Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals
The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor‐incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to...
Saved in:
Published in | Artificial organs Vol. 39; no. 10; pp. E176 - E186 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor‐incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor‐incomplete spinal cord‐injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill‐stepping was essentially augmentative and step‐phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step‐related feedback build upon the stimulation‐induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. |
---|---|
AbstractList | The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor‐incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (t
SCS
) to modulate this central state of excitability during voluntary treadmill stepping in three motor‐incomplete spinal cord‐injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill‐stepping was essentially augmentative and step‐phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that t
SCS
provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step‐related feedback build upon the stimulation‐induced increased state of excitability in the generation of locomotor activity. Thus, t
SCS
essentially works as an electrical neuroprosthesis augmenting remaining motor control. The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor‐incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor‐incomplete spinal cord‐injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill‐stepping was essentially augmentative and step‐phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step‐related feedback build upon the stimulation‐induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3°±5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. |
Author | McKay, William B. Mayr, Winfried Krenn, Matthias Hofstoetter, Ursula S. Hofer, Christian Kern, Helmut Danner, Simon M. Minassian, Karen |
Author_xml | – sequence: 1 givenname: Ursula S. surname: Hofstoetter fullname: Hofstoetter, Ursula S. organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria – sequence: 2 givenname: Matthias surname: Krenn fullname: Krenn, Matthias organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria – sequence: 3 givenname: Simon M. surname: Danner fullname: Danner, Simon M. organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria – sequence: 4 givenname: Christian surname: Hofer fullname: Hofer, Christian organization: Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria – sequence: 5 givenname: Helmut surname: Kern fullname: Kern, Helmut organization: Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria – sequence: 6 givenname: William B. surname: McKay fullname: McKay, William B. organization: Hulse Spinal Cord Injury Lab, Crawford Research Institute, Shepherd Center, GA, Atlanta, USA – sequence: 7 givenname: Winfried surname: Mayr fullname: Mayr, Winfried email: winfried.mayr@meduniwien.ac.at organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria – sequence: 8 givenname: Karen surname: Minassian fullname: Minassian, Karen organization: Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26450344$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctuEzEYhS1URNOWBS-ALLEpi2l9ncsyimiJFFKJtlCxsTweBznM2MEX2rwCT43LJAhV4M1vW9850n_OETiwzmoAXmF0hvM5l86fYVJi_gxMMCe8wLxhB2CCcIkKXrK7Q3AUwhohVDFUvgCHpGQcUcYm4Oc0fR20jTIaZ6FbwU-uT_npt3DhlBtcdB5OVTQ_TNzCdgtvvLRBpSitdinA642xsocz5zt4Hc2Q-tHJWPjhUVvMbXbZ9Drqv9n8vU5ed3Buu2zdJdmHE_B8lYd-uZvH4Pbi3c3sfbG4upzPpotCMV7xolK8U4RR2pUVbyipSZuvtUSyrRWtpao4YapptZIdaqgsCUcrlgPhGLUNr-gxOB19N959TzpEMZigdN-PKwlcEdKQmjVNRt88Qdcu-bzESFFOUYky9XpHpXbQndh4M-QAxT7lDJyPgPIuBK9XQpkx8eil6QVG4rFHkXsUv3vMirdPFHvTf7E793vT6-3_QTG9-rhXFKPChKgf_iik_ybKilZcfF5eiiW-o1-WSyZm9BcpbLx6 |
CitedBy_id | crossref_primary_10_1088_1741_2552_abe358 crossref_primary_10_3390_jcm10225304 crossref_primary_10_3390_life14121657 crossref_primary_10_1038_s41393_017_0038_y crossref_primary_10_3390_s22041443 crossref_primary_10_1016_j_msard_2021_103009 crossref_primary_10_3390_ijms25084480 crossref_primary_10_1088_1741_2552_ac7b4b crossref_primary_10_1155_2016_8730984 crossref_primary_10_1134_S0362119719050189 crossref_primary_10_1186_s13028_021_00585_z crossref_primary_10_1089_neu_2016_4565 crossref_primary_10_3390_jcm11061550 crossref_primary_10_3389_fresc_2021_724003 crossref_primary_10_3389_fcell_2020_00736 crossref_primary_10_3390_jcm12030854 crossref_primary_10_7759_cureus_61436 crossref_primary_10_3390_ani11113034 crossref_primary_10_1088_1741_2552_ace552 crossref_primary_10_1089_neu_2016_4577 crossref_primary_10_1134_S0362119717050036 crossref_primary_10_1007_s40141_020_00277_1 crossref_primary_10_1038_s41394_021_00421_6 crossref_primary_10_1109_TNSRE_2018_2834339 crossref_primary_10_1093_brain_awac184 crossref_primary_10_1152_jn_00077_2024 crossref_primary_10_1111_ner_12938 crossref_primary_10_3390_jcm10163633 crossref_primary_10_1371_journal_pone_0192013 crossref_primary_10_3389_fnins_2020_00416 crossref_primary_10_1016_j_biomaterials_2021_121211 crossref_primary_10_3390_children11121439 crossref_primary_10_1152_physiol_00010_2017 crossref_primary_10_38025_2078_1962_2020_99_5_53_61 crossref_primary_10_3390_brainsci11040472 crossref_primary_10_1142_S2424905X20410032 crossref_primary_10_1007_s00221_022_06521_5 crossref_primary_10_1152_jn_00433_2020 crossref_primary_10_1111_aor_14660 crossref_primary_10_3390_jcm9113541 crossref_primary_10_3390_bioengineering10050528 crossref_primary_10_14814_phy2_14397 crossref_primary_10_1111_cns_12530 crossref_primary_10_7759_cureus_78610 crossref_primary_10_1177_1545968319893298 crossref_primary_10_1152_jn_00266_2024 crossref_primary_10_3390_children11091116 crossref_primary_10_1016_j_xnsj_2025_100601 crossref_primary_10_1007_s13311_016_0421_y crossref_primary_10_3389_fphys_2018_01746 crossref_primary_10_4103_1673_5374_274332 crossref_primary_10_3389_fneur_2022_1000940 crossref_primary_10_1016_j_expneurol_2022_114178 crossref_primary_10_1371_journal_pone_0147479 crossref_primary_10_1371_journal_pone_0260166 crossref_primary_10_3389_fmed_2024_1459835 crossref_primary_10_1152_jn_00342_2022 crossref_primary_10_3390_biomedicines11020589 crossref_primary_10_1136_bmjopen_2024_086062 crossref_primary_10_3390_brainsci14070640 crossref_primary_10_36425_rehab649890 crossref_primary_10_46292_sci22_00057 crossref_primary_10_1111_ejn_15448 crossref_primary_10_1088_1741_2552_ab8e8e crossref_primary_10_1111_aor_12707 crossref_primary_10_1038_s41393_020_0505_8 crossref_primary_10_3389_fnins_2017_00333 crossref_primary_10_1080_21646821_2016_1202723 crossref_primary_10_3390_jcm10061167 crossref_primary_10_47924_neurotarget202179 crossref_primary_10_1088_1741_2552_acabe8 crossref_primary_10_1109_LRA_2022_3185370 crossref_primary_10_1089_neu_2019_6588 crossref_primary_10_1093_ptj_pzab228 crossref_primary_10_3390_jcm9092765 crossref_primary_10_14814_phy2_15692 crossref_primary_10_1007_s00221_024_06926_4 crossref_primary_10_1088_1741_2552_ac6a7c crossref_primary_10_1016_j_expneurol_2024_114754 crossref_primary_10_1371_journal_pone_0227057 crossref_primary_10_3389_fnins_2021_749042 crossref_primary_10_1152_jn_00454_2019 crossref_primary_10_1002_acn3_51051 crossref_primary_10_3390_jcm9103275 crossref_primary_10_3389_fnhum_2021_620414 crossref_primary_10_1371_journal_pone_0223135 crossref_primary_10_3389_fneur_2020_00607 crossref_primary_10_1016_j_mayocpiqo_2023_09_006 crossref_primary_10_1089_neu_2018_5956 crossref_primary_10_3390_ani11082442 crossref_primary_10_1186_s42234_021_00077_5 crossref_primary_10_1186_s12984_024_01524_5 crossref_primary_10_3389_fnhum_2021_660583 crossref_primary_10_3389_fnsys_2020_590231 crossref_primary_10_1089_neu_2017_5584 crossref_primary_10_3390_biomedicines11082121 crossref_primary_10_1016_j_jcot_2023_102210 crossref_primary_10_1038_s41394_020_00359_1 crossref_primary_10_1038_s41393_021_00734_1 crossref_primary_10_1038_s41598_024_56579_0 crossref_primary_10_1097_WCO_0000000000000997 crossref_primary_10_1360_TB_2024_0811 crossref_primary_10_3390_jcm10225464 |
Cites_doi | 10.1016/S0140-6736(11)60547-3 10.1007/s00221-012-3258-6 10.1016/0006-8993(75)90364-9 10.1038/sj.sc.3101615 10.1111/j.1525-1594.2008.00616.x 10.1179/2045772313Y.0000000149 10.1136/jnnp.43.1.15 10.1093/brain/awf273 10.1186/1743-0003-10-5 10.1038/sj.sc.3101040 10.1109/TNSRE.2005.862694 10.1111/j.1525-1594.2011.01213.x 10.1038/sc.1992.61 10.1113/jphysiol.1994.sp020032 10.1310/sci1801-85 10.1089/neu.2007.0468 10.1046/j.1525-1403.2002._2005.x 10.1515/bmt‐2013‐4014 10.1016/j.humov.2007.01.005 10.1093/brain/awh252 10.1016/j.brainresrev.2007.07.012 10.1016/S0306-4522(98)00330-3 10.1002/mus.20700 10.1038/sj.sc.3101263 10.3171/jns.1993.78.2.0233 10.1152/jn.1997.77.2.797 10.1038/sj.sc.3101658 10.1109/TNSRE.2010.2054112 10.1152/jn.1943.6.2.111 10.1002/(SICI)1097-4598(199608)19:8<966::AID-MUS5>3.0.CO;2-6 10.1016/j.clineuro.2012.03.013 10.1016/B978-0-444-52137-8.00016-4 10.1093/acprof:oso/9780199746507.003.0010 10.1038/sj.sc.3101039 10.1111/j.1749-6632.1998.tb09062.x |
ContentType | Journal Article |
Copyright | Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation |
Copyright_xml | – notice: Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1111/aor.12615 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1525-1594 |
EndPage | E186 |
ExternalDocumentID | 3837752071 26450344 10_1111_aor_12615 AOR12615 ark_67375_WNG_N1X3ZNN4_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wings for Life Spinal Cord Research Foundation (WfL) funderid: WFL‐AT‐007/11 – fundername: Vienna Science and Technology Fund (WWTF) funderid: LS11‐057 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HKTDT HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4575-7c5dc2433d67593282b3d68a0ab8c38ac7524c9becad093a6250f4594510b9573 |
IEDL.DBID | DR2 |
ISSN | 0160-564X 1525-1594 |
IngestDate | Fri Jul 11 05:47:09 EDT 2025 Sat Jul 26 02:22:04 EDT 2025 Thu Apr 03 07:05:16 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 04:09:51 EDT 2025 Wed Aug 20 07:28:05 EDT 2025 Wed Oct 30 09:51:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Human Transcutaneous spinal cord stimulation Spinal cord injury Neuromodulation Locomotor training |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4575-7c5dc2433d67593282b3d68a0ab8c38ac7524c9becad093a6250f4594510b9573 |
Notes | ark:/67375/WNG-N1X3ZNN4-C Wings for Life Spinal Cord Research Foundation (WfL) - No. WFL-AT-007/11 Vienna Science and Technology Fund (WWTF) - No. LS11-057 ArticleID:AOR12615 istex:36F936443CA7B30CB6466FEA08B051DE023DF684 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26450344 |
PQID | 1722353060 |
PQPubID | 1026359 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1722928499 proquest_journals_1722353060 pubmed_primary_26450344 crossref_citationtrail_10_1111_aor_12615 crossref_primary_10_1111_aor_12615 wiley_primary_10_1111_aor_12615_AOR12615 istex_primary_ark_67375_WNG_N1X3ZNN4_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10 October 2015 2015-10-00 2015-Oct 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Geesthacht |
PublicationTitle | Artificial organs |
PublicationTitleAlternate | Artificial Organs |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 1998;860:360-376. Sherwood AM, McKay WB, Dimitrijevic MR. Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve 1996;19:966-979. Rattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 1999;89:335-346. Hofstoetter US, Hofer C, Kern H, et al. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech (Berl) 2013 doi: 10.1515/bmt-2013-4014; [Epub 2013 Sep 7]. Curt A, Van Hedel HJ, Klaus D, Dietz V. EM-SCI study group. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 2008;25:677-685. Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 2014;37:202-211. Pinter MM, Gerstenbrand F, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 2000;38:524-531. Minassian K, Persy I, Rattay F, Dimitrijevic MR. Effect of peripheral afferent and central afferent input to the human lumbar spinal cord isolated from brain control. Biocybernetics Biomed Eng 2005;25:11-29. Hunter JP, Ashby P. Segmental effects of epidural spinal cord stimulation in humans. J Physiol 1994;474:407-419. Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev 2008;57:255-264. Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 2002;40:65-68. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997;77:797-811. Barolat G, Massaro F, He J, Zeme S, Ketcik B. Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man. J Neurosurg 1993;78:233-239. Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, Dimitrijevic MR. Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs 2008;32:644-648. Dietz V, Müller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002;125:2626-2634. Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci 2007;26:275-295. Minassian K, Hofstoetter U, Tansey K, Mayr W. Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg 2012;114:489-497. Burns S, Biering-Sørensen F, Donovan W, et al. International standards for neurological classification of spinal cord injury, revised 2011. Top Spinal Cord Inj Rehabil 2012;18:85-99. Danner SM, Hofstoetter US, Ladenbauer J, Rattay F, Minassian K. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif Organs 2011;35:257-262. Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng 2006;14:14-23. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 2011;377:1938-1947. Minassian K, Jilge B, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 2004;42:401-416. Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 1975;98:417-440. Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. Handb Clin Neurol 2012;109:259-274. Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992;30:229-238. Barolat G, Myklebust JB, Wenninger W. Enhancement of voluntary motor function following spinal cord stimulation-case study. Appl Neurophysiol 1986;49:307-314. Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 2010;18:637-645. Lloyd DCP. Reflex action in relation to pattern and peripheral source of afferent stimulation. J Neurophysiol 1943;6:111-120. Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation 2002;5:25-31. Morganti B, Scivoletto G, Ditunno P, Ditunno JF, Molinari M. Walking index for spinal cord injury (WISCI): criterion validation. Spinal Cord 2005;43:27-33. Minassian K, Persy I, Rattay F, Dimitrijevic MR, Hofer C, Kern H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 2007;35:327-336. Sedgwick EM, Illis LS, Tallis RC, et al. Evoked potentials and contingent negative variation during treatment of multiple sclerosis with spinal cord stimulation. J Neurol Neurosurg Psychiatry 1980;43:15-24. Roy FD, Gibson G, Stein RB. Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots. Exp Brain Res 2012;223:281-289. Hubli M, Dietz V. The physiological basis of neurorehabilitation-locomotor training after spinal cord injury. J Neuroeng Rehabil 2013;10:5. Rattay F, Minassian K, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord 2000;38:473-489. Beres-Jones JA, Harkema SJ. The human spinal cord interprets velocity-dependent afferent input during stepping. Brain 2004;127:2232-2246. 1943; 6 2011; 377 1994; 474 2004; 42 2004; 127 1985; 1 2012; 223 1996; 19 2011 2010; 18 2002; 5 2006; 14 1980; 43 1998 1999; 89 2008; 57 2005; 43 2012; 18 2008; 32 2011; 35 1975; 98 2007; 35 2012; 109 1992; 30 2005; 25 1993; 78 2000; 38 1997; 77 2013; 10 2002; 40 2002; 125 2008; 25 1986; 49 2014; 37 2013 2012; 114 1998; 860 2007; 26 e_1_2_7_6_1 Waltz JM (e_1_2_7_36_1) 1998 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 Gybels J (e_1_2_7_35_1) 1985 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Barolat G (e_1_2_7_38_1) 1986; 49 Minassian K (e_1_2_7_11_1) 2005; 25 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_37_1 e_1_2_7_39_1 |
References_xml | – reference: Hubli M, Dietz V. The physiological basis of neurorehabilitation-locomotor training after spinal cord injury. J Neuroeng Rehabil 2013;10:5. – reference: Hofstoetter US, Hofer C, Kern H, et al. Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech (Berl) 2013 doi: 10.1515/bmt-2013-4014; [Epub 2013 Sep 7]. – reference: Beres-Jones JA, Harkema SJ. The human spinal cord interprets velocity-dependent afferent input during stepping. Brain 2004;127:2232-2246. – reference: Sherwood AM, McKay WB, Dimitrijevic MR. Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve 1996;19:966-979. – reference: Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 1998;860:360-376. – reference: Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 1975;98:417-440. – reference: Rattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 1999;89:335-346. – reference: Sedgwick EM, Illis LS, Tallis RC, et al. Evoked potentials and contingent negative variation during treatment of multiple sclerosis with spinal cord stimulation. J Neurol Neurosurg Psychiatry 1980;43:15-24. – reference: Morganti B, Scivoletto G, Ditunno P, Ditunno JF, Molinari M. Walking index for spinal cord injury (WISCI): criterion validation. Spinal Cord 2005;43:27-33. – reference: Dietz V, Müller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002;125:2626-2634. – reference: Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, Dimitrijevic MR. Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs 2008;32:644-648. – reference: Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 2002;40:65-68. – reference: Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. Handb Clin Neurol 2012;109:259-274. – reference: Danner SM, Hofstoetter US, Ladenbauer J, Rattay F, Minassian K. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif Organs 2011;35:257-262. – reference: Burns S, Biering-Sørensen F, Donovan W, et al. International standards for neurological classification of spinal cord injury, revised 2011. Top Spinal Cord Inj Rehabil 2012;18:85-99. – reference: Minassian K, Hofstoetter U, Tansey K, Mayr W. Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg 2012;114:489-497. – reference: Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev 2008;57:255-264. – reference: Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 1997;77:797-811. – reference: Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation 2002;5:25-31. – reference: Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 2010;18:637-645. – reference: Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 2011;377:1938-1947. – reference: Barolat G, Myklebust JB, Wenninger W. Enhancement of voluntary motor function following spinal cord stimulation-case study. Appl Neurophysiol 1986;49:307-314. – reference: Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci 2007;26:275-295. – reference: Rattay F, Minassian K, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord 2000;38:473-489. – reference: Barolat G, Massaro F, He J, Zeme S, Ketcik B. Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man. J Neurosurg 1993;78:233-239. – reference: Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng 2006;14:14-23. – reference: Roy FD, Gibson G, Stein RB. Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots. Exp Brain Res 2012;223:281-289. – reference: Minassian K, Jilge B, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 2004;42:401-416. – reference: Lloyd DCP. Reflex action in relation to pattern and peripheral source of afferent stimulation. J Neurophysiol 1943;6:111-120. – reference: Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 1992;30:229-238. – reference: Minassian K, Persy I, Rattay F, Dimitrijevic MR. Effect of peripheral afferent and central afferent input to the human lumbar spinal cord isolated from brain control. Biocybernetics Biomed Eng 2005;25:11-29. – reference: Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 2014;37:202-211. – reference: Minassian K, Persy I, Rattay F, Dimitrijevic MR, Hofer C, Kern H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 2007;35:327-336. – reference: Hunter JP, Ashby P. Segmental effects of epidural spinal cord stimulation in humans. J Physiol 1994;474:407-419. – reference: Curt A, Van Hedel HJ, Klaus D, Dietz V. EM-SCI study group. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 2008;25:677-685. – reference: Pinter MM, Gerstenbrand F, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 2000;38:524-531. – volume: 127 start-page: 2232 year: 2004 end-page: 2246 article-title: The human spinal cord interprets velocity‐dependent afferent input during stepping publication-title: Brain – volume: 40 start-page: 65 year: 2002 end-page: 68 article-title: Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured publication-title: Spinal Cord – volume: 57 start-page: 255 year: 2008 end-page: 264 article-title: Plasticity of interneuronal networks of the functionally isolated human spinal cord publication-title: Brain Res Rev – volume: 77 start-page: 797 year: 1997 end-page: 811 article-title: Human lumbosacral spinal cord interprets loading during stepping publication-title: J Neurophysiol – volume: 89 start-page: 335 year: 1999 end-page: 346 article-title: The basic mechanism for the electrical stimulation of the nervous system publication-title: Neuroscience – volume: 26 start-page: 275 year: 2007 end-page: 295 article-title: Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor‐like activity publication-title: Hum Mov Sci – volume: 860 start-page: 360 year: 1998 end-page: 376 article-title: Evidence for a spinal central pattern generator in humans publication-title: Ann N Y Acad Sci – volume: 32 start-page: 644 year: 2008 end-page: 648 article-title: Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects publication-title: Artif Organs – volume: 38 start-page: 524 year: 2000 end-page: 531 article-title: Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity publication-title: Spinal Cord – volume: 43 start-page: 15 year: 1980 end-page: 24 article-title: Evoked potentials and contingent negative variation during treatment of multiple sclerosis with spinal cord stimulation publication-title: J Neurol Neurosurg Psychiatry – volume: 18 start-page: 85 year: 2012 end-page: 99 article-title: International standards for neurological classification of spinal cord injury, revised 2011 publication-title: Top Spinal Cord Inj Rehabil – volume: 25 start-page: 677 year: 2008 end-page: 685 article-title: EM‐SCI study group. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair publication-title: J Neurotrauma – volume: 18 start-page: 637 year: 2010 end-page: 645 article-title: Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 25 start-page: 11 year: 2005 end-page: 29 article-title: Effect of peripheral afferent and central afferent input to the human lumbar spinal cord isolated from brain control publication-title: Biocybernetics Biomed Eng – volume: 37 start-page: 202 year: 2014 end-page: 211 article-title: Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury publication-title: J Spinal Cord Med – start-page: 1087 year: 1998 end-page: 1099 – volume: 114 start-page: 489 year: 2012 end-page: 497 article-title: Neuromodulation of lower limb motor control in restorative neurology publication-title: Clin Neurol Neurosurg – volume: 43 start-page: 27 year: 2005 end-page: 33 article-title: Walking index for spinal cord injury (WISCI): criterion validation publication-title: Spinal Cord – volume: 35 start-page: 327 year: 2007 end-page: 336 article-title: Posterior root‐muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord publication-title: Muscle Nerve – volume: 98 start-page: 417 year: 1975 end-page: 440 article-title: Which elements are excited in electrical stimulation of mammalian central nervous system: a review publication-title: Brain Res – volume: 125 start-page: 2626 year: 2002 end-page: 2634 article-title: Locomotor activity in spinal man: significance of afferent input from joint and load receptors publication-title: Brain – year: 2013 article-title: Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual publication-title: Biomed Tech (Berl) – volume: 10 start-page: 5 year: 2013 article-title: The physiological basis of neurorehabilitation—locomotor training after spinal cord injury publication-title: J Neuroeng Rehabil – volume: 30 start-page: 229 year: 1992 end-page: 238 article-title: Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries publication-title: Paraplegia – volume: 223 start-page: 281 year: 2012 end-page: 289 article-title: Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots publication-title: Exp Brain Res – start-page: 226 year: 2011 end-page: 255 – volume: 78 start-page: 233 year: 1993 end-page: 239 article-title: Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man publication-title: J Neurosurg – volume: 474 start-page: 407 year: 1994 end-page: 419 article-title: Segmental effects of epidural spinal cord stimulation in humans publication-title: J Physiol – volume: 19 start-page: 966 year: 1996 end-page: 979 article-title: Motor control after spinal cord injury: assessment using surface EMG publication-title: Muscle Nerve – volume: 5 start-page: 25 year: 2002 end-page: 31 article-title: Which neuronal elements are activated directly by spinal cord stimulation publication-title: Neuromodulation – volume: 6 start-page: 111 year: 1943 end-page: 120 article-title: Reflex action in relation to pattern and peripheral source of afferent stimulation publication-title: J Neurophysiol – volume: 35 start-page: 257 year: 2011 end-page: 262 article-title: Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study publication-title: Artif Organs – volume: 49 start-page: 307 year: 1986 end-page: 314 article-title: Enhancement of voluntary motor function following spinal cord stimulation–case study publication-title: Appl Neurophysiol – volume: 109 start-page: 259 year: 2012 end-page: 274 article-title: Evidence‐based therapy for recovery of function after spinal cord injury publication-title: Handb Clin Neurol – volume: 38 start-page: 473 year: 2000 end-page: 489 article-title: Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling publication-title: Spinal Cord – volume: 14 start-page: 14 year: 2006 end-page: 23 article-title: Modulation effects of epidural spinal cord stimulation on muscle activities during walking publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 377 start-page: 1938 year: 2011 end-page: 1947 article-title: Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study publication-title: Lancet – volume: 42 start-page: 401 year: 2004 end-page: 416 article-title: Stepping‐like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials publication-title: Spinal Cord – volume: 1 start-page: 58 year: 1985 end-page: 70 – year: 2013 – ident: e_1_2_7_13_1 doi: 10.1016/S0140-6736(11)60547-3 – ident: e_1_2_7_20_1 doi: 10.1007/s00221-012-3258-6 – ident: e_1_2_7_27_1 doi: 10.1016/0006-8993(75)90364-9 – ident: e_1_2_7_34_1 doi: 10.1038/sj.sc.3101615 – ident: e_1_2_7_19_1 doi: 10.1111/j.1525-1594.2008.00616.x – ident: e_1_2_7_16_1 doi: 10.1179/2045772313Y.0000000149 – volume: 49 start-page: 307 year: 1986 ident: e_1_2_7_38_1 article-title: Enhancement of voluntary motor function following spinal cord stimulation–case study publication-title: Appl Neurophysiol – ident: e_1_2_7_40_1 doi: 10.1136/jnnp.43.1.15 – ident: e_1_2_7_4_1 doi: 10.1093/brain/awf273 – ident: e_1_2_7_8_1 doi: 10.1186/1743-0003-10-5 – ident: e_1_2_7_32_1 doi: 10.1038/sj.sc.3101040 – ident: e_1_2_7_31_1 doi: 10.1109/TNSRE.2005.862694 – start-page: 1087 volume-title: Textbook for Stereotactic and Functional Neurosurgery year: 1998 ident: e_1_2_7_36_1 – ident: e_1_2_7_25_1 doi: 10.1111/j.1525-1594.2011.01213.x – ident: e_1_2_7_3_1 doi: 10.1038/sc.1992.61 – ident: e_1_2_7_26_1 doi: 10.1113/jphysiol.1994.sp020032 – ident: e_1_2_7_9_1 doi: 10.1310/sci1801-85 – ident: e_1_2_7_2_1 doi: 10.1089/neu.2007.0468 – ident: e_1_2_7_23_1 doi: 10.1046/j.1525-1403.2002._2005.x – ident: e_1_2_7_17_1 doi: 10.1515/bmt‐2013‐4014 – ident: e_1_2_7_12_1 doi: 10.1016/j.humov.2007.01.005 – start-page: 58 volume-title: Upper Motor Neuron Functions and Dysfunctions. Recent Achievements in Restorative Neurology year: 1985 ident: e_1_2_7_35_1 – ident: e_1_2_7_7_1 doi: 10.1093/brain/awh252 – ident: e_1_2_7_41_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.brainresrev.2007.07.012 – ident: e_1_2_7_28_1 doi: 10.1016/S0306-4522(98)00330-3 – ident: e_1_2_7_14_1 doi: 10.1002/mus.20700 – ident: e_1_2_7_39_1 doi: 10.1038/sj.sc.3101263 – ident: e_1_2_7_22_1 doi: 10.3171/jns.1993.78.2.0233 – volume: 25 start-page: 11 year: 2005 ident: e_1_2_7_11_1 article-title: Effect of peripheral afferent and central afferent input to the human lumbar spinal cord isolated from brain control publication-title: Biocybernetics Biomed Eng – ident: e_1_2_7_6_1 doi: 10.1152/jn.1997.77.2.797 – ident: e_1_2_7_18_1 doi: 10.1038/sj.sc.3101658 – ident: e_1_2_7_24_1 doi: 10.1109/TNSRE.2010.2054112 – ident: e_1_2_7_29_1 doi: 10.1152/jn.1943.6.2.111 – ident: e_1_2_7_21_1 doi: 10.1002/(SICI)1097-4598(199608)19:8<966::AID-MUS5>3.0.CO;2-6 – ident: e_1_2_7_37_1 doi: 10.1016/j.clineuro.2012.03.013 – ident: e_1_2_7_5_1 doi: 10.1016/B978-0-444-52137-8.00016-4 – ident: e_1_2_7_15_1 doi: 10.1093/acprof:oso/9780199746507.003.0010 – ident: e_1_2_7_30_1 doi: 10.1038/sj.sc.3101039 – ident: e_1_2_7_33_1 doi: 10.1111/j.1749-6632.1998.tb09062.x |
SSID | ssj0007406 |
Score | 2.439163 |
Snippet | The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E176 |
SubjectTerms | Adult Biomechanical Phenomena Electromyography Female Gait - physiology Human Humans Locomotor training Lumbosacral Region Male Muscle, Skeletal - physiopathology Neuromodulation Spinal Cord - physiopathology Spinal Cord Injuries - therapy Spinal cord injury Spinal Cord Stimulation Transcutaneous spinal cord stimulation Walking - physiology |
Title | Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals |
URI | https://api.istex.fr/ark:/67375/WNG-N1X3ZNN4-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faor.12615 https://www.ncbi.nlm.nih.gov/pubmed/26450344 https://www.proquest.com/docview/1722353060 https://www.proquest.com/docview/1722928499 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5KBfGL79q0VVYR8UuOZF8uWfx0HNYqXoTW6iHCsrvJSa1NSu4C1k_-AvE3-kuc3bzYSgXxW8JOSHYzM_tMMvMMwCP0f6mwUoSWxkXIjUQ_mDMb4uadCF3E6djXV8yy8e4BfzkX8zV42tfCtPwQwwc3ZxneXzsD12Z5xsh1VY9ixP-uwNzlajlAtPebOirhvq-mI1ALxZjPO1Yhl8UzXHluL7rklvXLRUDzPG71G8_ONfjQP3Kbb3I0alZmZL_-web4n3O6Dlc7QEomrQbdgLWivAmXZ90v91vwfdJ8PO4KlEpSLchbVFY8rU_Jq8q6XL6qJhPbNqEg5pT43c82CDqLqlmS_RPXd4tMMcgl-6vD465dGDksycxd-_PbD_RRLrEd4ftZaT_wqamLnLwYqsaWt-Fg59mb6W7YNXEILUcoGCZW5JZyxnIMTRAsptTgYaojbVLLUm0TQbmVqEo6jyTTGI9FCy4kR2dhpEjYHVgvq7LYAKIpNTEORUZrTl0_RO24eRB1UKk1WwTwpH-dynYM567RxmfVRzq4vsqvbwAPB9GTltbjIqHHXicGCV0fuTy4RKh32XOVxXP2Psu4mgaw3SuN6lzAUiEypExgRBYF8GAYRuN1f2TaV-BlJAIEKQO42yrbcDNEqsLxMeKsvMr8_TnV5PWeP9j8d9EtuILQT7Rpiduwvqqb4h7Cq5W57-3oF987Ibw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVoK-lHubUsAghHjJKontTSzxslpRtrAbpF5gVQlZjpOtSmlSZTcS5YkvQHwjX8LYudCiIiHeEnmsJPbM-IwzPgPwDP1fxLXgrg78zGWJQD-YUu3i4h1ylflR356vmMT90QF7M-XTJXjZnoWp-SG6DTdjGdZfGwM3G9IXrFwVZc_HAIBfgxVT0dsGVLu_yaNCZitrGgo1l_fZtOEVMnk8XddLq9GKGdgvV0HNy8jVLj3bN-Fj-9J1xslJr1okPf31Dz7H__2qW7DWYFIyqJXoNixl-R24Pmn-ut-F74Pq6LQ5o5STYkbeo77ibXlOxoU26XxFSQa6rkNBknNiF0BdIe7MimpO9s5M6S0yxDiX7C2OT5uKYeQ4JxPT9-e3H-imTG47IviL0rbhU1VmKdnpDo7N78HB9qv94cht6ji4miEadEPNUx0wSlOMThAvRkGCl5HyVBJpGikd8oBpgdqkUk9QhSGZN2NcMPQXieAhvQ_LeZFnG0BUECQ-NnmJUiwwJRGVoedB4BEIpejMgRftfErdkJybWhufZRvs4PhKO74OPO1Ez2pmj6uEnlul6CRUeWJS4UIuP8SvZexP6WEcMzl0YKvVGtl4gblEcBhQjkGZ58CTrhnt1_yUqafAygjECEI4sF5rW_cwBKvcUDLiV1md-ft7ysG7XXux-e-ij-HGaH8yluOd-O0DWEUkyOssxS1YXpRV9hDR1iJ5ZI3qF9mMJdc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVqq4AOU3UIpBCHHJKnHsTSxOqy1LC92AWkpXCMlynCwqpckqu5FoT30CxDPyJIydH1pUJMQtkceK7cyMv0nG3wA8Rf8XcS24q6mfuSwR6AfTQLu4eYdcZX7Ut-crxnF_a5-9nvDJErxoz8LU_BDdBzdjGdZfGwOfpdNzRq6Ksucj_udXYIX1vcio9Obub-6okNnCmoZBzeV9NmlohUwaT9f1wma0Ytb122VI8yJwtTvP6Dp8asdcJ5wc9apF0tOnf9A5_uekbsC1BpGSQa1Ca7CU5Tdhddz8c78F3wfV5-PmhFJOiin5gNqKt-UJ2Sm0SeYrSjLQdRUKkpwQu_3pClFnVlRzsjczhbfIEKNcsrc4PG7qhZHDnIxN359nP9BJmcx2xO_npW3Dl6rMUrLdHRub34b90cv3wy23qeLgaoZY0A01TzVlQZBibIJoMaIJXkbKU0mkg0jpkFOmBeqSSj0RKAzIvCnjgqG3SAQPgzuwnBd5dg-IojTxsclLlGLUFERUhpwHYQcVSgVTB563r1PqhuLcVNr4KttQB9dX2vV14EknOqt5PS4TemZ1opNQ5ZFJhAu5PIhfydifBB_jmMmhA-ut0sjGB8wlQkMacAzJPAced81oveaXTP0KrIxAhCCEA3drZesehlCVG0JGnJVVmb-PUw7e7tqL-_8u-ghW322O5M52_OYBXEUYyOsUxXVYXpRV9hCh1iLZsCb1C3FoJI8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmentation+of+Voluntary+Locomotor+Activity+by+Transcutaneous+Spinal+Cord+Stimulation+in+Motor-Incomplete+Spinal+Cord-Injured+Individuals&rft.jtitle=Artificial+organs&rft.au=Hofstoetter%2C+Ursula+S&rft.au=Krenn%2C+Matthias&rft.au=Danner%2C+Simon+M&rft.au=Hofer%2C+Christian&rft.date=2015-10-01&rft.issn=1525-1594&rft.eissn=1525-1594&rft.volume=39&rft.issue=10&rft.spage=E176&rft_id=info:doi/10.1111%2Faor.12615&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-564X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-564X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-564X&client=summon |