GALAMOST: GPU-accelerated large-scale molecular simulation toolkit
GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐ass...
Saved in:
Published in | Journal of computational chemistry Vol. 34; no. 25; pp. 2197 - 2211 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
30.09.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc.
A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit. |
---|---|
AbstractList | GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit. GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail.GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self-assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle-field MD technique where particle -- particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom-up coarse-graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle-density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain-growth polymerization model, by which the hierarchical self-assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. [PUBLICATION ABSTRACT] |
Author | Qian, Hu-Jun Li, Zhan-Wei Milano, Giuseppe Liu, Hong Zhu, You-Liang Lu, Zhong-Yuan |
Author_xml | – sequence: 1 givenname: You-Liang surname: Zhu fullname: Zhu, You-Liang organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China – sequence: 2 givenname: Hong surname: Liu fullname: Liu, Hong organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China – sequence: 3 givenname: Zhan-Wei surname: Li fullname: Li, Zhan-Wei organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China – sequence: 4 givenname: Hu-Jun surname: Qian fullname: Qian, Hu-Jun organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China – sequence: 5 givenname: Giuseppe surname: Milano fullname: Milano, Giuseppe organization: Dipartimento di Chimica e Biologia and NANOMATES, Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno, I-84084 via Ponte don Melillo Fisciano (SA), Italy – sequence: 6 givenname: Zhong-Yuan surname: Lu fullname: Lu, Zhong-Yuan email: luzhy@jlu.edu.cn organization: State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24137668$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E9P2zAYBnALMUFhO_AFUCQu7BCw438xt9KxdlM3Jq0IxMVyHAe5ODHYiVi__bwWOCCxk2Xr97x6_eyB7c53BoADBE8QhMXpUuuTAmNGt8AIQcFyUfKbbTCCSBR5ySjaBXsxLiGEmDKyA3YLgjBnrByB8-l4Pv5x-Xtxlk1_XeVKa-NMUL2pM6fCncmjVs5krXdGD-kli7ZNZ299l_Xeu3vbfwQfGuWi-fR87oOrrxeLySyfX06_TcbzXBPKac4E4hwJToXGnKeLbmpRUkKKooGYi4bXvKIlI7VWDDPDFcWQowpVWlRalXgfHG_mPgT_OJjYy9bGtK5TnfFDlIgQTApIGE_06A1d-iF0abukihIRllxSh89qqFpTy4dgWxVW8qWdBD5vgA4-xmCaV4Kg_Ne8TM3LdfPJnr6x2vbrnvqgrPtf4sk6s3p_tPw-mbwk8k3Cxt78eU2ocC_TpzmV1z-ncnZ7TRblFy5n-C-U05-j |
CODEN | JCCHDD |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c03217 crossref_primary_10_1021_acs_langmuir_4c02170 crossref_primary_10_1039_C5CP05449D crossref_primary_10_1021_acs_langmuir_2c00801 crossref_primary_10_1517_17460441_2014_941800 crossref_primary_10_1021_acs_langmuir_9b00714 crossref_primary_10_1007_s40242_022_2080_3 crossref_primary_10_1002_marc_202400087 crossref_primary_10_1039_C7CP01905J crossref_primary_10_1080_08927022_2021_1951263 crossref_primary_10_1103_PhysRevE_104_044704 crossref_primary_10_1016_j_fmre_2022_09_012 crossref_primary_10_1002_anie_202409006 crossref_primary_10_1080_1539445X_2020_1741387 crossref_primary_10_1016_j_jmgm_2016_07_008 crossref_primary_10_1021_acs_jctc_3c00134 crossref_primary_10_1063_1_4904888 crossref_primary_10_12677_JAPC_2023_121002 crossref_primary_10_1039_C8RA09635J crossref_primary_10_1039_D1NR06713C crossref_primary_10_1021_acsmacrolett_8b00383 crossref_primary_10_1016_j_nantod_2023_101795 crossref_primary_10_1021_acsnano_1c11068 crossref_primary_10_1002_ange_202105207 crossref_primary_10_1021_acs_macromol_7b01753 crossref_primary_10_3390_polym12030528 crossref_primary_10_1021_acs_jctc_4c01337 crossref_primary_10_1039_C8SC03727B crossref_primary_10_1002_adfm_201703006 crossref_primary_10_1360_SSPMA_2024_0042 crossref_primary_10_1002_pi_6437 crossref_primary_10_1063_5_0166202 crossref_primary_10_1103_PhysRevLett_130_258202 crossref_primary_10_1016_j_cplett_2017_09_010 crossref_primary_10_1063_1_4862234 crossref_primary_10_1016_j_commatsci_2024_112811 crossref_primary_10_1002_jcc_26395 crossref_primary_10_1007_s40242_017_6354_0 crossref_primary_10_1002_wcms_1444 crossref_primary_10_1021_acsnano_4c03147 crossref_primary_10_1039_C5CP06856H crossref_primary_10_1039_C8CP02905A crossref_primary_10_1063_1_4939623 crossref_primary_10_1063_5_0190580 crossref_primary_10_1073_pnas_1909319116 crossref_primary_10_1016_j_ijpharm_2016_11_049 crossref_primary_10_1021_acsnano_5b00344 crossref_primary_10_1002_ange_201407390 crossref_primary_10_1016_j_polymer_2023_125705 crossref_primary_10_1021_acs_jctc_0c01095 crossref_primary_10_1039_C9CP02550B crossref_primary_10_1039_D2BM01478E crossref_primary_10_1016_j_compscitech_2024_110583 crossref_primary_10_21105_joss_04149 crossref_primary_10_1021_acs_jpclett_9b03420 crossref_primary_10_1080_08927022_2019_1593976 crossref_primary_10_1039_D2SM00897A crossref_primary_10_1039_C5TB00065C crossref_primary_10_1088_1361_648X_abef25 crossref_primary_10_1021_acs_macromol_4c01204 crossref_primary_10_1039_C7CP07818H crossref_primary_10_3390_polym14163269 crossref_primary_10_1016_j_eurpolymj_2019_109357 crossref_primary_10_1039_C5SM02712H crossref_primary_10_1039_C9NR09656F crossref_primary_10_1080_00268976_2020_1785571 crossref_primary_10_1007_s10118_024_3099_3 crossref_primary_10_1016_j_giant_2024_100345 crossref_primary_10_1007_s10118_023_2942_2 crossref_primary_10_1016_j_polymer_2014_11_049 crossref_primary_10_1039_D1CP05894K crossref_primary_10_1039_C9NR05885K crossref_primary_10_1103_PhysRevE_91_020401 crossref_primary_10_1103_PhysRevMaterials_3_125603 crossref_primary_10_1016_j_polymer_2020_122519 crossref_primary_10_1360_SSC_2022_0246 crossref_primary_10_1039_D0NR05303A crossref_primary_10_3390_nano10112108 crossref_primary_10_1103_PhysRevE_93_012613 crossref_primary_10_1039_C6RA26127B crossref_primary_10_1002_ange_202409006 crossref_primary_10_1038_s41467_023_42516_8 crossref_primary_10_2514_1_A33755 crossref_primary_10_1038_s41467_022_33125_y crossref_primary_10_1021_acsnano_4c10973 crossref_primary_10_1039_C7CP05196D crossref_primary_10_1039_D2SM00093H crossref_primary_10_1039_D0CP05757F crossref_primary_10_1103_PhysRevE_102_062101 crossref_primary_10_1021_acs_macromol_2c01919 crossref_primary_10_1021_acs_macromol_3c02347 crossref_primary_10_1021_acs_macromol_0c01383 crossref_primary_10_1063_5_0198388 crossref_primary_10_1063_5_0243907 crossref_primary_10_1063_5_0020733 crossref_primary_10_1063_5_0169062 crossref_primary_10_1039_C5SM02125A crossref_primary_10_1016_j_dental_2021_06_003 crossref_primary_10_1021_acs_macromol_3c01805 crossref_primary_10_1016_j_memsci_2020_117826 crossref_primary_10_1039_C8SM00387D crossref_primary_10_1039_C5NR07011B crossref_primary_10_1021_acsnano_9b07984 crossref_primary_10_1371_journal_pone_0151704 crossref_primary_10_1039_D4SM01403K crossref_primary_10_1039_D1SM00393C crossref_primary_10_1021_acs_macromol_3c02337 crossref_primary_10_1039_D3NR00559C crossref_primary_10_1063_1_5139574 crossref_primary_10_1080_00268976_2018_1434904 crossref_primary_10_1002_adfm_202308608 crossref_primary_10_1063_1_5089816 crossref_primary_10_1016_j_fluid_2020_112784 crossref_primary_10_1021_acsnano_6b00742 crossref_primary_10_1039_C9SM00267G crossref_primary_10_1039_D1NR01443A crossref_primary_10_1007_s11426_015_5430_x crossref_primary_10_1016_j_clay_2023_106854 crossref_primary_10_1021_acs_langmuir_4c01912 crossref_primary_10_1039_C8CP03653E crossref_primary_10_1016_j_cis_2021_102545 crossref_primary_10_1039_C5NR07497E crossref_primary_10_1016_j_cplett_2017_04_015 crossref_primary_10_1016_j_memsci_2016_04_024 crossref_primary_10_1039_D4TB00899E crossref_primary_10_1126_science_aba8653 crossref_primary_10_1016_j_polymer_2021_124234 crossref_primary_10_1007_s10118_023_2968_5 crossref_primary_10_1021_acs_jpclett_0c02960 crossref_primary_10_1021_acs_macromol_4c02220 crossref_primary_10_1021_acs_jctc_2c00107 crossref_primary_10_1016_j_cej_2024_154890 crossref_primary_10_1063_1_4908047 crossref_primary_10_1039_C8SM02472C crossref_primary_10_1039_D3SM00872J crossref_primary_10_1039_D3CP04479C crossref_primary_10_1039_C6CP02376B crossref_primary_10_1021_acs_chemrev_1c00864 crossref_primary_10_1002_anie_201407390 crossref_primary_10_1021_acs_jctc_0c00259 crossref_primary_10_1016_j_polymer_2024_126947 crossref_primary_10_1021_acs_jpcb_3c01555 crossref_primary_10_1002_anie_202410988 crossref_primary_10_1002_macp_201700029 crossref_primary_10_1021_acs_macromol_4c00293 crossref_primary_10_1039_C8SM01631C crossref_primary_10_1002_mats_202400080 crossref_primary_10_1021_jacsau_3c00756 crossref_primary_10_1002_jcc_24495 crossref_primary_10_1021_acs_macromol_2c02138 crossref_primary_10_1016_j_anucene_2024_111104 crossref_primary_10_1126_sciadv_1603203 crossref_primary_10_1016_j_fmre_2021_06_014 crossref_primary_10_1021_acsnano_2c08614 crossref_primary_10_1016_j_cpc_2017_07_005 crossref_primary_10_1002_anie_202105207 crossref_primary_10_1021_acs_jpcb_9b09338 crossref_primary_10_1002_pi_6269 crossref_primary_10_1016_j_polymer_2022_124953 crossref_primary_10_1007_s10118_022_2699_z crossref_primary_10_1039_C7CP07039J crossref_primary_10_1021_acs_jpcb_7b06412 crossref_primary_10_1007_s40242_024_4181_7 crossref_primary_10_1002_anie_202410519 crossref_primary_10_1007_s10118_025_3295_9 crossref_primary_10_1016_j_jcis_2020_11_122 crossref_primary_10_1002_jcc_26428 crossref_primary_10_1016_j_cpc_2018_11_018 crossref_primary_10_1126_sciadv_aaw9120 crossref_primary_10_1021_acs_jctc_0c00954 crossref_primary_10_1103_PhysRevE_100_062606 crossref_primary_10_1016_j_seppur_2023_123614 crossref_primary_10_1021_acs_macromol_3c01990 crossref_primary_10_1039_C6CP05556G crossref_primary_10_1088_1674_1056_27_8_088203 crossref_primary_10_1016_j_memsci_2017_11_019 crossref_primary_10_1039_c3cp51960k crossref_primary_10_1016_j_giant_2021_100063 crossref_primary_10_1021_acs_langmuir_3c01875 crossref_primary_10_1002_ange_202410988 crossref_primary_10_1038_s41563_022_01393_0 crossref_primary_10_1039_D2SM00294A crossref_primary_10_1021_acs_macromol_8b00309 crossref_primary_10_1103_PhysRevE_94_062601 crossref_primary_10_1021_acs_macromol_2c01780 crossref_primary_10_1007_s40242_023_3176_0 crossref_primary_10_1016_j_carbpol_2015_04_003 crossref_primary_10_1007_s10118_020_2487_6 crossref_primary_10_1039_C9CP01766F crossref_primary_10_1063_5_0224224 crossref_primary_10_1039_C6CP07596G crossref_primary_10_1021_acsami_0c12504 crossref_primary_10_1039_C9CP05577K crossref_primary_10_1063_5_0216966 crossref_primary_10_1002_ange_202410519 crossref_primary_10_1039_D2SM01706G crossref_primary_10_1021_ja412172f crossref_primary_10_1021_acsnano_2c01051 crossref_primary_10_1021_acs_jpclett_4c01261 crossref_primary_10_1063_5_0180375 crossref_primary_10_1016_j_giant_2021_100070 crossref_primary_10_1021_acs_macromol_9b01051 crossref_primary_10_1039_D2SM00508E crossref_primary_10_1039_D4CP02239D crossref_primary_10_1063_5_0135483 crossref_primary_10_1103_PhysRevLett_124_218002 crossref_primary_10_1021_acs_macromol_3c00440 crossref_primary_10_1016_j_compscitech_2020_108250 crossref_primary_10_1021_acsnano_0c03291 crossref_primary_10_1002_adma_202313381 crossref_primary_10_1021_acs_macromol_4c03240 crossref_primary_10_1021_acsnano_0c03734 crossref_primary_10_1007_s10118_020_2352_7 crossref_primary_10_1063_5_0056293 crossref_primary_10_1007_s11426_019_9589_x crossref_primary_10_1021_jacs_8b13902 crossref_primary_10_1039_D1SM01770E crossref_primary_10_1039_C8CP03069C crossref_primary_10_1021_acs_macromol_1c01431 crossref_primary_10_1021_acs_macromol_2c02061 crossref_primary_10_1021_ma502383n crossref_primary_10_1021_acs_jpclett_7b00493 crossref_primary_10_1039_C9SM00165D crossref_primary_10_1021_acs_macromol_3c00315 crossref_primary_10_1016_j_giant_2023_100219 crossref_primary_10_3390_polym14030404 crossref_primary_10_1021_acs_macromol_3c02606 crossref_primary_10_1016_j_cjsc_2024_100266 crossref_primary_10_1021_acs_macromol_9b01033 crossref_primary_10_1063_1_4962370 |
Cites_doi | 10.1016/j.str.2005.11.014 10.1016/0021-9991(77)90098-5 10.1021/ja2081636 10.1021/la0513611 10.1039/c2sm25397f 10.1103/PhysRevA.34.2499 10.1002/jcc.20289 10.1016/j.cpc.2011.06.005 10.1016/j.jcp.2011.05.021 10.1103/PhysRevLett.107.227801 10.1063/1.2790005 10.1063/1.439486 10.1002/jcc.22883 10.1063/1.3142103 10.1007/s00214-012-1167-1 10.1021/ct900369w 10.1021/ma301743r 10.1103/PhysRevE.52.3730 10.1063/1.474784 10.1021/ct200909j 10.1021/ma202679r 10.1002/macp.200700245 10.1063/1.467468 10.1006/jcph.1995.1039 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F 10.1063/1.3299730 10.1021/jp804372s 10.1021/ct200132n 10.1039/C2RA22108J 10.1002/jcc.10307 10.1021/mz3003374 10.1021/jp0644558 10.1016/0010-4655(95)00042-E 10.1021/jp909959k 10.1529/biophysj.108.131565 10.1021/ma802817r 10.1126/science.1099988 10.1016/S0263-7855(96)00043-4 10.1007/s11426-011-4333-8 10.1021/ma801910r 10.1016/j.jcp.2008.01.047 10.1103/PhysRevA.31.1695 10.1002/jcc.21717 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. 2013 Wiley Periodicals, Inc. Copyright Wiley Subscription Services, Inc. Sep 30, 2013 |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. – notice: 2013 Wiley Periodicals, Inc. – notice: Copyright Wiley Subscription Services, Inc. Sep 30, 2013 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 |
DOI | 10.1002/jcc.23365 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 2211 |
ExternalDocumentID | 3055635481 24137668 10_1002_jcc_23365 JCC23365 ark_67375_WNG_HZW4T8D7_H |
Genre | news Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 21025416, 50930001 – fundername: National Basic Research Program of China (973 Program) funderid: 2012CB821500 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM JQ2 7X8 |
ID | FETCH-LOGICAL-c4575-6917719759c377917cfd9854422f0379f7d7b5864dca636e7a53071b1bc9bca83 |
IEDL.DBID | DR2 |
ISSN | 0192-8651 1096-987X |
IngestDate | Fri Jul 11 05:26:32 EDT 2025 Fri Jul 25 19:15:32 EDT 2025 Mon Jul 21 06:02:36 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Tue Jul 01 01:37:55 EDT 2025 Wed Jan 22 16:24:00 EST 2025 Wed Oct 30 09:53:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4575-6917719759c377917cfd9854422f0379f7d7b5864dca636e7a53071b1bc9bca83 |
Notes | ark:/67375/WNG-HZW4T8D7-H ArticleID:JCC23365 National Science Foundation of China - No. 21025416, 50930001 istex:E766B8DAD56D594F47970F2C4284897CB972996C National Basic Research Program of China (973 Program) - No. 2012CB821500 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24137668 |
PQID | 1428146204 |
PQPubID | 48816 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1443420467 proquest_journals_1428146204 pubmed_primary_24137668 crossref_primary_10_1002_jcc_23365 crossref_citationtrail_10_1002_jcc_23365 wiley_primary_10_1002_jcc_23365_JCC23365 istex_primary_ark_67375_WNG_HZW4T8D7_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 September 2013 |
PublicationDateYYYYMMDD | 2013-09-30 |
PublicationDate_xml | – month: 09 year: 2013 text: 30 September 2013 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J. Comput. Chem |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Z. -W. Li, Z. -Y. Lu, Y. -L. Zhu, Z. -Y. Sun, L. -J. An, RSC Adv. 2013, 3, 813. M. Müller, K. C. Daoulas, Phys. Rev. Lett. 2011, 107, 227801. J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342. Z. -W. Li, Z. -Y. Lu, Z. -Y. Sun, L. -J. An, Soft Matter 2012, 8, 6693. J. -P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327. Z. W. Li, L. J. Chen, Y. Zhao, Z. Y. Lu, J. Phys. Chem. B 2008, 112, 13842. H. A. Karimi-Varzaneh, H.-J. Qian, X. Chen, P. Carbone, F. Müller-Plathe, J. Comput. Chem. 2011, 32, 1475. W. G. Hoover, Phys. Rev. A 1986, 34, 2499. D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24, 1624. S. Turgman-Cohen, J. Genzer, J. Am. Chem. Soc. 2011, 133, 17567. S. C. Glotzer, Science 2004, 306, 419. C. L. Phillips, J. A. Anderson, S. C. Glotzer, J. Comput. Phys. 2011, 230, 7191. Zhang, A. S. Keys, T. Chen, S. C. Glotzer, Langmuir 2005, 21, 11547. S. Turgman-Cohen, J. Genzer, Macromolecules 2012, 45, 2128. K. Jalili, F. Abbasi, A. Milchev, Macromolecules 2012, 45, 9827. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford University Press, USA, 1989). Z. W. Li, Z. Y. Sun, Z. Y. Lu, J. Phys. Chem. B 2010, 114, 2353. P. L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. 2008, 94, L75. Y. -H. Xue, H. Liu, Z. -Y. Lu, X. -Z. Liang, J. Chem. Phys. 2010, 132, 044903. A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, J. Chem. Theory Comput. 2011, 7, 2947. G. E. Forsythe, Computer Methods For Mathematical Computations; Prentice-Hall: Englewood Cliffs, NJ, 1977. T. D. Nguyen, C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Commun. 2011, 182, 2307. V. A. Harmandaris, D. Reith, N. F. A. van der Vegt, K. Kremer, Macromol. Chem. Phys. 2007, 208, 2109. H. C. Andersen, J. Chem. Phys. 1980, 72, 2384. H. J. Qian, P. Carbone, X. Y. Chen, H. A. Karimi-Varzaneh, C. C. Liew, F. Müller-Plathe, Macromolecules 2008, 41, 9919. H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 2005, 26, 1781. H. Liu, H. -J. Qian, Y. Zhao, Z. -Y. Lu, J. Chem. Phys. 2007, 127, 144903. W. Smith, T. R. Forester, J. Mol. Graphics 1996, 14, 136. A. P. Lyubartsev, A. Laaksonen, Phys. Rev. E: Stat. Phys. Plasmas Fluids 1995, 52, 3730. V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 2009, 5, 3211. Z. W. Li, Y. H. Liu, Y. T. Liu, Z. Y. Lu, Sci. China Chem. 2011, 54, 1474. S. Plimpton, J. Comput. Phys. 1995, 117, 1. H. Liu, M. Li, Z. Y. Lu, Z. G. Zhang, C. C. Sun, Macromolecules 2009, 42, 2863. A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. L. Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542. W. G. Hoover, Phys. Rev. A 1985, 31, 1695. Y. Zhao, A. De Nicola, T. Kawakatsu, G. Milano, J. Comput. Chem. 2012, 33, 868. H. Liu, Y. -L. Zhu, J. Zhang, Z. -Y. Lu, Z. -Y. Sun, ACS Macro Lett. 2012, 1, 1249. D. Frenkel, B. Smit, Understanding Molecular Simulations, 2nd ed.; Academic Press: San Diego, 2002. G. Milano, T. Kawakatsu, J. Chem. Phys. 2009, 130, 214106. A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Theor. Chem. Acc. 2012, 131, 1. L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J. Marrink, J. Chem. Theory Comput. 4, 819 (2008). R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423. G. J. Martyna, D. J. Tobias, M. L. Klein, J. Chem. Phys. 1994, 101, 4177. A. Mitsutake, Y. Sugita, and Y. Okamoto, Pept. Sci. 2001, 60, 96. P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, K. Schulten, Structure 2006, 14, 437. L. J. Chen, H. J. Qian, Z. Y. Lu, Z. S. Li, C. C. Sun, J. Phys. Chem. B 2006, 110, 24093. 1995; 52 2013; 3 1995; 91 2007; 127 2009; 42 1986; 34 2006; 14 1995; 117 2006; 110 2008; 227 2011; 32 2011; 54 2005; 21 2009; 130 2002 2008; 4 1977; 23 2005; 26 2008; 94 1996; 14 2004; 306 2007; 208 2012; 33 2011; 133 2011; 7 1977 2011; 230 1994; 101 2001; 60 2012; 131 1997; 107 2011; 107 2012; 1 1980; 72 2010; 114 2003; 24 2010; 132 2009; 5 2008; 41 2013 2008; 112 2012; 45 1985; 31 2011; 182 2012; 8 1989 Li (10.1002/jcc.23365-BIB0027|jcc23365-cit-0027) 2011; 54 Li (10.1002/jcc.23365-BIB0025|jcc23365-cit-0025) 2008; 112 Liu (10.1002/jcc.23365-BIB0037|jcc23365-cit-0037) 2012; 1 De Nicola (10.1002/jcc.23365-BIB0047|jcc23365-cit-0047) 2011; 7 De Nicola (10.1002/jcc.23365-BIB0048|jcc23365-cit-0048) 2012; 131 10.1002/jcc.23365-BIB0014|jcc23365-cit-0014 Reith (10.1002/jcc.23365-BIB0002|jcc23365-cit-0002) 2003; 24 Mitsutake (10.1002/jcc.23365-BIB0004|jcc23365-cit-0004) 2001; 60 10.1002/jcc.23365-BIB0008|jcc23365-cit-0008 Lyubartsev (10.1002/jcc.23365-BIB0019|jcc23365-cit-0019) 1995; 52 Zhang (10.1002/jcc.23365-BIB0031|jcc23365-cit-0031) 2005; 21 Anderson (10.1002/jcc.23365-BIB0013|jcc23365-cit-0013) 2008; 227 Phillips (10.1002/jcc.23365-BIB0046|jcc23365-cit-0046) 2011; 230 Nguyen (10.1002/jcc.23365-BIB0033|jcc23365-cit-0033) 2011; 182 Xue (10.1002/jcc.23365-BIB0036|jcc23365-cit-0036) 2010; 132 Liu (10.1002/jcc.23365-BIB0034|jcc23365-cit-0034) 2007; 127 10.1002/jcc.23365-BIB0049|jcc23365-cit-0049 Phillips (10.1002/jcc.23365-BIB0005|jcc23365-cit-0005) 2005; 26 Berendsen (10.1002/jcc.23365-BIB0012|jcc23365-cit-0012) 1995; 91 Freddolino (10.1002/jcc.23365-BIB0007|jcc23365-cit-0007) 2006; 14 Plimpton (10.1002/jcc.23365-BIB0011|jcc23365-cit-0011) 1995; 117 Turgman-Cohen (10.1002/jcc.23365-BIB0038|jcc23365-cit-0038) 2011; 133 Karimi-Varzaneh (10.1002/jcc.23365-BIB0021|jcc23365-cit-0021) 2011; 32 Andersen (10.1002/jcc.23365-BIB0043|jcc23365-cit-0043) 1980; 72 Monticelli (10.1002/jcc.23365-BIB0022|jcc23365-cit-0022) 2008; 4 Turgman-Cohen (10.1002/jcc.23365-BIB0039|jcc23365-cit-0039) 2012; 45 Hoover (10.1002/jcc.23365-BIB0042|jcc23365-cit-0042) 1985; 31 Smith (10.1002/jcc.23365-BIB0009|jcc23365-cit-0009) 1996; 14 Martyna (10.1002/jcc.23365-BIB0045|jcc23365-cit-0045) 1994; 101 Frenkel (10.1002/jcc.23365-BIB0001|jcc23365-cit-0001) 2002 Ryckaert (10.1002/jcc.23365-BIB0032|jcc23365-cit-0032) 1977; 23 Götz (10.1002/jcc.23365-BIB0010|jcc23365-cit-0010) 2012; 8 Freddolino (10.1002/jcc.23365-BIB0006|jcc23365-cit-0006) 2008; 94 Jalili (10.1002/jcc.23365-BIB0040|jcc23365-cit-0040) 2012; 45 Liu (10.1002/jcc.23365-BIB0035|jcc23365-cit-0035) 2009; 42 Li (10.1002/jcc.23365-BIB0028|jcc23365-cit-0028) 2012; 8 Groot (10.1002/jcc.23365-BIB0024|jcc23365-cit-0024) 1997; 107 Zhao (10.1002/jcc.23365-BIB0016|jcc23365-cit-0016) 2012; 33 Hoover (10.1002/jcc.23365-BIB0044|jcc23365-cit-0044) 1986; 34 Müller (10.1002/jcc.23365-BIB0017|jcc23365-cit-0017) 2011; 107 Li (10.1002/jcc.23365-BIB0026|jcc23365-cit-0026) 2010; 114 Qian (10.1002/jcc.23365-BIB0050|jcc23365-cit-0050) 2008; 41 Allen (10.1002/jcc.23365-BIB0023|jcc23365-cit-0023) 1989 Harmandaris (10.1002/jcc.23365-BIB0020|jcc23365-cit-0020) 2007; 208 Forsythe (10.1002/jcc.23365-BIB0041|jcc23365-cit-0041) 1977 Milano (10.1002/jcc.23365-BIB0015|jcc23365-cit-0015) 2009; 130 Rühle (10.1002/jcc.23365-BIB0003|jcc23365-cit-0003) 2009; 5 Li (10.1002/jcc.23365-BIB0029|jcc23365-cit-0029) 2013; 3 Glotzer (10.1002/jcc.23365-BIB0030|jcc23365-cit-0030) 2004; 306 Chen (10.1002/jcc.23365-BIB0018|jcc23365-cit-0018) 2006; 110 |
References_xml | – reference: S. C. Glotzer, Science 2004, 306, 419. – reference: A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, J. Chem. Theory Comput. 2011, 7, 2947. – reference: A. Mitsutake, Y. Sugita, and Y. Okamoto, Pept. Sci. 2001, 60, 96. – reference: H. A. Karimi-Varzaneh, H.-J. Qian, X. Chen, P. Carbone, F. Müller-Plathe, J. Comput. Chem. 2011, 32, 1475. – reference: W. G. Hoover, Phys. Rev. A 1986, 34, 2499. – reference: V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, J. Chem. Theory Comput. 2009, 5, 3211. – reference: J. A. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 2008, 227, 5342. – reference: A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. L. Grand, R. C. Walker, J. Chem. Theory Comput. 2012, 8, 1542. – reference: Z. -W. Li, Z. -Y. Lu, Y. -L. Zhu, Z. -Y. Sun, L. -J. An, RSC Adv. 2013, 3, 813. – reference: H. C. Andersen, J. Chem. Phys. 1980, 72, 2384. – reference: G. Milano, T. Kawakatsu, J. Chem. Phys. 2009, 130, 214106. – reference: S. Plimpton, J. Comput. Phys. 1995, 117, 1. – reference: W. Smith, T. R. Forester, J. Mol. Graphics 1996, 14, 136. – reference: L. J. Chen, H. J. Qian, Z. Y. Lu, Z. S. Li, C. C. Sun, J. Phys. Chem. B 2006, 110, 24093. – reference: W. G. Hoover, Phys. Rev. A 1985, 31, 1695. – reference: Z. W. Li, Y. H. Liu, Y. T. Liu, Z. Y. Lu, Sci. China Chem. 2011, 54, 1474. – reference: A. De Nicola, Y. Zhao, T. Kawakatsu, D. Roccatano, G. Milano, Theor. Chem. Acc. 2012, 131, 1. – reference: Zhang, A. S. Keys, T. Chen, S. C. Glotzer, Langmuir 2005, 21, 11547. – reference: H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43. – reference: J. -P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327. – reference: H. Liu, H. -J. Qian, Y. Zhao, Z. -Y. Lu, J. Chem. Phys. 2007, 127, 144903. – reference: P. L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. 2008, 94, L75. – reference: S. Turgman-Cohen, J. Genzer, Macromolecules 2012, 45, 2128. – reference: G. E. Forsythe, Computer Methods For Mathematical Computations; Prentice-Hall: Englewood Cliffs, NJ, 1977. – reference: H. Liu, M. Li, Z. Y. Lu, Z. G. Zhang, C. C. Sun, Macromolecules 2009, 42, 2863. – reference: S. Turgman-Cohen, J. Genzer, J. Am. Chem. Soc. 2011, 133, 17567. – reference: K. Jalili, F. Abbasi, A. Milchev, Macromolecules 2012, 45, 9827. – reference: V. A. Harmandaris, D. Reith, N. F. A. van der Vegt, K. Kremer, Macromol. Chem. Phys. 2007, 208, 2109. – reference: Y. -H. Xue, H. Liu, Z. -Y. Lu, X. -Z. Liang, J. Chem. Phys. 2010, 132, 044903. – reference: Z. W. Li, L. J. Chen, Y. Zhao, Z. Y. Lu, J. Phys. Chem. B 2008, 112, 13842. – reference: J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 2005, 26, 1781. – reference: M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford University Press, USA, 1989). – reference: D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 2003, 24, 1624. – reference: C. L. Phillips, J. A. Anderson, S. C. Glotzer, J. Comput. Phys. 2011, 230, 7191. – reference: Z. -W. Li, Z. -Y. Lu, Z. -Y. Sun, L. -J. An, Soft Matter 2012, 8, 6693. – reference: L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J. Marrink, J. Chem. Theory Comput. 4, 819 (2008). – reference: D. Frenkel, B. Smit, Understanding Molecular Simulations, 2nd ed.; Academic Press: San Diego, 2002. – reference: G. J. Martyna, D. J. Tobias, M. L. Klein, J. Chem. Phys. 1994, 101, 4177. – reference: Z. W. Li, Z. Y. Sun, Z. Y. Lu, J. Phys. Chem. B 2010, 114, 2353. – reference: P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, K. Schulten, Structure 2006, 14, 437. – reference: Y. Zhao, A. De Nicola, T. Kawakatsu, G. Milano, J. Comput. Chem. 2012, 33, 868. – reference: M. Müller, K. C. Daoulas, Phys. Rev. Lett. 2011, 107, 227801. – reference: T. D. Nguyen, C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Commun. 2011, 182, 2307. – reference: R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423. – reference: H. Liu, Y. -L. Zhu, J. Zhang, Z. -Y. Lu, Z. -Y. Sun, ACS Macro Lett. 2012, 1, 1249. – reference: H. J. Qian, P. Carbone, X. Y. Chen, H. A. Karimi-Varzaneh, C. C. Liew, F. Müller-Plathe, Macromolecules 2008, 41, 9919. – reference: A. P. Lyubartsev, A. Laaksonen, Phys. Rev. E: Stat. Phys. Plasmas Fluids 1995, 52, 3730. – volume: 72 start-page: 2384 year: 1980 publication-title: J. Chem. Phys. – volume: 8 start-page: 6693 year: 2012 publication-title: Soft Matter – volume: 110 start-page: 24093 year: 2006 publication-title: J. Phys. Chem. B – volume: 26 start-page: 1781 year: 2005 publication-title: J. Comput. Chem. – year: 1989 – volume: 132 start-page: 044903 year: 2010 publication-title: J. Chem. Phys – volume: 23 start-page: 327 year: 1977 publication-title: J. Comput. Phys – volume: 107 start-page: 227801 year: 2011 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 813 year: 2013 publication-title: RSC Adv. – volume: 54 start-page: 1474 year: 2011 publication-title: Sci. China Chem. – volume: 4 issue: 819 year: 2008 publication-title: J. Chem. Theory Comput. – year: 1977 – volume: 182 start-page: 2307 year: 2011 publication-title: Comput. Phys. Commun – volume: 41 start-page: 9919 year: 2008 publication-title: Macromolecules – volume: 91 start-page: 43 year: 1995 publication-title: Comput. Phys. Commun. – volume: 21 start-page: 11547 year: 2005 publication-title: Langmuir – volume: 42 start-page: 2863 year: 2009 publication-title: Macromolecules – volume: 227 start-page: 5342 year: 2008 publication-title: J. Comput. Phys. – volume: 94 start-page: 75 year: 2008 publication-title: Biophys. J. – volume: 14 start-page: 437 year: 2006 publication-title: Structure – volume: 52 start-page: 3730 year: 1995 publication-title: Phys. Rev. E: Stat. Phys. Plasmas Fluids – volume: 230 start-page: 7191 year: 2011 publication-title: J. Comput. Phys. – volume: 127 start-page: 144903 year: 2007 publication-title: J. Chem. Phys – volume: 31 start-page: 1695 year: 1985 publication-title: Phys. Rev. A – volume: 34 start-page: 2499 year: 1986 publication-title: Phys. Rev. A – year: 2002 – volume: 60 start-page: 96 year: 2001 publication-title: Pept. Sci. – volume: 208 start-page: 2109 year: 2007 publication-title: Macromol. Chem. Phys – volume: 101 start-page: 4177 year: 1994 publication-title: J. Chem. Phys. – volume: 1 start-page: 1249 year: 2012 publication-title: ACS Macro Lett. – volume: 130 start-page: 214106 year: 2009 publication-title: J. Chem. Phys – volume: 131 start-page: 1 year: 2012 publication-title: Theor. Chem. Acc. – volume: 114 start-page: 2353 year: 2010 publication-title: J. Phys. Chem. B – volume: 7 start-page: 2947 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 14 start-page: 136 year: 1996 publication-title: J. Mol. Graphics – volume: 24 start-page: 1624 year: 2003 publication-title: J. Comput. Chem – volume: 112 start-page: 13842 year: 2008 publication-title: J. Phys. Chem. B – volume: 33 start-page: 868 year: 2012 publication-title: J. Comput. Chem. – volume: 8 start-page: 1542 year: 2012 publication-title: J. Chem. Theory Comput – volume: 32 start-page: 1475 year: 2011 publication-title: J. Comput. Chem. – volume: 133 start-page: 17567 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3211 year: 2009 publication-title: J. Chem. Theory Comput. – volume: 45 start-page: 9827 year: 2012 publication-title: Macromolecules – volume: 117 start-page: 1 year: 1995 publication-title: J. Comput. Phys – volume: 107 start-page: 4423 year: 1997 publication-title: J. Chem. Phys. – volume: 306 start-page: 419 year: 2004 publication-title: Science – year: 2013 – volume: 45 start-page: 2128 year: 2012 publication-title: Macromolecules – volume: 14 start-page: 437 year: 2006 ident: 10.1002/jcc.23365-BIB0007|jcc23365-cit-0007 publication-title: Structure doi: 10.1016/j.str.2005.11.014 – volume: 23 start-page: 327 year: 1977 ident: 10.1002/jcc.23365-BIB0032|jcc23365-cit-0032 publication-title: J. Comput. Phys doi: 10.1016/0021-9991(77)90098-5 – volume: 133 start-page: 17567 year: 2011 ident: 10.1002/jcc.23365-BIB0038|jcc23365-cit-0038 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2081636 – volume: 21 start-page: 11547 year: 2005 ident: 10.1002/jcc.23365-BIB0031|jcc23365-cit-0031 publication-title: Langmuir doi: 10.1021/la0513611 – volume: 8 start-page: 6693 year: 2012 ident: 10.1002/jcc.23365-BIB0028|jcc23365-cit-0028 publication-title: Soft Matter doi: 10.1039/c2sm25397f – volume: 34 start-page: 2499 year: 1986 ident: 10.1002/jcc.23365-BIB0044|jcc23365-cit-0044 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.34.2499 – volume: 26 start-page: 1781 year: 2005 ident: 10.1002/jcc.23365-BIB0005|jcc23365-cit-0005 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume-title: Computer Methods For Mathematical Computations year: 1977 ident: 10.1002/jcc.23365-BIB0041|jcc23365-cit-0041 – volume: 182 start-page: 2307 year: 2011 ident: 10.1002/jcc.23365-BIB0033|jcc23365-cit-0033 publication-title: Comput. Phys. Commun doi: 10.1016/j.cpc.2011.06.005 – volume: 230 start-page: 7191 year: 2011 ident: 10.1002/jcc.23365-BIB0046|jcc23365-cit-0046 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.05.021 – volume: 107 start-page: 227801 year: 2011 ident: 10.1002/jcc.23365-BIB0017|jcc23365-cit-0017 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.227801 – volume: 127 start-page: 144903 year: 2007 ident: 10.1002/jcc.23365-BIB0034|jcc23365-cit-0034 publication-title: J. Chem. Phys doi: 10.1063/1.2790005 – volume: 72 start-page: 2384 year: 1980 ident: 10.1002/jcc.23365-BIB0043|jcc23365-cit-0043 publication-title: J. Chem. Phys. doi: 10.1063/1.439486 – volume: 33 start-page: 868 year: 2012 ident: 10.1002/jcc.23365-BIB0016|jcc23365-cit-0016 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22883 – volume-title: Understanding Molecular Simulations year: 2002 ident: 10.1002/jcc.23365-BIB0001|jcc23365-cit-0001 – volume: 130 start-page: 214106 year: 2009 ident: 10.1002/jcc.23365-BIB0015|jcc23365-cit-0015 publication-title: J. Chem. Phys doi: 10.1063/1.3142103 – volume: 131 start-page: 1 year: 2012 ident: 10.1002/jcc.23365-BIB0048|jcc23365-cit-0048 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-012-1167-1 – volume: 5 start-page: 3211 year: 2009 ident: 10.1002/jcc.23365-BIB0003|jcc23365-cit-0003 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900369w – volume: 45 start-page: 9827 year: 2012 ident: 10.1002/jcc.23365-BIB0040|jcc23365-cit-0040 publication-title: Macromolecules doi: 10.1021/ma301743r – volume: 52 start-page: 3730 year: 1995 ident: 10.1002/jcc.23365-BIB0019|jcc23365-cit-0019 publication-title: Phys. Rev. E: Stat. Phys. Plasmas Fluids doi: 10.1103/PhysRevE.52.3730 – volume: 107 start-page: 4423 year: 1997 ident: 10.1002/jcc.23365-BIB0024|jcc23365-cit-0024 publication-title: J. Chem. Phys. doi: 10.1063/1.474784 – volume: 8 start-page: 1542 year: 2012 ident: 10.1002/jcc.23365-BIB0010|jcc23365-cit-0010 publication-title: J. Chem. Theory Comput doi: 10.1021/ct200909j – volume: 45 start-page: 2128 year: 2012 ident: 10.1002/jcc.23365-BIB0039|jcc23365-cit-0039 publication-title: Macromolecules doi: 10.1021/ma202679r – volume-title: Computer Simulation of Liquids (Oxford Science Publications year: 1989 ident: 10.1002/jcc.23365-BIB0023|jcc23365-cit-0023 – volume: 208 start-page: 2109 year: 2007 ident: 10.1002/jcc.23365-BIB0020|jcc23365-cit-0020 publication-title: Macromol. Chem. Phys doi: 10.1002/macp.200700245 – volume: 101 start-page: 4177 year: 1994 ident: 10.1002/jcc.23365-BIB0045|jcc23365-cit-0045 publication-title: J. Chem. Phys. doi: 10.1063/1.467468 – volume: 117 start-page: 1 year: 1995 ident: 10.1002/jcc.23365-BIB0011|jcc23365-cit-0011 publication-title: J. Comput. Phys doi: 10.1006/jcph.1995.1039 – volume: 60 start-page: 96 year: 2001 ident: 10.1002/jcc.23365-BIB0004|jcc23365-cit-0004 publication-title: Pept. Sci. doi: 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F – volume: 132 start-page: 044903 year: 2010 ident: 10.1002/jcc.23365-BIB0036|jcc23365-cit-0036 publication-title: J. Chem. Phys doi: 10.1063/1.3299730 – volume: 112 start-page: 13842 year: 2008 ident: 10.1002/jcc.23365-BIB0025|jcc23365-cit-0025 publication-title: J. Phys. Chem. B doi: 10.1021/jp804372s – volume: 7 start-page: 2947 year: 2011 ident: 10.1002/jcc.23365-BIB0047|jcc23365-cit-0047 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200132n – volume: 3 start-page: 813 year: 2013 ident: 10.1002/jcc.23365-BIB0029|jcc23365-cit-0029 publication-title: RSC Adv. doi: 10.1039/C2RA22108J – volume: 24 start-page: 1624 year: 2003 ident: 10.1002/jcc.23365-BIB0002|jcc23365-cit-0002 publication-title: J. Comput. Chem doi: 10.1002/jcc.10307 – ident: 10.1002/jcc.23365-BIB0008|jcc23365-cit-0008 – volume: 1 start-page: 1249 year: 2012 ident: 10.1002/jcc.23365-BIB0037|jcc23365-cit-0037 publication-title: ACS Macro Lett. doi: 10.1021/mz3003374 – volume: 110 start-page: 24093 year: 2006 ident: 10.1002/jcc.23365-BIB0018|jcc23365-cit-0018 publication-title: J. Phys. Chem. B doi: 10.1021/jp0644558 – ident: 10.1002/jcc.23365-BIB0049|jcc23365-cit-0049 – volume: 91 start-page: 43 year: 1995 ident: 10.1002/jcc.23365-BIB0012|jcc23365-cit-0012 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00042-E – volume: 4 issue: 819 year: 2008 ident: 10.1002/jcc.23365-BIB0022|jcc23365-cit-0022 publication-title: J. Chem. Theory Comput. – volume: 114 start-page: 2353 year: 2010 ident: 10.1002/jcc.23365-BIB0026|jcc23365-cit-0026 publication-title: J. Phys. Chem. B doi: 10.1021/jp909959k – volume: 94 start-page: 75 year: 2008 ident: 10.1002/jcc.23365-BIB0006|jcc23365-cit-0006 publication-title: Biophys. J. doi: 10.1529/biophysj.108.131565 – volume: 42 start-page: 2863 year: 2009 ident: 10.1002/jcc.23365-BIB0035|jcc23365-cit-0035 publication-title: Macromolecules doi: 10.1021/ma802817r – ident: 10.1002/jcc.23365-BIB0014|jcc23365-cit-0014 – volume: 306 start-page: 419 year: 2004 ident: 10.1002/jcc.23365-BIB0030|jcc23365-cit-0030 publication-title: Science doi: 10.1126/science.1099988 – volume: 14 start-page: 136 year: 1996 ident: 10.1002/jcc.23365-BIB0009|jcc23365-cit-0009 publication-title: J. Mol. Graphics doi: 10.1016/S0263-7855(96)00043-4 – volume: 54 start-page: 1474 year: 2011 ident: 10.1002/jcc.23365-BIB0027|jcc23365-cit-0027 publication-title: Sci. China Chem. doi: 10.1007/s11426-011-4333-8 – volume: 41 start-page: 9919 year: 2008 ident: 10.1002/jcc.23365-BIB0050|jcc23365-cit-0050 publication-title: Macromolecules doi: 10.1021/ma801910r – volume: 227 start-page: 5342 year: 2008 ident: 10.1002/jcc.23365-BIB0013|jcc23365-cit-0013 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.01.047 – volume: 31 start-page: 1695 year: 1985 ident: 10.1002/jcc.23365-BIB0042|jcc23365-cit-0042 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 32 start-page: 1475 year: 2011 ident: 10.1002/jcc.23365-BIB0021|jcc23365-cit-0021 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21717 |
SSID | ssj0003564 |
Score | 2.5387433 |
Snippet | GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the... GALAMOST [graphics processing unit (GPU)-accelerated large-scale molecular simulation toolkit] is a molecular simulation package designed to utilize the... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2197 |
SubjectTerms | 1,2-Dipalmitoylphosphatidylcholine - chemistry Charged particles Computer Graphics Density Models, Molecular Molecular Dynamics Simulation - standards Molecular structure Particle Size Polymerization Polymers Polymers - chemistry polymers MD GPU anisotropic particles polymerization |
Title | GALAMOST: GPU-accelerated large-scale molecular simulation toolkit |
URI | https://api.istex.fr/ark:/67375/WNG-HZW4T8D7-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.23365 https://www.ncbi.nlm.nih.gov/pubmed/24137668 https://www.proquest.com/docview/1428146204 https://www.proquest.com/docview/1443420467 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6atgd4YeOebUwBIcRLusTxJYGnqqOtpnUg1moTQrJsx5a2du20phLiiZ_Ab-SXYDuXaWhIiLcoOU7sc3wujo-_A_DaIK20yXGUqIJF1uDFUR4rFSnrzaQxmTG-HNDomA4n-PCMnK3B--YsTIUP0f5wc5rh7bVTcCGX-zegoRdKdVCaUnfA3OVquYDo8w10VEoq6CgbwUQZJUmDKhSj_bblLV-04dj67a5A83bc6h1PfxO-Nl2u8k2mnVUpO-r7H2iO_zmmLXhQB6Rht5pBD2FNzx_BvV5TB-4x9Afdo-7o48n4XTj4NPn146dQyvoqBzFRhDOXSG7vLa2odXjZ1NoNl-eXdV2wsFwsZtPz8glM-h_GvWFUV1-IFLYxXETtQo4lOSO5cqCECVOmyDOCMUImTlluWMEkySgulKAp1UwQay8SmUiVSyWy9Cmszxdz_RxCkVKKhRKxZhrnohD2NZIg2yxjhV3wBfC2kQNXNTS5q5Ax4xWoMuKWMdwzJoBXLelVhcdxF9EbL8yWQlxPXQIbI_z0eMCHX07xODtgfBjAbiNtXuvukjsMOus_UIwDeNk-tkx3WylirhcrR4NTbCkoC-BZNUvaj7mdSkZpZkflZf33fvLDXs9fbP876Q7cR74ih0tZ2YX18nqlX9i4qJR7sNE9GB2d7HlF-A2viQin |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a28N44X7JGBAQQryky8WxE8RL1dGG0RYErTZNQpbj2NLWrkVrKiGe-An8Rn4Jx85lGhoS4i1KjhP7HNvn2D75PoAXOlRS6ZR4gSyYhxOe76W-lJ5Eb5ZrnWht6YBGY5pNycFRfLQBb5p_YSp8iHbDzYwMO1-bAW42pPcuUENPpeyEUUTja7BlGL0Ncv7-pwvwqCiuwKMwhvESfN7gCvnhXlv0kjfaMor9dlWoeTlyta6nfxO-NJWuMk5mnXWZd-T3P_Ac_7dVt-BGHZO63aoT3YYNtbgD272GCu4u9AfdYXf04fPktTv4OP3146eQEt2VQZko3LnJJcd7K7S2cs8aul13dXJWU4O55XI5n52U92DafzvpZV5NwOBJgmGcR3Etx4KUxak0uIQBk7pIk5iQMNR-xFLNCpbHCSWFFDSiiokYp4wgD3KZ5lIk0X3YXCwX6iG4IqKUCCl8xRRJRSHwNXkcYrGEFbjmc-BVYwgua3RyQ5Ix5xWucshRMdwqxoHnrejXCpLjKqGX1pqthDifmRw2FvPD8YBnx4dkkuwznjmw25ib18N3xQ0MHbqQ0CcOPGsfo9LNaYpYqOXayJCIoARlDjyoukn7MXNYyShNsFXW2H-vJz_o9ezFzr-LPoXtbDIa8uG78ftHcD20BB0mg2UXNsvztXqMYVKZP7Gj4Tfbjgsv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwS8jOsgY0BACPGSLnF8ieGpamnL2MoErTZNkyzHsaXRrp3WVEI88RP2G_dLsHObhoaEeIuS48Q-J8fnOD75PoA3BmmlDcdBpDIW2AkvDHioVKBsNEuNSYwp6ID2hnQwxjuH5HAFPtT_wpT4EM0HN-cZxXztHPwsM9tXoKHflWqhOKbkFqxhGnLH29D9eoUdFZMSO8qmMEFCSVTDCoVou2l6LRitOb3-uCnTvJ64FpGndw-O6z6XBSeT1jJPW-rnH3CO_zmo-7BeZaR-u3yFHsCKnj2EO52aCO4R9Prt3fbel2-j935_f3z560IqZYOVw5jI_KmrJLfnFtbW2j-tyXb9xclpRQzm5_P5dHKSP4Zx7-OoMwgq-oVAYZvEBdSu5FjEGeHKoRJGTJmMJwRjhEwYM25YxlKSUJwpSWOqmSR2wojSKFU8VTKJN2B1Np_pp-DLmFIslQw105jLTNrbpATZZgnL7IrPg3e1HYSqsMkdRcZUlKjKSFjFiEIxHrxuRM9KQI6bhN4Wxmwk5PnEVbAxIg6GfTE4OsCjpMvEwIOt2tqict6FcCB0NoCgEHvwqrlsle72UuRMz5dOBsfYSlDmwZPyLWke5rYqGaWJHVVh67_3U-x0OsXB5r-LvoTb-92e2P00_PwM7qKCncOVr2zBan6-1M9tjpSnLwpf-A2xhAne |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GALAMOST%3A+GPU-accelerated+large-scale+molecular+simulation+toolkit&rft.jtitle=Journal+of+computational+chemistry&rft.au=Zhu%2C+You-Liang&rft.au=Liu%2C+Hong&rft.au=Li%2C+Zhan-Wei&rft.au=Qian%2C+Hu-Jun&rft.date=2013-09-30&rft.eissn=1096-987X&rft.volume=34&rft.issue=25&rft.spage=2197&rft_id=info:doi/10.1002%2Fjcc.23365&rft_id=info%3Apmid%2F24137668&rft.externalDocID=24137668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |