3/009 – ident: e_1_2_6_15_1 doi: 10.1002/adma.201104101 – ident: e_1_2_6_18_1 doi: 10.1016/j.sna.2013.11.034 – ident: e_1_2_6_31_1 doi: 10.1002/adma.201601572 – ident: e_1_2_6_33_1 doi: 10.1007/s10853-011-6081-8 – ident: e_1_2_6_25_1 doi: 10.1038/ncomms3435 – ident: e_1_2_6_13_1 doi: 10.1039/c3nr05496a – ident: e_1_2_6_26_1 doi: 10.1063/1.4826496 – ident: e_1_2_6_45_1 doi: 10.1016/j.carbon.2012.08.029 – ident: e_1_2_6_27_1 doi: 10.1063/1.4919105 – ident: e_1_2_6_49_1 doi: 10.1002/adma.201503558 – ident: e_1_2_6_9_1 doi: 10.1021/nn501204t – ident: e_1_2_6_19_1 doi: 10.1039/C5NR04312C – ident: e_1_2_6_8_1 doi: 10.1039/c3nr33560g – ident: e_1_2_6_5_1 doi: 10.1002/adma.201670016 – ident: e_1_2_6_7_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_6_20_1 doi: 10.1016/j.carbon.2012.08.048 |
SSID | ssj0017734 |
Score | 2.6496017 |
Snippet | Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Cellulose fibers Cotton Cotton fabrics Electronics Fabrics human motion detection Human performance Low cost Materials science plain weave Sensitivity Sensors Strain Strain gages Strain gauges strain sensors Textiles Wearable wearable electronics Wearable technology Weaving |
Title | Carbonized Cotton Fabric for High‐Performance Wearable Strain Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604795 https://www.proquest.com/docview/1920412869 https://www.proquest.com/docview/1879999949 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsoLgKTaPzSY5ltYqYkVsxd7CPi9KK31cevIn-Bv9Jc4kbdoKImhuIbNkXzP7ze7Mt4Scuypk3APrZ8MwdkATJdhBFjmae8r1DHjQKovyvec3T-y2F_aWsvhzfohiww01I7PXqOBCjmoL0lChLWaSexxJ0jHLHAO2EBU9FvxRXhTlx8rcwwAvrzdnbXT92mrx1VVpATWXAWu24rS2iZjXNQ80ebmcjOWlmn6jcfxPY3bI1gyO0no-f3bJmunvkc0lksJ9ct0QQwmaPzWaNgZjwIq0JSSYTwp4l2KcyOf7x8Mi_4A-g_JgQhbtZPdP0A54yoPh6IB0W1fdxo0zu37BUQxAnGMs2D5mXRXFMtIBj8AuMhPENrRKMgGeltDKavBXjCu0iaViiY6RXUdasL_BISn1B31zRGgkuXAToTyjA5YoDpAocAGXBUlo_ETbMnHmvZ-qGTU51vA1zUmV_RT7Jy36p0wuCvm3nJTjR8nKfDDTmXKOUgC1yDIW86RMzorPoFZ4ViL6ZjABmThK8GEg42cj98uf0nqz1S7ejv9S6IRs-Agasg2eCimNhxNzCpBnLKtkvd5s33Wq2fT-AuZc-Z0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9gAcoDyqLi3FSCBOafNwnOTAodplu6UPIbqIvVl-XoqyaB9C9MRP6E_hr_AX-CXMJJtsi4SQkHogtyiTxPZ4xp_tmc8AL0KTchGh9_NpmgdoiRr9IM8CKyITRg5n0KaK8j0Vgw_87SgdrcD3Jhem5odoF9zIMip_TQZOC9J7S9ZQZT2lkkeCWNKbuMoj9_ULztqmrw97qOKXcdx_M-wOgsXBAoHhCE8C59GquQ9NluvMJiJDi-cuyX3qjeYK5xDKGm8RibtQWZdrwwubE2-M9uhZEvzsLVijU8SJrb_3viWsirKs3scWEUWURaOGJjKM964X9_owuMS2VxFyNcT178OPpnHqyJbz3flM75qL33gj_6fWW4d7C7zN9msDeQArrnwId6-wMD6Cg66aaHRtF86y7niGYJj1lcbxgSGgZxQI8_Pb5btlggX7iLWgjDN2Vh2wwc5cOR1Ppo9heBMV2YDVcly6TWCZFioslImcTXhhBGK-JETgmRSpiwvrOxA02pZmwb1OJfwka9boWJI6ZKuODrxq5T_XrCN_lNxuOo9ceJ-pRNRONGq5KDrwvH2MfoM2g1TpxnOUybOCLo4ycdVT_vInud_rn7R3T_7lpWdwezA8OZbHh6dHW3AnJoRUrWZtw-psMndPEd_N9E5lUgzkDXfCXxrLV9c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5tF6lqD4U-ULc86kqtegrk4TjJgcNqlxRKi1Ch6t4sPy-tsqt9CMGJn8A_4a_wG_gljJNNFipVlSpxaG5RJont8Yw_2zOfAd77KqYsQO9n4zj10BIl-kGaeJoFyg8MzqBVGeV7yPa-08-DeNCCqzoXpuKHaBbcnGWU_toZ-Ejb7QVpqNDWZZIHzJGk12GVB-bsFCdtk539Pmr4Qxjmuye9PW9-roCnKKITz1g0amp9laQy0RFL0OCpiVIbWyWpwCmE0MpqBOLGF9qkUtFMp442Rlp0LBF-9hEsUeZn7qyI_reGrypIkmobmwUuoCwY1CyRfrh9v7j3R8EFtL0LkMsRLl-G67ptqsCWn1uzqdxS57_RRv5HjbcCz-Zom3Qr83gOLVO8gKd3OBhfwqeeGEt0bOdGk95wilCY5ELi6EAQzhMXBnNzcXm0SK8gP7AWLt-MHJfHa5BjU0yG48krOHmIiqxCuxgW5jWQRDLhZ0IFRkc0UwwRX-Qj7Iyy2ISZth3wamVzNWdedyX8xSvO6JA7dfBGHR342MiPKs6RP0qu132Hz33PhCNmdyRqKcs68K55jF7DbQWJwgxnKJMmmbsoyoRlR_nLn3i3n39t7t78y0tv4fFRP-df9g8P1uBJ6OBRuZS1Du3peGY2ENxN5WZpUAT4A_fBW6IlVoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized+Cotton+Fabric+for+High-Performance+Wearable+Strain+Sensors&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Mingchao&rft.au=Wang%2C+Chunya&rft.au=Wang%2C+Huimin&rft.au=Jian%2C+Muqiang&rft.date=2017-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Fadfm.201604795&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |