Accelerated failure time model for case-cohort design with longitudinal covariates subject to measurement error and detection limits

Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case‐cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biom...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 35; no. 8; pp. 1327 - 1339
Main Authors Dong, Xinxin, Kong, Lan, Wahed, Abdus S.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 15.04.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6775

Cover

Loading…
Abstract Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case‐cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood‐based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case‐cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case-cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood-based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case-cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia.
Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case-cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood-based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case-cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia.Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case-cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood-based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case-cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia.
Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort studies, case‐cohort sampling provides a cost effective method to collect expensive biomarker data for revealing the relationship between biomarker trajectories and time to event. However, biomarker measurements are often limited by the sensitivity and precision of a given assay, resulting in data that are censored at detection limits and prone to measurement errors. Additionally, the occurrence of an event of interest may preclude biomarkers from being further evaluated. Inappropriate handling of these types of data can lead to biased conclusions. Under a classical case cohort design, we propose a modified likelihood‐based approach to accommodate these special features of longitudinal biomarker measurements in the accelerated failure time models. The maximum likelihood estimators based on the full likelihood function are obtained by Gaussian quadrature method. We evaluate the performance of our case‐cohort estimator and compare its relative efficiency to the full cohort estimator through simulation studies. The proposed method is further illustrated using the data from a biomarker study of sepsis among patients with community acquired pneumonia. Copyright © 2015 John Wiley & Sons, Ltd.
Author Wahed, Abdus S.
Dong, Xinxin
Kong, Lan
Author_xml – sequence: 1
  givenname: Xinxin
  surname: Dong
  fullname: Dong, Xinxin
  email: Correspondence to: Xinxin Dong.Takeda Development Center Americas, Inc., Deerfield, IL, U.S.A., xinxin.dong@takeda.com
  organization: Takeda Development Center Americas, Inc., IL, Deerfield, U.S.A
– sequence: 2
  givenname: Lan
  surname: Kong
  fullname: Kong, Lan
  organization: Division of Biostatistics and Bioinformatics, Penn State College of Medicine, PA, Hershey, U.S.A
– sequence: 3
  givenname: Abdus S.
  surname: Wahed
  fullname: Wahed, Abdus S.
  organization: Department of Biostatistics, University of Pittsburgh, PA, Pittsburgh, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26530415$$D View this record in MEDLINE/PubMed
BookMark eNp10U1vFSEUBmBiauxtNfEXGBI3buYKDAwzy6ba3sb6kagxcUMYONNyHYYKTD_2_nC53rZGoysWPLzhPWcP7UxhAoSeUrKkhLCXyfllI6V4gBaUdLIiTLQ7aEGYlFUjqdhFeymtCaFUMPkI7bJG1IRTsUA_DoyBEaLOYPGg3ThHwNl5wD5YGPEQIjY6QWXCeYgZW0jubMJXLp_jMUxnLs_WTXrEJlzq6EpMwmnu12AyzgF70KkkepgyhhhLmJ5sCcnl3oUJj867nB6jh4MeEzy5PffR56PXnw5X1en745PDg9PKcCFF1VlgvezartbQUMkFEAHUio70FgQxjOuBdpxZ2bOB2QZsbUzDas2brua8rffRi23uRQzfZ0hZeZdK_VFPEOakqJSkFV1NNvT5X3Qd5liK_lKcdsU0RT27VXPvwaqL6LyON-puvgUst8DEkFKEQRmX9aZ6jmXYihK1WaAqC1SbBf7-4v2Du8x_0GpLr9wIN_916uPJ2z-9Sxmu772O34qrC_zy7litXr1ZtR_kkfpa_wSLTroo
CODEN SMEDDA
CitedBy_id crossref_primary_10_1002_sim_8113
Cites_doi 10.1111/j.2517-6161.1977.tb01600.x
10.1081/STA-120028378
10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
10.1001/archinte.167.15.1655
10.1007/s00362-007-0359-y
10.1093/oxfordjournals.aje.a115184
10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
10.1111/j.1541-0420.2008.01055.x
10.1093/biomet/93.1.207
10.1111/j.2517-6161.1972.tb00899.x
10.1002/sim.2249
10.1093/biomet/86.4.755
10.1093/biomet/93.4.747
10.1093/biomet/76.1.117
10.1093/biomet/88.1.255
10.2307/2533444
10.1111/j.1467-9469.2006.00552.x
10.1111/j.1541-0420.2010.01445.x
10.1214/aos/1176350691
10.1093/biomet/92.3.587
10.1198/sbr.2009.0048
10.1177/096228029800700104
10.1111/1467-9868.00243
10.2307/2533118
10.1002/9781119013563
10.1093/biomet/87.1.73
10.1111/1467-9876.00207
10.1023/A:1009661900674
10.1093/biomet/91.2.305
10.1093/biomet/73.1.1
10.1111/j.1541-0420.2006.00570.x
10.1016/j.csda.2006.12.028
10.1002/sim.3077
10.1111/j.1440-1754.1966.tb01498.x
10.1111/j.1541-0420.2006.00584.x
10.1023/A:1009691327335
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Apr 15, 2016
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Apr 15, 2016
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.6775
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1339
ExternalDocumentID 3989398261
26530415
10_1002_sim_6775
SIM6775
ark_67375_WNG_HDKH8P7F_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Diagnostic Products Corporation (Los Angeles, CA, USA)
– fundername: National Institute of General Medical Sciences
  funderid: R01 GM61992
– fundername: GlaxoSmithKline (Philadelphia, PA, USA)
– fundername: NIGMS NIH HHS
  grantid: R01 GM61992
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c4575-9de2b79893ae61745e05e1d590bde50c24af1942d7b2f2d6ed3cc623a46934483
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 00:01:53 EDT 2025
Sun Jul 13 05:08:09 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Tue Jul 01 03:28:08 EDT 2025
Wed Jan 22 16:20:33 EST 2025
Wed Oct 30 09:50:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords accelerated failure time model
limit of detection (LOD)
case-cohort
longitudinal biomarker
joint analysis
mixed effects model
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4575-9de2b79893ae61745e05e1d590bde50c24af1942d7b2f2d6ed3cc623a46934483
Notes National Institute of General Medical Sciences - No. R01 GM61992
Diagnostic Products Corporation (Los Angeles, CA, USA)
istex:87E6FCBC6C5581838DD43CAFAEE2BE5F615EE0D2
Supporting info itemSupporting info item
GlaxoSmithKline (Philadelphia, PA, USA)
ark:/67375/WNG-HDKH8P7F-Z
ArticleID:SIM6775
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6911-7221
PMID 26530415
PQID 1774190836
PQPubID 48361
PageCount 13
ParticipantIDs proquest_miscellaneous_1770859308
proquest_journals_1774190836
pubmed_primary_26530415
crossref_citationtrail_10_1002_sim_6775
crossref_primary_10_1002_sim_6775
wiley_primary_10_1002_sim_6775_SIM6775
istex_primary_ark_67375_WNG_HDKH8P7F_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 April 2016
PublicationDateYYYYMMDD 2016-04-15
PublicationDate_xml – month: 04
  year: 2016
  text: 15 April 2016
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References The A RIC Investigators. The atherosclerosis risk in communities (ARIC) study: design and objectives. American Journal of Epidemiology. 1989; 129:687-702.
Cullen KJ, Boundy CAP. Factors relating to behaviour disorders in children. Journal of Paediatrics and Child Health. 1966; 2:70-80.
Samuelsen SO, Anestad H, Skrondal A. Stratified case-cohort analysis of general cohort sampling designs. Scandinavian Journal of Statistics. 2007; 34:103-119.
Chen K, Lo SH. Case-cohort and case-control analysis with Cox's Model. Biometrika. 1999; 86:755-764.
Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine. 1997; 16:239-257.
Nan B, Yu M, Kalbfleiisch JD. Censored linear regression for case-cohort studies. Biometrika. 2006; 93:747-762.
Tseng C, Liu M. Joint modeling of survival data and longitudinal measurements under nested case-control sampling. Statistics in Biopharmaceutical Research. 2009; 1:415-423.
Vonesh EF, Greene T, Schluchter MD. Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in Medicine. 2006; 25:143-163.
Tseng YK, Hsieh F, Wang JL. Joint modeling of accelerated failure time and longitudinal data. Biometrika. 2005; 92:587-603.
Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine. 1996; 15:1663-1685.
Cox DR, Oakes D. Analysis of survival data, vol. 21. CRC Press: Boca Raton, 1984.
Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics. 2006; 62:1037-1043.
Ma S. Additive risk model with case-cohort sampled current status data. Statistical Papers. 2007; 48:595-608.
Lu W, Tsiatis AA. Semiparametric transformation models for the case-cohort study. Biometrika. 2006; 93:207-214.
Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53:330-339.
Barlow WE. Robust variance estimation for the case-cohort design. Biometrics. 1994; 50:1064-1072.
Therneau TM, Li H. Computing the cox model for case cohort designs. Lifetime Data Analysis. 1999; 5:99-112.
Chen HY. Fitting semiparametric transformation regression models to data from a modified case-cohort design. Biometrika. 2001; 88:255-268.
Kong L, Cai J, Sen PK. Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design. Biometrika. 2004; 91:305-319.
Zeng D, Lin DY, Avery CL, North KE, Bray MS. Efficient semiparametric estimation of haplotype-disease associations in case-cohort and nested case-control studies. Biometrics. 2006; 7:486-502.
Langholz B, Jiao J. Computational methods for case-cohort studies. Computational Statistics & Data Analysis. 2007; 51:3737-3748.
Self SG, Prentice RL. Asymptotic distribution theory and efficiency results for case-cohort studies. The Annals of Statistics. 1988; 16:64-81.
Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society. 1972; 34:187-220.
Liu L, Huang X. The use of gaussian quadrature for estimation in frailty proportional hazards models. Statistics in Medicine. 2008; 27:2665-2683.
Hogan JW, Laird NM. Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Statistical Methods in Medical Research. 1998; 7:28-48.
Kong L, Cai J. Case-cohort analysis with accelerated failure time model. Biometrics. 2009; 65:135-142.
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological). 1977; 39:1-38.
Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biometrics. 2000; 1:465-480.
Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC. Understanding the inflammatory cytokine response in pneumonia and sepsis. Archives of Internal Medicine. 2007; 167:1655-1663.
Chen KN. Generalized case-cohort sampling. Journal of the Royal Statistical Society. 2001; 62:449-460.
Lu SE, Shih JH. Case-cohort designs and analysis for clustered failure time data. Biometrics. 2006; 62:1138-1148.
Zhang H, Schaubel DE, Kalbfleisch JD. Proportional hazards regression for the analysis of clustered survival data from case-cohort studies. Biometrics. 2011; 67:18-28.
Kulich M, Lin DY. Additive hazards regression for case-cohort studies. Biometrika. 2000; 87:73-87.
Little RJA, Rubin DB. Statistical analysis with missing data (2nd ed.) Wiley: New York, 2002.
Lyles RH, Lyles CM, Taylor DJ. Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs. Applied Statistics. 2000; 49:485-497.
Wacholder S, Gail MH, Pee D, Brookmeyer R. Alternative variance and efficiency calculations for the case-cohort design. Biometrika. 1989; 76:117-123.
Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J. Exposure stratified case-cohort designs. Lifetime Data Analysis. 2000; 6:39-58.
Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986; 73:1-11.
Sun J, Sun L, Flournoy N. Additive hazards model for competing risks analysis of the case-cohort design. Communications in Statistics: Theory and Methods. 2004; 33:351-366.
2006; 93
2007; 167
1966; 2
2009; 65
2000; 49
1986; 73
2000; 6
2000; 87
1988; 16
2006; 7
1999; 86
2000; 1
2007; 51
2002
2001; 88
2004; 91
1999; 5
2007; 34
1996; 15
2001; 62
2004; 33
1989; 129
1989; 76
2006; 62
1997; 53
1977; 39
2006; 25
2008; 27
1997; 16
1984
2011; 67
2005; 92
1998; 7
1972; 34
1994; 50
2009; 1
2007; 48
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
The A RIC Investigators (e_1_2_8_4_1) 1989; 129
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Cox DR (e_1_2_8_35_1) 1984
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Henderson R (e_1_2_8_30_1) 2000; 1
Zeng D (e_1_2_8_36_1) 2006; 7
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Cox DR (e_1_2_8_6_1) 1972; 34
References_xml – reference: Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine. 1997; 16:239-257.
– reference: Lyles RH, Lyles CM, Taylor DJ. Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs. Applied Statistics. 2000; 49:485-497.
– reference: Kong L, Cai J, Sen PK. Weighted estimating equations for semiparametric transformation models with censored data from a case-cohort design. Biometrika. 2004; 91:305-319.
– reference: Little RJA, Rubin DB. Statistical analysis with missing data (2nd ed.) Wiley: New York, 2002.
– reference: Sun J, Sun L, Flournoy N. Additive hazards model for competing risks analysis of the case-cohort design. Communications in Statistics: Theory and Methods. 2004; 33:351-366.
– reference: Barlow WE. Robust variance estimation for the case-cohort design. Biometrics. 1994; 50:1064-1072.
– reference: Self SG, Prentice RL. Asymptotic distribution theory and efficiency results for case-cohort studies. The Annals of Statistics. 1988; 16:64-81.
– reference: Tseng C, Liu M. Joint modeling of survival data and longitudinal measurements under nested case-control sampling. Statistics in Biopharmaceutical Research. 2009; 1:415-423.
– reference: Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J. Exposure stratified case-cohort designs. Lifetime Data Analysis. 2000; 6:39-58.
– reference: Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine. 1996; 15:1663-1685.
– reference: Vonesh EF, Greene T, Schluchter MD. Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in Medicine. 2006; 25:143-163.
– reference: Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC. Understanding the inflammatory cytokine response in pneumonia and sepsis. Archives of Internal Medicine. 2007; 167:1655-1663.
– reference: Tseng YK, Hsieh F, Wang JL. Joint modeling of accelerated failure time and longitudinal data. Biometrika. 2005; 92:587-603.
– reference: Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society. 1972; 34:187-220.
– reference: Therneau TM, Li H. Computing the cox model for case cohort designs. Lifetime Data Analysis. 1999; 5:99-112.
– reference: Langholz B, Jiao J. Computational methods for case-cohort studies. Computational Statistics & Data Analysis. 2007; 51:3737-3748.
– reference: Lu W, Tsiatis AA. Semiparametric transformation models for the case-cohort study. Biometrika. 2006; 93:207-214.
– reference: Cox DR, Oakes D. Analysis of survival data, vol. 21. CRC Press: Boca Raton, 1984.
– reference: Kulich M, Lin DY. Additive hazards regression for case-cohort studies. Biometrika. 2000; 87:73-87.
– reference: Kong L, Cai J. Case-cohort analysis with accelerated failure time model. Biometrics. 2009; 65:135-142.
– reference: Chen K, Lo SH. Case-cohort and case-control analysis with Cox's Model. Biometrika. 1999; 86:755-764.
– reference: Ma S. Additive risk model with case-cohort sampled current status data. Statistical Papers. 2007; 48:595-608.
– reference: Zeng D, Lin DY, Avery CL, North KE, Bray MS. Efficient semiparametric estimation of haplotype-disease associations in case-cohort and nested case-control studies. Biometrics. 2006; 7:486-502.
– reference: Nan B, Yu M, Kalbfleiisch JD. Censored linear regression for case-cohort studies. Biometrika. 2006; 93:747-762.
– reference: Lu SE, Shih JH. Case-cohort designs and analysis for clustered failure time data. Biometrics. 2006; 62:1138-1148.
– reference: Cullen KJ, Boundy CAP. Factors relating to behaviour disorders in children. Journal of Paediatrics and Child Health. 1966; 2:70-80.
– reference: Samuelsen SO, Anestad H, Skrondal A. Stratified case-cohort analysis of general cohort sampling designs. Scandinavian Journal of Statistics. 2007; 34:103-119.
– reference: Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986; 73:1-11.
– reference: Liu L, Huang X. The use of gaussian quadrature for estimation in frailty proportional hazards models. Statistics in Medicine. 2008; 27:2665-2683.
– reference: Zhang H, Schaubel DE, Kalbfleisch JD. Proportional hazards regression for the analysis of clustered survival data from case-cohort studies. Biometrics. 2011; 67:18-28.
– reference: Chen KN. Generalized case-cohort sampling. Journal of the Royal Statistical Society. 2001; 62:449-460.
– reference: Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological). 1977; 39:1-38.
– reference: Chen HY. Fitting semiparametric transformation regression models to data from a modified case-cohort design. Biometrika. 2001; 88:255-268.
– reference: The A RIC Investigators. The atherosclerosis risk in communities (ARIC) study: design and objectives. American Journal of Epidemiology. 1989; 129:687-702.
– reference: Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics. 2006; 62:1037-1043.
– reference: Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53:330-339.
– reference: Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biometrics. 2000; 1:465-480.
– reference: Wacholder S, Gail MH, Pee D, Brookmeyer R. Alternative variance and efficiency calculations for the case-cohort design. Biometrika. 1989; 76:117-123.
– reference: Hogan JW, Laird NM. Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Statistical Methods in Medical Research. 1998; 7:28-48.
– volume: 62
  start-page: 449
  year: 2001
  end-page: 460
  article-title: Generalized case‐cohort sampling
  publication-title: Journal of the Royal Statistical Society
– volume: 27
  start-page: 2665
  year: 2008
  end-page: 2683
  article-title: The use of gaussian quadrature for estimation in frailty proportional hazards models
  publication-title: Statistics in Medicine
– volume: 1
  start-page: 465
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biometrics
– volume: 16
  start-page: 64
  year: 1988
  end-page: 81
  article-title: Asymptotic distribution theory and efficiency results for case‐cohort studies
  publication-title: The Annals of Statistics
– volume: 86
  start-page: 755
  year: 1999
  end-page: 764
  article-title: Case‐cohort and case‐control analysis with Cox's Model
  publication-title: Biometrika
– volume: 93
  start-page: 207
  year: 2006
  end-page: 214
  article-title: Semiparametric transformation models for the case‐cohort study
  publication-title: Biometrika
– volume: 33
  start-page: 351
  year: 2004
  end-page: 366
  article-title: Additive hazards model for competing risks analysis of the case‐cohort design
  publication-title: Communications in Statistics: Theory and Methods
– volume: 88
  start-page: 255
  year: 2001
  end-page: 268
  article-title: Fitting semiparametric transformation regression models to data from a modified case‐cohort design
  publication-title: Biometrika
– volume: 48
  start-page: 595
  year: 2007
  end-page: 608
  article-title: Additive risk model with case‐cohort sampled current status data
  publication-title: Statistical Papers
– volume: 65
  start-page: 135
  year: 2009
  end-page: 142
  article-title: Case‐cohort analysis with accelerated failure time model
  publication-title: Biometrics
– volume: 7
  start-page: 28
  year: 1998
  end-page: 48
  article-title: Increasing efficiency from censored survival data by using random effects to model longitudinal covariates
  publication-title: Statistical Methods in Medical Research
– volume: 16
  start-page: 239
  year: 1997
  end-page: 257
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statistics in Medicine
– volume: 6
  start-page: 39
  year: 2000
  end-page: 58
  article-title: Exposure stratified case‐cohort designs
  publication-title: Lifetime Data Analysis
– volume: 49
  start-page: 485
  year: 2000
  end-page: 497
  article-title: Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop‐outs
  publication-title: Applied Statistics
– volume: 7
  start-page: 486
  year: 2006
  end-page: 502
  article-title: Efficient semiparametric estimation of haplotype‐disease associations in case‐cohort and nested case‐control studies
  publication-title: Biometrics
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 51
  start-page: 3737
  year: 2007
  end-page: 3748
  article-title: Computational methods for case‐cohort studies
  publication-title: Computational Statistics & Data Analysis
– volume: 25
  start-page: 143
  year: 2006
  end-page: 163
  article-title: Shared parameter models for the joint analysis of longitudinal data and event times
  publication-title: Statistics in Medicine
– volume: 2
  start-page: 70
  year: 1966
  end-page: 80
  article-title: Factors relating to behaviour disorders in children
  publication-title: Journal of Paediatrics and Child Health
– year: 1984
– volume: 129
  start-page: 687
  year: 1989
  end-page: 702
  article-title: The atherosclerosis risk in communities (ARIC) study: design and objectives
  publication-title: American Journal of Epidemiology
– volume: 76
  start-page: 117
  year: 1989
  end-page: 123
  article-title: Alternative variance and efficiency calculations for the case‐cohort design
  publication-title: Biometrika
– volume: 62
  start-page: 1138
  year: 2006
  end-page: 1148
  article-title: Case‐cohort designs and analysis for clustered failure time data
  publication-title: Biometrics
– volume: 1
  start-page: 415
  year: 2009
  end-page: 423
  article-title: Joint modeling of survival data and longitudinal measurements under nested case‐control sampling
  publication-title: Statistics in Biopharmaceutical Research
– volume: 5
  start-page: 99
  year: 1999
  end-page: 112
  article-title: Computing the cox model for case cohort designs
  publication-title: Lifetime Data Analysis
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  article-title: Regression models and life‐tables
  publication-title: Journal of the Royal Statistical Society
– volume: 93
  start-page: 747
  year: 2006
  end-page: 762
  article-title: Censored linear regression for case‐cohort studies
  publication-title: Biometrika
– year: 2002
– volume: 91
  start-page: 305
  year: 2004
  end-page: 319
  article-title: Weighted estimating equations for semiparametric transformation models with censored data from a case‐cohort design
  publication-title: Biometrika
– volume: 62
  start-page: 1037
  year: 2006
  end-page: 1043
  article-title: Joint modeling of survival and longitudinal data: likelihood approach revisited
  publication-title: Biometrics
– volume: 87
  start-page: 73
  year: 2000
  end-page: 87
  article-title: Additive hazards regression for case‐cohort studies
  publication-title: Biometrika
– volume: 167
  start-page: 1655
  year: 2007
  end-page: 1663
  article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis
  publication-title: Archives of Internal Medicine
– volume: 67
  start-page: 18
  year: 2011
  end-page: 28
  article-title: Proportional hazards regression for the analysis of clustered survival data from case‐cohort studies
  publication-title: Biometrics
– volume: 53
  start-page: 330
  year: 1997
  end-page: 339
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– volume: 34
  start-page: 103
  year: 2007
  end-page: 119
  article-title: Stratified case‐cohort analysis of general cohort sampling designs
  publication-title: Scandinavian Journal of Statistics
– volume: 50
  start-page: 1064
  year: 1994
  end-page: 1072
  article-title: Robust variance estimation for the case‐cohort design
  publication-title: Biometrics
– volume: 73
  start-page: 1
  year: 1986
  end-page: 11
  article-title: A case‐cohort design for epidemiologic cohort studies and disease prevention trials
  publication-title: Biometrika
– volume: 92
  start-page: 587
  year: 2005
  end-page: 603
  article-title: Joint modeling of accelerated failure time and longitudinal data
  publication-title: Biometrika
– volume: 15
  start-page: 1663
  year: 1996
  end-page: 1685
  article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach
  publication-title: Statistics in Medicine
– volume-title: Analysis of survival data
  year: 1984
  ident: e_1_2_8_35_1
– ident: e_1_2_8_40_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_17_1
  doi: 10.1081/STA-120028378
– ident: e_1_2_8_27_1
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
– ident: e_1_2_8_2_1
  doi: 10.1001/archinte.167.15.1655
– ident: e_1_2_8_18_1
  doi: 10.1007/s00362-007-0359-y
– volume: 129
  start-page: 687
  year: 1989
  ident: e_1_2_8_4_1
  article-title: The atherosclerosis risk in communities (ARIC) study: design and objectives
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a115184
– ident: e_1_2_8_26_1
  doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1541-0420.2008.01055.x
– ident: e_1_2_8_21_1
  doi: 10.1093/biomet/93.1.207
– volume: 34
  start-page: 187
  year: 1972
  ident: e_1_2_8_6_1
  article-title: Regression models and life‐tables
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_8_32_1
  doi: 10.1002/sim.2249
– ident: e_1_2_8_12_1
  doi: 10.1093/biomet/86.4.755
– ident: e_1_2_8_22_1
  doi: 10.1093/biomet/93.4.747
– ident: e_1_2_8_8_1
  doi: 10.1093/biomet/76.1.117
– ident: e_1_2_8_19_1
  doi: 10.1093/biomet/88.1.255
– ident: e_1_2_8_9_1
  doi: 10.2307/2533444
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1467-9469.2006.00552.x
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1541-0420.2010.01445.x
– ident: e_1_2_8_7_1
  doi: 10.1214/aos/1176350691
– ident: e_1_2_8_34_1
  doi: 10.1093/biomet/92.3.587
– ident: e_1_2_8_33_1
  doi: 10.1198/sbr.2009.0048
– ident: e_1_2_8_28_1
  doi: 10.1177/096228029800700104
– ident: e_1_2_8_14_1
  doi: 10.1111/1467-9868.00243
– ident: e_1_2_8_29_1
  doi: 10.2307/2533118
– ident: e_1_2_8_37_1
  doi: 10.1002/9781119013563
– ident: e_1_2_8_16_1
  doi: 10.1093/biomet/87.1.73
– ident: e_1_2_8_38_1
  doi: 10.1111/1467-9876.00207
– ident: e_1_2_8_13_1
  doi: 10.1023/A:1009661900674
– ident: e_1_2_8_20_1
  doi: 10.1093/biomet/91.2.305
– ident: e_1_2_8_3_1
  doi: 10.1093/biomet/73.1.1
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1541-0420.2006.00570.x
– ident: e_1_2_8_11_1
  doi: 10.1016/j.csda.2006.12.028
– ident: e_1_2_8_39_1
  doi: 10.1002/sim.3077
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1440-1754.1966.tb01498.x
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1541-0420.2006.00584.x
– volume: 7
  start-page: 486
  year: 2006
  ident: e_1_2_8_36_1
  article-title: Efficient semiparametric estimation of haplotype‐disease associations in case‐cohort and nested case‐control studies
  publication-title: Biometrics
– ident: e_1_2_8_10_1
  doi: 10.1023/A:1009691327335
– volume: 1
  start-page: 465
  year: 2000
  ident: e_1_2_8_30_1
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biometrics
SSID ssj0011527
Score 2.1690676
Snippet Biomarkers are often measured over time in epidemiological studies and clinical trials for better understanding of the mechanism of diseases. In large cohort...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1327
SubjectTerms accelerated failure time model
Biomarkers
Biomarkers - analysis
Biostatistics
case-cohort
Clinical trials
Cohort Studies
Community-Acquired Infections - blood
Community-Acquired Infections - complications
Computer Simulation
Cytokines - blood
Estimating techniques
Humans
joint analysis
Likelihood Functions
Limit of Detection
limit of detection (LOD)
longitudinal biomarker
Longitudinal Studies
Maximum likelihood method
Medical statistics
mixed effects model
Pneumonia - blood
Pneumonia - complications
Sepsis - blood
Sepsis - etiology
Simulation
Time Factors
Title Accelerated failure time model for case-cohort design with longitudinal covariates subject to measurement error and detection limits
URI https://api.istex.fr/ark:/67375/WNG-HDKH8P7F-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6775
https://www.ncbi.nlm.nih.gov/pubmed/26530415
https://www.proquest.com/docview/1774190836
https://www.proquest.com/docview/1770859308
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAl1MLy2lKQkRCcsk0cO9kcq8KygFohoKKCg-VXpKrbpMoDIU6cOPMb-0uYcR5VUZEQpxwycRxn7Pk8M_6GkKc5xsaM0IEwOQu4YXmgudKBZokBi5iATfZsnwfJ8pC_ORJHfVYlnoXp-CFGhxvODL9e4wRXut65IA2tj09nSZri-XJM1UI89H5kjoqGaq0YoUzSSAy8syHbGR68ZImu46B-uwpmXkat3uwsNsmXocNdtsnJrG30zHz_g8vx_77oFtno0Sjd7dTnNrnmigm5sd_H2yfkZufVo91hpQlZR2zaUTvfIT93jQGjhVwTlubqGBPcKdaqp768DgU4TA0YyfMfv7AMb9VQ69NFKPp-6arESkmtxapc1JRfYc-OsJfWrUbXEG1Kenrhv6SuqqA5VVhopPHpYwVd4eGs-i45XLz8uLcM-rIOgeEADoPMOqbTDICScoCfuHChcJEVWaitE6FhXOVRxplNNcuZTZyNjQGUpmAnH8NuMr5H1oqycA8I5So1ueOxcbgxVJGCFk0E0qGGtSrLp-T58Iul6TnPsfTGSnZszUzCmEsc8yl5MkqedTwfV8g881oyCqjqBPPiUiE_HbySyxdvl_N36UJ-npLtQY1kvyTUMgKgDehrHifwrvE2TGaM0KjCla2X8QR04XxK7nfqN76MJSJGPgXohVeiv3ZTfni9j9etfxV8SNYBBiYYI4vENllrqtY9AqjV6Md-Uv0Gpi4oNQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTYJJiB-FjcIAIyF4Spc4cdKIp4lROrZWCDYxISTLdhxpWpeiNEWIJ5545m_kL-HO-TENDQnx1IdeHcc9-z6fz98H8DSnszEjtCdMzr3I8NzTkdKe5rHBiBhjTHZsn9N4fBS9ORbHK_CivQtT80N0CTeaGW69pglOCentc9bQxcnZIE4ScQXWSNCb5At233XcUUGr10pnlHESiJZ51ufb7S8vxKI1GtavlwHNi7jVBZ7RTfjUdrmuNzkdLCs9MN_-YHP8z3e6BTcaQMp2ag-6DSu26MHVSXPk3oPrdWKP1feVerBO8LRmd74DP3aMwbhFdBMZy9UJ1bgzkqtnTmGHISJmBuPkr-8_SYm3rFjmKkYYpX_ZbE5iScuMhLmYmX_BbTshX7ZYasoOsWrOzs5TmMyWJTanigwbqVwFWcFmdD9rcReORq8OX469RtnBMxHiQy_NLNdJilhJWYRQkbC-sEEmUl9nVviGRyoP0ohnieY5z2KbhcYgUFO4mQ9xQxluwGoxL-w9YJFKTG6j0FjaG6pAYYsmQGtf43KV5n143v7H0jS056S-MZM1YTOXOOaSxrwPTzrLzzXVxyU2z5ybdAaqPKXSuETID9PXcry7Px6-TUbyYx-2Wj-SzaqwkAFibQRgwzDGZ3Vf43ymQxpV2PnS2TgOOn_Yh83a_7qH8ViERKmAvXBe9Nduyvd7E_q8_6-Gj-Ha-HByIA_2pvsPYB1RYUxHZoHYgtWqXNqHiLwq_cjNsN_7UyxP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglapKqMDy2lLASAhO2SaOnWyOFWXZUrqqgIoKDpZfkapus1U2QYgTJ878Rn4JM86jKioS4rSHnXUc74zn88z4G0Ke5ZgbM0IHwuQs4IblgeZKB5olBjxiAj7Zs33OkukRf3MsjtuqSrwL0_BD9AE3tAy_X6OBn9t8-4I0dHlyNkrSVFwnqzwBW0FA9K6njoq6dq2YokzSSHTEsyHb7n55yRWt4qp-vQpnXoat3u9MbpLP3YybcpPTUV3pkfn2B5nj_73SLbLRwlG60-jPbXLNFQOydtAm3AfkRhPWo81tpQFZR3DacDvfIT92jAGvhWQTlubqBCvcKTarp76_DgU8TA14yV_ff2If3rKi1teLUAz-0vkCWyXVFttyUbP4Aod2xL10WWuMDdFqQc8uApjUlSUMpwoLg1S-fqygc7ydtbxLjiavPrycBm1fh8BwQIdBZh3TaQZISTkAUFy4ULjIiizU1onQMK7yKOPMpprlzCbOxsYATFNwlI_hOBnfIyvFonAPCOUqNbnjsXF4MlSRghFNBNKhhs0qy4fkRfcXS9OSnmPvjbls6JqZhDWXuOZD8rSXPG-IPq6Qee61pBdQ5SkWxqVCfpy9ltPd_en4MJ3IT0Oy1amRbPeEpYwAaQP8GscJPKv_GqwZUzSqcIvay3gGunA8JPcb9esfxhIRI6ECzMIr0V-nKd_vHeDn5r8KPiFrh7sT-XZvtv-QrAMkTDBfFoktslKVtXsEsKvSj719_QZ_zysH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+failure+time+model+for+case-cohort+design+with+longitudinal+covariates+subject+to+measurement+error+and+detection+limits&rft.jtitle=Statistics+in+medicine&rft.au=Dong%2C+Xinxin&rft.au=Kong%2C+Lan&rft.au=Wahed%2C+Abdus+S.&rft.date=2016-04-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=8&rft.spage=1327&rft.epage=1339&rft_id=info:doi/10.1002%2Fsim.6775&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HDKH8P7F_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon