Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects
Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detec...
Saved in:
Published in | Cytometry. Part A Vol. 101; no. 11; pp. 922 - 941 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low‐abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset‐specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.
Fluorescence resolution in Cytometry is inversely proportional to the autofluorescence content of the carrier. Autofluorescence extraction is key for the successful resolution of rare markers in phenotype discovery projects, minimizing inconsistencies out of variations in intrinsic cell autofluorescence. Cytek Aurora 5L's detailed spectral coverage enables the label‐free opt‐SNE resolution of complex unstained leucocyte mixtures into unique autofluorescence components. Pure autofluorescence references can then be removed from polychromatic measurements via full spectrum unmixing algorithms, unveiling the otherwise hindered expression of rare markers on highly autofluorescent subsets. |
---|---|
AbstractList | Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges. Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges. Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low‐abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset‐specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges. Fluorescence resolution in Cytometry is inversely proportional to the autofluorescence content of the carrier. Autofluorescence extraction is key for the successful resolution of rare markers in phenotype discovery projects, minimizing inconsistencies out of variations in intrinsic cell autofluorescence. Cytek Aurora 5L's detailed spectral coverage enables the label‐free opt‐SNE resolution of complex unstained leucocyte mixtures into unique autofluorescence components. Pure autofluorescence references can then be removed from polychromatic measurements via full spectrum unmixing algorithms, unveiling the otherwise hindered expression of rare markers on highly autofluorescent subsets. |
Author | McWilliam, Hamish E. G. Perez‐Gonzalez, Alexis Villadangos, Jose A. Kallies, Axel Man, Kevin Luke, Tina Hind, Angela Yan, Yuting Mackay, Laura K. Jameson, Vanta J. Evrard, Maximilien |
AuthorAffiliation | 1 Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia 5 Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville Victoria Australia 2 Department of Microbiology and Immunology The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity Parkville Victoria Australia 3 Melbourne Cytometry Platform The University of Melbourne Parkville Victoria Australia 4 School of Medicine Tsinghua University Beijing China |
AuthorAffiliation_xml | – name: 2 Department of Microbiology and Immunology The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity Parkville Victoria Australia – name: 5 Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville Victoria Australia – name: 3 Melbourne Cytometry Platform The University of Melbourne Parkville Victoria Australia – name: 1 Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia – name: 4 School of Medicine Tsinghua University Beijing China |
Author_xml | – sequence: 1 givenname: Vanta J. surname: Jameson fullname: Jameson, Vanta J. organization: The University of Melbourne – sequence: 2 givenname: Tina surname: Luke fullname: Luke, Tina organization: The University of Melbourne – sequence: 3 givenname: Yuting surname: Yan fullname: Yan, Yuting organization: Tsinghua University – sequence: 4 givenname: Angela surname: Hind fullname: Hind, Angela organization: The University of Melbourne – sequence: 5 givenname: Maximilien surname: Evrard fullname: Evrard, Maximilien organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity – sequence: 6 givenname: Kevin surname: Man fullname: Man, Kevin organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity – sequence: 7 givenname: Laura K. surname: Mackay fullname: Mackay, Laura K. organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity – sequence: 8 givenname: Axel surname: Kallies fullname: Kallies, Axel organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity – sequence: 9 givenname: Jose A. surname: Villadangos fullname: Villadangos, Jose A. organization: The University of Melbourne – sequence: 10 givenname: Hamish E. G. surname: McWilliam fullname: McWilliam, Hamish E. G. organization: The University of Melbourne – sequence: 11 givenname: Alexis orcidid: 0000-0002-8674-2034 surname: Perez‐Gonzalez fullname: Perez‐Gonzalez, Alexis email: alexis.gonzalez@unimelb.edu.au organization: The University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35349225$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB-wY40ssWHBDH7EyYRFpWrEo1KlbtoFK8txrjseHDvYTlH-PZ5OGUElWFi27O8c33vPKTrywQNCrylZUkLYBz3nsFRLVgkhnqETKgRbVC0nR4czY8foNKUtIVwQzl6gYy747lqcoHzrXdDfrb_DasrBuClESBq8Bmw9zhvAEBUOBpvJOZxG0DlOA1ZeuTnZ9BFfDqOzWmUbfMImRGyHYfJh3IAPeR4B9zbpcA9xxmMM26JPL9Fzo1yCV4_7Gbr9_Olm_XVxdf3lcn1xtdCVaMSCCt2zjoq672hdQ8c50wSMgFqvem563WuxMqZa8VYRxrTWfNU0LZha98Q0HT9D53vfceoG6EtXOSonx2gHFWcZlJV_v3i7kXfhXraCtitaFYN3jwYx_JggZTmUZsA55SFMSbK6KqNuGOUFffsE3YYplikVquFE8LasQr35s6JDKb8DKcD7PaBjSCmCOSCUyF3ecpe3VPIh74KzJ7i2-SGL0o91_xJVe9FP62D-7wdy_e3m-mIv-wXKwsRe |
CitedBy_id | crossref_primary_10_1007_s00262_023_03573_6 crossref_primary_10_1002_adma_202403761 crossref_primary_10_1002_cyto_a_24885 crossref_primary_10_1002_eji_202451193 crossref_primary_10_1016_j_bioactmat_2023_05_014 crossref_primary_10_1002_cyto_a_24849 crossref_primary_10_1002_jbio_202400576 crossref_primary_10_1002_cyto_a_24788 crossref_primary_10_1038_s41598_023_32158_7 crossref_primary_10_1002_cyto_a_24856 crossref_primary_10_1111_sji_70004 crossref_primary_10_3390_cells13181552 crossref_primary_10_1002_cyto_a_24708 crossref_primary_10_3934_mbe_2023659 |
Cites_doi | 10.1016/j.cmet.2017.08.019 10.1002/cyto.990130702 10.1002/(SICI)1097-0320(19981001)33:2<260::AID-CYTO23>3.0.CO;2-R 10.1002/(SICI)1097-0320(19981001)33:2<267::AID-CYTO24>3.0.CO;2-R 10.1002/(SICI)1097-0320(19981001)33:2<256::AID-CYTO22>3.0.CO;2-S 10.1002/cyto.a.23998 10.1038/cdd.2017.122 10.1002/cyto.a.21035 10.1364/OL.37.002490 10.1002/cyto.a.20092 10.1002/cyto.a.23779 10.1002/(SICI)1097-0320(19970615)30:3<151::AID-CYTO6>3.0.CO;2-O 10.1364/BOE.10.004220 10.1126/sciimmunol.aay9283 10.1038/nbt.4314 10.1016/0022-1759(94)90378-6 10.1038/s41598-017-02673-5 10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C 10.1002/0471142956.cy0121s40 10.1189/jlb.0310184 10.1002/cpz1.222 10.1002/cyto.a.22725 10.1038/s41586-020-2040-3 10.1002/cyto.a.22272 10.1038/nri1416 10.1002/cyto.10121 10.1002/cyto.a.24211 10.1371/journal.pone.0159961 10.1002/cyto.a.24281 10.1002/cyto.a.22251 10.1007/978-1-4939-7680-5_5 10.1038/s41467-019-13055-y 10.1002/cyto.a.23052 10.6028/jres.107.027 10.1038/s41467-021-23126-8 10.1038/s41598-018-30623-2 10.1002/cyto.a.24213 10.1002/cyto.990070610 10.1002/cyto.990130804 10.1002/cyto.990070611 10.1002/0471142956.cy0120s40 10.4049/jimmunol.1200660 10.1002/cyto.b.20090 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. 2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. – notice: 2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1002/cyto.a.24555 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Jameson et al |
EISSN | 1552-4930 |
EndPage | 941 |
ExternalDocumentID | PMC9519814 35349225 10_1002_cyto_a_24555 CYTOA24555 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHMRC Principal Research Fellowship funderid: 1154592 – fundername: Phenomics Australia and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program – fundername: National Health and Medical Research Council of Australia (NHMRC) funderid: 1113293 – fundername: National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) funderid: R01AI148407 – fundername: University of Melbourne McKenzie Postdoctoral Fellowship – fundername: NHMRC CJ Martin Fellowship funderid: GNT11219 – fundername: CASS Foundation Medicine/Science Grant – fundername: NHMRC Ideas Grant funderid: 2003192 – fundername: Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship funderid: OPP1175796 – fundername: Australian Research Council (ARC) funderid: DP170102471 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: R01 AI148407 – fundername: Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship grantid: OPP1175796 – fundername: ; grantid: 1113293 – fundername: NHMRC Principal Research Fellowship grantid: 1154592 – fundername: ; grantid: R01AI148407 – fundername: NHMRC CJ Martin Fellowship grantid: GNT11219 – fundername: ; grantid: DP170102471 – fundername: NHMRC Ideas Grant grantid: 2003192 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c4575-15cd2b156db166eb332c0ef5e6c8d3fdcdc58ff4839a022ccc38779ef6cd0f7b3 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 1552-4930 |
IngestDate | Thu Aug 21 18:40:25 EDT 2025 Fri Jul 11 09:30:09 EDT 2025 Fri Jul 25 21:17:12 EDT 2025 Wed Feb 19 02:26:05 EST 2025 Tue Jul 01 00:49:21 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:31:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | instrument sensitivity label-free cytometry signal resolution alveolar macrophages fluorochrome brightness autofluorescence extraction immunophenotype discovery autofluorescence discovery full spectrum unmixing autofluorescence |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4575-15cd2b156db166eb332c0ef5e6c8d3fdcdc58ff4839a022ccc38779ef6cd0f7b3 |
Notes | Funding information Australian Research Council (ARC), Grant/Award Number: DP170102471; CASS Foundation Medicine/Science Grant; Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship, Grant/Award Number: OPP1175796; National Health and Medical Research Council of Australia (NHMRC), Grant/Award Number: 1113293; National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH), Grant/Award Number: R01AI148407; NHMRC CJ Martin Fellowship, Grant/Award Number: GNT11219; NHMRC Ideas Grant, Grant/Award Number: 2003192; NHMRC Principal Research Fellowship, Grant/Award Number: 1154592; Phenomics Australia and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program; University of Melbourne McKenzie Postdoctoral Fellowship Hamish E. G. McWilliam and Alexis Perez‐Gonzalez co‐led this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Australian Research Council (ARC), Grant/Award Number: DP170102471; CASS Foundation Medicine/Science Grant; Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship, Grant/Award Number: OPP1175796; National Health and Medical Research Council of Australia (NHMRC), Grant/Award Number: 1113293; National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH), Grant/Award Number: R01AI148407; NHMRC CJ Martin Fellowship, Grant/Award Number: GNT11219; NHMRC Ideas Grant, Grant/Award Number: 2003192; NHMRC Principal Research Fellowship, Grant/Award Number: 1154592; Phenomics Australia and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program; University of Melbourne McKenzie Postdoctoral Fellowship |
ORCID | 0000-0002-8674-2034 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24555 |
PMID | 35349225 |
PQID | 2730539053 |
PQPubID | 2045167 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9519814 proquest_miscellaneous_2644937213 proquest_journals_2730539053 pubmed_primary_35349225 crossref_primary_10_1002_cyto_a_24555 crossref_citationtrail_10_1002_cyto_a_24555 wiley_primary_10_1002_cyto_a_24555_CYTOA24555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2006; 70 2017; 7 2004; 62 2012; 189 2019; 95 2017; 26 2019; 10 2013; 83 1994; 172 2017; 24 2004; 4 2007 1992; 13 2011; 79 2012; 37 2021; 1 2001; 45 2014; 377 2016; 11 2010; 88 2018; 8 2002; 48 2017; 91 2021; 12 2021; 99 2020; 97 1986; 7 1997; 30 2020 2015; 87 2002; 107 2020; 579 2018; 1745 1998; 33 2018; 37 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 Grégori G (e_1_2_9_32_1) 2014; 377 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 579 start-page: 581 year: 2020 end-page: 5 article-title: Sex‐specific adipose tissue imprinting of regulatory T cells publication-title: Nature – volume: 91 start-page: 232 year: 2017 end-page: 49 article-title: Evaluating flow cytometer performance with weighted quadratic least squares analysis of LED and multi‐level bead data publication-title: Cytometry A – volume: 11 year: 2016 article-title: Spectral cytometry has unique properties allowing multicolor analysis of cell suspensions isolated from solid tissues publication-title: PLoS One – volume: 1745 start-page: 83 year: 2018 end-page: 95 article-title: Spectral and imaging flow cytometry in phytoplankton research publication-title: Methods Mol Biol – volume: 97 start-page: 1165 year: 2020 end-page: 79 article-title: Evaluating spectral cytometry for immune profiling in viral disease publication-title: Cytometry A – volume: 37 start-page: 38 year: 2018 end-page: 44 article-title: Dimensionality reduction for visualizing single‐cell data using UMAP publication-title: Nat Biotechnol – volume: 97 start-page: 800 year: 2020 end-page: 10 article-title: Practical guidelines for optimization and characterization of the Beckman coulter CytoFLEX™ platform publication-title: Cytometry A – volume: 26 start-page: 672 year: 2017 end-page: 685.e674 article-title: Intermittent fasting promotes white adipose Browning and Decreases obesity by shaping the gut microbiota publication-title: Cell Metab – volume: 24 start-page: 1821 year: 2017 end-page: 2 article-title: An update on using CRISPR/Cas9 in the one‐cell stage mouse embryo for generating complex mutant alleles publication-title: Cell Death Differ – volume: 79 start-page: 263 year: 2011 end-page: 75 article-title: Functional analysis and classification of phytoplankton based on data from an automated flow cytometer publication-title: Cytometry A – volume: 88 start-page: 597 year: 2010 end-page: 603 article-title: Technical advance: autofluorescence as a tool for myeloid cell analysis publication-title: J Leukoc Biol – volume: 172 start-page: 59 year: 1994 end-page: 70 article-title: Multiparameter flow cytometric analysis of inflammatory cells contained in bronchoalveolar lavage fluid publication-title: J Immunol Methods – volume: 95 start-page: 823 year: 2019 end-page: 4 article-title: Spectral flow cytometry‐quo vadimus? publication-title: Cytometry A – volume: 70 start-page: 91 year: 2006 end-page: 103 article-title: A simple correction for cell autofluorescence for multiparameter cell‐based analysis of human solid tumors publication-title: Cytometry B Clin Cytom – volume: 7 start-page: 558 year: 1986 end-page: 65 article-title: Cell‐by‐cell autofluorescence correction for low signal‐to‐noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts publication-title: Cytometry – year: 2007 article-title: Characterization of flow cytometer instrument sensitivity publication-title: Curr Protoc Cytom – volume: 33 start-page: 260 year: 1998 end-page: 6 article-title: Fundamental flow cytometer properties governing sensitivity and resolution publication-title: Cytometry – volume: 12 start-page: 2890 year: 2021 article-title: AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data publication-title: Nat Commun – volume: 10 start-page: 5415 year: 2019 article-title: Automated optimized parameters for T‐distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat Commun – volume: 48 start-page: 124 year: 2002 end-page: 35 article-title: Long wavelength fluorophores and cell‐by‐cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual‐laser benchtop flow cytometer publication-title: Cytometry – year: 2007 article-title: Separation index: an easy‐to‐use metric for evaluation of different configurations on the same flow cytometer publication-title: Curr Protoc Cytom – volume: 7 start-page: 2599 year: 2017 article-title: Label‐free fluorescence spectroscopy for detecting key biomolecules in brain tissue from a mouse model of Alzheimer's disease publication-title: Sci Rep – volume: 45 start-page: 194 year: 2001 end-page: 205 article-title: Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats publication-title: Cytometry – volume: 4 start-page: 648 year: 2004 end-page: 55 article-title: Seventeen‐colour flow cytometry: unravelling the immune system publication-title: Nat Rev Immunol – volume: 189 start-page: 946 year: 2012 end-page: 55 article-title: Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease publication-title: J Immunol – volume: 33 start-page: 256 year: 1998 end-page: 9 article-title: Evaluating fluorescence sensitivity on flow cytometers: an overview publication-title: Cytometry – volume: 62 start-page: 169 year: 2004 end-page: 73 article-title: Selecting fluorochrome conjugates for maximum sensitivity publication-title: Cytometry A – volume: 30 start-page: 151 year: 1997 end-page: 6 article-title: Reducing cellular autofluorescence in flow cytometry: an in situ method publication-title: Cytometry – volume: 33 start-page: 267 year: 1998 end-page: 79 article-title: Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity publication-title: Cytometry – volume: 13 start-page: 669 year: 1992 end-page: 77 article-title: Photo‐bleaching and photon saturation in flow cytometry publication-title: Cytometry – volume: 7 start-page: 566 year: 1986 end-page: 74 article-title: Dual‐laser, differential fluorescence correction method for reducing cellular background autofluorescence publication-title: Cytometry – volume: 97 start-page: 1044 year: 2020 end-page: 51 article-title: OMIP‐069: forty‐color full Spectrum flow cytometry panel for deep Immunophenotyping of major cell subsets in human peripheral blood publication-title: Cytometry A – volume: 83 start-page: 508 year: 2013 end-page: 20 article-title: Generalized unmixing model for multispectral flow cytometry utilizing nonsquare compensation matrices publication-title: Cytometry A – volume: 8 year: 2018 article-title: Strong increase in the autofluorescence of cells signals struggle for survival publication-title: Sci Rep – volume: 99 start-page: 664 year: 2021 end-page: 7 article-title: How well can your flow cytometer detect photons? publication-title: Cytometry A – volume: 107 start-page: 339 year: 2002 end-page: 53 article-title: Quantitating fluorescence intensity from fluorophores: practical use of MESF values publication-title: J Res Natl Inst Stand Technol – volume: 83 start-page: 306 year: 2013 end-page: 15 article-title: Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design publication-title: Cytometry A – volume: 1 year: 2021 article-title: Panel optimization for high‐dimensional Immunophenotyping assays using full‐spectrum flow cytometry publication-title: Curr Protoc – volume: 87 start-page: 830 year: 2015 end-page: 42 article-title: Novel full‐spectral flow cytometry with multiple spectrally‐adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement publication-title: Cytometry A – volume: 13 start-page: 822 year: 1992 end-page: 30 article-title: Noise, sensitivity, and resolution of flow cytometers publication-title: Cytometry – volume: 10 start-page: 4220 year: 2019 end-page: 36 article-title: Label‐free characterization of white blood cells using fluorescence lifetime imaging and flow‐cytometry: molecular heterogeneity and erythrophagocytosis [invited] publication-title: Biomed Opt Express – volume: 377 start-page: 191 year: 2014 end-page: 210 article-title: Hyperspectral cytometry publication-title: Curr Top Microbiol Immunol – year: 2020 article-title: Organ‐specific isoform selection of fatty acid‐binding proteins in tissue‐resident lymphocytes publication-title: Sci Immunol – volume: 37 start-page: 2490 year: 2012 end-page: 2 article-title: Label‐free in vivo flow cytometry in zebrafish using two‐photon autofluorescence imaging publication-title: Opt Lett – ident: e_1_2_9_41_1 doi: 10.1016/j.cmet.2017.08.019 – ident: e_1_2_9_5_1 doi: 10.1002/cyto.990130702 – ident: e_1_2_9_4_1 doi: 10.1002/(SICI)1097-0320(19981001)33:2<260::AID-CYTO23>3.0.CO;2-R – ident: e_1_2_9_6_1 doi: 10.1002/(SICI)1097-0320(19981001)33:2<267::AID-CYTO24>3.0.CO;2-R – ident: e_1_2_9_9_1 doi: 10.1002/(SICI)1097-0320(19981001)33:2<256::AID-CYTO22>3.0.CO;2-S – ident: e_1_2_9_13_1 doi: 10.1002/cyto.a.23998 – ident: e_1_2_9_40_1 doi: 10.1038/cdd.2017.122 – ident: e_1_2_9_26_1 doi: 10.1002/cyto.a.21035 – ident: e_1_2_9_27_1 doi: 10.1364/OL.37.002490 – ident: e_1_2_9_2_1 doi: 10.1002/cyto.a.20092 – ident: e_1_2_9_35_1 doi: 10.1002/cyto.a.23779 – ident: e_1_2_9_20_1 doi: 10.1002/(SICI)1097-0320(19970615)30:3<151::AID-CYTO6>3.0.CO;2-O – volume: 377 start-page: 191 year: 2014 ident: e_1_2_9_32_1 article-title: Hyperspectral cytometry publication-title: Curr Top Microbiol Immunol – ident: e_1_2_9_24_1 doi: 10.1364/BOE.10.004220 – ident: e_1_2_9_42_1 doi: 10.1126/sciimmunol.aay9283 – ident: e_1_2_9_45_1 doi: 10.1038/nbt.4314 – ident: e_1_2_9_19_1 doi: 10.1016/0022-1759(94)90378-6 – ident: e_1_2_9_23_1 doi: 10.1038/s41598-017-02673-5 – ident: e_1_2_9_34_1 doi: 10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C – ident: e_1_2_9_3_1 doi: 10.1002/0471142956.cy0121s40 – ident: e_1_2_9_25_1 doi: 10.1189/jlb.0310184 – ident: e_1_2_9_17_1 doi: 10.1002/cpz1.222 – ident: e_1_2_9_38_1 doi: 10.1002/cyto.a.22725 – ident: e_1_2_9_43_1 doi: 10.1038/s41586-020-2040-3 – ident: e_1_2_9_33_1 doi: 10.1002/cyto.a.22272 – ident: e_1_2_9_16_1 doi: 10.1038/nri1416 – ident: e_1_2_9_30_1 doi: 10.1002/cyto.10121 – ident: e_1_2_9_37_1 doi: 10.1002/cyto.a.24211 – ident: e_1_2_9_39_1 doi: 10.1371/journal.pone.0159961 – ident: e_1_2_9_10_1 doi: 10.1002/cyto.a.24281 – ident: e_1_2_9_15_1 doi: 10.1002/cyto.a.22251 – ident: e_1_2_9_31_1 doi: 10.1007/978-1-4939-7680-5_5 – ident: e_1_2_9_44_1 doi: 10.1038/s41467-019-13055-y – ident: e_1_2_9_8_1 doi: 10.1002/cyto.a.23052 – ident: e_1_2_9_11_1 doi: 10.6028/jres.107.027 – ident: e_1_2_9_36_1 doi: 10.1038/s41467-021-23126-8 – ident: e_1_2_9_21_1 doi: 10.1038/s41598-018-30623-2 – ident: e_1_2_9_14_1 doi: 10.1002/cyto.a.24213 – ident: e_1_2_9_22_1 doi: 10.1002/cyto.990070610 – ident: e_1_2_9_12_1 doi: 10.1002/cyto.990130804 – ident: e_1_2_9_28_1 doi: 10.1002/cyto.990070611 – ident: e_1_2_9_7_1 doi: 10.1002/0471142956.cy0120s40 – ident: e_1_2_9_18_1 doi: 10.4049/jimmunol.1200660 – ident: e_1_2_9_29_1 doi: 10.1002/cyto.b.20090 |
SSID | ssj0035032 |
Score | 2.4488413 |
Snippet | Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 922 |
SubjectTerms | Abundance Algorithms alveolar macrophages autofluorescence autofluorescence discovery autofluorescence extraction Coloring Agents Cytometry Design of experiments Empirical analysis Experimental design Fluorescence fluorochrome brightness full spectrum unmixing Homeostasis Immunology immunophenotype discovery Immunophenotyping instrument sensitivity label‐free cytometry Original Signal detection signal resolution Spectrum analysis |
Title | Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24555 https://www.ncbi.nlm.nih.gov/pubmed/35349225 https://www.proquest.com/docview/2730539053 https://www.proquest.com/docview/2644937213 https://pubmed.ncbi.nlm.nih.gov/PMC9519814 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtoNBL349t06BCeyre2LLkR24hJKSFPihZSE9CGktkaWqXXfuw_fWdkb3ObkIL7cFg8Mi25Bnp03jmG8belIVUADj7Jbj4RNLlJiqUj6NcGJGkLilNqDz38VN2OpMfztX54HCjXJieH2J0uJFlhPmaDNzY5f4VaSis2mZqpkIqRTnmFK5FmOjryB6VqjjUJyOSsUiWQgxx79h8f7Px9op0A2bejJbcRLFhGTq5z_S6A330yfdp19op_LrG7fj_PXzA7g0IlR_2KvWQ3XL1I3anr1m5eszaWY3rHznYuenaxl92zSJQQoHj85ojnuRuYXjjOXn2ecjkXHQ_uBnYTw74-40gdo6Ymc8pR4X4DeqGPMKcMoUpsnTFBz_R8gmbnRyfHZ1GQ-mGCCQCwChRUAmLe8PKJlmGG_ZUQOy8chkUVeorqEAV3kuEZwZRBACkRZ6XzmdQxT636VO2Uze1e864SED6WIFB6CmhsEZalTshXeIKY3M5Ye_Wn0_DwGtO5TUudc_ILDSNozY6jOOEvR2lf_Z8Hn-Q211rgh6seqkR6uGcVeIxYa_Hy2iP9JPF1K7pUAYBJkI-VPQJe9YrzvigVBEXpMCb51sqNQoQ1_f2lXp-ETi_EQiXRYKdjYLG_PXd9dG3s8-H4fTFP8q_ZHcF5XeEZMtdtoMK4l4h6mrtHrst5Je9YGG_AR9ELqY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNEL78JCASPBCWWbOHYe3KqKagttkdCuVE7Gmdhi1ZKgbXJYfj0zTjbsUoGEOESK5EkcJzP258nMN4y9yjOpAHD2i3DxCaRNTZApFwapMCKKbZQbX3nu5DSZzOT7M3XW1zmlXJiOH2JwuJFl-PmaDJwc0nu_WENh2dRjMxZSKXWd3aCi3n5P9Wngj4pV6CuUEc1YIHMh-sh3vH5v_erNNekK0LwaL7mOY_1CdHiHfVkNoYs_OR-3TTGGH7-xO_7HGO-y2z1I5fudVt1j12x1n93sylYuH7BmVuESSD52btqmdhdtvfCsUGD5vOIIKbldGF47Tv1wn8y5aL9x0xOgvOVHa3HsHGEzn1OaClEcVDU5hTklC1Nw6ZL3rqLLh2x2-G56MAn66g0BSMSAQaSgFAVuD8siShLcs8cCQuuUTSArY1dCCSpzTiJCMwgkACDO0jS3LoEydGkR77Ctqq7sY8ZFBNKFCgyiTwlZYWShUiukjWxmilSO2JvV99PQU5tThY0L3ZEyC03vURvt3-OIvR6kv3eUHn-Q212pgu4N-1Ij2sNpK8djxF4OzWiS9J_FVLZuUQYxJqI-1PURe9RpztBRrIgOUuDN0w2dGgSI7nuzpZp_9bTfiIXzLMLBBl5l_vrs-uDz9OO-P33yj_Iv2K3J9ORYHx-dfnjKtgWle_jcy122hcpinyEIa4rn3tB-Aq_4Meo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYgL78fSFowEJ5Rt4th5cKtaVi2PglBXKifLmdhiRUmqbXJYfn3HTjbdpQIJDpEiZZzEzoz9eTLzDcCrPBMSkWa_iBafQJhUB5m0YZByzaPYRLn2lec-HSUHU_H-RJ70DjeXC9PxQwwON2cZfr52Bn5W2p1L0lBcNPVYj7mQUl6HGyIJM6fV-18H-qhYhr5AmWMZC0TOeR_4Tu13VluvL0lXcObVcMlVGOvXocldUMsedOEnP8ZtU4zx12_kjv_fxXtwp4eobLfTqftwzVQP4GZXtHLxEJppRQug87Az3Ta1PW3rueeEQsNmFSNAycxcs9oy59pnPpVz3v5kuqc_ecsOV6LYGYFmNnNJKo7goKqdS5i5VGEXWrpgvaPo_BFMJ--O9w6CvnZDgIIQYBBJLHlBm8OyiJKEduwxx9BYaRLMytiWWKLMrBWEzzTBCESMszTNjU2wDG1axI9ho6or8xQYj1DYUKIm7CkwK7QoZGq4MJHJdJGKEbxZfj6FPbG5q69xqjpKZq7cOCqt_DiO4PUgfdYRevxBbmupCao363NFWI8mrZyOEbwcLpNBur8sujJ1SzKEMAnzkaaP4EmnOMODYunIIDndPF1TqUHAkX2vX6lm3z3pNyHhPIuos4HXmL--u9r7dvx5158--0f5F3Dry_5EfTw8-rAJt7nL9fCJl1uwQbpitgmBNcVzb2YXKAMwog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+autofluorescence+in+the+era+of+full+spectrum+analysis%3A+Implications+for+immunophenotype+discovery+projects&rft.jtitle=Cytometry.+Part+A&rft.au=Jameson%2C+Vanta+J.&rft.au=Luke%2C+Tina&rft.au=Yan%2C+Yuting&rft.au=Hind%2C+Angela&rft.date=2022-11-01&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=101&rft.issue=11&rft.spage=922&rft.epage=941&rft_id=info:doi/10.1002%2Fcyto.a.24555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cyto_a_24555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |