Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas

The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclea...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 22; no. 11; pp. 3789 - 3803
Main Authors Ribeiro, Priciane C., Souza, Matheus L., Muller, Larissa A. C., Ellis, Vincenzo A., Heuertz, Myriam, Lemos-Filho, José P., Lovato, Maria Bernadete
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
AbstractList The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora , a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora . Isolation by environment ( IBE ) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora , suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora . However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
Author Lemos-Filho, José P.
Lovato, Maria Bernadete
Ribeiro, Priciane C.
Ellis, Vincenzo A.
Heuertz, Myriam
Muller, Larissa A. C.
Souza, Matheus L.
Author_xml – sequence: 1
  givenname: Priciane C.
  surname: Ribeiro
  fullname: Ribeiro, Priciane C.
  organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil
– sequence: 2
  givenname: Matheus L.
  surname: Souza
  fullname: Souza, Matheus L.
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil
– sequence: 3
  givenname: Larissa A. C.
  surname: Muller
  fullname: Muller, Larissa A. C.
  organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil
– sequence: 4
  givenname: Vincenzo A.
  surname: Ellis
  fullname: Ellis, Vincenzo A.
  organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil
– sequence: 5
  givenname: Myriam
  surname: Heuertz
  fullname: Heuertz, Myriam
  organization: Forest Ecology and Genetics, Forest Research Centre, INIA, 28040, Madrid, Spain
– sequence: 6
  givenname: José P.
  surname: Lemos-Filho
  fullname: Lemos-Filho, José P.
  organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil
– sequence: 7
  givenname: Maria Bernadete
  surname: Lovato
  fullname: Lovato, Maria Bernadete
  email: lovatomb@icb.ufmg.br, lovatomb@icb.ufmg.br
  organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27062055$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAYhSNURC-w4AWQJTawSOtLbCfs2ogOiFKQALG0_kn-FBePM7WTocML8No4nU4XlaDe2Ja-c3w5Zz_b8b3HLHvO6CFL4-iimR8yIRh_lO0xoWTOi1LtTGtZ5IwysZvtx3hJKRWcqifZLtdUcSrlXvandnYBg21IG-wKQyR9RxxCR4YAdogEfEsu0OMNMhFp0yCxngw_MEGI5Nin-wBpAsRoO9cHeEOAzEMPLYnLZA6OxDGscL2VnQT4bZ0FTyKswHuIT7PHHbiIz27ng-zb6duv9bv87NPsfX18ljeF1DwXhVSAHRVdIToE3gjdcSV0yaFqUVZ6zoqWccZbLZkGhthWDWArAVBpAeIge7XxXYb-asQ4mIWNDToHHvsxGk45LRVXkj6IslJoUfAq-T6McqWUlLJM6Mt76GU_Bp_ePFFVJStOp7Nf3FLjfIGtWYaUUlibbXAJeL0BmtDHGLC7Qxg1UylMKoW5KUVij-6xjR1SLL2fMnb_U_yyDtf_tjaz-mSryDcKGwe8vlNA-GnS_2hpvp_PzLn-Un9kHz6bmfgLLFbWDw
CitedBy_id crossref_primary_10_1038_s41598_019_41454_0
crossref_primary_10_7717_peerj_12399
crossref_primary_10_3389_fpls_2019_01580
crossref_primary_10_2174_1389201023666220330005020
crossref_primary_10_1186_s12862_019_1443_y
crossref_primary_10_1002_ece3_8540
crossref_primary_10_1016_j_baae_2021_06_011
crossref_primary_10_1590_2179_8087_034117
crossref_primary_10_3389_fpls_2018_00981
crossref_primary_10_1016_j_scitotenv_2020_141578
crossref_primary_10_1111_jbi_13746
crossref_primary_10_1002_ajb2_1333
crossref_primary_10_1111_jbi_14148
crossref_primary_10_1371_journal_pone_0208512
crossref_primary_10_1080_17550874_2023_2291044
crossref_primary_10_1111_plb_12564
crossref_primary_10_1093_botlinnean_box062
crossref_primary_10_1111_plb_13508
Cites_doi 10.1590/S0103-84782011000100016
10.1111/j.1365-294X.2005.02553.x
10.1007/s00468-012-0690-y
10.1111/mec.12803
10.1093/aob/mcj004
10.18637/jss.v033.i02
10.1111/j.1469-8137.2009.02830.x
10.1111/evo.12193
10.1007/s00704-013-1030-x
10.4238/2012.March.22.6
10.1111/j.1365-294X.2010.04530.x
10.1111/j.1438-8677.2011.00474.x
10.1093/jhered/esn088
10.1201/9781420004496-1
10.1038/72708
10.1111/1365-2745.12204
10.1016/j.tree.2008.10.008
10.1046/j.1365-2745.2000.00506.x
10.7312/oliv12042
10.1006/qres.1997.1932
10.1007/s00468-002-0218-y
10.1055/s-2005-865964
10.1111/gcb.12174
10.1111/evo.12159
10.2108/zsj.19.1279
10.1111/j.1558-5646.1989.tb04220.x
10.1201/9781420004496-2
10.1111/j.1420-9101.2006.01182.x
10.1017/S0960428600000949
10.1016/j.actao.2014.04.004
10.1111/j.1469-8137.2007.02275.x
10.3732/ajb.1500135
10.1111/nph.13001
10.1111/boj.12394
10.14214/sf.348
10.1111/j.1755-0998.2009.02801.x
10.1007/s00468-013-0864-2
10.1111/j.1558-5646.2008.00332.x
10.1126/science.165.3889.131
10.1111/j.1365-294X.2009.04465.x
10.1016/j.palaeo.2007.10.032
10.1146/annurev.ecolsys.27.1.237
10.3390/sym2020466
10.1016/j.tig.2012.03.009
10.7312/oliv12042-002
10.1126/science.1194585
10.1111/j.1523-1739.1998.96489.x
10.1371/journal.pone.0082198
10.1093/jhered/esn092
10.1111/j.1365-294X.2008.03887.x
10.1111/j.1755-0998.2010.02847.x
10.1111/j.0014-3820.2005.tb01814.x
10.1111/j.1471-8286.2005.01155.x
10.1016/S0034-6667(97)00044-4
10.1111/j.1558-5646.1984.tb05657.x
10.1098/rspb.1979.0086
10.1002/jqs.887
10.1017/S0960428603000064
10.1016/j.foreco.2008.08.002
10.1098/rstb.2000.0716
10.1111/j.1471-8286.2007.01769.x
10.1007/s00606-009-0249-6
10.1007/BF02859158
10.1093/aob/mcm221
10.1002/tax.602010
10.1093/bioinformatics/bts460
10.1086/665973
10.1111/j.1365-294X.2012.05454.x
10.1111/j.1744-7429.2011.00760.x
10.1006/jare.2002.0989
10.1111/gcb.12181
10.1093/genetics/139.1.457
10.1111/j.1365-294X.2010.04737.x
10.1111/j.1744-7429.2005.00081.x
10.1111/j.1365-294X.2004.02396.x
10.1111/mec.12870
10.1046/j.1442-1984.1999.00018.x
10.4322/natcon.2012.025
10.1111/j.1365-2699.2012.02715.x
10.1086/374368
10.1007/s00468-004-0394-z
10.1016/j.quascirev.2011.03.009
10.1111/mec.12938
10.1046/j.1420-9101.2001.00348.x
10.1016/j.tplants.2010.09.008
10.1111/1365-2745.12177
10.1016/j.foreco.2010.02.013
10.1111/mec.12780
10.1111/j.1095-8339.2004.00394.x
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.13312
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE - Academic
MEDLINE
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 3803
ExternalDocumentID 4218810911
27062055
10_1111_gcb_13312
GCB13312
ark_67375_WNG_N7SCM1KP_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Spanish Ministry for Science and Innovation
  funderid: RYC2009‐04537
– fundername: Spanish Ministry for Economy and Competitiveness
  funderid: CGL2012‐40129‐C02‐02
– fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais
  funderid: APQ‐00671‐11
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 475331/2012‐5
– fundername: Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c4572-3456aef03f43fea2c37f263782a9de597b14d1212d7517a1eed9caed5aae673a3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:38:40 EDT 2025
Thu Jul 10 17:10:05 EDT 2025
Thu Jul 10 22:25:54 EDT 2025
Fri Jul 25 10:58:19 EDT 2025
Wed Feb 19 02:41:31 EST 2025
Tue Jul 01 03:52:55 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Wed Jan 22 17:11:17 EST 2025
Wed Oct 30 09:53:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Annona crassiflora
isolation by distance
isolation by environment
climatic change
genetic divergence
Cerrado
leaf traits variation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4572-3456aef03f43fea2c37f263782a9de597b14d1212d7517a1eed9caed5aae673a3
Notes Fundação de Amparo à Pesquisa do Estado de Minas Gerais - No. APQ-00671-11
Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
ArticleID:GCB13312
Spanish Ministry for Economy and Competitiveness - No. CGL2012-40129-C02-02
Spanish Ministry for Science and Innovation - No. RYC2009-04537
Table S1. List of vouchers of Annona crassiflora deposited in the Herbarium of the Departamento de Botânica da Universidade Federal de Minas Gerais (BHCB), Brazil. Table S2. Characteristics of the microsatellite markers tested in Annona crassiflora. Table S3. Proportion of variance explained by the first three principal components (PC) of the climatic Bioclim variables (downloaded at 5 arc-min resolution) in each set of environmental variables (ENV1, ENV2, ENV3) used in the GLMM modelling. Loading values of −0.1 < X < 0.1 are not shown. ENV1 = 19 Woldclim variables (BIO1-19), ENV2 = BIO8, BIO10, BIO16, BO18 (summer), ENV3 = BIO9, BIO11, BIO17, BIO19 (winter). Table S4. Null allele frequency by locus estimated with Brookfield 1 method in Annona crassiflora populations. Table S5. Results of the amova for genetic data and anova for morphological data (metamer) for each of the three genetic groups of Annona crassiflora defined by the Bayesian structure analysis. Table S6. Principal component analysis for 14 metamer traits in Annona crassiflora. Loading values of −0.1 < X < 0.1 are not shown. Table S7. Generalized linear mixed effect modelling selection results for morphological traits in Annona crassiflora including all populations together, and genetic groups defined by Bayesian structure analysis, separately. Models include as predictor variables geographic (GEO) and environmental distance (ENV1, ENV2 and ENV3) among populations, and differences in population assignment with phytogeographic provinces (PHY; only used in the analysis of all populations together). Table S8. Pearson pairwise correlation coefficients between geographic and climatic variables across the sampled areas. Coefficients > 0.5 are highlighted in bold. Lon, longitude; Lat, latitude; Alt, altitude, and B, Bioclimatic variable. Fig. S1. Population structure analysis of Annona crassiflora using tess. (A) Results postprocessed with the Evanno approach; ΔK values for each K. (B) Deviance information criterion (DIC) plotted against K. Fig. S2. Mean values and standard errors of the first principal component (PC1) from the PCA of morphological metamer data in relation to longitude of populations of Annona crassiflora. Results of a Pearson's correlation test of the mean values of PC1 against longitude are reported in the graphic. Graphical symbols: (▲) single population-FOR; (●) east group and (○) west group. Fig. S3. Mean values of the first principal component from the PCA of (summer, ENV2) climate data, in relation to latitude (A) and longitude (B) for each Annona crassiflora population. Results of Pearson's correlation tests of mean ENV2 values against latitude and longitude are reported in the graphic. Graphical symbols: (●) southern group, (Δ) eastern group and (○) western group.
istex:4E55535F4020DDCF15B8523B017D63A66802B319
ark:/67375/WNG-N7SCM1KP-G
Conselho Nacional de Desenvolvimento Científico e Tecnológico - No. 475331/2012-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27062055
PQID 1829959200
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_2020862650
proquest_miscellaneous_1837342967
proquest_miscellaneous_1826665558
proquest_journals_1829959200
pubmed_primary_27062055
crossref_primary_10_1111_gcb_13312
crossref_citationtrail_10_1111_gcb_13312
wiley_primary_10_1111_gcb_13312_GCB13312
istex_primary_ark_67375_WNG_N7SCM1KP_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11
November 2016
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Behling H (1998) Late Quaternary vegetational and climatic changes in Brazil. Review of Palaeobotany and Palynology, 99, 143-156.
Guimarães PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One, 3, e1745.
Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27, 237-277.
Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. International Journal of Plant Sciences, 173, 711-723.
Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630-1648.
Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. Journal of Quaternary Science, 19, 713-720.
Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution, 62, 774-792.
Barros FV, Goulart MF, Telles SBS, Lovato MB, Valladares F, Lemos-Filho JP (2012) Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215.
Novaes RML, Lemos-filho JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion to wards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Molecular Ecology, 19, 985-998.
Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234.
Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources, 10, 556-557.
Wang IJ, Bradburd GS (2014) Isolation by environment. Molecular Ecology, 23, 5649-5662.
Alberto FJ, Aitken S, Alia R et al. (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645-1661.
Ramos ACS, Lemos-Filho JP, Lovato MB (2009) Phylogeographic structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. Journal of Heredity, 100, 206-216.
Goulart MF, Lemos-Filho JP, Lovato MB (2006) Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae-Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites. Plant Biology, 8, 112-119.
Prance GT (1978) The origin and evolution of the Amazon flora. Interciencia, 3, 207-222.
Plummer M, Best N, Kate Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7-11.
Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographic connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695-1706.
Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York.
Toledo MM, Paiva EAS, Lovato MB, Lemos-Filho JP (2012) Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees, 26, 1137-1144.
Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B, 205, 581-598.
González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society, 147, 427-435.
Franco AC, Bustamante M, Caldas LS et al. (2005) Leaf functional traits of neotropical savanna trees in relation to seasonal water deficit. Trees, 19, 326-335.
Li C, ZhangvX Liu X, Lukanen O, Berninger F (2006) Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40, 5-13.
Reich PB, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164.
Eiten G (1972) The Cerrado vegetation of Brazil. Botanical Review, 38, 201-341.
Merilä J, Crnokrak P (2001) Comparison of marker gene and quantitative genetic differentiation among populations. Journal of Evolutionary Biology, 14, 892-903.
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462.
Golin V, Santos-Filho M, Pereira MJB (2011) Dispersal and predation of araticum seeds in the Cerrado of Mato Grosso, Brasil. Ciência Rural, 41, 101-107.
Hoorn C, Wesselingh FP, ter Steege H et al. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science, 330, 927-931.
Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33, 1-22.
Hammer O, Happer DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 pp.
Sun S, Jin D, Shi P (2006) The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
Antonelli A, Sanmartin I (2011) Why are there so many plant species in the Neotropics? Taxon, 60, 403-414.
Bradburd GS, Ralph PL, Coop GM (2013) Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67, 3258-3273.
Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855.
Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH (2012) Adaptation with gene flow across the landscape in a dune sunflower. Molecular Ecology, 21, 2078-2091.
Haffer J (1969) Speciation in Amazonian forest birds. Science, 165, 131-137.
Niinemets U (2014) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Behling H, Lichte M (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research, 48, 348-358.
Neffa VGS (2010) Geographic patterns of morphological variation in Turnera sidoides subsp. pinnatifida (Turneraceae). Plant Systematics and Evolution, 284, 231-253.
Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Molecular Ecology, 19, 3532-3548.
Barreto AGOP, Berndes G, Spárovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Global Change Biology, 19, 1804-1815.
Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57-109.
Rossato DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees, 27, 1139-1150.
Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28, 2537-2539.
Calagari M, Modirrahmati AR, Asadi F (2006) Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture & Biology, 8, 754-758.
Hedrick PW (2005) A standardized genetic differentiation measure. Evolution, 59, 1633-1638.
Terribile LC, Lima-Ribeiro MS, Araújo MB et al. (2012) Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time. Natureza & Conservação, 10, 152-159.
Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, Téllez-Valdéz O, Oyama K (2008) Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256, 2121-2126.
Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends in Genetics, 28, 342-350.
Barton NH (2000) Genetic hitchhiking. Philosophical Transactions of the Royal Society B, 355, 1553-1562.
Ribeiro PC, Lemos-Filho JP, Buzatti RSO, Lovato MB, Heuertz M (2016) Species-specific phylogeographic patterns and Pleistocene east-west divergence in Annona (Annonaceae) trees in the Brazilian Cerrado. Botanical Journal of the Linnean Society, 181, 21-36.
Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, 117, 579-587.
Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and application. Symmetry, 2, 466-540.
Jung V, Albert CH, Violle C et al. (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 102, 45-53.
Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patters. Edinburgh Journal of Botany, 52, 1
2010; 10
2010; 15
1989; 43
2013; 27
2002; 52
2010; 19
2013; 67
2009; 281
2011; 60
1997; 48
2000; 88
2007; 100
1995; 139
1978; 3
2003; 17
2008; 3
2016; 103
2012; 14
2013; 8
2016; 181
2012; 11
2014; 23
2012; 10
1969; 165
2013; 19
2012; 173
2014; 205
2000; 18
2001
2005; 147
2007; 176
1999; 14
2014; 58
2007; 7
2012; 28
2012; 26
2010; 2
2008; 62
1996; 27
2001; 14
2012; 21
1998; 12
1998; 99
2003; 164
2010; 33
1995; 52
2009; 24
2014; 117
2006; 97
2000; 355
2009; 182
1979; 205
2008; 17
2009
2006; 8
2011; 30
2010; 284
2007
2006; 19
2006; 6
2006
2012; 39
2000; 155
2002
2005; 19
2006; 40
2004; 19
2010; 259
1984; 38
2001; 4
2010; 330
2009; 100
2011; 41
2011; 43
2015
2008; 256
2005; 59
2003; 60
1972; 38
2005; 14
2014; 102
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Plummer M (e_1_2_7_67_1) 2006; 6
Collevatti RG (e_1_2_7_17_1) 2012; 10
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
Prance GT (e_1_2_7_69_1) 1978; 3
Calagari M (e_1_2_7_14_1) 2006; 8
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
Motta‐Júnior JC (e_1_2_7_52_1) 2002
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Ratter JA (e_1_2_7_76_1) 2006
e_1_2_7_38_1
References_xml – reference: Barros FV, Goulart MF, Telles SBS, Lovato MB, Valladares F, Lemos-Filho JP (2012) Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215.
– reference: Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2010) Detecting interspecific and geographic differentiation patterns in two inter fertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. Forest Ecology and Management, 259, 2026-2035.
– reference: Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. Journal of Quaternary Science, 19, 713-720.
– reference: Calagari M, Modirrahmati AR, Asadi F (2006) Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture & Biology, 8, 754-758.
– reference: Terribile LC, Lima-Ribeiro MS, Araújo MB et al. (2012) Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time. Natureza & Conservação, 10, 152-159.
– reference: Lexer C, Wuest RO, Mangili S et al. (2014) Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restiocapensis (Restionaceae). Molecular Ecology, 23, 4373-4386.
– reference: Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Molecular Ecology, 19, 3532-3548.
– reference: Guimarães PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One, 3, e1745.
– reference: Li C, ZhangvX Liu X, Lukanen O, Berninger F (2006) Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40, 5-13.
– reference: Plummer M, Best N, Kate Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7-11.
– reference: Novaes RML, Ribeiro RA, Lemos-Filho JP, Lovato MB (2013) Concordance between phylogeographic and biogeographic patterns in the Brazilian Cerrado: diversification of the endemic tree Dalbergia miscolobium (Fabaceae). PLoS One, 8, e82198.
– reference: Behling H (1998) Late Quaternary vegetational and climatic changes in Brazil. Review of Palaeobotany and Palynology, 99, 143-156.
– reference: Goulart MF, Lemos-Filho JP, Lovato MB (2006) Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae-Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites. Plant Biology, 8, 112-119.
– reference: Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33, 1-22.
– reference: Franco AC, Bustamante M, Caldas LS et al. (2005) Leaf functional traits of neotropical savanna trees in relation to seasonal water deficit. Trees, 19, 326-335.
– reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
– reference: Ramos ACS, Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB (2007) Phylogeography of the tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of Quaternary climate changes in the Brazilian Cerrado. Annals of Botany, 100, 1219-1228.
– reference: Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biology, 14, 143-152.
– reference: Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630-1648.
– reference: Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7, 747-756.
– reference: Collevatti RG, Lima-Ribeiro MS, Souza-Neto AC, Franco AA, de Oliveira G, Terribile LC (2012) Recovering the demographic history of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modelling and coalescent analyses. Brazilian Journal of Nature Conservation, 10, 169-176.
– reference: Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977.
– reference: Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B, 205, 581-598.
– reference: Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57-109.
– reference: Spasojevic MJ, Grace JB, Harrison S, Damschen EI (2014) Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. Journal of Ecology, 102, 447-455.
– reference: Neffa VGS (2010) Geographic patterns of morphological variation in Turnera sidoides subsp. pinnatifida (Turneraceae). Plant Systematics and Evolution, 284, 231-253.
– reference: Hoorn C, Wesselingh FP, ter Steege H et al. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science, 330, 927-931.
– reference: Antonelli A, Sanmartin I (2011) Why are there so many plant species in the Neotropics? Taxon, 60, 403-414.
– reference: Golin V, Santos-Filho M, Pereira MJB (2011) Dispersal and predation of araticum seeds in the Cerrado of Mato Grosso, Brasil. Ciência Rural, 41, 101-107.
– reference: Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH (2012) Adaptation with gene flow across the landscape in a dune sunflower. Molecular Ecology, 21, 2078-2091.
– reference: Riordan EC, Gugger PF, Ortego J, Smith C, Gaddis K, Thompson P, Sork VL (2016) Association of genetic and phenotypic variability with geography and climate in three southern California. American Journal of Botany, 103, 73-85.
– reference: Toledo MM, Paiva EAS, Lovato MB, Lemos-Filho JP (2012) Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees, 26, 1137-1144.
– reference: Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and application. Symmetry, 2, 466-540.
– reference: Ribeiro PC, Lemos-Filho JP, Buzatti RSO, Lovato MB, Heuertz M (2016) Species-specific phylogeographic patterns and Pleistocene east-west divergence in Annona (Annonaceae) trees in the Brazilian Cerrado. Botanical Journal of the Linnean Society, 181, 21-36.
– reference: Goulart MF, Lovato MB, Barros FV, Valladares F, Lemos-Filho JP (2011) Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest? Biotropica, 43, 695-703.
– reference: Prance GT (1978) The origin and evolution of the Amazon flora. Interciencia, 3, 207-222.
– reference: Wang IJ, Bradburd GS (2014) Isolation by environment. Molecular Ecology, 23, 5649-5662.
– reference: Barreto AGOP, Berndes G, Spárovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Global Change Biology, 19, 1804-1815.
– reference: Latch EK, Reding DM, Heffelfinger JR, Alcalá-Galván CH, Rhodes OE Jr (2014) Range-wide analysis of genetic structure in a widespread, highly mobile species (Odocoileus hemionus) reveals the importance of historical biogeography. Molecular Ecology, 23, 3171-3190.
– reference: Novaes RML, Lemos-filho JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion to wards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Molecular Ecology, 19, 985-998.
– reference: Hódar JA (2002) Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions. Journal of Arid Environments, 52, 233-243.
– reference: Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28, 2537-2539.
– reference: Jung V, Albert CH, Violle C et al. (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 102, 45-53.
– reference: Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27, 237-277.
– reference: Reich PB, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164.
– reference: Souza HAV, Muller LAC, Brandão RL, Lovato MB (2012) Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado. Genetics and Molecular Research, 11, 756-764.
– reference: Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of three spine sticklebacks. Journal of Evolutionary Biology, 19, 1803-1812.
– reference: Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234.
– reference: Hammer O, Happer DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 pp.
– reference: Nicotra AB, Atkin OK, Bonser SP et al. (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692.
– reference: Niinemets U (2014) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96.
– reference: Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, 117, 579-587.
– reference: Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015-4026.
– reference: Hedrick PW (2005) A standardized genetic differentiation measure. Evolution, 59, 1633-1638.
– reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
– reference: Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patters. Edinburgh Journal of Botany, 52, 141-194.
– reference: Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225.
– reference: Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19, 447-458.
– reference: Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York.
– reference: Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855.
– reference: Rossato DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees, 27, 1139-1150.
– reference: Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
– reference: Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180-195.
– reference: Bolker BM, Mollie E, Brooks ME et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127-135.
– reference: Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution, 62, 774-792.
– reference: Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462.
– reference: Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographic connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695-1706.
– reference: Merilä J, Crnokrak P (2001) Comparison of marker gene and quantitative genetic differentiation among populations. Journal of Evolutionary Biology, 14, 892-903.
– reference: Ramirez-Valiente JA, Valladares F, Sánchez-Gomez Delgado A, Aranda I (2014) Population variation and natural selection on leaf traits in cork oak throughout its distribution range. Acta Oecologica, 58, 49-56.
– reference: Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity, 100, 106-113.
– reference: Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763.
– reference: Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
– reference: Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. International Journal of Plant Sciences, 173, 711-723.
– reference: Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends in Genetics, 28, 342-350.
– reference: Ramos ACS, Lemos-Filho JP, Lovato MB (2009) Phylogeographic structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. Journal of Heredity, 100, 206-216.
– reference: Eiten G (1972) The Cerrado vegetation of Brazil. Botanical Review, 38, 201-341.
– reference: Barton NH (2000) Genetic hitchhiking. Philosophical Transactions of the Royal Society B, 355, 1553-1562.
– reference: Bruschi P, Grossoni P, Bussotti F (2003) Within and among tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees, 17, 164-172.
– reference: Behling H, Lichte M (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research, 48, 348-358.
– reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.
– reference: Bonatelli IAS, Perez MF, Peterson AT et al. (2014) Interglacial microrefugia and diversification of a cactus species complex, phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Molecular Ecology, 23, 3044-3063.
– reference: Sun S, Jin D, Shi P (2006) The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
– reference: Alberto FJ, Aitken S, Alia R et al. (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645-1661.
– reference: Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources, 10, 556-557.
– reference: González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society, 147, 427-435.
– reference: Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
– reference: Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, Téllez-Valdéz O, Oyama K (2008) Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256, 2121-2126.
– reference: Bradburd GS, Ralph PL, Coop GM (2013) Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67, 3258-3273.
– reference: Haffer J (1969) Speciation in Amazonian forest birds. Science, 165, 131-137.
– reference: He Q, Edwards DL, Knowles LL (2013) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution, 67, 3386-3402.
– volume: 10
  start-page: 564
  year: 2010
  end-page: 567
  article-title: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows
  publication-title: Molecular Ecology Resources
– volume: 102
  start-page: 45
  year: 2014
  end-page: 53
  article-title: Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events
  publication-title: Journal of Ecology
– volume: 12
  start-page: 844
  year: 1998
  end-page: 855
  article-title: Identifying populations for conservation on the basis of genetic markers
  publication-title: Conservation Biology
– volume: 67
  start-page: 3386
  year: 2013
  end-page: 3402
  article-title: Integrative testing of how environments from the past to the present shape genetic structure across landscapes
  publication-title: Evolution
– volume: 58
  start-page: 49
  year: 2014
  end-page: 56
  article-title: Population variation and natural selection on leaf traits in cork oak throughout its distribution range
  publication-title: Acta Oecologica
– volume: 28
  start-page: 342
  year: 2012
  end-page: 350
  article-title: The genomics of speciation‐with‐gene‐flow
  publication-title: Trends in Genetics
– volume: 48
  start-page: 348
  year: 1997
  end-page: 358
  article-title: Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil
  publication-title: Quaternary Research
– volume: 205
  start-page: 79
  year: 2014
  end-page: 96
  article-title: Is there a species spectrum within the world‐wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll
  publication-title: New Phytologist
– volume: 39
  start-page: 1695
  year: 2012
  end-page: 1706
  article-title: Climatic stability in the Brazilian Cerrado: implications for biogeographic connections of South American savannas, species richness and conservation in a biodiversity hotspot
  publication-title: Journal of Biogeography
– volume: 14
  start-page: 892
  year: 2001
  end-page: 903
  article-title: Comparison of marker gene and quantitative genetic differentiation among populations
  publication-title: Journal of Evolutionary Biology
– volume: 23
  start-page: 3044
  year: 2014
  end-page: 3063
  article-title: Interglacial microrefugia and diversification of a cactus species complex, phylogeography and palaeodistributional reconstructions for and allies
  publication-title: Molecular Ecology
– volume: 27
  start-page: 1139
  year: 2013
  end-page: 1150
  article-title: Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna
  publication-title: Trees
– volume: 330
  start-page: 927
  year: 2010
  end-page: 931
  article-title: Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity
  publication-title: Science
– volume: 19
  start-page: 3532
  year: 2010
  end-page: 3548
  article-title: Spatial modelling and landscape‐level approaches for visualizing intra‐specific variation
  publication-title: Molecular Ecology
– volume: 38
  start-page: 201
  year: 1972
  end-page: 341
  article-title: The Cerrado vegetation of Brazil
  publication-title: Botanical Review
– volume: 11
  start-page: 756
  year: 2012
  end-page: 764
  article-title: Isolation of high quality and polysaccharide‐free DNA from leaves of (Leguminosae), a tree from the Brazilian Cerrado
  publication-title: Genetics and Molecular Research
– volume: 19
  start-page: 447
  year: 2010
  end-page: 458
  article-title: Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‐dart frog
  publication-title: Molecular Ecology
– volume: 6
  start-page: 7
  year: 2006
  end-page: 11
  article-title: CODA: convergence diagnosis and output analysis for MCMC
  publication-title: R News
– volume: 18
  start-page: 233
  year: 2000
  end-page: 234
  article-title: An economic method for the fluorescent labeling of PCR fragments
  publication-title: Nature Biotechnology
– volume: 97
  start-page: 97
  year: 2006
  end-page: 107
  article-title: The leaf size‐twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship
  publication-title: Annals of Botany
– volume: 99
  start-page: 143
  year: 1998
  end-page: 156
  article-title: Late Quaternary vegetational and climatic changes in Brazil
  publication-title: Review of Palaeobotany and Palynology
– volume: 28
  start-page: 2537
  year: 2012
  end-page: 2539
  article-title: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update
  publication-title: Bioinformatics
– volume: 19
  start-page: 985
  year: 2010
  end-page: 998
  article-title: Phylogeography of (Leguminosae) reveals patterns of recent range expansion to wards northeastern Brazil and southern Cerrados in Eastern Tropical South America
  publication-title: Molecular Ecology
– volume: 30
  start-page: 1630
  year: 2011
  end-page: 1648
  article-title: The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives
  publication-title: Quaternary Science Reviews
– volume: 4
  year: 2001
  article-title: PAST: Paleontological statistics software package for education and data analysis
  publication-title: Palaeontologia Electronica
– volume: 17
  start-page: 4015
  year: 2008
  end-page: 4026
  article-title: GST and its relatives do not measure differentiation
  publication-title: Molecular Ecology
– volume: 52
  start-page: 141
  year: 1995
  end-page: 194
  article-title: A study of the origin of central Brazilian forests by the analysis of plant species distribution patters
  publication-title: Edinburgh Journal of Botany
– volume: 19
  start-page: 326
  year: 2005
  end-page: 335
  article-title: Leaf functional traits of neotropical savanna trees in relation to seasonal water deficit
  publication-title: Trees
– volume: 21
  start-page: 2078
  year: 2012
  end-page: 2091
  article-title: Adaptation with gene flow across the landscape in a dune sunflower
  publication-title: Molecular Ecology
– volume: 147
  start-page: 427
  year: 2005
  end-page: 435
  article-title: Leaf morphometric variation in and (Fagaceae), two hybridizing Mexican red oaks
  publication-title: Botanical Journal of the Linnean Society
– volume: 19
  start-page: 1645
  year: 2013
  end-page: 1661
  article-title: Potential for evolutionary responses to climate change – evidence from tree populations
  publication-title: Global Change Biology
– volume: 7
  start-page: 747
  year: 2007
  end-page: 756
  article-title: Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study
  publication-title: Molecular Ecology Notes
– year: 2007
– volume: 284
  start-page: 231
  year: 2010
  end-page: 253
  article-title: Geographic patterns of morphological variation in subsp. pinnatifida (Turneraceae)
  publication-title: Plant Systematics and Evolution
– volume: 100
  start-page: 106
  year: 2009
  end-page: 113
  article-title: Simultaneous estimation of null alleles and inbreeding coefficients
  publication-title: Journal of Heredity
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis
  publication-title: New Phytologist
– volume: 10
  start-page: 556
  year: 2010
  end-page: 557
  article-title: SMOGD: software for the measurement of genetic diversity
  publication-title: Molecular Ecology Resources
– volume: 59
  start-page: 1633
  year: 2005
  end-page: 1638
  article-title: A standardized genetic differentiation measure
  publication-title: Evolution
– start-page: 1
  year: 2006
  end-page: 29
– volume: 23
  start-page: 3171
  year: 2014
  end-page: 3190
  article-title: Range‐wide analysis of genetic structure in a widespread, highly mobile species ( ) reveals the importance of historical biogeography
  publication-title: Molecular Ecology
– volume: 103
  start-page: 73
  year: 2016
  end-page: 85
  article-title: Association of genetic and phenotypic variability with geography and climate in three southern California
  publication-title: American Journal of Botany
– start-page: 33
  year: 2002
  end-page: 52
– volume: 26
  start-page: 1137
  year: 2012
  end-page: 1144
  article-title: Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential
  publication-title: Trees
– volume: 164
  start-page: S143
  year: 2003
  end-page: S164
  article-title: The evolution of plant functional variation: traits, spectra, and strategies
  publication-title: International Journal of Plant Sciences
– volume: 60
  start-page: 403
  year: 2011
  end-page: 414
  article-title: Why are there so many plant species in the Neotropics?
  publication-title: Taxon
– volume: 14
  start-page: 2611
  year: 2005
  end-page: 2620
  article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
  publication-title: Molecular Ecology
– volume: 181
  start-page: 21
  year: 2016
  end-page: 36
  article-title: Species‐specific phylogeographic patterns and Pleistocene east‐west divergence in (Annonaceae) trees in the Brazilian Cerrado
  publication-title: Botanical Journal of the Linnean Society
– volume: 165
  start-page: 131
  year: 1969
  end-page: 137
  article-title: Speciation in Amazonian forest birds
  publication-title: Science
– volume: 62
  start-page: 774
  year: 2008
  end-page: 792
  article-title: Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes
  publication-title: Evolution
– year: 2002
– volume: 24
  start-page: 127
  year: 2009
  end-page: 135
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends in Ecology and Evolution
– volume: 2
  start-page: 466
  year: 2010
  end-page: 540
  article-title: Fluctuating asymmetry: methods, theory, and application
  publication-title: Symmetry
– volume: 41
  start-page: 101
  year: 2011
  end-page: 107
  article-title: Dispersal and predation of araticum seeds in the Cerrado of Mato Grosso, Brasil
  publication-title: Ciência Rural
– volume: 40
  start-page: 5
  year: 2006
  end-page: 13
  article-title: Leaf morphological and physiological responses of along an altitudinal gradient
  publication-title: Silva Fennica
– volume: 100
  start-page: 1219
  year: 2007
  end-page: 1228
  article-title: Phylogeography of the tree (Fabaceae: Caesalpinioideae) and the influence of Quaternary climate changes in the Brazilian Cerrado
  publication-title: Annals of Botany
– year: 2009
– volume: 19
  start-page: 1804
  year: 2013
  end-page: 1815
  article-title: Agricultural intensification in Brazil and its effects on land‐use patterns: an analysis of the 1975–2006 period
  publication-title: Global Change Biology
– volume: 10
  start-page: 169
  year: 2012
  end-page: 176
  article-title: Recovering the demographic history of a Brazilian Cerrado tree species : coupling ecological niche modelling and coalescent analyses
  publication-title: Brazilian Journal of Nature Conservation
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  article-title: MCMC methods for multi‐response generalized linear mixed models: the MCMCglmm R package
  publication-title: Journal of Statistical Software
– year: 2001
– volume: 10
  start-page: 152
  year: 2012
  end-page: 159
  article-title: Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time
  publication-title: Natureza & Conservação
– start-page: 291
  year: 2002
  end-page: 303
– volume: 3
  start-page: 207
  year: 1978
  end-page: 222
  article-title: The origin and evolution of the Amazon flora
  publication-title: Interciencia
– volume: 176
  start-page: 749
  year: 2007
  end-page: 763
  article-title: Ecological limits to plant phenotypic plasticity
  publication-title: New Phytologist
– volume: 60
  start-page: 57
  year: 2003
  end-page: 109
  article-title: Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas
  publication-title: Edinburgh Journal of Botany
– volume: 100
  start-page: 206
  year: 2009
  end-page: 216
  article-title: Phylogeographic structure of the neotropical forest tree (Leguminosae: Caesalpinioideae) and its relationship with the vicariant from Cerrado
  publication-title: Journal of Heredity
– volume: 8
  start-page: e82198
  year: 2013
  article-title: Concordance between phylogeographic and biogeographic patterns in the Brazilian Cerrado: diversification of the endemic tree (Fabaceae)
  publication-title: PLoS One
– volume: 15
  start-page: 684
  year: 2010
  end-page: 692
  article-title: Plant phenotypic plasticity in a changing climate
  publication-title: Trends in Plant Science
– volume: 88
  start-page: 964
  year: 2000
  end-page: 977
  article-title: Shifts in trait‐combinations along rainfall and phosphorus gradients
  publication-title: Journal of Ecology
– volume: 281
  start-page: 180
  year: 2009
  end-page: 195
  article-title: Present‐day South American climate
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 259
  start-page: 2026
  year: 2010
  end-page: 2035
  article-title: Detecting interspecific and geographic differentiation patterns in two inter fertile oak species ( (Matt.) Liebl. and L.) using small sets of microsatellite markers
  publication-title: Forest Ecology and Management
– volume: 19
  start-page: 713
  year: 2004
  end-page: 720
  article-title: Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations
  publication-title: Journal of Quaternary Science
– volume: 23
  start-page: 5649
  year: 2014
  end-page: 5662
  article-title: Isolation by environment
  publication-title: Molecular Ecology
– volume: 43
  start-page: 695
  year: 2011
  end-page: 703
  article-title: Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest?
  publication-title: Biotropica
– volume: 256
  start-page: 2121
  year: 2008
  end-page: 2126
  article-title: Foliar morphological variation in the white oak Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation
  publication-title: Forest Ecology and Management
– year: 2015
– volume: 3
  start-page: e1745
  year: 2008
  article-title: Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate
  publication-title: PLoS One
– volume: 173
  start-page: 711
  year: 2012
  end-page: 723
  article-title: Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado
  publication-title: International Journal of Plant Sciences
– volume: 139
  start-page: 457
  year: 1995
  end-page: 462
  article-title: A measure of population subdivision based on microsatellite allele frequencies
  publication-title: Genetics
– volume: 27
  start-page: 237
  year: 1996
  end-page: 277
  article-title: Evolutionary significance of local genetic differentiation in plants
  publication-title: Annual Review of Ecology and Systematics
– volume: 6
  start-page: 288
  year: 2006
  end-page: 295
  article-title: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research
  publication-title: Molecular Ecology Notes
– volume: 205
  start-page: 581
  year: 1979
  end-page: 598
  article-title: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme
  publication-title: Proceedings of the Royal Society B
– volume: 8
  start-page: 754
  year: 2006
  end-page: 758
  article-title: Morphological variation in leaf traits of Oliv. natural populations
  publication-title: International Journal of Agriculture & Biology
– volume: 23
  start-page: 4373
  year: 2014
  end-page: 4386
  article-title: Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in (Restionaceae)
  publication-title: Molecular Ecology
– volume: 14
  start-page: 143
  year: 1999
  end-page: 152
  article-title: Pollination and evolution in neotropical Annonaceae
  publication-title: Plant Species Biology
– volume: 8
  start-page: 112
  year: 2006
  end-page: 119
  article-title: Variability in fruit and seed morphology among and within populations of (Leguminosae‐Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites
  publication-title: Plant Biology
– volume: 117
  start-page: 579
  year: 2014
  end-page: 587
  article-title: Climate change hotspots over South America: from CMIP3 to CMIP5 multi‐model datasets
  publication-title: Theoretical and Applied Climatology
– volume: 355
  start-page: 1553
  year: 2000
  end-page: 1562
  article-title: Genetic hitchhiking
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 67
  start-page: 3258
  year: 2013
  end-page: 3273
  article-title: Disentangling the effects of geographic and ecological isolation on genetic differentiation
  publication-title: Evolution
– volume: 19
  start-page: 1803
  year: 2006
  end-page: 1812
  article-title: Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of three spine sticklebacks
  publication-title: Journal of Evolutionary Biology
– volume: 14
  start-page: 208
  year: 2012
  end-page: 215
  article-title: Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna)
  publication-title: Plant Biology
– volume: 17
  start-page: 164
  year: 2003
  end-page: 172
  article-title: Within and among tree variation in leaf morphology of (Matt.) Liebl. natural populations
  publication-title: Trees
– start-page: 31
  year: 2006
  end-page: 66
– volume: 43
  start-page: 223
  year: 1989
  end-page: 225
  article-title: Analyzing tables of statistical tests
  publication-title: Evolution
– volume: 52
  start-page: 233
  year: 2002
  end-page: 243
  article-title: Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions
  publication-title: Journal of Arid Environments
– volume: 102
  start-page: 447
  year: 2014
  end-page: 455
  article-title: Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients
  publication-title: Journal of Ecology
– ident: e_1_2_7_26_1
  doi: 10.1590/S0103-84782011000100016
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_7_90_1
  doi: 10.1007/s00468-012-0690-y
– ident: e_1_2_7_44_1
  doi: 10.1111/mec.12803
– ident: e_1_2_7_87_1
  doi: 10.1093/aob/mcj004
– ident: e_1_2_7_35_1
  doi: 10.18637/jss.v033.i02
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1469-8137.2009.02830.x
– ident: e_1_2_7_12_1
  doi: 10.1111/evo.12193
– volume: 6
  start-page: 7
  year: 2006
  ident: e_1_2_7_67_1
  article-title: CODA: convergence diagnosis and output analysis for MCMC
  publication-title: R News
– ident: e_1_2_7_91_1
  doi: 10.1007/s00704-013-1030-x
– ident: e_1_2_7_85_1
  doi: 10.4238/2012.March.22.6
– ident: e_1_2_7_58_1
  doi: 10.1111/j.1365-294X.2010.04530.x
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1438-8677.2011.00474.x
– ident: e_1_2_7_16_1
  doi: 10.1093/jhered/esn088
– ident: e_1_2_7_64_1
  doi: 10.1201/9781420004496-1
– ident: e_1_2_7_82_1
  doi: 10.1038/72708
– ident: e_1_2_7_86_1
  doi: 10.1111/1365-2745.12204
– ident: e_1_2_7_10_1
  doi: 10.1016/j.tree.2008.10.008
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1365-2745.2000.00506.x
– ident: e_1_2_7_60_1
  doi: 10.7312/oliv12042
– ident: e_1_2_7_9_1
  doi: 10.1006/qres.1997.1932
– ident: e_1_2_7_13_1
  doi: 10.1007/s00468-002-0218-y
– ident: e_1_2_7_30_1
  doi: 10.1055/s-2005-865964
– ident: e_1_2_7_5_1
  doi: 10.1111/gcb.12174
– ident: e_1_2_7_38_1
  doi: 10.1111/evo.12159
– ident: e_1_2_7_37_1
  doi: 10.2108/zsj.19.1279
– ident: e_1_2_7_79_1
  doi: 10.1111/j.1558-5646.1989.tb04220.x
– ident: e_1_2_7_29_1
– start-page: 31
  volume-title: Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation
  year: 2006
  ident: e_1_2_7_76_1
  doi: 10.1201/9781420004496-2
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1420-9101.2006.01182.x
– ident: e_1_2_7_61_1
  doi: 10.1017/S0960428600000949
– ident: e_1_2_7_72_1
  doi: 10.1016/j.actao.2014.04.004
– ident: e_1_2_7_93_1
  doi: 10.1111/j.1469-8137.2007.02275.x
– ident: e_1_2_7_71_1
– ident: e_1_2_7_80_1
  doi: 10.3732/ajb.1500135
– ident: e_1_2_7_57_1
  doi: 10.1111/nph.13001
– ident: e_1_2_7_78_1
  doi: 10.1111/boj.12394
– ident: e_1_2_7_48_1
  doi: 10.14214/sf.348
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1755-0998.2009.02801.x
– ident: e_1_2_7_81_1
  doi: 10.1007/s00468-013-0864-2
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1558-5646.2008.00332.x
– volume: 8
  start-page: 754
  year: 2006
  ident: e_1_2_7_14_1
  article-title: Morphological variation in leaf traits of Populus euphratica Oliv. natural populations
  publication-title: International Journal of Agriculture & Biology
– ident: e_1_2_7_36_1
  doi: 10.1126/science.165.3889.131
– ident: e_1_2_7_95_1
  doi: 10.1111/j.1365-294X.2009.04465.x
– ident: e_1_2_7_99_1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.palaeo.2007.10.032
– ident: e_1_2_7_49_1
  doi: 10.1146/annurev.ecolsys.27.1.237
– ident: e_1_2_7_33_1
  doi: 10.3390/sym2020466
– ident: e_1_2_7_22_1
  doi: 10.1016/j.tig.2012.03.009
– ident: e_1_2_7_45_1
  doi: 10.7312/oliv12042-002
– ident: e_1_2_7_41_1
  doi: 10.1126/science.1194585
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1523-1739.1998.96489.x
– ident: e_1_2_7_59_1
  doi: 10.1371/journal.pone.0082198
– ident: e_1_2_7_74_1
  doi: 10.1093/jhered/esn092
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-294X.2008.03887.x
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1755-0998.2010.02847.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.0014-3820.2005.tb01814.x
– start-page: 291
  volume-title: Seed Dispersal and Frugivory: Ecology, Evolution and Conservation
  year: 2002
  ident: e_1_2_7_52_1
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1471-8286.2005.01155.x
– ident: e_1_2_7_8_1
  doi: 10.1016/S0034-6667(97)00044-4
– ident: e_1_2_7_96_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_7_32_1
  doi: 10.1098/rspb.1979.0086
– ident: e_1_2_7_50_1
  doi: 10.1002/jqs.887
– ident: e_1_2_7_75_1
  doi: 10.1017/S0960428603000064
– ident: e_1_2_7_92_1
  doi: 10.1016/j.foreco.2008.08.002
– ident: e_1_2_7_7_1
  doi: 10.1098/rstb.2000.0716
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1471-8286.2007.01769.x
– ident: e_1_2_7_54_1
  doi: 10.1007/s00606-009-0249-6
– ident: e_1_2_7_19_1
  doi: 10.1007/BF02859158
– ident: e_1_2_7_73_1
  doi: 10.1093/aob/mcm221
– ident: e_1_2_7_4_1
  doi: 10.1002/tax.602010
– volume: 3
  start-page: 207
  year: 1978
  ident: e_1_2_7_69_1
  article-title: The origin and evolution of the Amazon flora
  publication-title: Interciencia
– ident: e_1_2_7_63_1
  doi: 10.1093/bioinformatics/bts460
– ident: e_1_2_7_83_1
  doi: 10.1086/665973
– ident: e_1_2_7_65_1
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-294X.2012.05454.x
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1744-7429.2011.00760.x
– ident: e_1_2_7_40_1
  doi: 10.1006/jare.2002.0989
– ident: e_1_2_7_2_1
  doi: 10.1111/gcb.12181
– ident: e_1_2_7_84_1
  doi: 10.1093/genetics/139.1.457
– volume: 10
  start-page: 169
  year: 2012
  ident: e_1_2_7_17_1
  article-title: Recovering the demographic history of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modelling and coalescent analyses
  publication-title: Brazilian Journal of Nature Conservation
– ident: e_1_2_7_89_1
  doi: 10.1111/j.1365-294X.2010.04737.x
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1744-7429.2005.00081.x
– ident: e_1_2_7_70_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_7_47_1
  doi: 10.1111/mec.12870
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1442-1984.1999.00018.x
– ident: e_1_2_7_88_1
  doi: 10.4322/natcon.2012.025
– ident: e_1_2_7_98_1
  doi: 10.1111/j.1365-2699.2012.02715.x
– ident: e_1_2_7_77_1
  doi: 10.1086/374368
– ident: e_1_2_7_24_1
  doi: 10.1007/s00468-004-0394-z
– ident: e_1_2_7_97_1
  doi: 10.1016/j.quascirev.2011.03.009
– ident: e_1_2_7_94_1
  doi: 10.1111/mec.12938
– ident: e_1_2_7_51_1
  doi: 10.1046/j.1420-9101.2001.00348.x
– ident: e_1_2_7_56_1
  doi: 10.1016/j.tplants.2010.09.008
– ident: e_1_2_7_43_1
  doi: 10.1111/1365-2745.12177
– ident: e_1_2_7_55_1
  doi: 10.1016/j.foreco.2010.02.013
– ident: e_1_2_7_11_1
  doi: 10.1111/mec.12780
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1095-8339.2004.00394.x
SSID ssj0003206
Score 2.3273613
Snippet The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3789
SubjectTerms Annona
Annona - genetics
Annona crassiflora
Biogeography
Brazil
Cerrado
Climate change
climatic change
climatic factors
genetic divergence
Genetic diversity
Genetic structure
Genetic Variation
Grassland
isolation by distance
isolation by environment
leaf area
leaf traits variation
Leaves
microsatellite repeats
Phenology
phylogeography
phytogeography
Plant Leaves
Rain
regression analysis
Savannahs
savannas
Seasonal variations
Seasons
Species diversity
summer
surveys
Surveys and Questionnaires
Temperature
Trees
winter
Title Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas
URI https://api.istex.fr/ark:/67375/WNG-N7SCM1KP-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13312
https://www.ncbi.nlm.nih.gov/pubmed/27062055
https://www.proquest.com/docview/1829959200
https://www.proquest.com/docview/1826665558
https://www.proquest.com/docview/1837342967
https://www.proquest.com/docview/2020862650
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfDFj9Nq2iqrSPElR5LNZu_0qT3aK8odohb7ICyT7EZCj5wkd2L7D_hvO7P5qJVWxLeE_EI2uzM7v0nmg7GX6NugXYLAR2Oe-lS-xYfIjHwIzChEt9lIQ8nJs3lyfBK_PZWnG-xNlwvT1IfoP7iRZrj9mhQc0vo3Jf-apUN0sFyHYYrVIkL04bJ0lIhcX81QyBi3mlC0VYUoiqe_84otukXT-uM6onmVtzrDc3SPfemG3MSbnA3Xq3SYXfxRzfE_3-k-u9sSUr7fSNADtmHLAbvdtKg8H7Ctw8tMOIS1W0E9YN4M6faycjC-xyeLArmvO3vIfjZnRcZN5eI--DLnCws5p44Uq5pDaThKrnUQQriSoLwoOfJRTj_K-X5ZopPAswrZfZEvUFJfc-BptQTDawoDx9HU6-q7Pe9uO6jgoqCvNrwG9A9KqB-xk6PDT5Njv-344GexVJEvkM6BzQORxyK3EGVC5VEikMXA2Fj0fdIwNiFaW6NkqCBEAz_OwBoJYBMlQGyxTRycfcK4TEfxOAegLn3x2AQjZcC6POREIEU2HnvVrb3O2nLoNAcL3blFuBjaLYbHXvTQb00NkOtAe06AegRUZxQ0p6T-PJ_qufo4mYXv3uupx3Y7CdPtflFr9PKo8BtuWR573l9GTaffN1Da5dph0Nek-mx_wwglkGIk6mZMRH1Z0Y-V-KzHjYT3g45UkESBlDg7Tk5vfl89nRy4g-1_h-6wO8g3kyaVc5dtrqq1fYqcbpU-c8r7C7qZRi0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamTQhe-FEYdAwwCE28pEriOG4RL1vZWthaIdi0vaDoEjtTtCpFSYvY_gH-be6cH2NoQ4i3Rv2iOPbZ951z_o6x1xjboF8C10FnHjsk3-KAr_sOuLrvYdispabDyZNpOD4KPp7IkxX2rjkLU-lDtBtuNDPsek0TnDakf5vlp0ncwwiLSgyvUUVvUs5___lSPEr4trKmJ2SAi40nal0hyuNpb73ijdaoY39cRzWvMlfrevbusa9No6uMk7PechH3kos_9Bz_963us7s1J-XblRE9YCsm77BbVZXK8w5b3708DIewejUoO6w7QcY9LyyMb_HhLEP6a68esp_VVZZwXdjUDz5P-cxAyqkoxaLkkGuOxmsshBBWFZRnOUdKyulbOd_Oc4wTeFIgwc_SGRrrWw48LuageUmZ4Niacll8N-fNbTsFXGS0ccNLwBAhh_IRO9rbPRyOnbrog5MEUvmOQEYHJnVFGojUgJ8IlfqhQCIDA20w_Im9QHvocLWSngIPffwgAaMlgAmVALHOVrFx5gnjMu4HgxSACvUFA-32lQZjjyKHAlmy7rI3zeBHSa2ITn0wi5rICAcjsoPRZa9a6LdKBuQ60Ja1oBYBxRnlzSkZHU9H0VR9GU68_U_RqMs2GxOL6iWjjDDQI-03XLW67GX7N052-oIDuZkvLQbDTZJo-xtGKIEsI1Q3Y3wqzYqhrMRnPa5MvG20r9zQd6XE3rGGevP7RqPhjv2x8e_QF-z2-HByEB18mO4_ZXeQfobVyc5NtrooluYZUrxF_NzO5F_5AUpJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTSBeBhQGgQEGoYmXVEkcxw08bd3awWg1ARN7QLIusTNFq9IpaRHbP8C_zdn5GEMbQrwlyi-KY9_5fpfcByGv0bdBuwSei8Y8cU35FhcCNXDBUwMf3WbFlUlOnkyj_aPwwzE_XiHv2lyYuj5E98HNaIbdr42Cn6nsNyU_SZM-Olimw_BaGHmx6duw--mydhQLbGNNn_EQ9xqfNWWFTBhPd-sVY7Rm5vXHdUzzKnG1lmd0l3xrx1wHnJz2l4ukn178Uc7xP1_qHllvGCndrkXoPlnRRY_cqntUnvfIxt5lKhzCmr2g6hFngnx7XloY3aLDWY7k1549ID_rszylqrSBH3Se0ZmGjJqWFIuKQqEoiq62EIOwNUFpXlAkpNT8KafbRYFeAk1LpPd5NkNRfUuBJuUcFK1MHDiOplqW3_V5e9tOCRe5-WxDK0AHoYDqITka7X0Z7rtNywc3DbkIXIZ8DnTmsSxkmYYgZSILIoY0BmKl0flJ_FD5aG6V4L4AHy18nIJWHEBHggHbIKs4OP2YUJ4MwjgDMG36wlh5A6FA20TkiCFHVg550669TJt66GYOZrL1i3AxpF0Mh7zqoGd1EZDrQFtWgDoElKcmak5w-XU6llPxeTjxDw7l2CGbrYTJZsOoJLp5pvIb7lkOedldRlU3_2-g0POlxaCzaQq0_Q3DBEOOEYmbMYFpzIqOLMdnPaolvBt0ILwo8DjH2bFyevP7yvFwxx48-XfoC3L7cHckP76fHjwld5B7RnVa5yZZXZRL_Qz53SJ5bvX4F96XSPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climatic+drivers+of+leaf+traits+and+genetic+divergence+in+the+tree+Annona+crassiflora%3A+a+broad+spatial+survey+in+the+Brazilian+savannas&rft.jtitle=Global+change+biology&rft.au=Ribeiro%2C+Priciane+C&rft.au=Souza%2C+Matheus+L&rft.au=Muller%2C+Larissa+A+C&rft.au=Ellis%2C+Vincenzo+A&rft.date=2016-11-01&rft.issn=1354-1013&rft.volume=22&rft.issue=11+p.3789-3803&rft.spage=3789&rft.epage=3803&rft_id=info:doi/10.1111%2Fgcb.13312&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon