Carbonized Cotton Fabric for High‐Performance Wearable Strain Sensors

Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been wid...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 2; pp. np - n/a
Main Authors Zhang, Mingchao, Wang, Chunya, Wang, Huimin, Jian, Muqiang, Hao, Xiangyang, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low‐cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%–80% and that of 64 in strain of 80%–140%), inconspicuous drift, and long‐term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots. Based on carbonized plain weave cotton fabric, a wearable strain sensor with high sensitivity and large workable strain range (up to 140%) is fabricated through a cost‐effective, scalable, and green process. Its working mechanism is investigated and its application in detection of both subtle and large deformation of the human body is demonstrated, promising great potential in wearable electronics.
AbstractList Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low‐cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%–80% and that of 64 in strain of 80%–140%), inconspicuous drift, and long‐term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots. Based on carbonized plain weave cotton fabric, a wearable strain sensor with high sensitivity and large workable strain range (up to 140%) is fabricated through a cost‐effective, scalable, and green process. Its working mechanism is investigated and its application in detection of both subtle and large deformation of the human body is demonstrated, promising great potential in wearable electronics.
Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low-cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%-80% and that of 64 in strain of 80%-140%), inconspicuous drift, and long-term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots. Based on carbonized plain weave cotton fabric, a wearable strain sensor with high sensitivity and large workable strain range (up to 140%) is fabricated through a cost-effective, scalable, and green process. Its working mechanism is investigated and its application in detection of both subtle and large deformation of the human body is demonstrated, promising great potential in wearable electronics.
Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low-cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%-80% and that of 64 in strain of 80%-140%), inconspicuous drift, and long-term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots.
Author Hao, Xiangyang
Zhang, Mingchao
Wang, Chunya
Zhang, Yingying
Wang, Huimin
Jian, Muqiang
Author_xml – sequence: 1
  givenname: Mingchao
  surname: Zhang
  fullname: Zhang, Mingchao
  organization: China University of Geosciences
– sequence: 2
  givenname: Chunya
  surname: Wang
  fullname: Wang, Chunya
  organization: Tsinghua University
– sequence: 3
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Tsinghua University
– sequence: 4
  givenname: Muqiang
  surname: Jian
  fullname: Jian, Muqiang
  organization: Tsinghua University
– sequence: 5
  givenname: Xiangyang
  surname: Hao
  fullname: Hao, Xiangyang
  email: haoxy@cugb.edu.cn
  organization: China University of Geosciences
– sequence: 6
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkMFKAzEQhoNUsFWvnhe8eGlNdtNN9liqbQVFQUFvIZtMNGWb1GSL1JOP4DP6JO5SqVAQc5kMfN_M8PdQx3kHCJ0QPCAYp-dSm8UgxSTHlBXDPdQlOcn7GU55Z_snTweoF-McY8JYRrtoOpah9M6-g07Gvq69SyayDFYlxodkZp9fvj4-7yA03UI6BckjyCDLCpL7Okjrkntw0Yd4hPaNrCIc_9RD9DC5fBjP-te306vx6Lqv6JAN-2Ck1tRgxXjJdJazghAKGTdDo0oqOSNSK6NZzgFLDbxUtNA85ZiVhtA8O0Rnm7HL4F9XEGuxsFFBVUkHfhUF4axoHy0a9HQHnftVcM1xghQppiTleUsNNpQKPsYARiyDXciwFgSLNlbRxiq2sTYC3RGUrWVtvWvzqP7Wio32ZitY_7NEjC4mN7_uNwqokAA
CitedBy_id crossref_primary_10_1021_acs_est_1c04520
crossref_primary_10_1016_j_ijbiomac_2020_02_225
crossref_primary_10_1021_acsami_8b18823
crossref_primary_10_1002_adfm_201808786
crossref_primary_10_1039_C7TA07010A
crossref_primary_10_1021_acsami_2c14642
crossref_primary_10_1016_j_scitotenv_2022_158233
crossref_primary_10_1021_acsanm_0c02494
crossref_primary_10_1002_smll_201704232
crossref_primary_10_1016_j_matdes_2018_02_006
crossref_primary_10_1016_j_sna_2020_112174
crossref_primary_10_1109_JSEN_2022_3211646
crossref_primary_10_1021_acsami_1c18233
crossref_primary_10_1016_j_compositesb_2019_107683
crossref_primary_10_1002_admi_201901507
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1039_D1RA08438K
crossref_primary_10_1016_j_bios_2018_08_037
crossref_primary_10_1039_D4TA00176A
crossref_primary_10_1021_acsami_2c12479
crossref_primary_10_1080_00405000_2023_2214331
crossref_primary_10_1021_acsami_8b04775
crossref_primary_10_1016_j_nanoen_2019_103898
crossref_primary_10_1016_j_nanoen_2020_105155
crossref_primary_10_3390_ma16052101
crossref_primary_10_1007_s12274_022_5162_0
crossref_primary_10_3390_mi15040486
crossref_primary_10_3390_nano10040664
crossref_primary_10_1016_j_compscitech_2018_06_019
crossref_primary_10_1016_j_compstruct_2023_117358
crossref_primary_10_1039_C9NR01005J
crossref_primary_10_1039_D4TA02279C
crossref_primary_10_1007_s10570_018_2080_0
crossref_primary_10_1021_acsami_3c14396
crossref_primary_10_1021_acsaelm_0c00292
crossref_primary_10_1002_mame_202100737
crossref_primary_10_1088_1361_665X_ac251a
crossref_primary_10_1021_acsabm_1c00360
crossref_primary_10_1021_acsami_7b19014
crossref_primary_10_1007_s42765_023_00338_9
crossref_primary_10_1016_j_actbio_2021_06_018
crossref_primary_10_1021_acsami_2c08285
crossref_primary_10_1039_C9NR01791G
crossref_primary_10_1016_j_matlet_2020_127948
crossref_primary_10_3390_nano11092333
crossref_primary_10_1021_acsami_9b22534
crossref_primary_10_3390_polym12071499
crossref_primary_10_1016_j_cej_2020_126029
crossref_primary_10_1002_admt_202100643
crossref_primary_10_1021_acsami_9b19242
crossref_primary_10_1021_acsami_4c16924
crossref_primary_10_1021_acsami_0c21075
crossref_primary_10_1002_smm2_1151
crossref_primary_10_1007_s40843_022_2397_y
crossref_primary_10_1002_smll_202003638
crossref_primary_10_1039_D0TC00238K
crossref_primary_10_1021_acs_chemmater_8b01172
crossref_primary_10_1021_acsami_2c14847
crossref_primary_10_1002_aisy_202100213
crossref_primary_10_1007_s10118_023_2905_7
crossref_primary_10_1021_acsaelm_2c01628
crossref_primary_10_1016_j_cej_2021_129949
crossref_primary_10_1002_chem_202002244
crossref_primary_10_1002_adfm_201905808
crossref_primary_10_1021_acsami_9b09459
crossref_primary_10_1002_adfm_202007254
crossref_primary_10_1021_acsanm_2c02642
crossref_primary_10_1002_adma_201801347
crossref_primary_10_1021_acsnano_1c00259
crossref_primary_10_1007_s10853_020_05736_7
crossref_primary_10_3390_s24134321
crossref_primary_10_1021_acsaelm_1c00503
crossref_primary_10_3390_s18020645
crossref_primary_10_1016_j_apsusc_2022_154152
crossref_primary_10_1016_j_cej_2019_123912
crossref_primary_10_1021_acsami_9b23400
crossref_primary_10_1088_1361_6528_aaabfe
crossref_primary_10_1002_admt_202100421
crossref_primary_10_1002_smll_201602790
crossref_primary_10_1039_C8MH01188E
crossref_primary_10_1039_D2TA02998G
crossref_primary_10_1007_s10853_017_1644_y
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1007_s11581_021_04117_7
crossref_primary_10_1016_j_cej_2018_12_025
crossref_primary_10_1007_s10853_018_2432_z
crossref_primary_10_1021_acsapm_3c02217
crossref_primary_10_1021_acsapm_3c00037
crossref_primary_10_1007_s42765_025_00512_1
crossref_primary_10_1016_j_ijbiomac_2023_129068
crossref_primary_10_1021_acsami_9b12504
crossref_primary_10_1016_j_nanoen_2019_103990
crossref_primary_10_1039_C8TC02655F
crossref_primary_10_1021_acsami_8b17666
crossref_primary_10_1021_acsnano_3c02667
crossref_primary_10_3390_ijms21186531
crossref_primary_10_3390_polym13193435
crossref_primary_10_1007_s12221_023_00104_z
crossref_primary_10_1016_j_polymer_2023_126552
crossref_primary_10_1016_j_compositesa_2022_107221
crossref_primary_10_1007_s42765_021_00126_3
crossref_primary_10_1021_acsami_4c13402
crossref_primary_10_1039_C7TC03434B
crossref_primary_10_1002_adfm_201903732
crossref_primary_10_1016_j_carbon_2017_10_034
crossref_primary_10_1002_smll_202008079
crossref_primary_10_1021_acsami_7b02985
crossref_primary_10_1039_D1MH00615K
crossref_primary_10_3390_polym13010151
crossref_primary_10_1002_adma_201902133
crossref_primary_10_1016_j_cej_2020_124448
crossref_primary_10_1088_1361_665X_acb6c9
crossref_primary_10_1007_s10570_020_03543_6
crossref_primary_10_1002_adfm_202411177
crossref_primary_10_1007_s12274_017_1731_z
crossref_primary_10_1039_D0TA02878A
crossref_primary_10_1016_j_carbon_2023_02_044
crossref_primary_10_1007_s10854_020_04278_7
crossref_primary_10_1016_j_jmmm_2021_168434
crossref_primary_10_1002_adem_202100195
crossref_primary_10_1002_smll_202104810
crossref_primary_10_1109_JFLEX_2023_3339587
crossref_primary_10_1002_advs_201900813
crossref_primary_10_1016_j_compositesb_2021_108674
crossref_primary_10_1002_adfm_202403788
crossref_primary_10_1039_C8TC04753G
crossref_primary_10_3390_mi14101940
crossref_primary_10_1039_D0TC00029A
crossref_primary_10_1142_S1793292021500624
crossref_primary_10_1021_acssuschemeng_2c01171
crossref_primary_10_1149_2_0241914jes
crossref_primary_10_1021_acsami_3c14327
crossref_primary_10_1021_acsami_0c08840
crossref_primary_10_1021_acs_chemrev_1c00502
crossref_primary_10_1016_j_carbpol_2020_117019
crossref_primary_10_1039_D3TA03213B
crossref_primary_10_1021_acsami_9b20612
crossref_primary_10_3390_polym13050824
crossref_primary_10_1021_acsami_1c19850
crossref_primary_10_1007_s42242_018_0002_5
crossref_primary_10_1109_JSEN_2024_3452498
crossref_primary_10_1002_adfm_202010830
crossref_primary_10_1039_C7NR05903E
crossref_primary_10_1039_D4TC03214D
crossref_primary_10_1021_acsami_9b10928
crossref_primary_10_1177_00405175211044163
crossref_primary_10_1021_acsami_9b20964
crossref_primary_10_1016_j_cej_2020_127966
crossref_primary_10_1016_j_porgcoat_2023_108107
crossref_primary_10_1016_j_ijbiomac_2024_133269
crossref_primary_10_1021_acsami_1c17565
crossref_primary_10_1021_acsami_3c01364
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1007_s12274_022_4440_1
crossref_primary_10_1016_j_ijbiomac_2024_133151
crossref_primary_10_1021_acsaelm_3c00022
crossref_primary_10_1016_j_sna_2024_116158
crossref_primary_10_1016_j_compscitech_2020_108038
crossref_primary_10_1016_j_cossms_2018_11_001
crossref_primary_10_1145_3659588
crossref_primary_10_1039_D4TA07978G
crossref_primary_10_1021_acssuschemeng_9b04690
crossref_primary_10_1039_D0TC04659K
crossref_primary_10_3390_nano12142458
crossref_primary_10_1021_acsami_0c19704
crossref_primary_10_1021_acsami_8b16167
crossref_primary_10_1021_acsami_9b06208
crossref_primary_10_1002_adfm_201800850
crossref_primary_10_1039_C8NR08589G
crossref_primary_10_1177_00405175211069888
crossref_primary_10_1039_D4TC01057D
crossref_primary_10_1002_er_7676
crossref_primary_10_1016_j_colsurfa_2022_130752
crossref_primary_10_1021_acssensors_9b01509
crossref_primary_10_1039_C9RA08653F
crossref_primary_10_1016_j_matdes_2019_107941
crossref_primary_10_1021_acsami_1c07704
crossref_primary_10_1021_acsami_0c04448
crossref_primary_10_1016_j_carbon_2020_07_042
crossref_primary_10_3390_nano12050871
crossref_primary_10_1002_nano_202000215
crossref_primary_10_1177_24723444231161747
crossref_primary_10_1109_TCPMT_2021_3101910
crossref_primary_10_1038_s41528_024_00301_7
crossref_primary_10_1016_j_eurpolymj_2024_113573
crossref_primary_10_1021_acsami_8b20768
crossref_primary_10_1002_adma_201906994
crossref_primary_10_1007_s00339_019_2765_8
crossref_primary_10_1002_aelm_202100233
crossref_primary_10_1039_D2TC02051C
crossref_primary_10_3390_mi10040232
crossref_primary_10_1016_j_sna_2019_05_011
crossref_primary_10_1039_D4MH01136H
crossref_primary_10_1021_acsnano_9b00395
crossref_primary_10_1007_s40684_021_00356_1
crossref_primary_10_1002_admt_201900475
crossref_primary_10_1016_j_nanoen_2020_105187
crossref_primary_10_1088_2058_8585_acf774
crossref_primary_10_1016_j_cej_2023_146800
crossref_primary_10_1002_adsu_202100382
crossref_primary_10_1016_j_carbpol_2021_118741
crossref_primary_10_1002_adhm_202404056
crossref_primary_10_1021_acsapm_3c02623
crossref_primary_10_1021_acsami_7b09652
crossref_primary_10_1002_aisy_202100046
crossref_primary_10_1007_s40843_017_9077_x
crossref_primary_10_1007_s10854_020_03744_6
crossref_primary_10_1002_adfm_201800409
crossref_primary_10_1021_acsnano_8b07805
crossref_primary_10_1002_adma_201902532
crossref_primary_10_1007_s00339_022_06276_4
crossref_primary_10_1021_acsami_9b04509
crossref_primary_10_1002_admt_202000155
crossref_primary_10_20517_ss_2023_30
crossref_primary_10_1016_j_sna_2018_10_012
crossref_primary_10_1039_C8TC04017F
crossref_primary_10_1002_advs_202411584
crossref_primary_10_1002_aelm_201900538
crossref_primary_10_1016_j_apsusc_2020_145260
crossref_primary_10_1109_JSEN_2020_3033047
crossref_primary_10_1021_acsapm_4c03972
crossref_primary_10_1016_j_compscitech_2018_09_006
crossref_primary_10_1002_pc_25632
crossref_primary_10_1007_s42765_022_00212_0
crossref_primary_10_1007_s42765_024_00449_x
crossref_primary_10_1007_s42114_021_00226_z
crossref_primary_10_1002_adma_201903733
crossref_primary_10_1021_acsami_9b03545
crossref_primary_10_1039_C7TC02429K
crossref_primary_10_1063_1_5103274
crossref_primary_10_1016_j_compscitech_2020_108215
crossref_primary_10_3390_nano11040889
crossref_primary_10_1177_00405175221093659
crossref_primary_10_1002_sus2_207
crossref_primary_10_1002_sus2_243
crossref_primary_10_1016_j_compstruct_2024_118041
crossref_primary_10_1016_j_apsusc_2022_155961
crossref_primary_10_1016_j_matdes_2023_111911
crossref_primary_10_1021_acsnano_1c10678
crossref_primary_10_3390_polym14122373
crossref_primary_10_1039_D2MA00960A
crossref_primary_10_1016_j_matt_2021_08_009
crossref_primary_10_1016_j_compscitech_2020_108448
crossref_primary_10_1016_j_matdes_2017_05_035
crossref_primary_10_1007_s00339_019_3216_2
crossref_primary_10_1007_s42114_023_00754_w
crossref_primary_10_1007_s40820_022_00806_8
crossref_primary_10_3390_polym14112219
crossref_primary_10_3390_polym10060568
crossref_primary_10_1007_s10853_021_06146_z
crossref_primary_10_1016_j_compscitech_2021_108963
crossref_primary_10_1016_j_cej_2019_123036
crossref_primary_10_1016_j_jcis_2023_11_187
crossref_primary_10_1002_admt_201800327
crossref_primary_10_1021_acsnano_8b02162
crossref_primary_10_1002_aelm_202000618
crossref_primary_10_1039_C7QM00497D
crossref_primary_10_1109_ACCESS_2019_2961957
crossref_primary_10_3390_s23052479
crossref_primary_10_1016_j_compositesb_2021_108969
crossref_primary_10_1039_D0QM00748J
crossref_primary_10_1021_acsami_9b15546
crossref_primary_10_1016_j_jiec_2022_01_031
crossref_primary_10_1039_C9TC02026H
crossref_primary_10_1109_JLT_2023_3319693
crossref_primary_10_1016_j_nanoen_2019_104134
crossref_primary_10_1016_j_ijbiomac_2022_10_262
crossref_primary_10_1021_acsami_0c11937
crossref_primary_10_1002_adma_202102332
crossref_primary_10_1002_mame_201900621
crossref_primary_10_1039_D1MA01210J
crossref_primary_10_1021_acsami_8b09598
crossref_primary_10_3390_nano11051220
crossref_primary_10_1039_C7TC05571D
crossref_primary_10_1007_s10570_021_04023_1
crossref_primary_10_1002_adma_202300576
crossref_primary_10_1126_sciadv_abb7043
crossref_primary_10_1002_adma_202414620
crossref_primary_10_3390_nano9070937
crossref_primary_10_1109_JSEN_2020_3034453
crossref_primary_10_1007_s11706_019_0472_1
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1039_D0RA00327A
crossref_primary_10_1007_s42114_024_01168_y
crossref_primary_10_1038_s41928_022_00723_z
crossref_primary_10_1039_D0QM00625D
crossref_primary_10_1021_acsabm_0c01128
crossref_primary_10_1039_C7TC01962A
crossref_primary_10_1002_admt_202201503
crossref_primary_10_1002_admt_202200654
crossref_primary_10_1038_s41378_022_00419_6
crossref_primary_10_1002_eem2_12041
crossref_primary_10_1007_s12274_020_3148_3
crossref_primary_10_1016_j_cjac_2022_100211
crossref_primary_10_1007_s42765_024_00417_5
crossref_primary_10_1007_s40820_021_00615_5
crossref_primary_10_1007_s12274_018_2043_7
crossref_primary_10_1016_j_compstruct_2022_115214
crossref_primary_10_1016_j_bios_2021_113268
crossref_primary_10_1016_j_sna_2023_114846
crossref_primary_10_1021_acs_chemrev_3c00374
crossref_primary_10_1016_j_mee_2021_111631
crossref_primary_10_1002_aelm_201700193
crossref_primary_10_1021_acsami_2c03199
crossref_primary_10_1016_j_compositesa_2019_105724
crossref_primary_10_1002_admt_202000560
crossref_primary_10_1002_slct_201900837
crossref_primary_10_3390_s21113895
crossref_primary_10_1016_j_cej_2022_138285
crossref_primary_10_1080_00405167_2021_1986965
crossref_primary_10_1002_adfm_201802547
crossref_primary_10_1016_j_sna_2024_116077
crossref_primary_10_1109_JSEN_2023_3346816
crossref_primary_10_1021_acsami_9b23083
crossref_primary_10_1039_C9TC02486G
crossref_primary_10_1016_j_cej_2017_07_094
crossref_primary_10_3390_polym11071120
crossref_primary_10_1007_s40684_020_00285_5
crossref_primary_10_1007_s40843_022_1986_5
crossref_primary_10_1002_adma_202312596
crossref_primary_10_1021_acsami_0c21392
crossref_primary_10_1109_JSEN_2022_3180081
crossref_primary_10_1021_acssuschemeng_4c05168
crossref_primary_10_1039_D0TA02221G
crossref_primary_10_1002_er_6814
crossref_primary_10_1016_j_apsusc_2021_152240
crossref_primary_10_1063_5_0140900
crossref_primary_10_1166_jno_2021_2983
crossref_primary_10_1021_acsami_9b04915
crossref_primary_10_1016_j_carbon_2019_07_010
crossref_primary_10_1021_acsami_0c00564
crossref_primary_10_1021_acsami_8b08055
crossref_primary_10_1002_admt_201800030
crossref_primary_10_1002_smtd_202201340
crossref_primary_10_1016_j_cej_2021_131931
crossref_primary_10_1021_acsami_7b10181
crossref_primary_10_1002_adma_201901958
crossref_primary_10_1016_j_compositesa_2017_06_003
crossref_primary_10_1002_inf2_12060
crossref_primary_10_1016_j_cej_2021_130869
crossref_primary_10_1021_acs_chemrev_2c00192
crossref_primary_10_1016_j_nanoen_2018_10_049
crossref_primary_10_1080_00405000_2023_2228577
crossref_primary_10_12677_MS_2021_112020
crossref_primary_10_3390_app8030345
crossref_primary_10_1177_00405175221143520
crossref_primary_10_1016_S1872_5805_20_60505_4
crossref_primary_10_1155_2020_9231571
crossref_primary_10_1021_acs_iecr_1c01153
crossref_primary_10_1016_j_carbon_2020_04_072
crossref_primary_10_1021_acsaelm_9b00564
crossref_primary_10_1021_acsami_2c14709
crossref_primary_10_1007_s12200_022_00002_x
crossref_primary_10_1021_acsnano_9b06354
crossref_primary_10_1021_acsami_0c12440
crossref_primary_10_1002_aenm_202402169
crossref_primary_10_1016_j_cej_2021_130870
crossref_primary_10_1021_acsami_3c07589
crossref_primary_10_1002_aisy_202000039
crossref_primary_10_1021_acsami_1c24649
crossref_primary_10_1007_s00438_020_01743_0
crossref_primary_10_1021_acsami_2c15922
crossref_primary_10_1021_acsami_9b08067
crossref_primary_10_3390_bios13070715
crossref_primary_10_1016_j_nanoen_2020_104560
crossref_primary_10_3390_cryst12040555
crossref_primary_10_1002_admt_201900802
crossref_primary_10_1016_j_seppur_2020_117571
crossref_primary_10_1007_s11431_022_2190_y
crossref_primary_10_3390_mi13081309
crossref_primary_10_1016_j_coco_2017_12_007
crossref_primary_10_1007_s11664_021_09388_4
crossref_primary_10_1002_adma_201801072
crossref_primary_10_1002_advs_202203856
crossref_primary_10_1109_JSEN_2022_3166936
crossref_primary_10_1039_D0MH01818J
crossref_primary_10_1002_adma_201901408
crossref_primary_10_1021_acsnano_3c04120
crossref_primary_10_1016_j_jpowsour_2018_09_052
crossref_primary_10_1007_s10118_023_2924_4
crossref_primary_10_1002_adfm_201803221
crossref_primary_10_35848_1347_4065_abe2e6
crossref_primary_10_1039_C8MH01062E
crossref_primary_10_1021_acsami_7b17975
crossref_primary_10_1021_acsami_1c01961
crossref_primary_10_1007_s12274_019_2505_6
crossref_primary_10_1021_acsnano_2c02149
crossref_primary_10_1002_admt_202000508
crossref_primary_10_1016_j_ijbiomac_2022_09_113
crossref_primary_10_1021_acsami_9b21068
crossref_primary_10_1039_C7RA01837A
crossref_primary_10_1039_C9NR00488B
crossref_primary_10_1039_C8NR05404E
crossref_primary_10_1039_C8TC03702G
crossref_primary_10_1002_adfm_202008278
crossref_primary_10_1016_j_cej_2024_158408
crossref_primary_10_1021_acsami_2c20464
crossref_primary_10_1002_aelm_202001235
crossref_primary_10_1021_acsami_3c18397
crossref_primary_10_1016_j_mtcomm_2023_105561
crossref_primary_10_1039_D4AY01127A
crossref_primary_10_1016_j_jpowsour_2020_227737
crossref_primary_10_1021_acsami_7b13356
crossref_primary_10_1021_acsami_0c15909
crossref_primary_10_1007_s10570_019_02432_x
crossref_primary_10_1021_acsami_2c10679
Cites_doi 10.1016/j.carbpol.2016.03.084
10.1002/adfm.201500628
10.1021/acsami.5b09314
10.1002/adma.201670027
10.1021/acsnano.5b01613
10.1039/C5NR07546G
10.1021/am4053305
10.1002/adfm.201400379
10.1021/acsnano.5b00599
10.1177/1045389X15577651
10.1002/mame.201500447
10.1002/adma.201201886
10.1038/nnano.2011.36
10.1039/C3NR04521H
10.1016/j.jpowsour.2016.07.028
10.1021/acsami.6b06984
10.1002/adma.201304742
10.1039/c3cp51571k
10.1039/C5SM01958C
10.1007/s12274-014-0652-3
10.1021/acs.nanolett.5b01505
10.1021/am509087u
10.3866/PKU.WHXB201607261
10.1039/C6MH00027D
10.1002/aelm.201400063
10.1088/0957-4484/26/37/375501
10.1016/j.carbon.2009.11.020
10.1002/adma.201500311
10.1002/adfm.201570020
10.1038/ncomms4132
10.1002/adma.201500009
10.1016/j.actamat.2008.02.030
10.1016/j.carbon.2016.04.031
10.1002/adma.201500582
10.1088/0964-1726/15/3/009
10.1002/adma.201104101
10.1016/j.sna.2013.11.034
10.1002/adma.201601572
10.1007/s10853-011-6081-8
10.1038/ncomms3435
10.1039/c3nr05496a
10.1063/1.4826496
10.1016/j.carbon.2012.08.029
10.1063/1.4919105
10.1002/adma.201503558
10.1021/nn501204t
10.1039/C5NR04312C
10.1039/c3nr33560g
10.1002/adma.201670016
10.1002/adfm.201504755
10.1016/j.carbon.2012.08.048
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201604795
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201604795
ADFM201604795
Genre article
GrantInformation_xml – fundername: NSF of China
  funderid: 51672153; 51422204; 51372132
– fundername: National Key Basic Research and Development Program
  funderid: 2016YFA0200103; 2013CB228506
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
1OB
ID FETCH-LOGICAL-c4575-efadd4f0c78b7d3679114e38f5fcb4a871adcfd768e0ade8bc49d82807bf1463
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Tue Aug 05 10:22:07 EDT 2025
Fri Jul 25 05:43:36 EDT 2025
Tue Jul 01 01:30:31 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:24:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4575-efadd4f0c78b7d3679114e38f5fcb4a871adcfd768e0ade8bc49d82807bf1463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920412869
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_miscellaneous_1879999949
proquest_journals_1920412869
crossref_primary_10_1002_adfm_201604795
crossref_citationtrail_10_1002_adfm_201604795
wiley_primary_10_1002_adfm_201604795_ADFM201604795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 1
2015; 15
2013; 4
2013; 84
2006; 15
2016; 32
2014; 26
2008; 56
2014; 24
2016; 326
2016; 105
2015; 106
2016; 301
2016; 147
2015; 9
2013; 5
2015; 8
2011; 6
2015; 7
2016; 12
2014; 206
2015; 26
2015; 25
2013; 15
2014; 5
2015; 27
2010; 48
2016; 3
2013; 51
2012; 47
2016; 28
2014; 8
2012; 24
2016; 26
2014; 6
2016; 8
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Xia K. (e_1_2_6_6_1) 2016; 32
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 105
  start-page: 260
  year: 2016
  publication-title: Carbon
– volume: 24
  start-page: 4666
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1011
  year: 2015
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 7
  start-page: 16361
  year: 2015
  publication-title: Nanoscale
– volume: 28
  start-page: 394
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1627
  year: 2015
  publication-title: Nano Res.
– volume: 15
  start-page: 8042
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 1321
  year: 2012
  publication-title: Adv. Mater.
– volume: 56
  start-page: 2929
  year: 2008
  publication-title: Acta Mater.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 374
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 6252
  year: 2015
  publication-title: ACS Nano
– volume: 12
  start-page: 845
  year: 2016
  publication-title: Soft Matter
– volume: 6
  start-page: 2345
  year: 2014
  publication-title: Nanoscale
– volume: 27
  start-page: 2433
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 3114
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 5154
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 2123
  year: 2016
  publication-title: Nanoscale
– volume: 6
  start-page: 699
  year: 2014
  publication-title: Nanoscale
– volume: 9
  start-page: 5929
  year: 2015
  publication-title: ACS Nano
– volume: 206
  start-page: 75
  year: 2014
  publication-title: Sens. Actuators, A
– volume: 26
  start-page: 2022
  year: 2014
  publication-title: Adv. Mater.
– volume: 326
  start-page: 428
  year: 2016
  publication-title: J. Power Sources
– volume: 28
  start-page: 783
  year: 2016
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5117
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1313
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 32
  start-page: 2427
  year: 2016
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 1
  start-page: 1400063
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 51
  start-page: 236
  year: 2013
  publication-title: Carbon
– volume: 301
  start-page: 707
  year: 2016
  publication-title: Macromol. Mater. Eng.
– volume: 147
  start-page: 28
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 15
  start-page: 5240
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 20894
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 84
  start-page: 105005
  year: 2013
  publication-title: Rev. Sci. Instrum.
– volume: 27
  start-page: 7365
  year: 2015
  publication-title: Adv. Mater.
– volume: 106
  start-page: 171903
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 1727
  year: 2013
  publication-title: Nanoscale
– volume: 15
  start-page: 737
  year: 2006
  publication-title: Smart Mater. Struct.
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 2472
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 27432
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 4236
  year: 2012
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 51
  start-page: 202
  year: 2013
  publication-title: Carbon
– volume: 48
  start-page: 1012
  year: 2010
  publication-title: Carbon
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 375501
  year: 2015
  publication-title: Nanotechnology
– volume: 27
  start-page: 3411
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 4463
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 248
  year: 2016
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 2435
  year: 2013
  publication-title: Nat. Commun.
– ident: e_1_2_6_32_1
  doi: 10.1016/j.carbpol.2016.03.084
– ident: e_1_2_6_4_1
  doi: 10.1002/adfm.201500628
– ident: e_1_2_6_47_1
  doi: 10.1021/acsami.5b09314
– ident: e_1_2_6_51_1
  doi: 10.1002/adma.201670027
– ident: e_1_2_6_39_1
  doi: 10.1021/acsnano.5b01613
– ident: e_1_2_6_46_1
  doi: 10.1039/C5NR07546G
– ident: e_1_2_6_44_1
  doi: 10.1021/am4053305
– ident: e_1_2_6_30_1
  doi: 10.1002/adfm.201400379
– ident: e_1_2_6_41_1
  doi: 10.1021/acsnano.5b00599
– ident: e_1_2_6_14_1
  doi: 10.1177/1045389X15577651
– ident: e_1_2_6_17_1
  doi: 10.1002/mame.201500447
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.201201886
– ident: e_1_2_6_29_1
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_6_42_1
  doi: 10.1039/C3NR04521H
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jpowsour.2016.07.028
– ident: e_1_2_6_48_1
  doi: 10.1021/acsami.6b06984
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201304742
– ident: e_1_2_6_37_1
  doi: 10.1039/c3cp51571k
– ident: e_1_2_6_43_1
  doi: 10.1039/C5SM01958C
– ident: e_1_2_6_28_1
  doi: 10.1007/s12274-014-0652-3
– ident: e_1_2_6_38_1
  doi: 10.1021/acs.nanolett.5b01505
– ident: e_1_2_6_24_1
  doi: 10.1021/am509087u
– volume: 32
  start-page: 2427
  year: 2016
  ident: e_1_2_6_6_1
  publication-title: Acta Phys.‐Chim. Sin.
  doi: 10.3866/PKU.WHXB201607261
– ident: e_1_2_6_16_1
  doi: 10.1039/C6MH00027D
– ident: e_1_2_6_12_1
  doi: 10.1002/aelm.201400063
– ident: e_1_2_6_21_1
  doi: 10.1088/0957-4484/26/37/375501
– ident: e_1_2_6_34_1
  doi: 10.1016/j.carbon.2009.11.020
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.201500311
– ident: e_1_2_6_2_1
  doi: 10.1002/adfm.201570020
– ident: e_1_2_6_50_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201500009
– ident: e_1_2_6_22_1
  doi: 10.1016/j.actamat.2008.02.030
– ident: e_1_2_6_35_1
  doi: 10.1016/j.carbon.2016.04.031
– ident: e_1_2_6_40_1
  doi: 10.1002/adma.201500582
– ident: e_1_2_6_23_1
  doi: 10.1088/0964-1726/15/3/009
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201104101
– ident: e_1_2_6_18_1
  doi: 10.1016/j.sna.2013.11.034
– ident: e_1_2_6_31_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_6_33_1
  doi: 10.1007/s10853-011-6081-8
– ident: e_1_2_6_25_1
  doi: 10.1038/ncomms3435
– ident: e_1_2_6_13_1
  doi: 10.1039/c3nr05496a
– ident: e_1_2_6_26_1
  doi: 10.1063/1.4826496
– ident: e_1_2_6_45_1
  doi: 10.1016/j.carbon.2012.08.029
– ident: e_1_2_6_27_1
  doi: 10.1063/1.4919105
– ident: e_1_2_6_49_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_6_9_1
  doi: 10.1021/nn501204t
– ident: e_1_2_6_19_1
  doi: 10.1039/C5NR04312C
– ident: e_1_2_6_8_1
  doi: 10.1039/c3nr33560g
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201670016
– ident: e_1_2_6_7_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_6_20_1
  doi: 10.1016/j.carbon.2012.08.048
SSID ssj0017734
Score 2.6496017
Snippet Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Cellulose fibers
Cotton
Cotton fabrics
Electronics
Fabrics
human motion detection
Human performance
Low cost
Materials science
plain weave
Sensitivity
Sensors
Strain
Strain gages
Strain gauges
strain sensors
Textiles
Wearable
wearable electronics
Wearable technology
Weaving
Title Carbonized Cotton Fabric for High‐Performance Wearable Strain Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201604795
https://www.proquest.com/docview/1920412869
https://www.proquest.com/docview/1879999949
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsoLgKTaPzSY5ltYqYkVsxd7CPi9KK31cevIn-Bv9Jc4kbdoKImhuIbNkXzP7ze7Mt4Scuypk3APrZ8MwdkATJdhBFjmae8r1DHjQKovyvec3T-y2F_aWsvhzfohiww01I7PXqOBCjmoL0lChLWaSexxJ0jHLHAO2EBU9FvxRXhTlx8rcwwAvrzdnbXT92mrx1VVpATWXAWu24rS2iZjXNQ80ebmcjOWlmn6jcfxPY3bI1gyO0no-f3bJmunvkc0lksJ9ct0QQwmaPzWaNgZjwIq0JSSYTwp4l2KcyOf7x8Mi_4A-g_JgQhbtZPdP0A54yoPh6IB0W1fdxo0zu37BUQxAnGMs2D5mXRXFMtIBj8AuMhPENrRKMgGeltDKavBXjCu0iaViiY6RXUdasL_BISn1B31zRGgkuXAToTyjA5YoDpAocAGXBUlo_ETbMnHmvZ-qGTU51vA1zUmV_RT7Jy36p0wuCvm3nJTjR8nKfDDTmXKOUgC1yDIW86RMzorPoFZ4ViL6ZjABmThK8GEg42cj98uf0nqz1S7ejv9S6IRs-Agasg2eCimNhxNzCpBnLKtkvd5s33Wq2fT-AuZc-Z0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9gAcoDyqLi3FSCBOafNwnOTAodplu6UPIbqIvVl-XoqyaB9C9MRP6E_hr_AX-CXMJJtsi4SQkHogtyiTxPZ4xp_tmc8AL0KTchGh9_NpmgdoiRr9IM8CKyITRg5n0KaK8j0Vgw_87SgdrcD3Jhem5odoF9zIMip_TQZOC9J7S9ZQZT2lkkeCWNKbuMoj9_ULztqmrw97qOKXcdx_M-wOgsXBAoHhCE8C59GquQ9NluvMJiJDi-cuyX3qjeYK5xDKGm8RibtQWZdrwwubE2-M9uhZEvzsLVijU8SJrb_3viWsirKs3scWEUWURaOGJjKM964X9_owuMS2VxFyNcT178OPpnHqyJbz3flM75qL33gj_6fWW4d7C7zN9msDeQArrnwId6-wMD6Cg66aaHRtF86y7niGYJj1lcbxgSGgZxQI8_Pb5btlggX7iLWgjDN2Vh2wwc5cOR1Ppo9heBMV2YDVcly6TWCZFioslImcTXhhBGK-JETgmRSpiwvrOxA02pZmwb1OJfwka9boWJI6ZKuODrxq5T_XrCN_lNxuOo9ceJ-pRNRONGq5KDrwvH2MfoM2g1TpxnOUybOCLo4ycdVT_vInud_rn7R3T_7lpWdwezA8OZbHh6dHW3AnJoRUrWZtw-psMndPEd_N9E5lUgzkDXfCXxrLV9c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5tF6lqD4U-ULc86kqtegrk4TjJgcNqlxRKi1Ch6t4sPy-tsqt9CMGJn8A_4a_wG_gljJNNFipVlSpxaG5RJont8Yw_2zOfAd77KqYsQO9n4zj10BIl-kGaeJoFyg8MzqBVGeV7yPa-08-DeNCCqzoXpuKHaBbcnGWU_toZ-Ejb7QVpqNDWZZIHzJGk12GVB-bsFCdtk539Pmr4Qxjmuye9PW9-roCnKKITz1g0amp9laQy0RFL0OCpiVIbWyWpwCmE0MpqBOLGF9qkUtFMp442Rlp0LBF-9hEsUeZn7qyI_reGrypIkmobmwUuoCwY1CyRfrh9v7j3R8EFtL0LkMsRLl-G67ptqsCWn1uzqdxS57_RRv5HjbcCz-Zom3Qr83gOLVO8gKd3OBhfwqeeGEt0bOdGk95wilCY5ELi6EAQzhMXBnNzcXm0SK8gP7AWLt-MHJfHa5BjU0yG48krOHmIiqxCuxgW5jWQRDLhZ0IFRkc0UwwRX-Qj7Iyy2ISZth3wamVzNWdedyX8xSvO6JA7dfBGHR342MiPKs6RP0qu132Hz33PhCNmdyRqKcs68K55jF7DbQWJwgxnKJMmmbsoyoRlR_nLn3i3n39t7t78y0tv4fFRP-df9g8P1uBJ6OBRuZS1Du3peGY2ENxN5WZpUAT4A_fBW6IlVoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized+Cotton+Fabric+for+High-Performance+Wearable+Strain+Sensors&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Mingchao&rft.au=Wang%2C+Chunya&rft.au=Wang%2C+Huimin&rft.au=Jian%2C+Muqiang&rft.date=2017-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Fadfm.201604795&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon