Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects

Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detec...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 101; no. 11; pp. 922 - 941
Main Authors Jameson, Vanta J., Luke, Tina, Yan, Yuting, Hind, Angela, Evrard, Maximilien, Man, Kevin, Mackay, Laura K., Kallies, Axel, Villadangos, Jose A., McWilliam, Hamish E. G., Perez‐Gonzalez, Alexis
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low‐abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset‐specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges. Fluorescence resolution in Cytometry is inversely proportional to the autofluorescence content of the carrier. Autofluorescence extraction is key for the successful resolution of rare markers in phenotype discovery projects, minimizing inconsistencies out of variations in intrinsic cell autofluorescence. Cytek Aurora 5L's detailed spectral coverage enables the label‐free opt‐SNE resolution of complex unstained leucocyte mixtures into unique autofluorescence components. Pure autofluorescence references can then be removed from polychromatic measurements via full spectrum unmixing algorithms, unveiling the otherwise hindered expression of rare markers on highly autofluorescent subsets.
AbstractList Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.
Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.
Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low‐abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset‐specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges. Fluorescence resolution in Cytometry is inversely proportional to the autofluorescence content of the carrier. Autofluorescence extraction is key for the successful resolution of rare markers in phenotype discovery projects, minimizing inconsistencies out of variations in intrinsic cell autofluorescence. Cytek Aurora 5L's detailed spectral coverage enables the label‐free opt‐SNE resolution of complex unstained leucocyte mixtures into unique autofluorescence components. Pure autofluorescence references can then be removed from polychromatic measurements via full spectrum unmixing algorithms, unveiling the otherwise hindered expression of rare markers on highly autofluorescent subsets.
Author McWilliam, Hamish E. G.
Perez‐Gonzalez, Alexis
Villadangos, Jose A.
Kallies, Axel
Man, Kevin
Luke, Tina
Hind, Angela
Yan, Yuting
Mackay, Laura K.
Jameson, Vanta J.
Evrard, Maximilien
AuthorAffiliation 1 Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
5 Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville Victoria Australia
2 Department of Microbiology and Immunology The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity Parkville Victoria Australia
3 Melbourne Cytometry Platform The University of Melbourne Parkville Victoria Australia
4 School of Medicine Tsinghua University Beijing China
AuthorAffiliation_xml – name: 2 Department of Microbiology and Immunology The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity Parkville Victoria Australia
– name: 5 Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville Victoria Australia
– name: 3 Melbourne Cytometry Platform The University of Melbourne Parkville Victoria Australia
– name: 1 Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
– name: 4 School of Medicine Tsinghua University Beijing China
Author_xml – sequence: 1
  givenname: Vanta J.
  surname: Jameson
  fullname: Jameson, Vanta J.
  organization: The University of Melbourne
– sequence: 2
  givenname: Tina
  surname: Luke
  fullname: Luke, Tina
  organization: The University of Melbourne
– sequence: 3
  givenname: Yuting
  surname: Yan
  fullname: Yan, Yuting
  organization: Tsinghua University
– sequence: 4
  givenname: Angela
  surname: Hind
  fullname: Hind, Angela
  organization: The University of Melbourne
– sequence: 5
  givenname: Maximilien
  surname: Evrard
  fullname: Evrard, Maximilien
  organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity
– sequence: 6
  givenname: Kevin
  surname: Man
  fullname: Man, Kevin
  organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity
– sequence: 7
  givenname: Laura K.
  surname: Mackay
  fullname: Mackay, Laura K.
  organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity
– sequence: 8
  givenname: Axel
  surname: Kallies
  fullname: Kallies, Axel
  organization: The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity
– sequence: 9
  givenname: Jose A.
  surname: Villadangos
  fullname: Villadangos, Jose A.
  organization: The University of Melbourne
– sequence: 10
  givenname: Hamish E. G.
  surname: McWilliam
  fullname: McWilliam, Hamish E. G.
  organization: The University of Melbourne
– sequence: 11
  givenname: Alexis
  orcidid: 0000-0002-8674-2034
  surname: Perez‐Gonzalez
  fullname: Perez‐Gonzalez, Alexis
  email: alexis.gonzalez@unimelb.edu.au
  organization: The University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35349225$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB-wY40ssWHBDH7EyYRFpWrEo1KlbtoFK8txrjseHDvYTlH-PZ5OGUElWFi27O8c33vPKTrywQNCrylZUkLYBz3nsFRLVgkhnqETKgRbVC0nR4czY8foNKUtIVwQzl6gYy747lqcoHzrXdDfrb_DasrBuClESBq8Bmw9zhvAEBUOBpvJOZxG0DlOA1ZeuTnZ9BFfDqOzWmUbfMImRGyHYfJh3IAPeR4B9zbpcA9xxmMM26JPL9Fzo1yCV4_7Gbr9_Olm_XVxdf3lcn1xtdCVaMSCCt2zjoq672hdQ8c50wSMgFqvem563WuxMqZa8VYRxrTWfNU0LZha98Q0HT9D53vfceoG6EtXOSonx2gHFWcZlJV_v3i7kXfhXraCtitaFYN3jwYx_JggZTmUZsA55SFMSbK6KqNuGOUFffsE3YYplikVquFE8LasQr35s6JDKb8DKcD7PaBjSCmCOSCUyF3ecpe3VPIh74KzJ7i2-SGL0o91_xJVe9FP62D-7wdy_e3m-mIv-wXKwsRe
CitedBy_id crossref_primary_10_1007_s00262_023_03573_6
crossref_primary_10_1002_adma_202403761
crossref_primary_10_1002_cyto_a_24885
crossref_primary_10_1002_eji_202451193
crossref_primary_10_1016_j_bioactmat_2023_05_014
crossref_primary_10_1002_cyto_a_24849
crossref_primary_10_1002_jbio_202400576
crossref_primary_10_1002_cyto_a_24788
crossref_primary_10_1038_s41598_023_32158_7
crossref_primary_10_1002_cyto_a_24856
crossref_primary_10_1111_sji_70004
crossref_primary_10_3390_cells13181552
crossref_primary_10_1002_cyto_a_24708
crossref_primary_10_3934_mbe_2023659
Cites_doi 10.1016/j.cmet.2017.08.019
10.1002/cyto.990130702
10.1002/(SICI)1097-0320(19981001)33:2<260::AID-CYTO23>3.0.CO;2-R
10.1002/(SICI)1097-0320(19981001)33:2<267::AID-CYTO24>3.0.CO;2-R
10.1002/(SICI)1097-0320(19981001)33:2<256::AID-CYTO22>3.0.CO;2-S
10.1002/cyto.a.23998
10.1038/cdd.2017.122
10.1002/cyto.a.21035
10.1364/OL.37.002490
10.1002/cyto.a.20092
10.1002/cyto.a.23779
10.1002/(SICI)1097-0320(19970615)30:3<151::AID-CYTO6>3.0.CO;2-O
10.1364/BOE.10.004220
10.1126/sciimmunol.aay9283
10.1038/nbt.4314
10.1016/0022-1759(94)90378-6
10.1038/s41598-017-02673-5
10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C
10.1002/0471142956.cy0121s40
10.1189/jlb.0310184
10.1002/cpz1.222
10.1002/cyto.a.22725
10.1038/s41586-020-2040-3
10.1002/cyto.a.22272
10.1038/nri1416
10.1002/cyto.10121
10.1002/cyto.a.24211
10.1371/journal.pone.0159961
10.1002/cyto.a.24281
10.1002/cyto.a.22251
10.1007/978-1-4939-7680-5_5
10.1038/s41467-019-13055-y
10.1002/cyto.a.23052
10.6028/jres.107.027
10.1038/s41467-021-23126-8
10.1038/s41598-018-30623-2
10.1002/cyto.a.24213
10.1002/cyto.990070610
10.1002/cyto.990130804
10.1002/cyto.990070611
10.1002/0471142956.cy0120s40
10.4049/jimmunol.1200660
10.1002/cyto.b.20090
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1002/cyto.a.24555
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Jameson et al
EISSN 1552-4930
EndPage 941
ExternalDocumentID PMC9519814
35349225
10_1002_cyto_a_24555
CYTOA24555
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHMRC Principal Research Fellowship
  funderid: 1154592
– fundername: Phenomics Australia and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program
– fundername: National Health and Medical Research Council of Australia (NHMRC)
  funderid: 1113293
– fundername: National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH)
  funderid: R01AI148407
– fundername: University of Melbourne McKenzie Postdoctoral Fellowship
– fundername: NHMRC CJ Martin Fellowship
  funderid: GNT11219
– fundername: CASS Foundation Medicine/Science Grant
– fundername: NHMRC Ideas Grant
  funderid: 2003192
– fundername: Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship
  funderid: OPP1175796
– fundername: Australian Research Council (ARC)
  funderid: DP170102471
– fundername: Howard Hughes Medical Institute
– fundername: NIAID NIH HHS
  grantid: R01 AI148407
– fundername: Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship
  grantid: OPP1175796
– fundername: ;
  grantid: 1113293
– fundername: NHMRC Principal Research Fellowship
  grantid: 1154592
– fundername: ;
  grantid: R01AI148407
– fundername: NHMRC CJ Martin Fellowship
  grantid: GNT11219
– fundername: ;
  grantid: DP170102471
– fundername: NHMRC Ideas Grant
  grantid: 2003192
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4575-15cd2b156db166eb332c0ef5e6c8d3fdcdc58ff4839a022ccc38779ef6cd0f7b3
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Thu Aug 21 18:40:25 EDT 2025
Fri Jul 11 09:30:09 EDT 2025
Fri Jul 25 21:17:12 EDT 2025
Wed Feb 19 02:26:05 EST 2025
Tue Jul 01 00:49:21 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:31:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords instrument sensitivity
label-free cytometry
signal resolution
alveolar macrophages
fluorochrome brightness
autofluorescence extraction
immunophenotype discovery
autofluorescence discovery
full spectrum unmixing
autofluorescence
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4575-15cd2b156db166eb332c0ef5e6c8d3fdcdc58ff4839a022ccc38779ef6cd0f7b3
Notes Funding information
Australian Research Council (ARC), Grant/Award Number: DP170102471; CASS Foundation Medicine/Science Grant; Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship, Grant/Award Number: OPP1175796; National Health and Medical Research Council of Australia (NHMRC), Grant/Award Number: 1113293; National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH), Grant/Award Number: R01AI148407; NHMRC CJ Martin Fellowship, Grant/Award Number: GNT11219; NHMRC Ideas Grant, Grant/Award Number: 2003192; NHMRC Principal Research Fellowship, Grant/Award Number: 1154592; Phenomics Australia and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program; University of Melbourne McKenzie Postdoctoral Fellowship
Hamish E. G. McWilliam and Alexis Perez‐Gonzalez co‐led this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Australian Research Council (ARC), Grant/Award Number: DP170102471; CASS Foundation Medicine/Science Grant; Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship, Grant/Award Number: OPP1175796; National Health and Medical Research Council of Australia (NHMRC), Grant/Award Number: 1113293; National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH), Grant/Award Number: R01AI148407; NHMRC CJ Martin Fellowship, Grant/Award Number: GNT11219; NHMRC Ideas Grant, Grant/Award Number: 2003192; NHMRC Principal Research Fellowship, Grant/Award Number: 1154592; Phenomics Australia and the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program; University of Melbourne McKenzie Postdoctoral Fellowship
ORCID 0000-0002-8674-2034
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24555
PMID 35349225
PQID 2730539053
PQPubID 2045167
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9519814
proquest_miscellaneous_2644937213
proquest_journals_2730539053
pubmed_primary_35349225
crossref_primary_10_1002_cyto_a_24555
crossref_citationtrail_10_1002_cyto_a_24555
wiley_primary_10_1002_cyto_a_24555_CYTOA24555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2006; 70
2017; 7
2004; 62
2012; 189
2019; 95
2017; 26
2019; 10
2013; 83
1994; 172
2017; 24
2004; 4
2007
1992; 13
2011; 79
2012; 37
2021; 1
2001; 45
2014; 377
2016; 11
2010; 88
2018; 8
2002; 48
2017; 91
2021; 12
2021; 99
2020; 97
1986; 7
1997; 30
2020
2015; 87
2002; 107
2020; 579
2018; 1745
1998; 33
2018; 37
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
Grégori G (e_1_2_9_32_1) 2014; 377
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 579
  start-page: 581
  year: 2020
  end-page: 5
  article-title: Sex‐specific adipose tissue imprinting of regulatory T cells
  publication-title: Nature
– volume: 91
  start-page: 232
  year: 2017
  end-page: 49
  article-title: Evaluating flow cytometer performance with weighted quadratic least squares analysis of LED and multi‐level bead data
  publication-title: Cytometry A
– volume: 11
  year: 2016
  article-title: Spectral cytometry has unique properties allowing multicolor analysis of cell suspensions isolated from solid tissues
  publication-title: PLoS One
– volume: 1745
  start-page: 83
  year: 2018
  end-page: 95
  article-title: Spectral and imaging flow cytometry in phytoplankton research
  publication-title: Methods Mol Biol
– volume: 97
  start-page: 1165
  year: 2020
  end-page: 79
  article-title: Evaluating spectral cytometry for immune profiling in viral disease
  publication-title: Cytometry A
– volume: 37
  start-page: 38
  year: 2018
  end-page: 44
  article-title: Dimensionality reduction for visualizing single‐cell data using UMAP
  publication-title: Nat Biotechnol
– volume: 97
  start-page: 800
  year: 2020
  end-page: 10
  article-title: Practical guidelines for optimization and characterization of the Beckman coulter CytoFLEX™ platform
  publication-title: Cytometry A
– volume: 26
  start-page: 672
  year: 2017
  end-page: 685.e674
  article-title: Intermittent fasting promotes white adipose Browning and Decreases obesity by shaping the gut microbiota
  publication-title: Cell Metab
– volume: 24
  start-page: 1821
  year: 2017
  end-page: 2
  article-title: An update on using CRISPR/Cas9 in the one‐cell stage mouse embryo for generating complex mutant alleles
  publication-title: Cell Death Differ
– volume: 79
  start-page: 263
  year: 2011
  end-page: 75
  article-title: Functional analysis and classification of phytoplankton based on data from an automated flow cytometer
  publication-title: Cytometry A
– volume: 88
  start-page: 597
  year: 2010
  end-page: 603
  article-title: Technical advance: autofluorescence as a tool for myeloid cell analysis
  publication-title: J Leukoc Biol
– volume: 172
  start-page: 59
  year: 1994
  end-page: 70
  article-title: Multiparameter flow cytometric analysis of inflammatory cells contained in bronchoalveolar lavage fluid
  publication-title: J Immunol Methods
– volume: 95
  start-page: 823
  year: 2019
  end-page: 4
  article-title: Spectral flow cytometry‐quo vadimus?
  publication-title: Cytometry A
– volume: 70
  start-page: 91
  year: 2006
  end-page: 103
  article-title: A simple correction for cell autofluorescence for multiparameter cell‐based analysis of human solid tumors
  publication-title: Cytometry B Clin Cytom
– volume: 7
  start-page: 558
  year: 1986
  end-page: 65
  article-title: Cell‐by‐cell autofluorescence correction for low signal‐to‐noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts
  publication-title: Cytometry
– year: 2007
  article-title: Characterization of flow cytometer instrument sensitivity
  publication-title: Curr Protoc Cytom
– volume: 33
  start-page: 260
  year: 1998
  end-page: 6
  article-title: Fundamental flow cytometer properties governing sensitivity and resolution
  publication-title: Cytometry
– volume: 12
  start-page: 2890
  year: 2021
  article-title: AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data
  publication-title: Nat Commun
– volume: 10
  start-page: 5415
  year: 2019
  article-title: Automated optimized parameters for T‐distributed stochastic neighbor embedding improve visualization and analysis of large datasets
  publication-title: Nat Commun
– volume: 48
  start-page: 124
  year: 2002
  end-page: 35
  article-title: Long wavelength fluorophores and cell‐by‐cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual‐laser benchtop flow cytometer
  publication-title: Cytometry
– year: 2007
  article-title: Separation index: an easy‐to‐use metric for evaluation of different configurations on the same flow cytometer
  publication-title: Curr Protoc Cytom
– volume: 7
  start-page: 2599
  year: 2017
  article-title: Label‐free fluorescence spectroscopy for detecting key biomolecules in brain tissue from a mouse model of Alzheimer's disease
  publication-title: Sci Rep
– volume: 45
  start-page: 194
  year: 2001
  end-page: 205
  article-title: Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats
  publication-title: Cytometry
– volume: 4
  start-page: 648
  year: 2004
  end-page: 55
  article-title: Seventeen‐colour flow cytometry: unravelling the immune system
  publication-title: Nat Rev Immunol
– volume: 189
  start-page: 946
  year: 2012
  end-page: 55
  article-title: Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease
  publication-title: J Immunol
– volume: 33
  start-page: 256
  year: 1998
  end-page: 9
  article-title: Evaluating fluorescence sensitivity on flow cytometers: an overview
  publication-title: Cytometry
– volume: 62
  start-page: 169
  year: 2004
  end-page: 73
  article-title: Selecting fluorochrome conjugates for maximum sensitivity
  publication-title: Cytometry A
– volume: 30
  start-page: 151
  year: 1997
  end-page: 6
  article-title: Reducing cellular autofluorescence in flow cytometry: an in situ method
  publication-title: Cytometry
– volume: 33
  start-page: 267
  year: 1998
  end-page: 79
  article-title: Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity
  publication-title: Cytometry
– volume: 13
  start-page: 669
  year: 1992
  end-page: 77
  article-title: Photo‐bleaching and photon saturation in flow cytometry
  publication-title: Cytometry
– volume: 7
  start-page: 566
  year: 1986
  end-page: 74
  article-title: Dual‐laser, differential fluorescence correction method for reducing cellular background autofluorescence
  publication-title: Cytometry
– volume: 97
  start-page: 1044
  year: 2020
  end-page: 51
  article-title: OMIP‐069: forty‐color full Spectrum flow cytometry panel for deep Immunophenotyping of major cell subsets in human peripheral blood
  publication-title: Cytometry A
– volume: 83
  start-page: 508
  year: 2013
  end-page: 20
  article-title: Generalized unmixing model for multispectral flow cytometry utilizing nonsquare compensation matrices
  publication-title: Cytometry A
– volume: 8
  year: 2018
  article-title: Strong increase in the autofluorescence of cells signals struggle for survival
  publication-title: Sci Rep
– volume: 99
  start-page: 664
  year: 2021
  end-page: 7
  article-title: How well can your flow cytometer detect photons?
  publication-title: Cytometry A
– volume: 107
  start-page: 339
  year: 2002
  end-page: 53
  article-title: Quantitating fluorescence intensity from fluorophores: practical use of MESF values
  publication-title: J Res Natl Inst Stand Technol
– volume: 83
  start-page: 306
  year: 2013
  end-page: 15
  article-title: Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design
  publication-title: Cytometry A
– volume: 1
  year: 2021
  article-title: Panel optimization for high‐dimensional Immunophenotyping assays using full‐spectrum flow cytometry
  publication-title: Curr Protoc
– volume: 87
  start-page: 830
  year: 2015
  end-page: 42
  article-title: Novel full‐spectral flow cytometry with multiple spectrally‐adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement
  publication-title: Cytometry A
– volume: 13
  start-page: 822
  year: 1992
  end-page: 30
  article-title: Noise, sensitivity, and resolution of flow cytometers
  publication-title: Cytometry
– volume: 10
  start-page: 4220
  year: 2019
  end-page: 36
  article-title: Label‐free characterization of white blood cells using fluorescence lifetime imaging and flow‐cytometry: molecular heterogeneity and erythrophagocytosis [invited]
  publication-title: Biomed Opt Express
– volume: 377
  start-page: 191
  year: 2014
  end-page: 210
  article-title: Hyperspectral cytometry
  publication-title: Curr Top Microbiol Immunol
– year: 2020
  article-title: Organ‐specific isoform selection of fatty acid‐binding proteins in tissue‐resident lymphocytes
  publication-title: Sci Immunol
– volume: 37
  start-page: 2490
  year: 2012
  end-page: 2
  article-title: Label‐free in vivo flow cytometry in zebrafish using two‐photon autofluorescence imaging
  publication-title: Opt Lett
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cmet.2017.08.019
– ident: e_1_2_9_5_1
  doi: 10.1002/cyto.990130702
– ident: e_1_2_9_4_1
  doi: 10.1002/(SICI)1097-0320(19981001)33:2<260::AID-CYTO23>3.0.CO;2-R
– ident: e_1_2_9_6_1
  doi: 10.1002/(SICI)1097-0320(19981001)33:2<267::AID-CYTO24>3.0.CO;2-R
– ident: e_1_2_9_9_1
  doi: 10.1002/(SICI)1097-0320(19981001)33:2<256::AID-CYTO22>3.0.CO;2-S
– ident: e_1_2_9_13_1
  doi: 10.1002/cyto.a.23998
– ident: e_1_2_9_40_1
  doi: 10.1038/cdd.2017.122
– ident: e_1_2_9_26_1
  doi: 10.1002/cyto.a.21035
– ident: e_1_2_9_27_1
  doi: 10.1364/OL.37.002490
– ident: e_1_2_9_2_1
  doi: 10.1002/cyto.a.20092
– ident: e_1_2_9_35_1
  doi: 10.1002/cyto.a.23779
– ident: e_1_2_9_20_1
  doi: 10.1002/(SICI)1097-0320(19970615)30:3<151::AID-CYTO6>3.0.CO;2-O
– volume: 377
  start-page: 191
  year: 2014
  ident: e_1_2_9_32_1
  article-title: Hyperspectral cytometry
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_2_9_24_1
  doi: 10.1364/BOE.10.004220
– ident: e_1_2_9_42_1
  doi: 10.1126/sciimmunol.aay9283
– ident: e_1_2_9_45_1
  doi: 10.1038/nbt.4314
– ident: e_1_2_9_19_1
  doi: 10.1016/0022-1759(94)90378-6
– ident: e_1_2_9_23_1
  doi: 10.1038/s41598-017-02673-5
– ident: e_1_2_9_34_1
  doi: 10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C
– ident: e_1_2_9_3_1
  doi: 10.1002/0471142956.cy0121s40
– ident: e_1_2_9_25_1
  doi: 10.1189/jlb.0310184
– ident: e_1_2_9_17_1
  doi: 10.1002/cpz1.222
– ident: e_1_2_9_38_1
  doi: 10.1002/cyto.a.22725
– ident: e_1_2_9_43_1
  doi: 10.1038/s41586-020-2040-3
– ident: e_1_2_9_33_1
  doi: 10.1002/cyto.a.22272
– ident: e_1_2_9_16_1
  doi: 10.1038/nri1416
– ident: e_1_2_9_30_1
  doi: 10.1002/cyto.10121
– ident: e_1_2_9_37_1
  doi: 10.1002/cyto.a.24211
– ident: e_1_2_9_39_1
  doi: 10.1371/journal.pone.0159961
– ident: e_1_2_9_10_1
  doi: 10.1002/cyto.a.24281
– ident: e_1_2_9_15_1
  doi: 10.1002/cyto.a.22251
– ident: e_1_2_9_31_1
  doi: 10.1007/978-1-4939-7680-5_5
– ident: e_1_2_9_44_1
  doi: 10.1038/s41467-019-13055-y
– ident: e_1_2_9_8_1
  doi: 10.1002/cyto.a.23052
– ident: e_1_2_9_11_1
  doi: 10.6028/jres.107.027
– ident: e_1_2_9_36_1
  doi: 10.1038/s41467-021-23126-8
– ident: e_1_2_9_21_1
  doi: 10.1038/s41598-018-30623-2
– ident: e_1_2_9_14_1
  doi: 10.1002/cyto.a.24213
– ident: e_1_2_9_22_1
  doi: 10.1002/cyto.990070610
– ident: e_1_2_9_12_1
  doi: 10.1002/cyto.990130804
– ident: e_1_2_9_28_1
  doi: 10.1002/cyto.990070611
– ident: e_1_2_9_7_1
  doi: 10.1002/0471142956.cy0120s40
– ident: e_1_2_9_18_1
  doi: 10.4049/jimmunol.1200660
– ident: e_1_2_9_29_1
  doi: 10.1002/cyto.b.20090
SSID ssj0035032
Score 2.4488413
Snippet Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 922
SubjectTerms Abundance
Algorithms
alveolar macrophages
autofluorescence
autofluorescence discovery
autofluorescence extraction
Coloring Agents
Cytometry
Design of experiments
Empirical analysis
Experimental design
Fluorescence
fluorochrome brightness
full spectrum unmixing
Homeostasis
Immunology
immunophenotype discovery
Immunophenotyping
instrument sensitivity
label‐free cytometry
Original
Signal detection
signal resolution
Spectrum analysis
Title Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24555
https://www.ncbi.nlm.nih.gov/pubmed/35349225
https://www.proquest.com/docview/2730539053
https://www.proquest.com/docview/2644937213
https://pubmed.ncbi.nlm.nih.gov/PMC9519814
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtoNBL349t06BCeyre2LLkR24hJKSFPihZSE9CGktkaWqXXfuw_fWdkb3ObkIL7cFg8Mi25Bnp03jmG8belIVUADj7Jbj4RNLlJiqUj6NcGJGkLilNqDz38VN2OpMfztX54HCjXJieH2J0uJFlhPmaDNzY5f4VaSis2mZqpkIqRTnmFK5FmOjryB6VqjjUJyOSsUiWQgxx79h8f7Px9op0A2bejJbcRLFhGTq5z_S6A330yfdp19op_LrG7fj_PXzA7g0IlR_2KvWQ3XL1I3anr1m5eszaWY3rHznYuenaxl92zSJQQoHj85ojnuRuYXjjOXn2ecjkXHQ_uBnYTw74-40gdo6Ymc8pR4X4DeqGPMKcMoUpsnTFBz_R8gmbnRyfHZ1GQ-mGCCQCwChRUAmLe8PKJlmGG_ZUQOy8chkUVeorqEAV3kuEZwZRBACkRZ6XzmdQxT636VO2Uze1e864SED6WIFB6CmhsEZalTshXeIKY3M5Ye_Wn0_DwGtO5TUudc_ILDSNozY6jOOEvR2lf_Z8Hn-Q211rgh6seqkR6uGcVeIxYa_Hy2iP9JPF1K7pUAYBJkI-VPQJe9YrzvigVBEXpMCb51sqNQoQ1_f2lXp-ETi_EQiXRYKdjYLG_PXd9dG3s8-H4fTFP8q_ZHcF5XeEZMtdtoMK4l4h6mrtHrst5Je9YGG_AR9ELqY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNEL78JCASPBCWWbOHYe3KqKagttkdCuVE7Gmdhi1ZKgbXJYfj0zTjbsUoGEOESK5EkcJzP258nMN4y9yjOpAHD2i3DxCaRNTZApFwapMCKKbZQbX3nu5DSZzOT7M3XW1zmlXJiOH2JwuJFl-PmaDJwc0nu_WENh2dRjMxZSKXWd3aCi3n5P9Wngj4pV6CuUEc1YIHMh-sh3vH5v_erNNekK0LwaL7mOY_1CdHiHfVkNoYs_OR-3TTGGH7-xO_7HGO-y2z1I5fudVt1j12x1n93sylYuH7BmVuESSD52btqmdhdtvfCsUGD5vOIIKbldGF47Tv1wn8y5aL9x0xOgvOVHa3HsHGEzn1OaClEcVDU5hTklC1Nw6ZL3rqLLh2x2-G56MAn66g0BSMSAQaSgFAVuD8siShLcs8cCQuuUTSArY1dCCSpzTiJCMwgkACDO0jS3LoEydGkR77Ctqq7sY8ZFBNKFCgyiTwlZYWShUiukjWxmilSO2JvV99PQU5tThY0L3ZEyC03vURvt3-OIvR6kv3eUHn-Q212pgu4N-1Ij2sNpK8djxF4OzWiS9J_FVLZuUQYxJqI-1PURe9RpztBRrIgOUuDN0w2dGgSI7nuzpZp_9bTfiIXzLMLBBl5l_vrs-uDz9OO-P33yj_Iv2K3J9ORYHx-dfnjKtgWle_jcy122hcpinyEIa4rn3tB-Aq_4Meo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYgL78fSFowEJ5Rt4th5cKtaVi2PglBXKifLmdhiRUmqbXJYfn3HTjbdpQIJDpEiZZzEzoz9eTLzDcCrPBMSkWa_iBafQJhUB5m0YZByzaPYRLn2lec-HSUHU_H-RJ70DjeXC9PxQwwON2cZfr52Bn5W2p1L0lBcNPVYj7mQUl6HGyIJM6fV-18H-qhYhr5AmWMZC0TOeR_4Tu13VluvL0lXcObVcMlVGOvXocldUMsedOEnP8ZtU4zx12_kjv_fxXtwp4eobLfTqftwzVQP4GZXtHLxEJppRQug87Az3Ta1PW3rueeEQsNmFSNAycxcs9oy59pnPpVz3v5kuqc_ecsOV6LYGYFmNnNJKo7goKqdS5i5VGEXWrpgvaPo_BFMJ--O9w6CvnZDgIIQYBBJLHlBm8OyiJKEduwxx9BYaRLMytiWWKLMrBWEzzTBCESMszTNjU2wDG1axI9ho6or8xQYj1DYUKIm7CkwK7QoZGq4MJHJdJGKEbxZfj6FPbG5q69xqjpKZq7cOCqt_DiO4PUgfdYRevxBbmupCao363NFWI8mrZyOEbwcLpNBur8sujJ1SzKEMAnzkaaP4EmnOMODYunIIDndPF1TqUHAkX2vX6lm3z3pNyHhPIuos4HXmL--u9r7dvx5158--0f5F3Dry_5EfTw8-rAJt7nL9fCJl1uwQbpitgmBNcVzb2YXKAMwog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+autofluorescence+in+the+era+of+full+spectrum+analysis%3A+Implications+for+immunophenotype+discovery+projects&rft.jtitle=Cytometry.+Part+A&rft.au=Jameson%2C+Vanta+J.&rft.au=Luke%2C+Tina&rft.au=Yan%2C+Yuting&rft.au=Hind%2C+Angela&rft.date=2022-11-01&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=101&rft.issue=11&rft.spage=922&rft.epage=941&rft_id=info:doi/10.1002%2Fcyto.a.24555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cyto_a_24555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon