Accelerated failure time model for case-cohort design with longitudinal covariates subject to measurement error and detection limits
Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case‐cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biom...
Saved in:
Published in | Statistics in medicine Vol. 35; no. 8; pp. 1327 - 1339 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
15.04.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.6775 |
Cover
Loading…
Abstract | Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case‐cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood‐based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case‐cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case-cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood-based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case-cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia. Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case-cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood-based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case-cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia.Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case-cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood-based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case-cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia. Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case‐cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood‐based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case‐cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Wahed, Abdus S. Dong, Xinxin Kong, Lan |
Author_xml | – sequence: 1 givenname: Xinxin surname: Dong fullname: Dong, Xinxin email: Correspondence to: Xinxin Dong.Takeda Development Center Americas, Inc., Deerfield, IL, U.S.A., xinxin.dong@takeda.com organization: Takeda Development Center Americas, Inc., IL, Deerfield, U.S.A – sequence: 2 givenname: Lan surname: Kong fullname: Kong, Lan organization: Division of Biostatistics and Bioinformatics, Penn State College of Medicine, PA, Hershey, U.S.A – sequence: 3 givenname: Abdus S. surname: Wahed fullname: Wahed, Abdus S. organization: Department of Biostatistics, University of Pittsburgh, PA, Pittsburgh, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26530415$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1vFSEUBmBiauxtNfEXGBI3buYKDAwzy6ba3sb6kagxcUMYONNyHYYKTD_2_nC53rZGoysWPLzhPWcP7UxhAoSeUrKkhLCXyfllI6V4gBaUdLIiTLQ7aEGYlFUjqdhFeymtCaFUMPkI7bJG1IRTsUA_DoyBEaLOYPGg3ThHwNl5wD5YGPEQIjY6QWXCeYgZW0jubMJXLp_jMUxnLs_WTXrEJlzq6EpMwmnu12AyzgF70KkkepgyhhhLmJ5sCcnl3oUJj867nB6jh4MeEzy5PffR56PXnw5X1en745PDg9PKcCFF1VlgvezartbQUMkFEAHUio70FgQxjOuBdpxZ2bOB2QZsbUzDas2brua8rffRi23uRQzfZ0hZeZdK_VFPEOakqJSkFV1NNvT5X3Qd5liK_lKcdsU0RT27VXPvwaqL6LyON-puvgUst8DEkFKEQRmX9aZ6jmXYihK1WaAqC1SbBf7-4v2Du8x_0GpLr9wIN_916uPJ2z-9Sxmu772O34qrC_zy7litXr1ZtR_kkfpa_wSLTroo |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1002_sim_8113 |
Cites_doi | 10.1111/j.2517-6161.1977.tb01600.x 10.1081/STA-120028378 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X 10.1001/archinte.167.15.1655 10.1007/s00362-007-0359-y 10.1093/oxfordjournals.aje.a115184 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 10.1111/j.1541-0420.2008.01055.x 10.1093/biomet/93.1.207 10.1111/j.2517-6161.1972.tb00899.x 10.1002/sim.2249 10.1093/biomet/86.4.755 10.1093/biomet/93.4.747 10.1093/biomet/76.1.117 10.1093/biomet/88.1.255 10.2307/2533444 10.1111/j.1467-9469.2006.00552.x 10.1111/j.1541-0420.2010.01445.x 10.1214/aos/1176350691 10.1093/biomet/92.3.587 10.1198/sbr.2009.0048 10.1177/096228029800700104 10.1111/1467-9868.00243 10.2307/2533118 10.1002/9781119013563 10.1093/biomet/87.1.73 10.1111/1467-9876.00207 10.1023/A:1009661900674 10.1093/biomet/91.2.305 10.1093/biomet/73.1.1 10.1111/j.1541-0420.2006.00570.x 10.1016/j.csda.2006.12.028 10.1002/sim.3077 10.1111/j.1440-1754.1966.tb01498.x 10.1111/j.1541-0420.2006.00584.x 10.1023/A:1009691327335 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Apr 15, 2016 |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Apr 15, 2016 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.6775 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1339 |
ExternalDocumentID | 3989398261 26530415 10_1002_sim_6775 SIM6775 ark_67375_WNG_HDKH8P7F_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Diagnostic Products Corporation (Los Angeles, CA, USA) – fundername: National Institute of General Medical Sciences funderid: R01 GM61992 – fundername: GlaxoSmithKline (Philadelphia, PA, USA) – fundername: NIGMS NIH HHS grantid: R01 GM61992 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c4575-9de2b79893ae61745e05e1d590bde50c24af1942d7b2f2d6ed3cc623a46934483 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 00:01:53 EDT 2025 Sun Jul 13 05:08:09 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Tue Jul 01 03:28:08 EDT 2025 Wed Jan 22 16:20:33 EST 2025 Wed Oct 30 09:50:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | accelerated failure time model limit of detection (LOD) case-cohort longitudinal biomarker joint analysis mixed effects model |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2015 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4575-9de2b79893ae61745e05e1d590bde50c24af1942d7b2f2d6ed3cc623a46934483 |
Notes | National Institute of General Medical Sciences - No. R01 GM61992 Diagnostic Products Corporation (Los Angeles, CA, USA) istex:87E6FCBC6C5581838DD43CAFAEE2BE5F615EE0D2 Supporting info itemSupporting info item GlaxoSmithKline (Philadelphia, PA, USA) ark:/67375/WNG-HDKH8P7F-Z ArticleID:SIM6775 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6911-7221 |
PMID | 26530415 |
PQID | 1774190836 |
PQPubID | 48361 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1770859308 proquest_journals_1774190836 pubmed_primary_26530415 crossref_citationtrail_10_1002_sim_6775 crossref_primary_10_1002_sim_6775 wiley_primary_10_1002_sim_6775_SIM6775 istex_primary_ark_67375_WNG_HDKH8P7F_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 April 2016 |
PublicationDateYYYYMMDD | 2016-04-15 |
PublicationDate_xml | – month: 04 year: 2016 text: 15 April 2016 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | The A RIC Investigators. The atherosclerosis risk in communities (ARIC) study: design and objectives. American Journal of Epidemiology. 1989; 129:687-702. Cullen KJ, Boundy CAP. Factors relating to behaviour disorders in children. Journal of Paediatrics and Child Health. 1966; 2:70-80. Samuelsen SO, Anestad H, Skrondal A. Stratified case-cohort analysis of general cohort sampling designs. Scandinavian Journal of Statistics. 2007; 34:103-119. Chen K, Lo SH. Case-cohort and case-control analysis with Cox's Model. Biometrika. 1999; 86:755-764. Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine. 1997; 16:239-257. Nan B, Yu M, Kalbfleiisch JD. Censored linear regression for case-cohort studies. Biometrika. 2006; 93:747-762. Tseng C, Liu M. Joint modeling of survival data and longitudinal measurements under nested case-control sampling. Statistics in Biopharmaceutical Research. 2009; 1:415-423. Vonesh EF, Greene T, Schluchter MD. Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in Medicine. 2006; 25:143-163. Tseng YK, Hsieh F, Wang JL. Joint modeling of accelerated failure time and longitudinal data. Biometrika. 2005; 92:587-603. Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine. 1996; 15:1663-1685. Cox DR, Oakes D. Analysis of survival data, vol. 21. CRC Press: Boca Raton, 1984. Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics. 2006; 62:1037-1043. Ma S. Additive risk model with case-cohort sampled current status data. Statistical Papers. 2007; 48:595-608. Lu W, Tsiatis AA. Semiparametric transformation models for the case-cohort study. Biometrika. 2006; 93:207-214. Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53:330-339. Barlow WE. Robust variance estimation for the case-cohort design. Biometrics. 1994; 50:1064-1072. Therneau TM, Li H. Computing the cox model for case cohort designs. Lifetime Data Analysis. 1999; 5:99-112. Chen HY. Fitting semiparametric transformation regression models to data from a modified case-cohort design. Biometrika. 2001; 88:255-268. Kong L, Cai J, Sen PK. Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design. Biometrika. 2004; 91:305-319. Zeng D, Lin DY, Avery CL, North KE, Bray MS. Efficient semiparametric estimation of haplotype-disease associations in case-cohort and nested case-control studies. Biometrics. 2006; 7:486-502. Langholz B, Jiao J. Computational methods for case-cohort studies. Computational Statistics & Data Analysis. 2007; 51:3737-3748. Self SG, Prentice RL. Asymptotic distribution theory and efficiency results for case-cohort studies. The Annals of Statistics. 1988; 16:64-81. Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society. 1972; 34:187-220. Liu L, Huang X. The use of gaussian quadrature for estimation in frailty proportional hazards models. Statistics in Medicine. 2008; 27:2665-2683. Hogan JW, Laird NM. Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Statistical Methods in Medical Research. 1998; 7:28-48. Kong L, Cai J. Case-cohort analysis with accelerated failure time model. Biometrics. 2009; 65:135-142. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological). 1977; 39:1-38. Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biometrics. 2000; 1:465-480. Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC. Understanding the inflammatory cytokine response in pneumonia and sepsis. Archives of Internal Medicine. 2007; 167:1655-1663. Chen KN. Generalized case-cohort sampling. Journal of the Royal Statistical Society. 2001; 62:449-460. Lu SE, Shih JH. Case-cohort designs and analysis for clustered failure time data. Biometrics. 2006; 62:1138-1148. Zhang H, Schaubel DE, Kalbfleisch JD. Proportional hazards regression for the analysis of clustered survival data from case-cohort studies. Biometrics. 2011; 67:18-28. Kulich M, Lin DY. Additive hazards regression for case-cohort studies. Biometrika. 2000; 87:73-87. Little RJA, Rubin DB. Statistical analysis with missing data (2nd ed.) Wiley: New York, 2002. Lyles RH, Lyles CM, Taylor DJ. Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs. Applied Statistics. 2000; 49:485-497. Wacholder S, Gail MH, Pee D, Brookmeyer R. Alternative variance and efficiency calculations for the case-cohort design. Biometrika. 1989; 76:117-123. Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J. Exposure stratified case-cohort designs. Lifetime Data Analysis. 2000; 6:39-58. Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986; 73:1-11. Sun J, Sun L, Flournoy N. Additive hazards model for competing risks analysis of the case-cohort design. Communications in Statistics: Theory and Methods. 2004; 33:351-366. 2006; 93 2007; 167 1966; 2 2009; 65 2000; 49 1986; 73 2000; 6 2000; 87 1988; 16 2006; 7 1999; 86 2000; 1 2007; 51 2002 2001; 88 2004; 91 1999; 5 2007; 34 1996; 15 2001; 62 2004; 33 1989; 129 1989; 76 2006; 62 1997; 53 1977; 39 2006; 25 2008; 27 1997; 16 1984 2011; 67 2005; 92 1998; 7 1972; 34 1994; 50 2009; 1 2007; 48 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 The A RIC Investigators (e_1_2_8_4_1) 1989; 129 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Cox DR (e_1_2_8_35_1) 1984 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Henderson R (e_1_2_8_30_1) 2000; 1 Zeng D (e_1_2_8_36_1) 2006; 7 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Cox DR (e_1_2_8_6_1) 1972; 34 |
References_xml | – reference: Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine. 1997; 16:239-257. – reference: Lyles RH, Lyles CM, Taylor DJ. Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs. Applied Statistics. 2000; 49:485-497. – reference: Kong L, Cai J, Sen PK. Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design. Biometrika. 2004; 91:305-319. – reference: Little RJA, Rubin DB. Statistical analysis with missing data (2nd ed.) Wiley: New York, 2002. – reference: Sun J, Sun L, Flournoy N. Additive hazards model for competing risks analysis of the case-cohort design. Communications in Statistics: Theory and Methods. 2004; 33:351-366. – reference: Barlow WE. Robust variance estimation for the case-cohort design. Biometrics. 1994; 50:1064-1072. – reference: Self SG, Prentice RL. Asymptotic distribution theory and efficiency results for case-cohort studies. The Annals of Statistics. 1988; 16:64-81. – reference: Tseng C, Liu M. Joint modeling of survival data and longitudinal measurements under nested case-control sampling. Statistics in Biopharmaceutical Research. 2009; 1:415-423. – reference: Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J. Exposure stratified case-cohort designs. Lifetime Data Analysis. 2000; 6:39-58. – reference: Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine. 1996; 15:1663-1685. – reference: Vonesh EF, Greene T, Schluchter MD. Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in Medicine. 2006; 25:143-163. – reference: Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC. Understanding the inflammatory cytokine response in pneumonia and sepsis. Archives of Internal Medicine. 2007; 167:1655-1663. – reference: Tseng YK, Hsieh F, Wang JL. Joint modeling of accelerated failure time and longitudinal data. Biometrika. 2005; 92:587-603. – reference: Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society. 1972; 34:187-220. – reference: Therneau TM, Li H. Computing the cox model for case cohort designs. Lifetime Data Analysis. 1999; 5:99-112. – reference: Langholz B, Jiao J. Computational methods for case-cohort studies. Computational Statistics & Data Analysis. 2007; 51:3737-3748. – reference: Lu W, Tsiatis AA. Semiparametric transformation models for the case-cohort study. Biometrika. 2006; 93:207-214. – reference: Cox DR, Oakes D. Analysis of survival data, vol. 21. CRC Press: Boca Raton, 1984. – reference: Kulich M, Lin DY. Additive hazards regression for case-cohort studies. Biometrika. 2000; 87:73-87. – reference: Kong L, Cai J. Case-cohort analysis with accelerated failure time model. Biometrics. 2009; 65:135-142. – reference: Chen K, Lo SH. Case-cohort and case-control analysis with Cox's Model. Biometrika. 1999; 86:755-764. – reference: Ma S. Additive risk model with case-cohort sampled current status data. Statistical Papers. 2007; 48:595-608. – reference: Zeng D, Lin DY, Avery CL, North KE, Bray MS. Efficient semiparametric estimation of haplotype-disease associations in case-cohort and nested case-control studies. Biometrics. 2006; 7:486-502. – reference: Nan B, Yu M, Kalbfleiisch JD. Censored linear regression for case-cohort studies. Biometrika. 2006; 93:747-762. – reference: Lu SE, Shih JH. Case-cohort designs and analysis for clustered failure time data. Biometrics. 2006; 62:1138-1148. – reference: Cullen KJ, Boundy CAP. Factors relating to behaviour disorders in children. Journal of Paediatrics and Child Health. 1966; 2:70-80. – reference: Samuelsen SO, Anestad H, Skrondal A. Stratified case-cohort analysis of general cohort sampling designs. Scandinavian Journal of Statistics. 2007; 34:103-119. – reference: Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986; 73:1-11. – reference: Liu L, Huang X. The use of gaussian quadrature for estimation in frailty proportional hazards models. Statistics in Medicine. 2008; 27:2665-2683. – reference: Zhang H, Schaubel DE, Kalbfleisch JD. Proportional hazards regression for the analysis of clustered survival data from case-cohort studies. Biometrics. 2011; 67:18-28. – reference: Chen KN. Generalized case-cohort sampling. Journal of the Royal Statistical Society. 2001; 62:449-460. – reference: Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological). 1977; 39:1-38. – reference: Chen HY. Fitting semiparametric transformation regression models to data from a modified case-cohort design. Biometrika. 2001; 88:255-268. – reference: The A RIC Investigators. The atherosclerosis risk in communities (ARIC) study: design and objectives. American Journal of Epidemiology. 1989; 129:687-702. – reference: Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics. 2006; 62:1037-1043. – reference: Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53:330-339. – reference: Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biometrics. 2000; 1:465-480. – reference: Wacholder S, Gail MH, Pee D, Brookmeyer R. Alternative variance and efficiency calculations for the case-cohort design. Biometrika. 1989; 76:117-123. – reference: Hogan JW, Laird NM. Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Statistical Methods in Medical Research. 1998; 7:28-48. – volume: 62 start-page: 449 year: 2001 end-page: 460 article-title: Generalized case‐cohort sampling publication-title: Journal of the Royal Statistical Society – volume: 27 start-page: 2665 year: 2008 end-page: 2683 article-title: The use of gaussian quadrature for estimation in frailty proportional hazards models publication-title: Statistics in Medicine – volume: 1 start-page: 465 year: 2000 end-page: 480 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biometrics – volume: 16 start-page: 64 year: 1988 end-page: 81 article-title: Asymptotic distribution theory and efficiency results for case‐cohort studies publication-title: The Annals of Statistics – volume: 86 start-page: 755 year: 1999 end-page: 764 article-title: Case‐cohort and case‐control analysis with Cox's Model publication-title: Biometrika – volume: 93 start-page: 207 year: 2006 end-page: 214 article-title: Semiparametric transformation models for the case‐cohort study publication-title: Biometrika – volume: 33 start-page: 351 year: 2004 end-page: 366 article-title: Additive hazards model for competing risks analysis of the case‐cohort design publication-title: Communications in Statistics: Theory and Methods – volume: 88 start-page: 255 year: 2001 end-page: 268 article-title: Fitting semiparametric transformation regression models to data from a modified case‐cohort design publication-title: Biometrika – volume: 48 start-page: 595 year: 2007 end-page: 608 article-title: Additive risk model with case‐cohort sampled current status data publication-title: Statistical Papers – volume: 65 start-page: 135 year: 2009 end-page: 142 article-title: Case‐cohort analysis with accelerated failure time model publication-title: Biometrics – volume: 7 start-page: 28 year: 1998 end-page: 48 article-title: Increasing efficiency from censored survival data by using random effects to model longitudinal covariates publication-title: Statistical Methods in Medical Research – volume: 16 start-page: 239 year: 1997 end-page: 257 article-title: Mixture models for the joint distribution of repeated measures and event times publication-title: Statistics in Medicine – volume: 6 start-page: 39 year: 2000 end-page: 58 article-title: Exposure stratified case‐cohort designs publication-title: Lifetime Data Analysis – volume: 49 start-page: 485 year: 2000 end-page: 497 article-title: Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop‐outs publication-title: Applied Statistics – volume: 7 start-page: 486 year: 2006 end-page: 502 article-title: Efficient semiparametric estimation of haplotype‐disease associations in case‐cohort and nested case‐control studies publication-title: Biometrics – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 51 start-page: 3737 year: 2007 end-page: 3748 article-title: Computational methods for case‐cohort studies publication-title: Computational Statistics & Data Analysis – volume: 25 start-page: 143 year: 2006 end-page: 163 article-title: Shared parameter models for the joint analysis of longitudinal data and event times publication-title: Statistics in Medicine – volume: 2 start-page: 70 year: 1966 end-page: 80 article-title: Factors relating to behaviour disorders in children publication-title: Journal of Paediatrics and Child Health – year: 1984 – volume: 129 start-page: 687 year: 1989 end-page: 702 article-title: The atherosclerosis risk in communities (ARIC) study: design and objectives publication-title: American Journal of Epidemiology – volume: 76 start-page: 117 year: 1989 end-page: 123 article-title: Alternative variance and efficiency calculations for the case‐cohort design publication-title: Biometrika – volume: 62 start-page: 1138 year: 2006 end-page: 1148 article-title: Case‐cohort designs and analysis for clustered failure time data publication-title: Biometrics – volume: 1 start-page: 415 year: 2009 end-page: 423 article-title: Joint modeling of survival data and longitudinal measurements under nested case‐control sampling publication-title: Statistics in Biopharmaceutical Research – volume: 5 start-page: 99 year: 1999 end-page: 112 article-title: Computing the cox model for case cohort designs publication-title: Lifetime Data Analysis – volume: 34 start-page: 187 year: 1972 end-page: 220 article-title: Regression models and life‐tables publication-title: Journal of the Royal Statistical Society – volume: 93 start-page: 747 year: 2006 end-page: 762 article-title: Censored linear regression for case‐cohort studies publication-title: Biometrika – year: 2002 – volume: 91 start-page: 305 year: 2004 end-page: 319 article-title: Weighted estimating equations for semiparametric transformation models with censored data from a case‐cohort design publication-title: Biometrika – volume: 62 start-page: 1037 year: 2006 end-page: 1043 article-title: Joint modeling of survival and longitudinal data: likelihood approach revisited publication-title: Biometrics – volume: 87 start-page: 73 year: 2000 end-page: 87 article-title: Additive hazards regression for case‐cohort studies publication-title: Biometrika – volume: 167 start-page: 1655 year: 2007 end-page: 1663 article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis publication-title: Archives of Internal Medicine – volume: 67 start-page: 18 year: 2011 end-page: 28 article-title: Proportional hazards regression for the analysis of clustered survival data from case‐cohort studies publication-title: Biometrics – volume: 53 start-page: 330 year: 1997 end-page: 339 article-title: A joint model for survival and longitudinal data measured with error publication-title: Biometrics – volume: 34 start-page: 103 year: 2007 end-page: 119 article-title: Stratified case‐cohort analysis of general cohort sampling designs publication-title: Scandinavian Journal of Statistics – volume: 50 start-page: 1064 year: 1994 end-page: 1072 article-title: Robust variance estimation for the case‐cohort design publication-title: Biometrics – volume: 73 start-page: 1 year: 1986 end-page: 11 article-title: A case‐cohort design for epidemiologic cohort studies and disease prevention trials publication-title: Biometrika – volume: 92 start-page: 587 year: 2005 end-page: 603 article-title: Joint modeling of accelerated failure time and longitudinal data publication-title: Biometrika – volume: 15 start-page: 1663 year: 1996 end-page: 1685 article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach publication-title: Statistics in Medicine – volume-title: Analysis of survival data year: 1984 ident: e_1_2_8_35_1 – ident: e_1_2_8_40_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_8_17_1 doi: 10.1081/STA-120028378 – ident: e_1_2_8_27_1 doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X – ident: e_1_2_8_2_1 doi: 10.1001/archinte.167.15.1655 – ident: e_1_2_8_18_1 doi: 10.1007/s00362-007-0359-y – volume: 129 start-page: 687 year: 1989 ident: e_1_2_8_4_1 article-title: The atherosclerosis risk in communities (ARIC) study: design and objectives publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a115184 – ident: e_1_2_8_26_1 doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 – ident: e_1_2_8_23_1 doi: 10.1111/j.1541-0420.2008.01055.x – ident: e_1_2_8_21_1 doi: 10.1093/biomet/93.1.207 – volume: 34 start-page: 187 year: 1972 ident: e_1_2_8_6_1 article-title: Regression models and life‐tables publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_2_8_32_1 doi: 10.1002/sim.2249 – ident: e_1_2_8_12_1 doi: 10.1093/biomet/86.4.755 – ident: e_1_2_8_22_1 doi: 10.1093/biomet/93.4.747 – ident: e_1_2_8_8_1 doi: 10.1093/biomet/76.1.117 – ident: e_1_2_8_19_1 doi: 10.1093/biomet/88.1.255 – ident: e_1_2_8_9_1 doi: 10.2307/2533444 – ident: e_1_2_8_15_1 doi: 10.1111/j.1467-9469.2006.00552.x – ident: e_1_2_8_25_1 doi: 10.1111/j.1541-0420.2010.01445.x – ident: e_1_2_8_7_1 doi: 10.1214/aos/1176350691 – ident: e_1_2_8_34_1 doi: 10.1093/biomet/92.3.587 – ident: e_1_2_8_33_1 doi: 10.1198/sbr.2009.0048 – ident: e_1_2_8_28_1 doi: 10.1177/096228029800700104 – ident: e_1_2_8_14_1 doi: 10.1111/1467-9868.00243 – ident: e_1_2_8_29_1 doi: 10.2307/2533118 – ident: e_1_2_8_37_1 doi: 10.1002/9781119013563 – ident: e_1_2_8_16_1 doi: 10.1093/biomet/87.1.73 – ident: e_1_2_8_38_1 doi: 10.1111/1467-9876.00207 – ident: e_1_2_8_13_1 doi: 10.1023/A:1009661900674 – ident: e_1_2_8_20_1 doi: 10.1093/biomet/91.2.305 – ident: e_1_2_8_3_1 doi: 10.1093/biomet/73.1.1 – ident: e_1_2_8_31_1 doi: 10.1111/j.1541-0420.2006.00570.x – ident: e_1_2_8_11_1 doi: 10.1016/j.csda.2006.12.028 – ident: e_1_2_8_39_1 doi: 10.1002/sim.3077 – ident: e_1_2_8_5_1 doi: 10.1111/j.1440-1754.1966.tb01498.x – ident: e_1_2_8_24_1 doi: 10.1111/j.1541-0420.2006.00584.x – volume: 7 start-page: 486 year: 2006 ident: e_1_2_8_36_1 article-title: Efficient semiparametric estimation of haplotype‐disease associations in case‐cohort and nested case‐control studies publication-title: Biometrics – ident: e_1_2_8_10_1 doi: 10.1023/A:1009691327335 – volume: 1 start-page: 465 year: 2000 ident: e_1_2_8_30_1 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biometrics |
SSID | ssj0011527 |
Score | 2.1690676 |
Snippet | Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1327 |
SubjectTerms | accelerated failure time model Biomarkers Biomarkers - analysis Biostatistics case-cohort Clinical trials Cohort Studies Community-Acquired Infections - blood Community-Acquired Infections - complications Computer Simulation Cytokines - blood Estimating techniques Humans joint analysis Likelihood Functions Limit of Detection limit of detection (LOD) longitudinal biomarker Longitudinal Studies Maximum likelihood method Medical statistics mixed effects model Pneumonia - blood Pneumonia - complications Sepsis - blood Sepsis - etiology Simulation Time Factors |
Title | Accelerated failure time model for case-cohort design with longitudinal covariates subject to measurement error and detection limits |
URI | https://api.istex.fr/ark:/67375/WNG-HDKH8P7F-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6775 https://www.ncbi.nlm.nih.gov/pubmed/26530415 https://www.proquest.com/docview/1774190836 https://www.proquest.com/docview/1770859308 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAl1MLy2lKQkRCcsk0cO9kcq8KygFohoKKCg-VXpKrbpMoDIU6cOPMb-0uYcR5VUZEQpxwycRxn7Pk8M_6GkKc5xsaM0IEwOQu4YXmgudKBZokBi5iATfZsnwfJ8pC_ORJHfVYlnoXp-CFGhxvODL9e4wRXut65IA2tj09nSZri-XJM1UI89H5kjoqGaq0YoUzSSAy8syHbGR68ZImu46B-uwpmXkat3uwsNsmXocNdtsnJrG30zHz_g8vx_77oFtno0Sjd7dTnNrnmigm5sd_H2yfkZufVo91hpQlZR2zaUTvfIT93jQGjhVwTlubqGBPcKdaqp768DgU4TA0YyfMfv7AMb9VQ69NFKPp-6arESkmtxapc1JRfYc-OsJfWrUbXEG1Kenrhv6SuqqA5VVhopPHpYwVd4eGs-i45XLz8uLcM-rIOgeEADoPMOqbTDICScoCfuHChcJEVWaitE6FhXOVRxplNNcuZTZyNjQGUpmAnH8NuMr5H1oqycA8I5So1ueOxcbgxVJGCFk0E0qGGtSrLp-T58Iul6TnPsfTGSnZszUzCmEsc8yl5MkqedTwfV8g881oyCqjqBPPiUiE_HbySyxdvl_N36UJ-npLtQY1kvyTUMgKgDehrHifwrvE2TGaM0KjCla2X8QR04XxK7nfqN76MJSJGPgXohVeiv3ZTfni9j9etfxV8SNYBBiYYI4vENllrqtY9AqjV6Md-Uv0Gpi4oNQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTYJJiB-FjcIAIyF4Spc4cdKIp4lROrZWCDYxISTLdhxpWpeiNEWIJ5545m_kL-HO-TENDQnx1IdeHcc9-z6fz98H8DSnszEjtCdMzr3I8NzTkdKe5rHBiBhjTHZsn9N4fBS9ORbHK_CivQtT80N0CTeaGW69pglOCentc9bQxcnZIE4ScQXWSNCb5At233XcUUGr10pnlHESiJZ51ufb7S8vxKI1GtavlwHNi7jVBZ7RTfjUdrmuNzkdLCs9MN_-YHP8z3e6BTcaQMp2ag-6DSu26MHVSXPk3oPrdWKP1feVerBO8LRmd74DP3aMwbhFdBMZy9UJ1bgzkqtnTmGHISJmBuPkr-8_SYm3rFjmKkYYpX_ZbE5iScuMhLmYmX_BbTshX7ZYasoOsWrOzs5TmMyWJTanigwbqVwFWcFmdD9rcReORq8OX469RtnBMxHiQy_NLNdJilhJWYRQkbC-sEEmUl9nVviGRyoP0ohnieY5z2KbhcYgUFO4mQ9xQxluwGoxL-w9YJFKTG6j0FjaG6pAYYsmQGtf43KV5n143v7H0jS056S-MZM1YTOXOOaSxrwPTzrLzzXVxyU2z5ybdAaqPKXSuETID9PXcry7Px6-TUbyYx-2Wj-SzaqwkAFibQRgwzDGZ3Vf43ymQxpV2PnS2TgOOn_Yh83a_7qH8ViERKmAvXBe9Nduyvd7E_q8_6-Gj-Ha-HByIA_2pvsPYB1RYUxHZoHYgtWqXNqHiLwq_cjNsN_7UyxP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglapKqMDy2lLASAhO2SaOnWyOFWXZUrqqgIoKDpZfkapus1U2QYgTJ878Rn4JM86jKioS4rSHnXUc74zn88z4G0Ke5ZgbM0IHwuQs4IblgeZKB5olBjxiAj7Zs33OkukRf3MsjtuqSrwL0_BD9AE3tAy_X6OBn9t8-4I0dHlyNkrSVFwnqzwBW0FA9K6njoq6dq2YokzSSHTEsyHb7n55yRWt4qp-vQpnXoat3u9MbpLP3YybcpPTUV3pkfn2B5nj_73SLbLRwlG60-jPbXLNFQOydtAm3AfkRhPWo81tpQFZR3DacDvfIT92jAGvhWQTlubqBCvcKTarp76_DgU8TA14yV_ff2If3rKi1teLUAz-0vkCWyXVFttyUbP4Aod2xL10WWuMDdFqQc8uApjUlSUMpwoLg1S-fqygc7ydtbxLjiavPrycBm1fh8BwQIdBZh3TaQZISTkAUFy4ULjIiizU1onQMK7yKOPMpprlzCbOxsYATFNwlI_hOBnfIyvFonAPCOUqNbnjsXF4MlSRghFNBNKhhs0qy4fkRfcXS9OSnmPvjbls6JqZhDWXuOZD8rSXPG-IPq6Qee61pBdQ5SkWxqVCfpy9ltPd_en4MJ3IT0Oy1amRbPeEpYwAaQP8GscJPKv_GqwZUzSqcIvay3gGunA8JPcb9esfxhIRI6ECzMIr0V-nKd_vHeDn5r8KPiFrh7sT-XZvtv-QrAMkTDBfFoktslKVtXsEsKvSj719_QZ_zysH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+failure+time+model+for+case-cohort+design+with+longitudinal+covariates+subject+to+measurement+error+and+detection+limits&rft.jtitle=Statistics+in+medicine&rft.au=Dong%2C+Xinxin&rft.au=Kong%2C+Lan&rft.au=Wahed%2C+Abdus+S.&rft.date=2016-04-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=8&rft.spage=1327&rft.epage=1339&rft_id=info:doi/10.1002%2Fsim.6775&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HDKH8P7F_Z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |