GALAMOST: GPU-accelerated large-scale molecular simulation toolkit

GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐ass...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 34; no. 25; pp. 2197 - 2211
Main Authors Zhu, You-Liang, Liu, Hong, Li, Zhan-Wei, Qian, Hu-Jun, Milano, Giuseppe, Lu, Zhong-Yuan
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 30.09.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit.
AbstractList GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail.
GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit.
GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail.GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail.
GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle -- particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. [PUBLICATION ABSTRACT]
Author Qian, Hu-Jun
Li, Zhan-Wei
Milano, Giuseppe
Liu, Hong
Zhu, You-Liang
Lu, Zhong-Yuan
Author_xml – sequence: 1
  givenname: You-Liang
  surname: Zhu
  fullname: Zhu, You-Liang
  organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China
– sequence: 2
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China
– sequence: 3
  givenname: Zhan-Wei
  surname: Li
  fullname: Li, Zhan-Wei
  organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
– sequence: 4
  givenname: Hu-Jun
  surname: Qian
  fullname: Qian, Hu-Jun
  organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China
– sequence: 5
  givenname: Giuseppe
  surname: Milano
  fullname: Milano, Giuseppe
  organization: Dipartimento di Chimica e Biologia and NANOMATES, Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno, I-84084 via Ponte don Melillo Fisciano (SA), Italy
– sequence: 6
  givenname: Zhong-Yuan
  surname: Lu
  fullname: Lu, Zhong-Yuan
  email: luzhy@jlu.edu.cn
  organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24137668$$D View this record in MEDLINE/PubMed
BookMark eNp90E9P2zAYBnALMUFhO_AFUCQu7BCw438xt9KxdlM3Jq0IxMVyHAe5ODHYiVi__bwWOCCxk2Xr97x6_eyB7c53BoADBE8QhMXpUuuTAmNGt8AIQcFyUfKbbTCCSBR5ySjaBXsxLiGEmDKyA3YLgjBnrByB8-l4Pv5x-Xtxlk1_XeVKa-NMUL2pM6fCncmjVs5krXdGD-kli7ZNZ299l_Xeu3vbfwQfGuWi-fR87oOrrxeLySyfX06_TcbzXBPKac4E4hwJToXGnKeLbmpRUkKKooGYi4bXvKIlI7VWDDPDFcWQowpVWlRalXgfHG_mPgT_OJjYy9bGtK5TnfFDlIgQTApIGE_06A1d-iF0abukihIRllxSh89qqFpTy4dgWxVW8qWdBD5vgA4-xmCaV4Kg_Ne8TM3LdfPJnr6x2vbrnvqgrPtf4sk6s3p_tPw-mbwk8k3Cxt78eU2ocC_TpzmV1z-ncnZ7TRblFy5n-C-U05-j
CODEN JCCHDD
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c03217
crossref_primary_10_1021_acs_langmuir_4c02170
crossref_primary_10_1039_C5CP05449D
crossref_primary_10_1021_acs_langmuir_2c00801
crossref_primary_10_1517_17460441_2014_941800
crossref_primary_10_1021_acs_langmuir_9b00714
crossref_primary_10_1007_s40242_022_2080_3
crossref_primary_10_1002_marc_202400087
crossref_primary_10_1039_C7CP01905J
crossref_primary_10_1080_08927022_2021_1951263
crossref_primary_10_1103_PhysRevE_104_044704
crossref_primary_10_1016_j_fmre_2022_09_012
crossref_primary_10_1002_anie_202409006
crossref_primary_10_1080_1539445X_2020_1741387
crossref_primary_10_1016_j_jmgm_2016_07_008
crossref_primary_10_1021_acs_jctc_3c00134
crossref_primary_10_1063_1_4904888
crossref_primary_10_12677_JAPC_2023_121002
crossref_primary_10_1039_C8RA09635J
crossref_primary_10_1039_D1NR06713C
crossref_primary_10_1021_acsmacrolett_8b00383
crossref_primary_10_1016_j_nantod_2023_101795
crossref_primary_10_1021_acsnano_1c11068
crossref_primary_10_1002_ange_202105207
crossref_primary_10_1021_acs_macromol_7b01753
crossref_primary_10_3390_polym12030528
crossref_primary_10_1021_acs_jctc_4c01337
crossref_primary_10_1039_C8SC03727B
crossref_primary_10_1002_adfm_201703006
crossref_primary_10_1360_SSPMA_2024_0042
crossref_primary_10_1002_pi_6437
crossref_primary_10_1063_5_0166202
crossref_primary_10_1103_PhysRevLett_130_258202
crossref_primary_10_1016_j_cplett_2017_09_010
crossref_primary_10_1063_1_4862234
crossref_primary_10_1016_j_commatsci_2024_112811
crossref_primary_10_1002_jcc_26395
crossref_primary_10_1007_s40242_017_6354_0
crossref_primary_10_1002_wcms_1444
crossref_primary_10_1021_acsnano_4c03147
crossref_primary_10_1039_C5CP06856H
crossref_primary_10_1039_C8CP02905A
crossref_primary_10_1063_1_4939623
crossref_primary_10_1063_5_0190580
crossref_primary_10_1073_pnas_1909319116
crossref_primary_10_1016_j_ijpharm_2016_11_049
crossref_primary_10_1021_acsnano_5b00344
crossref_primary_10_1002_ange_201407390
crossref_primary_10_1016_j_polymer_2023_125705
crossref_primary_10_1021_acs_jctc_0c01095
crossref_primary_10_1039_C9CP02550B
crossref_primary_10_1039_D2BM01478E
crossref_primary_10_1016_j_compscitech_2024_110583
crossref_primary_10_21105_joss_04149
crossref_primary_10_1021_acs_jpclett_9b03420
crossref_primary_10_1080_08927022_2019_1593976
crossref_primary_10_1039_D2SM00897A
crossref_primary_10_1039_C5TB00065C
crossref_primary_10_1088_1361_648X_abef25
crossref_primary_10_1021_acs_macromol_4c01204
crossref_primary_10_1039_C7CP07818H
crossref_primary_10_3390_polym14163269
crossref_primary_10_1016_j_eurpolymj_2019_109357
crossref_primary_10_1039_C5SM02712H
crossref_primary_10_1039_C9NR09656F
crossref_primary_10_1080_00268976_2020_1785571
crossref_primary_10_1007_s10118_024_3099_3
crossref_primary_10_1016_j_giant_2024_100345
crossref_primary_10_1007_s10118_023_2942_2
crossref_primary_10_1016_j_polymer_2014_11_049
crossref_primary_10_1039_D1CP05894K
crossref_primary_10_1039_C9NR05885K
crossref_primary_10_1103_PhysRevE_91_020401
crossref_primary_10_1103_PhysRevMaterials_3_125603
crossref_primary_10_1016_j_polymer_2020_122519
crossref_primary_10_1360_SSC_2022_0246
crossref_primary_10_1039_D0NR05303A
crossref_primary_10_3390_nano10112108
crossref_primary_10_1103_PhysRevE_93_012613
crossref_primary_10_1039_C6RA26127B
crossref_primary_10_1002_ange_202409006
crossref_primary_10_1038_s41467_023_42516_8
crossref_primary_10_2514_1_A33755
crossref_primary_10_1038_s41467_022_33125_y
crossref_primary_10_1021_acsnano_4c10973
crossref_primary_10_1039_C7CP05196D
crossref_primary_10_1039_D2SM00093H
crossref_primary_10_1039_D0CP05757F
crossref_primary_10_1103_PhysRevE_102_062101
crossref_primary_10_1021_acs_macromol_2c01919
crossref_primary_10_1021_acs_macromol_3c02347
crossref_primary_10_1021_acs_macromol_0c01383
crossref_primary_10_1063_5_0198388
crossref_primary_10_1063_5_0243907
crossref_primary_10_1063_5_0020733
crossref_primary_10_1063_5_0169062
crossref_primary_10_1039_C5SM02125A
crossref_primary_10_1016_j_dental_2021_06_003
crossref_primary_10_1021_acs_macromol_3c01805
crossref_primary_10_1016_j_memsci_2020_117826
crossref_primary_10_1039_C8SM00387D
crossref_primary_10_1039_C5NR07011B
crossref_primary_10_1021_acsnano_9b07984
crossref_primary_10_1371_journal_pone_0151704
crossref_primary_10_1039_D4SM01403K
crossref_primary_10_1039_D1SM00393C
crossref_primary_10_1021_acs_macromol_3c02337
crossref_primary_10_1039_D3NR00559C
crossref_primary_10_1063_1_5139574
crossref_primary_10_1080_00268976_2018_1434904
crossref_primary_10_1002_adfm_202308608
crossref_primary_10_1063_1_5089816
crossref_primary_10_1016_j_fluid_2020_112784
crossref_primary_10_1021_acsnano_6b00742
crossref_primary_10_1039_C9SM00267G
crossref_primary_10_1039_D1NR01443A
crossref_primary_10_1007_s11426_015_5430_x
crossref_primary_10_1016_j_clay_2023_106854
crossref_primary_10_1021_acs_langmuir_4c01912
crossref_primary_10_1039_C8CP03653E
crossref_primary_10_1016_j_cis_2021_102545
crossref_primary_10_1039_C5NR07497E
crossref_primary_10_1016_j_cplett_2017_04_015
crossref_primary_10_1016_j_memsci_2016_04_024
crossref_primary_10_1039_D4TB00899E
crossref_primary_10_1126_science_aba8653
crossref_primary_10_1016_j_polymer_2021_124234
crossref_primary_10_1007_s10118_023_2968_5
crossref_primary_10_1021_acs_jpclett_0c02960
crossref_primary_10_1021_acs_macromol_4c02220
crossref_primary_10_1021_acs_jctc_2c00107
crossref_primary_10_1016_j_cej_2024_154890
crossref_primary_10_1063_1_4908047
crossref_primary_10_1039_C8SM02472C
crossref_primary_10_1039_D3SM00872J
crossref_primary_10_1039_D3CP04479C
crossref_primary_10_1039_C6CP02376B
crossref_primary_10_1021_acs_chemrev_1c00864
crossref_primary_10_1002_anie_201407390
crossref_primary_10_1021_acs_jctc_0c00259
crossref_primary_10_1016_j_polymer_2024_126947
crossref_primary_10_1021_acs_jpcb_3c01555
crossref_primary_10_1002_anie_202410988
crossref_primary_10_1002_macp_201700029
crossref_primary_10_1021_acs_macromol_4c00293
crossref_primary_10_1039_C8SM01631C
crossref_primary_10_1002_mats_202400080
crossref_primary_10_1021_jacsau_3c00756
crossref_primary_10_1002_jcc_24495
crossref_primary_10_1021_acs_macromol_2c02138
crossref_primary_10_1016_j_anucene_2024_111104
crossref_primary_10_1126_sciadv_1603203
crossref_primary_10_1016_j_fmre_2021_06_014
crossref_primary_10_1021_acsnano_2c08614
crossref_primary_10_1016_j_cpc_2017_07_005
crossref_primary_10_1002_anie_202105207
crossref_primary_10_1021_acs_jpcb_9b09338
crossref_primary_10_1002_pi_6269
crossref_primary_10_1016_j_polymer_2022_124953
crossref_primary_10_1007_s10118_022_2699_z
crossref_primary_10_1039_C7CP07039J
crossref_primary_10_1021_acs_jpcb_7b06412
crossref_primary_10_1007_s40242_024_4181_7
crossref_primary_10_1002_anie_202410519
crossref_primary_10_1007_s10118_025_3295_9
crossref_primary_10_1016_j_jcis_2020_11_122
crossref_primary_10_1002_jcc_26428
crossref_primary_10_1016_j_cpc_2018_11_018
crossref_primary_10_1126_sciadv_aaw9120
crossref_primary_10_1021_acs_jctc_0c00954
crossref_primary_10_1103_PhysRevE_100_062606
crossref_primary_10_1016_j_seppur_2023_123614
crossref_primary_10_1021_acs_macromol_3c01990
crossref_primary_10_1039_C6CP05556G
crossref_primary_10_1088_1674_1056_27_8_088203
crossref_primary_10_1016_j_memsci_2017_11_019
crossref_primary_10_1039_c3cp51960k
crossref_primary_10_1016_j_giant_2021_100063
crossref_primary_10_1021_acs_langmuir_3c01875
crossref_primary_10_1002_ange_202410988
crossref_primary_10_1038_s41563_022_01393_0
crossref_primary_10_1039_D2SM00294A
crossref_primary_10_1021_acs_macromol_8b00309
crossref_primary_10_1103_PhysRevE_94_062601
crossref_primary_10_1021_acs_macromol_2c01780
crossref_primary_10_1007_s40242_023_3176_0
crossref_primary_10_1016_j_carbpol_2015_04_003
crossref_primary_10_1007_s10118_020_2487_6
crossref_primary_10_1039_C9CP01766F
crossref_primary_10_1063_5_0224224
crossref_primary_10_1039_C6CP07596G
crossref_primary_10_1021_acsami_0c12504
crossref_primary_10_1039_C9CP05577K
crossref_primary_10_1063_5_0216966
crossref_primary_10_1002_ange_202410519
crossref_primary_10_1039_D2SM01706G
crossref_primary_10_1021_ja412172f
crossref_primary_10_1021_acsnano_2c01051
crossref_primary_10_1021_acs_jpclett_4c01261
crossref_primary_10_1063_5_0180375
crossref_primary_10_1016_j_giant_2021_100070
crossref_primary_10_1021_acs_macromol_9b01051
crossref_primary_10_1039_D2SM00508E
crossref_primary_10_1039_D4CP02239D
crossref_primary_10_1063_5_0135483
crossref_primary_10_1103_PhysRevLett_124_218002
crossref_primary_10_1021_acs_macromol_3c00440
crossref_primary_10_1016_j_compscitech_2020_108250
crossref_primary_10_1021_acsnano_0c03291
crossref_primary_10_1002_adma_202313381
crossref_primary_10_1021_acs_macromol_4c03240
crossref_primary_10_1021_acsnano_0c03734
crossref_primary_10_1007_s10118_020_2352_7
crossref_primary_10_1063_5_0056293
crossref_primary_10_1007_s11426_019_9589_x
crossref_primary_10_1021_jacs_8b13902
crossref_primary_10_1039_D1SM01770E
crossref_primary_10_1039_C8CP03069C
crossref_primary_10_1021_acs_macromol_1c01431
crossref_primary_10_1021_acs_macromol_2c02061
crossref_primary_10_1021_ma502383n
crossref_primary_10_1021_acs_jpclett_7b00493
crossref_primary_10_1039_C9SM00165D
crossref_primary_10_1021_acs_macromol_3c00315
crossref_primary_10_1016_j_giant_2023_100219
crossref_primary_10_3390_polym14030404
crossref_primary_10_1021_acs_macromol_3c02606
crossref_primary_10_1016_j_cjsc_2024_100266
crossref_primary_10_1021_acs_macromol_9b01033
crossref_primary_10_1063_1_4962370
Cites_doi 10.1016/j.str.2005.11.014
10.1016/0021-9991(77)90098-5
10.1021/ja2081636
10.1021/la0513611
10.1039/c2sm25397f
10.1103/PhysRevA.34.2499
10.1002/jcc.20289
10.1016/j.cpc.2011.06.005
10.1016/j.jcp.2011.05.021
10.1103/PhysRevLett.107.227801
10.1063/1.2790005
10.1063/1.439486
10.1002/jcc.22883
10.1063/1.3142103
10.1007/s00214-012-1167-1
10.1021/ct900369w
10.1021/ma301743r
10.1103/PhysRevE.52.3730
10.1063/1.474784
10.1021/ct200909j
10.1021/ma202679r
10.1002/macp.200700245
10.1063/1.467468
10.1006/jcph.1995.1039
10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
10.1063/1.3299730
10.1021/jp804372s
10.1021/ct200132n
10.1039/C2RA22108J
10.1002/jcc.10307
10.1021/mz3003374
10.1021/jp0644558
10.1016/0010-4655(95)00042-E
10.1021/jp909959k
10.1529/biophysj.108.131565
10.1021/ma802817r
10.1126/science.1099988
10.1016/S0263-7855(96)00043-4
10.1007/s11426-011-4333-8
10.1021/ma801910r
10.1016/j.jcp.2008.01.047
10.1103/PhysRevA.31.1695
10.1002/jcc.21717
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
2013 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Sep 30, 2013
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: 2013 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Sep 30, 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
DOI 10.1002/jcc.23365
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2211
ExternalDocumentID 3055635481
24137668
10_1002_jcc_23365
JCC23365
ark_67375_WNG_HZW4T8D7_H
Genre news
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 21025416, 50930001
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2012CB821500
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
ID FETCH-LOGICAL-c4575-6917719759c377917cfd9854422f0379f7d7b5864dca636e7a53071b1bc9bca83
IEDL.DBID DR2
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 05:26:32 EDT 2025
Fri Jul 25 19:15:32 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 01:37:55 EDT 2025
Wed Jan 22 16:24:00 EST 2025
Wed Oct 30 09:53:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4575-6917719759c377917cfd9854422f0379f7d7b5864dca636e7a53071b1bc9bca83
Notes ark:/67375/WNG-HZW4T8D7-H
ArticleID:JCC23365
National Science Foundation of China - No. 21025416, 50930001
istex:E766B8DAD56D594F47970F2C4284897CB972996C
National Basic Research Program of China (973 Program) - No. 2012CB821500
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24137668
PQID 1428146204
PQPubID 48816
PageCount 15
ParticipantIDs proquest_miscellaneous_1443420467
proquest_journals_1428146204
pubmed_primary_24137668
crossref_primary_10_1002_jcc_23365
crossref_citationtrail_10_1002_jcc_23365
wiley_primary_10_1002_jcc_23365_JCC23365
istex_primary_ark_67375_WNG_HZW4T8D7_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 September 2013
PublicationDateYYYYMMDD 2013-09-30
PublicationDate_xml – month: 09
  year: 2013
  text: 30 September 2013
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Z. -W. Li, Z. -Y. Lu, Y. -L. Zhu, Z. -Y. Sun, L. -J. An, RSC Adv. 2013, 3, 813.
M. Müller, K. C. Daoulas, Phys. Rev. Lett. 2011, 107, 227801.
J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342.
Z. -W. Li, Z. -Y. Lu, Z. -Y. Sun, L. -J. An, Soft Matter 2012, 8, 6693.
J. -P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327.
Z. W. Li, L. J. Chen, Y. Zhao, Z. Y. Lu, J. Phys. Chem. B 2008, 112, 13842.
H. A. Karimi-Varzaneh, H.-J. Qian, X. Chen, P. Carbone, F. Müller-Plathe, J. Comput. Chem. 2011, 32, 1475.
W. G. Hoover, Phys. Rev. A 1986, 34, 2499.
D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24, 1624.
S. Turgman-Cohen, J. Genzer, J. Am. Chem. Soc. 2011, 133, 17567.
S. C. Glotzer, Science 2004, 306, 419.
C. L. Phillips, J. A. Anderson, S. C. Glotzer, J. Comput. Phys. 2011, 230, 7191.
Zhang, A. S. Keys, T. Chen, S. C. Glotzer, Langmuir 2005, 21, 11547.
S. Turgman-Cohen, J. Genzer, Macromolecules 2012, 45, 2128.
K. Jalili, F. Abbasi, A. Milchev, Macromolecules 2012, 45, 9827.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford University Press, USA, 1989).
Z. W. Li, Z. Y. Sun, Z. Y. Lu, J. Phys. Chem. B 2010, 114, 2353.
P. L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. 2008, 94, L75.
Y. -H. Xue, H. Liu, Z. -Y. Lu, X. -Z. Liang, J. Chem. Phys. 2010, 132, 044903.
A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, J. Chem. Theory Comput. 2011, 7, 2947.
G. E. Forsythe, Computer Methods For Mathematical Computations; Prentice-Hall: Englewood Cliffs, NJ, 1977.
T. D. Nguyen, C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Commun. 2011, 182, 2307.
V. A. Harmandaris, D. Reith, N. F. A. van der Vegt, K. Kremer, Macromol. Chem. Phys. 2007, 208, 2109.
H. C. Andersen, J. Chem. Phys. 1980, 72, 2384.
H. J. Qian, P. Carbone, X. Y. Chen, H. A. Karimi-Varzaneh, C. C. Liew, F. Müller-Plathe, Macromolecules 2008, 41, 9919.
H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 2005, 26, 1781.
H. Liu, H. -J. Qian, Y. Zhao, Z. -Y. Lu, J. Chem. Phys. 2007, 127, 144903.
W. Smith, T. R. Forester, J. Mol. Graphics 1996, 14, 136.
A. P. Lyubartsev, A. Laaksonen, Phys. Rev. E: Stat. Phys. Plasmas Fluids 1995, 52, 3730.
V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 2009, 5, 3211.
Z. W. Li, Y. H. Liu, Y. T. Liu, Z. Y. Lu, Sci. China Chem. 2011, 54, 1474.
S. Plimpton, J. Comput. Phys. 1995, 117, 1.
H. Liu, M. Li, Z. Y. Lu, Z. G. Zhang, C. C. Sun, Macromolecules 2009, 42, 2863.
A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. L. Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542.
W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
Y. Zhao, A. De Nicola, T. Kawakatsu, G. Milano, J. Comput. Chem. 2012, 33, 868.
H. Liu, Y. -L. Zhu, J. Zhang, Z. -Y. Lu, Z. -Y. Sun, ACS Macro Lett. 2012, 1, 1249.
D. Frenkel, B. Smit, Understanding Molecular Simulations, 2nd ed.; Academic Press: San Diego, 2002.
G. Milano, T. Kawakatsu, J. Chem. Phys. 2009, 130, 214106.
A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Theor. Chem. Acc. 2012, 131, 1.
L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J. Marrink, J. Chem. Theory Comput. 4, 819 (2008).
R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423.
G. J. Martyna, D. J. Tobias, M. L. Klein, J. Chem. Phys. 1994, 101, 4177.
A. Mitsutake, Y. Sugita, and Y. Okamoto, Pept. Sci. 2001, 60, 96.
P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, K. Schulten, Structure 2006, 14, 437.
L. J. Chen, H. J. Qian, Z. Y. Lu, Z. S. Li, C. C. Sun, J. Phys. Chem. B 2006, 110, 24093.
1995; 52
2013; 3
1995; 91
2007; 127
2009; 42
1986; 34
2006; 14
1995; 117
2006; 110
2008; 227
2011; 32
2011; 54
2005; 21
2009; 130
2002
2008; 4
1977; 23
2005; 26
2008; 94
1996; 14
2004; 306
2007; 208
2012; 33
2011; 133
2011; 7
1977
2011; 230
1994; 101
2001; 60
2012; 131
1997; 107
2011; 107
2012; 1
1980; 72
2010; 114
2003; 24
2010; 132
2009; 5
2008; 41
2013
2008; 112
2012; 45
1985; 31
2011; 182
2012; 8
1989
Li (10.1002/jcc.23365-BIB0027|jcc23365-cit-0027) 2011; 54
Li (10.1002/jcc.23365-BIB0025|jcc23365-cit-0025) 2008; 112
Liu (10.1002/jcc.23365-BIB0037|jcc23365-cit-0037) 2012; 1
De Nicola (10.1002/jcc.23365-BIB0047|jcc23365-cit-0047) 2011; 7
De Nicola (10.1002/jcc.23365-BIB0048|jcc23365-cit-0048) 2012; 131
10.1002/jcc.23365-BIB0014|jcc23365-cit-0014
Reith (10.1002/jcc.23365-BIB0002|jcc23365-cit-0002) 2003; 24
Mitsutake (10.1002/jcc.23365-BIB0004|jcc23365-cit-0004) 2001; 60
10.1002/jcc.23365-BIB0008|jcc23365-cit-0008
Lyubartsev (10.1002/jcc.23365-BIB0019|jcc23365-cit-0019) 1995; 52
Zhang (10.1002/jcc.23365-BIB0031|jcc23365-cit-0031) 2005; 21
Anderson (10.1002/jcc.23365-BIB0013|jcc23365-cit-0013) 2008; 227
Phillips (10.1002/jcc.23365-BIB0046|jcc23365-cit-0046) 2011; 230
Nguyen (10.1002/jcc.23365-BIB0033|jcc23365-cit-0033) 2011; 182
Xue (10.1002/jcc.23365-BIB0036|jcc23365-cit-0036) 2010; 132
Liu (10.1002/jcc.23365-BIB0034|jcc23365-cit-0034) 2007; 127
10.1002/jcc.23365-BIB0049|jcc23365-cit-0049
Phillips (10.1002/jcc.23365-BIB0005|jcc23365-cit-0005) 2005; 26
Berendsen (10.1002/jcc.23365-BIB0012|jcc23365-cit-0012) 1995; 91
Freddolino (10.1002/jcc.23365-BIB0007|jcc23365-cit-0007) 2006; 14
Plimpton (10.1002/jcc.23365-BIB0011|jcc23365-cit-0011) 1995; 117
Turgman-Cohen (10.1002/jcc.23365-BIB0038|jcc23365-cit-0038) 2011; 133
Karimi-Varzaneh (10.1002/jcc.23365-BIB0021|jcc23365-cit-0021) 2011; 32
Andersen (10.1002/jcc.23365-BIB0043|jcc23365-cit-0043) 1980; 72
Monticelli (10.1002/jcc.23365-BIB0022|jcc23365-cit-0022) 2008; 4
Turgman-Cohen (10.1002/jcc.23365-BIB0039|jcc23365-cit-0039) 2012; 45
Hoover (10.1002/jcc.23365-BIB0042|jcc23365-cit-0042) 1985; 31
Smith (10.1002/jcc.23365-BIB0009|jcc23365-cit-0009) 1996; 14
Martyna (10.1002/jcc.23365-BIB0045|jcc23365-cit-0045) 1994; 101
Frenkel (10.1002/jcc.23365-BIB0001|jcc23365-cit-0001) 2002
Ryckaert (10.1002/jcc.23365-BIB0032|jcc23365-cit-0032) 1977; 23
Götz (10.1002/jcc.23365-BIB0010|jcc23365-cit-0010) 2012; 8
Freddolino (10.1002/jcc.23365-BIB0006|jcc23365-cit-0006) 2008; 94
Jalili (10.1002/jcc.23365-BIB0040|jcc23365-cit-0040) 2012; 45
Liu (10.1002/jcc.23365-BIB0035|jcc23365-cit-0035) 2009; 42
Li (10.1002/jcc.23365-BIB0028|jcc23365-cit-0028) 2012; 8
Groot (10.1002/jcc.23365-BIB0024|jcc23365-cit-0024) 1997; 107
Zhao (10.1002/jcc.23365-BIB0016|jcc23365-cit-0016) 2012; 33
Hoover (10.1002/jcc.23365-BIB0044|jcc23365-cit-0044) 1986; 34
Müller (10.1002/jcc.23365-BIB0017|jcc23365-cit-0017) 2011; 107
Li (10.1002/jcc.23365-BIB0026|jcc23365-cit-0026) 2010; 114
Qian (10.1002/jcc.23365-BIB0050|jcc23365-cit-0050) 2008; 41
Allen (10.1002/jcc.23365-BIB0023|jcc23365-cit-0023) 1989
Harmandaris (10.1002/jcc.23365-BIB0020|jcc23365-cit-0020) 2007; 208
Forsythe (10.1002/jcc.23365-BIB0041|jcc23365-cit-0041) 1977
Milano (10.1002/jcc.23365-BIB0015|jcc23365-cit-0015) 2009; 130
Rühle (10.1002/jcc.23365-BIB0003|jcc23365-cit-0003) 2009; 5
Li (10.1002/jcc.23365-BIB0029|jcc23365-cit-0029) 2013; 3
Glotzer (10.1002/jcc.23365-BIB0030|jcc23365-cit-0030) 2004; 306
Chen (10.1002/jcc.23365-BIB0018|jcc23365-cit-0018) 2006; 110
References_xml – reference: S. C. Glotzer, Science 2004, 306, 419.
– reference: A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, J. Chem. Theory Comput. 2011, 7, 2947.
– reference: A. Mitsutake, Y. Sugita, and Y. Okamoto, Pept. Sci. 2001, 60, 96.
– reference: H. A. Karimi-Varzaneh, H.-J. Qian, X. Chen, P. Carbone, F. Müller-Plathe, J. Comput. Chem. 2011, 32, 1475.
– reference: W. G. Hoover, Phys. Rev. A 1986, 34, 2499.
– reference: V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 2009, 5, 3211.
– reference: J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342.
– reference: A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. L. Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542.
– reference: Z. -W. Li, Z. -Y. Lu, Y. -L. Zhu, Z. -Y. Sun, L. -J. An, RSC Adv. 2013, 3, 813.
– reference: H. C. Andersen, J. Chem. Phys. 1980, 72, 2384.
– reference: G. Milano, T. Kawakatsu, J. Chem. Phys. 2009, 130, 214106.
– reference: S. Plimpton, J. Comput. Phys. 1995, 117, 1.
– reference: W. Smith, T. R. Forester, J. Mol. Graphics 1996, 14, 136.
– reference: L. J. Chen, H. J. Qian, Z. Y. Lu, Z. S. Li, C. C. Sun, J. Phys. Chem. B 2006, 110, 24093.
– reference: W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
– reference: Z. W. Li, Y. H. Liu, Y. T. Liu, Z. Y. Lu, Sci. China Chem. 2011, 54, 1474.
– reference: A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Theor. Chem. Acc. 2012, 131, 1.
– reference: Zhang, A. S. Keys, T. Chen, S. C. Glotzer, Langmuir 2005, 21, 11547.
– reference: H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43.
– reference: J. -P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327.
– reference: H. Liu, H. -J. Qian, Y. Zhao, Z. -Y. Lu, J. Chem. Phys. 2007, 127, 144903.
– reference: P. L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. 2008, 94, L75.
– reference: S. Turgman-Cohen, J. Genzer, Macromolecules 2012, 45, 2128.
– reference: G. E. Forsythe, Computer Methods For Mathematical Computations; Prentice-Hall: Englewood Cliffs, NJ, 1977.
– reference: H. Liu, M. Li, Z. Y. Lu, Z. G. Zhang, C. C. Sun, Macromolecules 2009, 42, 2863.
– reference: S. Turgman-Cohen, J. Genzer, J. Am. Chem. Soc. 2011, 133, 17567.
– reference: K. Jalili, F. Abbasi, A. Milchev, Macromolecules 2012, 45, 9827.
– reference: V. A. Harmandaris, D. Reith, N. F. A. van der Vegt, K. Kremer, Macromol. Chem. Phys. 2007, 208, 2109.
– reference: Y. -H. Xue, H. Liu, Z. -Y. Lu, X. -Z. Liang, J. Chem. Phys. 2010, 132, 044903.
– reference: Z. W. Li, L. J. Chen, Y. Zhao, Z. Y. Lu, J. Phys. Chem. B 2008, 112, 13842.
– reference: J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 2005, 26, 1781.
– reference: M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford University Press, USA, 1989).
– reference: D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24, 1624.
– reference: C. L. Phillips, J. A. Anderson, S. C. Glotzer, J. Comput. Phys. 2011, 230, 7191.
– reference: Z. -W. Li, Z. -Y. Lu, Z. -Y. Sun, L. -J. An, Soft Matter 2012, 8, 6693.
– reference: L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J. Marrink, J. Chem. Theory Comput. 4, 819 (2008).
– reference: D. Frenkel, B. Smit, Understanding Molecular Simulations, 2nd ed.; Academic Press: San Diego, 2002.
– reference: G. J. Martyna, D. J. Tobias, M. L. Klein, J. Chem. Phys. 1994, 101, 4177.
– reference: Z. W. Li, Z. Y. Sun, Z. Y. Lu, J. Phys. Chem. B 2010, 114, 2353.
– reference: P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, K. Schulten, Structure 2006, 14, 437.
– reference: Y. Zhao, A. De Nicola, T. Kawakatsu, G. Milano, J. Comput. Chem. 2012, 33, 868.
– reference: M. Müller, K. C. Daoulas, Phys. Rev. Lett. 2011, 107, 227801.
– reference: T. D. Nguyen, C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Commun. 2011, 182, 2307.
– reference: R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423.
– reference: H. Liu, Y. -L. Zhu, J. Zhang, Z. -Y. Lu, Z. -Y. Sun, ACS Macro Lett. 2012, 1, 1249.
– reference: H. J. Qian, P. Carbone, X. Y. Chen, H. A. Karimi-Varzaneh, C. C. Liew, F. Müller-Plathe, Macromolecules 2008, 41, 9919.
– reference: A. P. Lyubartsev, A. Laaksonen, Phys. Rev. E: Stat. Phys. Plasmas Fluids 1995, 52, 3730.
– volume: 72
  start-page: 2384
  year: 1980
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 6693
  year: 2012
  publication-title: Soft Matter
– volume: 110
  start-page: 24093
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 26
  start-page: 1781
  year: 2005
  publication-title: J. Comput. Chem.
– year: 1989
– volume: 132
  start-page: 044903
  year: 2010
  publication-title: J. Chem. Phys
– volume: 23
  start-page: 327
  year: 1977
  publication-title: J. Comput. Phys
– volume: 107
  start-page: 227801
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 813
  year: 2013
  publication-title: RSC Adv.
– volume: 54
  start-page: 1474
  year: 2011
  publication-title: Sci. China Chem.
– volume: 4
  issue: 819
  year: 2008
  publication-title: J. Chem. Theory Comput.
– year: 1977
– volume: 182
  start-page: 2307
  year: 2011
  publication-title: Comput. Phys. Commun
– volume: 41
  start-page: 9919
  year: 2008
  publication-title: Macromolecules
– volume: 91
  start-page: 43
  year: 1995
  publication-title: Comput. Phys. Commun.
– volume: 21
  start-page: 11547
  year: 2005
  publication-title: Langmuir
– volume: 42
  start-page: 2863
  year: 2009
  publication-title: Macromolecules
– volume: 227
  start-page: 5342
  year: 2008
  publication-title: J. Comput. Phys.
– volume: 94
  start-page: 75
  year: 2008
  publication-title: Biophys. J.
– volume: 14
  start-page: 437
  year: 2006
  publication-title: Structure
– volume: 52
  start-page: 3730
  year: 1995
  publication-title: Phys. Rev. E: Stat. Phys. Plasmas Fluids
– volume: 230
  start-page: 7191
  year: 2011
  publication-title: J. Comput. Phys.
– volume: 127
  start-page: 144903
  year: 2007
  publication-title: J. Chem. Phys
– volume: 31
  start-page: 1695
  year: 1985
  publication-title: Phys. Rev. A
– volume: 34
  start-page: 2499
  year: 1986
  publication-title: Phys. Rev. A
– year: 2002
– volume: 60
  start-page: 96
  year: 2001
  publication-title: Pept. Sci.
– volume: 208
  start-page: 2109
  year: 2007
  publication-title: Macromol. Chem. Phys
– volume: 101
  start-page: 4177
  year: 1994
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 1249
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 130
  start-page: 214106
  year: 2009
  publication-title: J. Chem. Phys
– volume: 131
  start-page: 1
  year: 2012
  publication-title: Theor. Chem. Acc.
– volume: 114
  start-page: 2353
  year: 2010
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 2947
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 14
  start-page: 136
  year: 1996
  publication-title: J. Mol. Graphics
– volume: 24
  start-page: 1624
  year: 2003
  publication-title: J. Comput. Chem
– volume: 112
  start-page: 13842
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 33
  start-page: 868
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 8
  start-page: 1542
  year: 2012
  publication-title: J. Chem. Theory Comput
– volume: 32
  start-page: 1475
  year: 2011
  publication-title: J. Comput. Chem.
– volume: 133
  start-page: 17567
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3211
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 45
  start-page: 9827
  year: 2012
  publication-title: Macromolecules
– volume: 117
  start-page: 1
  year: 1995
  publication-title: J. Comput. Phys
– volume: 107
  start-page: 4423
  year: 1997
  publication-title: J. Chem. Phys.
– volume: 306
  start-page: 419
  year: 2004
  publication-title: Science
– year: 2013
– volume: 45
  start-page: 2128
  year: 2012
  publication-title: Macromolecules
– volume: 14
  start-page: 437
  year: 2006
  ident: 10.1002/jcc.23365-BIB0007|jcc23365-cit-0007
  publication-title: Structure
  doi: 10.1016/j.str.2005.11.014
– volume: 23
  start-page: 327
  year: 1977
  ident: 10.1002/jcc.23365-BIB0032|jcc23365-cit-0032
  publication-title: J. Comput. Phys
  doi: 10.1016/0021-9991(77)90098-5
– volume: 133
  start-page: 17567
  year: 2011
  ident: 10.1002/jcc.23365-BIB0038|jcc23365-cit-0038
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2081636
– volume: 21
  start-page: 11547
  year: 2005
  ident: 10.1002/jcc.23365-BIB0031|jcc23365-cit-0031
  publication-title: Langmuir
  doi: 10.1021/la0513611
– volume: 8
  start-page: 6693
  year: 2012
  ident: 10.1002/jcc.23365-BIB0028|jcc23365-cit-0028
  publication-title: Soft Matter
  doi: 10.1039/c2sm25397f
– volume: 34
  start-page: 2499
  year: 1986
  ident: 10.1002/jcc.23365-BIB0044|jcc23365-cit-0044
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.34.2499
– volume: 26
  start-page: 1781
  year: 2005
  ident: 10.1002/jcc.23365-BIB0005|jcc23365-cit-0005
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume-title: Computer Methods For Mathematical Computations
  year: 1977
  ident: 10.1002/jcc.23365-BIB0041|jcc23365-cit-0041
– volume: 182
  start-page: 2307
  year: 2011
  ident: 10.1002/jcc.23365-BIB0033|jcc23365-cit-0033
  publication-title: Comput. Phys. Commun
  doi: 10.1016/j.cpc.2011.06.005
– volume: 230
  start-page: 7191
  year: 2011
  ident: 10.1002/jcc.23365-BIB0046|jcc23365-cit-0046
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.05.021
– volume: 107
  start-page: 227801
  year: 2011
  ident: 10.1002/jcc.23365-BIB0017|jcc23365-cit-0017
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.227801
– volume: 127
  start-page: 144903
  year: 2007
  ident: 10.1002/jcc.23365-BIB0034|jcc23365-cit-0034
  publication-title: J. Chem. Phys
  doi: 10.1063/1.2790005
– volume: 72
  start-page: 2384
  year: 1980
  ident: 10.1002/jcc.23365-BIB0043|jcc23365-cit-0043
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439486
– volume: 33
  start-page: 868
  year: 2012
  ident: 10.1002/jcc.23365-BIB0016|jcc23365-cit-0016
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22883
– volume-title: Understanding Molecular Simulations
  year: 2002
  ident: 10.1002/jcc.23365-BIB0001|jcc23365-cit-0001
– volume: 130
  start-page: 214106
  year: 2009
  ident: 10.1002/jcc.23365-BIB0015|jcc23365-cit-0015
  publication-title: J. Chem. Phys
  doi: 10.1063/1.3142103
– volume: 131
  start-page: 1
  year: 2012
  ident: 10.1002/jcc.23365-BIB0048|jcc23365-cit-0048
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-012-1167-1
– volume: 5
  start-page: 3211
  year: 2009
  ident: 10.1002/jcc.23365-BIB0003|jcc23365-cit-0003
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900369w
– volume: 45
  start-page: 9827
  year: 2012
  ident: 10.1002/jcc.23365-BIB0040|jcc23365-cit-0040
  publication-title: Macromolecules
  doi: 10.1021/ma301743r
– volume: 52
  start-page: 3730
  year: 1995
  ident: 10.1002/jcc.23365-BIB0019|jcc23365-cit-0019
  publication-title: Phys. Rev. E: Stat. Phys. Plasmas Fluids
  doi: 10.1103/PhysRevE.52.3730
– volume: 107
  start-page: 4423
  year: 1997
  ident: 10.1002/jcc.23365-BIB0024|jcc23365-cit-0024
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474784
– volume: 8
  start-page: 1542
  year: 2012
  ident: 10.1002/jcc.23365-BIB0010|jcc23365-cit-0010
  publication-title: J. Chem. Theory Comput
  doi: 10.1021/ct200909j
– volume: 45
  start-page: 2128
  year: 2012
  ident: 10.1002/jcc.23365-BIB0039|jcc23365-cit-0039
  publication-title: Macromolecules
  doi: 10.1021/ma202679r
– volume-title: Computer Simulation of Liquids (Oxford Science Publications
  year: 1989
  ident: 10.1002/jcc.23365-BIB0023|jcc23365-cit-0023
– volume: 208
  start-page: 2109
  year: 2007
  ident: 10.1002/jcc.23365-BIB0020|jcc23365-cit-0020
  publication-title: Macromol. Chem. Phys
  doi: 10.1002/macp.200700245
– volume: 101
  start-page: 4177
  year: 1994
  ident: 10.1002/jcc.23365-BIB0045|jcc23365-cit-0045
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467468
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1002/jcc.23365-BIB0011|jcc23365-cit-0011
  publication-title: J. Comput. Phys
  doi: 10.1006/jcph.1995.1039
– volume: 60
  start-page: 96
  year: 2001
  ident: 10.1002/jcc.23365-BIB0004|jcc23365-cit-0004
  publication-title: Pept. Sci.
  doi: 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
– volume: 132
  start-page: 044903
  year: 2010
  ident: 10.1002/jcc.23365-BIB0036|jcc23365-cit-0036
  publication-title: J. Chem. Phys
  doi: 10.1063/1.3299730
– volume: 112
  start-page: 13842
  year: 2008
  ident: 10.1002/jcc.23365-BIB0025|jcc23365-cit-0025
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp804372s
– volume: 7
  start-page: 2947
  year: 2011
  ident: 10.1002/jcc.23365-BIB0047|jcc23365-cit-0047
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200132n
– volume: 3
  start-page: 813
  year: 2013
  ident: 10.1002/jcc.23365-BIB0029|jcc23365-cit-0029
  publication-title: RSC Adv.
  doi: 10.1039/C2RA22108J
– volume: 24
  start-page: 1624
  year: 2003
  ident: 10.1002/jcc.23365-BIB0002|jcc23365-cit-0002
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.10307
– ident: 10.1002/jcc.23365-BIB0008|jcc23365-cit-0008
– volume: 1
  start-page: 1249
  year: 2012
  ident: 10.1002/jcc.23365-BIB0037|jcc23365-cit-0037
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz3003374
– volume: 110
  start-page: 24093
  year: 2006
  ident: 10.1002/jcc.23365-BIB0018|jcc23365-cit-0018
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0644558
– ident: 10.1002/jcc.23365-BIB0049|jcc23365-cit-0049
– volume: 91
  start-page: 43
  year: 1995
  ident: 10.1002/jcc.23365-BIB0012|jcc23365-cit-0012
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-E
– volume: 4
  issue: 819
  year: 2008
  ident: 10.1002/jcc.23365-BIB0022|jcc23365-cit-0022
  publication-title: J. Chem. Theory Comput.
– volume: 114
  start-page: 2353
  year: 2010
  ident: 10.1002/jcc.23365-BIB0026|jcc23365-cit-0026
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp909959k
– volume: 94
  start-page: 75
  year: 2008
  ident: 10.1002/jcc.23365-BIB0006|jcc23365-cit-0006
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.131565
– volume: 42
  start-page: 2863
  year: 2009
  ident: 10.1002/jcc.23365-BIB0035|jcc23365-cit-0035
  publication-title: Macromolecules
  doi: 10.1021/ma802817r
– ident: 10.1002/jcc.23365-BIB0014|jcc23365-cit-0014
– volume: 306
  start-page: 419
  year: 2004
  ident: 10.1002/jcc.23365-BIB0030|jcc23365-cit-0030
  publication-title: Science
  doi: 10.1126/science.1099988
– volume: 14
  start-page: 136
  year: 1996
  ident: 10.1002/jcc.23365-BIB0009|jcc23365-cit-0009
  publication-title: J. Mol. Graphics
  doi: 10.1016/S0263-7855(96)00043-4
– volume: 54
  start-page: 1474
  year: 2011
  ident: 10.1002/jcc.23365-BIB0027|jcc23365-cit-0027
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-011-4333-8
– volume: 41
  start-page: 9919
  year: 2008
  ident: 10.1002/jcc.23365-BIB0050|jcc23365-cit-0050
  publication-title: Macromolecules
  doi: 10.1021/ma801910r
– volume: 227
  start-page: 5342
  year: 2008
  ident: 10.1002/jcc.23365-BIB0013|jcc23365-cit-0013
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.047
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1002/jcc.23365-BIB0042|jcc23365-cit-0042
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 32
  start-page: 1475
  year: 2011
  ident: 10.1002/jcc.23365-BIB0021|jcc23365-cit-0021
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21717
SSID ssj0003564
Score 2.5387433
Snippet GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the...
GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2197
SubjectTerms 1,2-Dipalmitoylphosphatidylcholine - chemistry
Charged particles
Computer Graphics
Density
Models, Molecular
Molecular Dynamics Simulation - standards
Molecular structure
Particle Size
Polymerization
Polymers
Polymers - chemistry
polymers MD GPU anisotropic particles polymerization
Title GALAMOST: GPU-accelerated large-scale molecular simulation toolkit
URI https://api.istex.fr/ark:/67375/WNG-HZW4T8D7-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.23365
https://www.ncbi.nlm.nih.gov/pubmed/24137668
https://www.proquest.com/docview/1428146204
https://www.proquest.com/docview/1443420467
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6atgd4YeOebUwBIcRLusTxJYGnqqOtpnUg1moTQrJsx5a2du20phLiiZ_Ab-SXYDuXaWhIiLcoOU7sc3wujo-_A_DaIK20yXGUqIJF1uDFUR4rFSnrzaQxmTG-HNDomA4n-PCMnK3B--YsTIUP0f5wc5rh7bVTcCGX-zegoRdKdVCaUnfA3OVquYDo8w10VEoq6CgbwUQZJUmDKhSj_bblLV-04dj67a5A83bc6h1PfxO-Nl2u8k2mnVUpO-r7H2iO_zmmLXhQB6Rht5pBD2FNzx_BvV5TB-4x9Afdo-7o48n4XTj4NPn146dQyvoqBzFRhDOXSG7vLa2odXjZ1NoNl-eXdV2wsFwsZtPz8glM-h_GvWFUV1-IFLYxXETtQo4lOSO5cqCECVOmyDOCMUImTlluWMEkySgulKAp1UwQay8SmUiVSyWy9Cmszxdz_RxCkVKKhRKxZhrnohD2NZIg2yxjhV3wBfC2kQNXNTS5q5Ax4xWoMuKWMdwzJoBXLelVhcdxF9EbL8yWQlxPXQIbI_z0eMCHX07xODtgfBjAbiNtXuvukjsMOus_UIwDeNk-tkx3WylirhcrR4NTbCkoC-BZNUvaj7mdSkZpZkflZf33fvLDXs9fbP876Q7cR74ih0tZ2YX18nqlX9i4qJR7sNE9GB2d7HlF-A2viQin
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a28N44X7JGBAQQryky8WxE8RL1dGG0RYErTZNQpbj2NLWrkVrKiGe-An8Rn4Jx85lGhoS4i1KjhP7HNvn2D75PoAXOlRS6ZR4gSyYhxOe76W-lJ5Eb5ZrnWht6YBGY5pNycFRfLQBb5p_YSp8iHbDzYwMO1-bAW42pPcuUENPpeyEUUTja7BlGL0Ncv7-pwvwqCiuwKMwhvESfN7gCvnhXlv0kjfaMor9dlWoeTlyta6nfxO-NJWuMk5mnXWZd-T3P_Ac_7dVt-BGHZO63aoT3YYNtbgD272GCu4u9AfdYXf04fPktTv4OP3146eQEt2VQZko3LnJJcd7K7S2cs8aul13dXJWU4O55XI5n52U92DafzvpZV5NwOBJgmGcR3Etx4KUxak0uIQBk7pIk5iQMNR-xFLNCpbHCSWFFDSiiokYp4wgD3KZ5lIk0X3YXCwX6iG4IqKUCCl8xRRJRSHwNXkcYrGEFbjmc-BVYwgua3RyQ5Ix5xWucshRMdwqxoHnrejXCpLjKqGX1pqthDifmRw2FvPD8YBnx4dkkuwznjmw25ib18N3xQ0MHbqQ0CcOPGsfo9LNaYpYqOXayJCIoARlDjyoukn7MXNYyShNsFXW2H-vJz_o9ezFzr-LPoXtbDIa8uG78ftHcD20BB0mg2UXNsvztXqMYVKZP7Gj4Tfbjgsv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwS8jOsgY0BACPGSLnF8ieGpamnL2MoErTZNkyzHsaXRrp3WVEI88RP2G_dLsHObhoaEeIuS48Q-J8fnOD75PoA3BmmlDcdBpDIW2AkvDHioVKBsNEuNSYwp6ID2hnQwxjuH5HAFPtT_wpT4EM0HN-cZxXztHPwsM9tXoKHflWqhOKbkFqxhGnLH29D9eoUdFZMSO8qmMEFCSVTDCoVou2l6LRitOb3-uCnTvJ64FpGndw-O6z6XBSeT1jJPW-rnH3CO_zmo-7BeZaR-u3yFHsCKnj2EO52aCO4R9Prt3fbel2-j935_f3z560IqZYOVw5jI_KmrJLfnFtbW2j-tyXb9xclpRQzm5_P5dHKSP4Zx7-OoMwgq-oVAYZvEBdSu5FjEGeHKoRJGTJmMJwRjhEwYM25YxlKSUJwpSWOqmSR2wojSKFU8VTKJN2B1Np_pp-DLmFIslQw105jLTNrbpATZZgnL7IrPg3e1HYSqsMkdRcZUlKjKSFjFiEIxHrxuRM9KQI6bhN4Wxmwk5PnEVbAxIg6GfTE4OsCjpMvEwIOt2tqict6FcCB0NoCgEHvwqrlsle72UuRMz5dOBsfYSlDmwZPyLWke5rYqGaWJHVVh67_3U-x0OsXB5r-LvoTb-92e2P00_PwM7qKCncOVr2zBan6-1M9tjpSnLwpf-A2xhAne
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GALAMOST%3A+GPU-accelerated+large-scale+molecular+simulation+toolkit&rft.jtitle=Journal+of+computational+chemistry&rft.au=Zhu%2C+You-Liang&rft.au=Liu%2C+Hong&rft.au=Li%2C+Zhan-Wei&rft.au=Qian%2C+Hu-Jun&rft.date=2013-09-30&rft.eissn=1096-987X&rft.volume=34&rft.issue=25&rft.spage=2197&rft_id=info:doi/10.1002%2Fjcc.23365&rft_id=info%3Apmid%2F24137668&rft.externalDocID=24137668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon