Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclea...
Saved in:
Published in | Global change biology Vol. 22; no. 11; pp. 3789 - 3803 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate. |
---|---|
AbstractList | The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate. The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora , a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora . Isolation by environment ( IBE ) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora , suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora . However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate. The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate. The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate. |
Author | Lemos-Filho, José P. Lovato, Maria Bernadete Ribeiro, Priciane C. Ellis, Vincenzo A. Heuertz, Myriam Muller, Larissa A. C. Souza, Matheus L. |
Author_xml | – sequence: 1 givenname: Priciane C. surname: Ribeiro fullname: Ribeiro, Priciane C. organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil – sequence: 2 givenname: Matheus L. surname: Souza fullname: Souza, Matheus L. organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil – sequence: 3 givenname: Larissa A. C. surname: Muller fullname: Muller, Larissa A. C. organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil – sequence: 4 givenname: Vincenzo A. surname: Ellis fullname: Ellis, Vincenzo A. organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil – sequence: 5 givenname: Myriam surname: Heuertz fullname: Heuertz, Myriam organization: Forest Ecology and Genetics, Forest Research Centre, INIA, 28040, Madrid, Spain – sequence: 6 givenname: José P. surname: Lemos-Filho fullname: Lemos-Filho, José P. organization: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil – sequence: 7 givenname: Maria Bernadete surname: Lovato fullname: Lovato, Maria Bernadete email: lovatomb@icb.ufmg.br, lovatomb@icb.ufmg.br organization: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Minas Gerais, 31270-901, Belo Horizonte, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27062055$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAYhSNURC-w4AWQJTawSOtLbCfs2ogOiFKQALG0_kn-FBePM7WTocML8No4nU4XlaDe2Ja-c3w5Zz_b8b3HLHvO6CFL4-iimR8yIRh_lO0xoWTOi1LtTGtZ5IwysZvtx3hJKRWcqifZLtdUcSrlXvandnYBg21IG-wKQyR9RxxCR4YAdogEfEsu0OMNMhFp0yCxngw_MEGI5Nin-wBpAsRoO9cHeEOAzEMPLYnLZA6OxDGscL2VnQT4bZ0FTyKswHuIT7PHHbiIz27ng-zb6duv9bv87NPsfX18ljeF1DwXhVSAHRVdIToE3gjdcSV0yaFqUVZ6zoqWccZbLZkGhthWDWArAVBpAeIge7XxXYb-asQ4mIWNDToHHvsxGk45LRVXkj6IslJoUfAq-T6McqWUlLJM6Mt76GU_Bp_ePFFVJStOp7Nf3FLjfIGtWYaUUlibbXAJeL0BmtDHGLC7Qxg1UylMKoW5KUVij-6xjR1SLL2fMnb_U_yyDtf_tjaz-mSryDcKGwe8vlNA-GnS_2hpvp_PzLn-Un9kHz6bmfgLLFbWDw |
CitedBy_id | crossref_primary_10_1038_s41598_019_41454_0 crossref_primary_10_7717_peerj_12399 crossref_primary_10_3389_fpls_2019_01580 crossref_primary_10_2174_1389201023666220330005020 crossref_primary_10_1186_s12862_019_1443_y crossref_primary_10_1002_ece3_8540 crossref_primary_10_1016_j_baae_2021_06_011 crossref_primary_10_1590_2179_8087_034117 crossref_primary_10_3389_fpls_2018_00981 crossref_primary_10_1016_j_scitotenv_2020_141578 crossref_primary_10_1111_jbi_13746 crossref_primary_10_1002_ajb2_1333 crossref_primary_10_1111_jbi_14148 crossref_primary_10_1371_journal_pone_0208512 crossref_primary_10_1080_17550874_2023_2291044 crossref_primary_10_1111_plb_12564 crossref_primary_10_1093_botlinnean_box062 crossref_primary_10_1111_plb_13508 |
Cites_doi | 10.1590/S0103-84782011000100016 10.1111/j.1365-294X.2005.02553.x 10.1007/s00468-012-0690-y 10.1111/mec.12803 10.1093/aob/mcj004 10.18637/jss.v033.i02 10.1111/j.1469-8137.2009.02830.x 10.1111/evo.12193 10.1007/s00704-013-1030-x 10.4238/2012.March.22.6 10.1111/j.1365-294X.2010.04530.x 10.1111/j.1438-8677.2011.00474.x 10.1093/jhered/esn088 10.1201/9781420004496-1 10.1038/72708 10.1111/1365-2745.12204 10.1016/j.tree.2008.10.008 10.1046/j.1365-2745.2000.00506.x 10.7312/oliv12042 10.1006/qres.1997.1932 10.1007/s00468-002-0218-y 10.1055/s-2005-865964 10.1111/gcb.12174 10.1111/evo.12159 10.2108/zsj.19.1279 10.1111/j.1558-5646.1989.tb04220.x 10.1201/9781420004496-2 10.1111/j.1420-9101.2006.01182.x 10.1017/S0960428600000949 10.1016/j.actao.2014.04.004 10.1111/j.1469-8137.2007.02275.x 10.3732/ajb.1500135 10.1111/nph.13001 10.1111/boj.12394 10.14214/sf.348 10.1111/j.1755-0998.2009.02801.x 10.1007/s00468-013-0864-2 10.1111/j.1558-5646.2008.00332.x 10.1126/science.165.3889.131 10.1111/j.1365-294X.2009.04465.x 10.1016/j.palaeo.2007.10.032 10.1146/annurev.ecolsys.27.1.237 10.3390/sym2020466 10.1016/j.tig.2012.03.009 10.7312/oliv12042-002 10.1126/science.1194585 10.1111/j.1523-1739.1998.96489.x 10.1371/journal.pone.0082198 10.1093/jhered/esn092 10.1111/j.1365-294X.2008.03887.x 10.1111/j.1755-0998.2010.02847.x 10.1111/j.0014-3820.2005.tb01814.x 10.1111/j.1471-8286.2005.01155.x 10.1016/S0034-6667(97)00044-4 10.1111/j.1558-5646.1984.tb05657.x 10.1098/rspb.1979.0086 10.1002/jqs.887 10.1017/S0960428603000064 10.1016/j.foreco.2008.08.002 10.1098/rstb.2000.0716 10.1111/j.1471-8286.2007.01769.x 10.1007/s00606-009-0249-6 10.1007/BF02859158 10.1093/aob/mcm221 10.1002/tax.602010 10.1093/bioinformatics/bts460 10.1086/665973 10.1111/j.1365-294X.2012.05454.x 10.1111/j.1744-7429.2011.00760.x 10.1006/jare.2002.0989 10.1111/gcb.12181 10.1093/genetics/139.1.457 10.1111/j.1365-294X.2010.04737.x 10.1111/j.1744-7429.2005.00081.x 10.1111/j.1365-294X.2004.02396.x 10.1111/mec.12870 10.1046/j.1442-1984.1999.00018.x 10.4322/natcon.2012.025 10.1111/j.1365-2699.2012.02715.x 10.1086/374368 10.1007/s00468-004-0394-z 10.1016/j.quascirev.2011.03.009 10.1111/mec.12938 10.1046/j.1420-9101.2001.00348.x 10.1016/j.tplants.2010.09.008 10.1111/1365-2745.12177 10.1016/j.foreco.2010.02.013 10.1111/mec.12780 10.1111/j.1095-8339.2004.00394.x |
ContentType | Journal Article |
Copyright | 2016 John Wiley & Sons Ltd 2016 John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 |
DOI | 10.1111/gcb.13312 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 3803 |
ExternalDocumentID | 4218810911 27062055 10_1111_gcb_13312 GCB13312 ark_67375_WNG_N7SCM1KP_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Spanish Ministry for Science and Innovation funderid: RYC2009‐04537 – fundername: Spanish Ministry for Economy and Competitiveness funderid: CGL2012‐40129‐C02‐02 – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais funderid: APQ‐00671‐11 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 475331/2012‐5 – fundername: Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4572-3456aef03f43fea2c37f263782a9de597b14d1212d7517a1eed9caed5aae673a3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:38:40 EDT 2025 Thu Jul 10 17:10:05 EDT 2025 Thu Jul 10 22:25:54 EDT 2025 Fri Jul 25 10:58:19 EDT 2025 Wed Feb 19 02:41:31 EST 2025 Tue Jul 01 03:52:55 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Wed Jan 22 17:11:17 EST 2025 Wed Oct 30 09:53:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Annona crassiflora isolation by distance isolation by environment climatic change genetic divergence Cerrado leaf traits variation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4572-3456aef03f43fea2c37f263782a9de597b14d1212d7517a1eed9caed5aae673a3 |
Notes | Fundação de Amparo à Pesquisa do Estado de Minas Gerais - No. APQ-00671-11 Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ArticleID:GCB13312 Spanish Ministry for Economy and Competitiveness - No. CGL2012-40129-C02-02 Spanish Ministry for Science and Innovation - No. RYC2009-04537 Table S1. List of vouchers of Annona crassiflora deposited in the Herbarium of the Departamento de Botânica da Universidade Federal de Minas Gerais (BHCB), Brazil. Table S2. Characteristics of the microsatellite markers tested in Annona crassiflora. Table S3. Proportion of variance explained by the first three principal components (PC) of the climatic Bioclim variables (downloaded at 5 arc-min resolution) in each set of environmental variables (ENV1, ENV2, ENV3) used in the GLMM modelling. Loading values of −0.1 < X < 0.1 are not shown. ENV1 = 19 Woldclim variables (BIO1-19), ENV2 = BIO8, BIO10, BIO16, BO18 (summer), ENV3 = BIO9, BIO11, BIO17, BIO19 (winter). Table S4. Null allele frequency by locus estimated with Brookfield 1 method in Annona crassiflora populations. Table S5. Results of the amova for genetic data and anova for morphological data (metamer) for each of the three genetic groups of Annona crassiflora defined by the Bayesian structure analysis. Table S6. Principal component analysis for 14 metamer traits in Annona crassiflora. Loading values of −0.1 < X < 0.1 are not shown. Table S7. Generalized linear mixed effect modelling selection results for morphological traits in Annona crassiflora including all populations together, and genetic groups defined by Bayesian structure analysis, separately. Models include as predictor variables geographic (GEO) and environmental distance (ENV1, ENV2 and ENV3) among populations, and differences in population assignment with phytogeographic provinces (PHY; only used in the analysis of all populations together). Table S8. Pearson pairwise correlation coefficients between geographic and climatic variables across the sampled areas. Coefficients > 0.5 are highlighted in bold. Lon, longitude; Lat, latitude; Alt, altitude, and B, Bioclimatic variable. Fig. S1. Population structure analysis of Annona crassiflora using tess. (A) Results postprocessed with the Evanno approach; ΔK values for each K. (B) Deviance information criterion (DIC) plotted against K. Fig. S2. Mean values and standard errors of the first principal component (PC1) from the PCA of morphological metamer data in relation to longitude of populations of Annona crassiflora. Results of a Pearson's correlation test of the mean values of PC1 against longitude are reported in the graphic. Graphical symbols: (▲) single population-FOR; (●) east group and (○) west group. Fig. S3. Mean values of the first principal component from the PCA of (summer, ENV2) climate data, in relation to latitude (A) and longitude (B) for each Annona crassiflora population. Results of Pearson's correlation tests of mean ENV2 values against latitude and longitude are reported in the graphic. Graphical symbols: (●) southern group, (Δ) eastern group and (○) western group. istex:4E55535F4020DDCF15B8523B017D63A66802B319 ark:/67375/WNG-N7SCM1KP-G Conselho Nacional de Desenvolvimento Científico e Tecnológico - No. 475331/2012-5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27062055 |
PQID | 1829959200 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2020862650 proquest_miscellaneous_1837342967 proquest_miscellaneous_1826665558 proquest_journals_1829959200 pubmed_primary_27062055 crossref_primary_10_1111_gcb_13312 crossref_citationtrail_10_1111_gcb_13312 wiley_primary_10_1111_gcb_13312_GCB13312 istex_primary_ark_67375_WNG_N7SCM1KP_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11 November 2016 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Behling H (1998) Late Quaternary vegetational and climatic changes in Brazil. Review of Palaeobotany and Palynology, 99, 143-156. Guimarães PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One, 3, e1745. Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27, 237-277. Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. International Journal of Plant Sciences, 173, 711-723. Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630-1648. Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. Journal of Quaternary Science, 19, 713-720. Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution, 62, 774-792. Barros FV, Goulart MF, Telles SBS, Lovato MB, Valladares F, Lemos-Filho JP (2012) Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215. Novaes RML, Lemos-filho JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion to wards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Molecular Ecology, 19, 985-998. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources, 10, 556-557. Wang IJ, Bradburd GS (2014) Isolation by environment. Molecular Ecology, 23, 5649-5662. Alberto FJ, Aitken S, Alia R et al. (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645-1661. Ramos ACS, Lemos-Filho JP, Lovato MB (2009) Phylogeographic structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. Journal of Heredity, 100, 206-216. Goulart MF, Lemos-Filho JP, Lovato MB (2006) Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae-Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites. Plant Biology, 8, 112-119. Prance GT (1978) The origin and evolution of the Amazon flora. Interciencia, 3, 207-222. Plummer M, Best N, Kate Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7-11. Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographic connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695-1706. Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York. Toledo MM, Paiva EAS, Lovato MB, Lemos-Filho JP (2012) Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees, 26, 1137-1144. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B, 205, 581-598. González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society, 147, 427-435. Franco AC, Bustamante M, Caldas LS et al. (2005) Leaf functional traits of neotropical savanna trees in relation to seasonal water deficit. Trees, 19, 326-335. Li C, ZhangvX Liu X, Lukanen O, Berninger F (2006) Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40, 5-13. Reich PB, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. Eiten G (1972) The Cerrado vegetation of Brazil. Botanical Review, 38, 201-341. Merilä J, Crnokrak P (2001) Comparison of marker gene and quantitative genetic differentiation among populations. Journal of Evolutionary Biology, 14, 892-903. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462. Golin V, Santos-Filho M, Pereira MJB (2011) Dispersal and predation of araticum seeds in the Cerrado of Mato Grosso, Brasil. Ciência Rural, 41, 101-107. Hoorn C, Wesselingh FP, ter Steege H et al. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science, 330, 927-931. Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33, 1-22. Hammer O, Happer DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 pp. Sun S, Jin D, Shi P (2006) The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107. Antonelli A, Sanmartin I (2011) Why are there so many plant species in the Neotropics? Taxon, 60, 403-414. Bradburd GS, Ralph PL, Coop GM (2013) Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67, 3258-3273. Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855. Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH (2012) Adaptation with gene flow across the landscape in a dune sunflower. Molecular Ecology, 21, 2078-2091. Haffer J (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. Niinemets U (2014) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. Behling H, Lichte M (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research, 48, 348-358. Neffa VGS (2010) Geographic patterns of morphological variation in Turnera sidoides subsp. pinnatifida (Turneraceae). Plant Systematics and Evolution, 284, 231-253. Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Molecular Ecology, 19, 3532-3548. Barreto AGOP, Berndes G, Spárovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Global Change Biology, 19, 1804-1815. Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57-109. Rossato DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees, 27, 1139-1150. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28, 2537-2539. Calagari M, Modirrahmati AR, Asadi F (2006) Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture & Biology, 8, 754-758. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution, 59, 1633-1638. Terribile LC, Lima-Ribeiro MS, Araújo MB et al. (2012) Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time. Natureza & Conservação, 10, 152-159. Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, Téllez-Valdéz O, Oyama K (2008) Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256, 2121-2126. Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends in Genetics, 28, 342-350. Barton NH (2000) Genetic hitchhiking. Philosophical Transactions of the Royal Society B, 355, 1553-1562. Ribeiro PC, Lemos-Filho JP, Buzatti RSO, Lovato MB, Heuertz M (2016) Species-specific phylogeographic patterns and Pleistocene east-west divergence in Annona (Annonaceae) trees in the Brazilian Cerrado. Botanical Journal of the Linnean Society, 181, 21-36. Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, 117, 579-587. Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and application. Symmetry, 2, 466-540. Jung V, Albert CH, Violle C et al. (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 102, 45-53. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patters. Edinburgh Journal of Botany, 52, 1 2010; 10 2010; 15 1989; 43 2013; 27 2002; 52 2010; 19 2013; 67 2009; 281 2011; 60 1997; 48 2000; 88 2007; 100 1995; 139 1978; 3 2003; 17 2008; 3 2016; 103 2012; 14 2013; 8 2016; 181 2012; 11 2014; 23 2012; 10 1969; 165 2013; 19 2012; 173 2014; 205 2000; 18 2001 2005; 147 2007; 176 1999; 14 2014; 58 2007; 7 2012; 28 2012; 26 2010; 2 2008; 62 1996; 27 2001; 14 2012; 21 1998; 12 1998; 99 2003; 164 2010; 33 1995; 52 2009; 24 2014; 117 2006; 97 2000; 355 2009; 182 1979; 205 2008; 17 2009 2006; 8 2011; 30 2010; 284 2007 2006; 19 2006; 6 2006 2012; 39 2000; 155 2002 2005; 19 2006; 40 2004; 19 2010; 259 1984; 38 2001; 4 2010; 330 2009; 100 2011; 41 2011; 43 2015 2008; 256 2005; 59 2003; 60 1972; 38 2005; 14 2014; 102 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Plummer M (e_1_2_7_67_1) 2006; 6 Collevatti RG (e_1_2_7_17_1) 2012; 10 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 Prance GT (e_1_2_7_69_1) 1978; 3 Calagari M (e_1_2_7_14_1) 2006; 8 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 Motta‐Júnior JC (e_1_2_7_52_1) 2002 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Ratter JA (e_1_2_7_76_1) 2006 e_1_2_7_38_1 |
References_xml | – reference: Barros FV, Goulart MF, Telles SBS, Lovato MB, Valladares F, Lemos-Filho JP (2012) Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215. – reference: Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2010) Detecting interspecific and geographic differentiation patterns in two inter fertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. Forest Ecology and Management, 259, 2026-2035. – reference: Mayle FE (2004) Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. Journal of Quaternary Science, 19, 713-720. – reference: Calagari M, Modirrahmati AR, Asadi F (2006) Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture & Biology, 8, 754-758. – reference: Terribile LC, Lima-Ribeiro MS, Araújo MB et al. (2012) Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time. Natureza & Conservação, 10, 152-159. – reference: Lexer C, Wuest RO, Mangili S et al. (2014) Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restiocapensis (Restionaceae). Molecular Ecology, 23, 4373-4386. – reference: Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Molecular Ecology, 19, 3532-3548. – reference: Guimarães PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One, 3, e1745. – reference: Li C, ZhangvX Liu X, Lukanen O, Berninger F (2006) Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40, 5-13. – reference: Plummer M, Best N, Kate Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7-11. – reference: Novaes RML, Ribeiro RA, Lemos-Filho JP, Lovato MB (2013) Concordance between phylogeographic and biogeographic patterns in the Brazilian Cerrado: diversification of the endemic tree Dalbergia miscolobium (Fabaceae). PLoS One, 8, e82198. – reference: Behling H (1998) Late Quaternary vegetational and climatic changes in Brazil. Review of Palaeobotany and Palynology, 99, 143-156. – reference: Goulart MF, Lemos-Filho JP, Lovato MB (2006) Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae-Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites. Plant Biology, 8, 112-119. – reference: Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33, 1-22. – reference: Franco AC, Bustamante M, Caldas LS et al. (2005) Leaf functional traits of neotropical savanna trees in relation to seasonal water deficit. Trees, 19, 326-335. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: Ramos ACS, Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB (2007) Phylogeography of the tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of Quaternary climate changes in the Brazilian Cerrado. Annals of Botany, 100, 1219-1228. – reference: Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biology, 14, 143-152. – reference: Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630-1648. – reference: Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes, 7, 747-756. – reference: Collevatti RG, Lima-Ribeiro MS, Souza-Neto AC, Franco AA, de Oliveira G, Terribile LC (2012) Recovering the demographic history of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modelling and coalescent analyses. Brazilian Journal of Nature Conservation, 10, 169-176. – reference: Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. – reference: Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society B, 205, 581-598. – reference: Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57-109. – reference: Spasojevic MJ, Grace JB, Harrison S, Damschen EI (2014) Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. Journal of Ecology, 102, 447-455. – reference: Neffa VGS (2010) Geographic patterns of morphological variation in Turnera sidoides subsp. pinnatifida (Turneraceae). Plant Systematics and Evolution, 284, 231-253. – reference: Hoorn C, Wesselingh FP, ter Steege H et al. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science, 330, 927-931. – reference: Antonelli A, Sanmartin I (2011) Why are there so many plant species in the Neotropics? Taxon, 60, 403-414. – reference: Golin V, Santos-Filho M, Pereira MJB (2011) Dispersal and predation of araticum seeds in the Cerrado of Mato Grosso, Brasil. Ciência Rural, 41, 101-107. – reference: Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH (2012) Adaptation with gene flow across the landscape in a dune sunflower. Molecular Ecology, 21, 2078-2091. – reference: Riordan EC, Gugger PF, Ortego J, Smith C, Gaddis K, Thompson P, Sork VL (2016) Association of genetic and phenotypic variability with geography and climate in three southern California. American Journal of Botany, 103, 73-85. – reference: Toledo MM, Paiva EAS, Lovato MB, Lemos-Filho JP (2012) Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees, 26, 1137-1144. – reference: Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and application. Symmetry, 2, 466-540. – reference: Ribeiro PC, Lemos-Filho JP, Buzatti RSO, Lovato MB, Heuertz M (2016) Species-specific phylogeographic patterns and Pleistocene east-west divergence in Annona (Annonaceae) trees in the Brazilian Cerrado. Botanical Journal of the Linnean Society, 181, 21-36. – reference: Goulart MF, Lovato MB, Barros FV, Valladares F, Lemos-Filho JP (2011) Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest? Biotropica, 43, 695-703. – reference: Prance GT (1978) The origin and evolution of the Amazon flora. Interciencia, 3, 207-222. – reference: Wang IJ, Bradburd GS (2014) Isolation by environment. Molecular Ecology, 23, 5649-5662. – reference: Barreto AGOP, Berndes G, Spárovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Global Change Biology, 19, 1804-1815. – reference: Latch EK, Reding DM, Heffelfinger JR, Alcalá-Galván CH, Rhodes OE Jr (2014) Range-wide analysis of genetic structure in a widespread, highly mobile species (Odocoileus hemionus) reveals the importance of historical biogeography. Molecular Ecology, 23, 3171-3190. – reference: Novaes RML, Lemos-filho JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion to wards northeastern Brazil and southern Cerrados in Eastern Tropical South America. Molecular Ecology, 19, 985-998. – reference: Hódar JA (2002) Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions. Journal of Arid Environments, 52, 233-243. – reference: Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28, 2537-2539. – reference: Jung V, Albert CH, Violle C et al. (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 102, 45-53. – reference: Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics, 27, 237-277. – reference: Reich PB, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. – reference: Souza HAV, Muller LAC, Brandão RL, Lovato MB (2012) Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado. Genetics and Molecular Research, 11, 756-764. – reference: Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of three spine sticklebacks. Journal of Evolutionary Biology, 19, 1803-1812. – reference: Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. – reference: Hammer O, Happer DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 pp. – reference: Nicotra AB, Atkin OK, Bonser SP et al. (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692. – reference: Niinemets U (2014) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 205, 79-96. – reference: Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, 117, 579-587. – reference: Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015-4026. – reference: Hedrick PW (2005) A standardized genetic differentiation measure. Evolution, 59, 1633-1638. – reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. – reference: Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patters. Edinburgh Journal of Botany, 52, 141-194. – reference: Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225. – reference: Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19, 447-458. – reference: Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York. – reference: Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855. – reference: Rossato DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees, 27, 1139-1150. – reference: Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567. – reference: Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180-195. – reference: Bolker BM, Mollie E, Brooks ME et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127-135. – reference: Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution, 62, 774-792. – reference: Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457-462. – reference: Werneck FP, Nogueira C, Colli GR, Sites JW, Costa GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographic connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography, 39, 1695-1706. – reference: Merilä J, Crnokrak P (2001) Comparison of marker gene and quantitative genetic differentiation among populations. Journal of Evolutionary Biology, 14, 892-903. – reference: Ramirez-Valiente JA, Valladares F, Sánchez-Gomez Delgado A, Aranda I (2014) Population variation and natural selection on leaf traits in cork oak throughout its distribution range. Acta Oecologica, 58, 49-56. – reference: Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity, 100, 106-113. – reference: Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763. – reference: Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. – reference: Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. International Journal of Plant Sciences, 173, 711-723. – reference: Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends in Genetics, 28, 342-350. – reference: Ramos ACS, Lemos-Filho JP, Lovato MB (2009) Phylogeographic structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. Journal of Heredity, 100, 206-216. – reference: Eiten G (1972) The Cerrado vegetation of Brazil. Botanical Review, 38, 201-341. – reference: Barton NH (2000) Genetic hitchhiking. Philosophical Transactions of the Royal Society B, 355, 1553-1562. – reference: Bruschi P, Grossoni P, Bussotti F (2003) Within and among tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees, 17, 164-172. – reference: Behling H, Lichte M (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research, 48, 348-358. – reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620. – reference: Bonatelli IAS, Perez MF, Peterson AT et al. (2014) Interglacial microrefugia and diversification of a cactus species complex, phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Molecular Ecology, 23, 3044-3063. – reference: Sun S, Jin D, Shi P (2006) The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107. – reference: Alberto FJ, Aitken S, Alia R et al. (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645-1661. – reference: Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources, 10, 556-557. – reference: González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society, 147, 427-435. – reference: Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295. – reference: Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, Téllez-Valdéz O, Oyama K (2008) Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256, 2121-2126. – reference: Bradburd GS, Ralph PL, Coop GM (2013) Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67, 3258-3273. – reference: Haffer J (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. – reference: He Q, Edwards DL, Knowles LL (2013) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution, 67, 3386-3402. – volume: 10 start-page: 564 year: 2010 end-page: 567 article-title: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows publication-title: Molecular Ecology Resources – volume: 102 start-page: 45 year: 2014 end-page: 53 article-title: Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events publication-title: Journal of Ecology – volume: 12 start-page: 844 year: 1998 end-page: 855 article-title: Identifying populations for conservation on the basis of genetic markers publication-title: Conservation Biology – volume: 67 start-page: 3386 year: 2013 end-page: 3402 article-title: Integrative testing of how environments from the past to the present shape genetic structure across landscapes publication-title: Evolution – volume: 58 start-page: 49 year: 2014 end-page: 56 article-title: Population variation and natural selection on leaf traits in cork oak throughout its distribution range publication-title: Acta Oecologica – volume: 28 start-page: 342 year: 2012 end-page: 350 article-title: The genomics of speciation‐with‐gene‐flow publication-title: Trends in Genetics – volume: 48 start-page: 348 year: 1997 end-page: 358 article-title: Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil publication-title: Quaternary Research – volume: 205 start-page: 79 year: 2014 end-page: 96 article-title: Is there a species spectrum within the world‐wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll publication-title: New Phytologist – volume: 39 start-page: 1695 year: 2012 end-page: 1706 article-title: Climatic stability in the Brazilian Cerrado: implications for biogeographic connections of South American savannas, species richness and conservation in a biodiversity hotspot publication-title: Journal of Biogeography – volume: 14 start-page: 892 year: 2001 end-page: 903 article-title: Comparison of marker gene and quantitative genetic differentiation among populations publication-title: Journal of Evolutionary Biology – volume: 23 start-page: 3044 year: 2014 end-page: 3063 article-title: Interglacial microrefugia and diversification of a cactus species complex, phylogeography and palaeodistributional reconstructions for and allies publication-title: Molecular Ecology – volume: 27 start-page: 1139 year: 2013 end-page: 1150 article-title: Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna publication-title: Trees – volume: 330 start-page: 927 year: 2010 end-page: 931 article-title: Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity publication-title: Science – volume: 19 start-page: 3532 year: 2010 end-page: 3548 article-title: Spatial modelling and landscape‐level approaches for visualizing intra‐specific variation publication-title: Molecular Ecology – volume: 38 start-page: 201 year: 1972 end-page: 341 article-title: The Cerrado vegetation of Brazil publication-title: Botanical Review – volume: 11 start-page: 756 year: 2012 end-page: 764 article-title: Isolation of high quality and polysaccharide‐free DNA from leaves of (Leguminosae), a tree from the Brazilian Cerrado publication-title: Genetics and Molecular Research – volume: 19 start-page: 447 year: 2010 end-page: 458 article-title: Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‐dart frog publication-title: Molecular Ecology – volume: 6 start-page: 7 year: 2006 end-page: 11 article-title: CODA: convergence diagnosis and output analysis for MCMC publication-title: R News – volume: 18 start-page: 233 year: 2000 end-page: 234 article-title: An economic method for the fluorescent labeling of PCR fragments publication-title: Nature Biotechnology – volume: 97 start-page: 97 year: 2006 end-page: 107 article-title: The leaf size‐twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship publication-title: Annals of Botany – volume: 99 start-page: 143 year: 1998 end-page: 156 article-title: Late Quaternary vegetational and climatic changes in Brazil publication-title: Review of Palaeobotany and Palynology – volume: 28 start-page: 2537 year: 2012 end-page: 2539 article-title: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update publication-title: Bioinformatics – volume: 19 start-page: 985 year: 2010 end-page: 998 article-title: Phylogeography of (Leguminosae) reveals patterns of recent range expansion to wards northeastern Brazil and southern Cerrados in Eastern Tropical South America publication-title: Molecular Ecology – volume: 30 start-page: 1630 year: 2011 end-page: 1648 article-title: The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives publication-title: Quaternary Science Reviews – volume: 4 year: 2001 article-title: PAST: Paleontological statistics software package for education and data analysis publication-title: Palaeontologia Electronica – volume: 17 start-page: 4015 year: 2008 end-page: 4026 article-title: GST and its relatives do not measure differentiation publication-title: Molecular Ecology – volume: 52 start-page: 141 year: 1995 end-page: 194 article-title: A study of the origin of central Brazilian forests by the analysis of plant species distribution patters publication-title: Edinburgh Journal of Botany – volume: 19 start-page: 326 year: 2005 end-page: 335 article-title: Leaf functional traits of neotropical savanna trees in relation to seasonal water deficit publication-title: Trees – volume: 21 start-page: 2078 year: 2012 end-page: 2091 article-title: Adaptation with gene flow across the landscape in a dune sunflower publication-title: Molecular Ecology – volume: 147 start-page: 427 year: 2005 end-page: 435 article-title: Leaf morphometric variation in and (Fagaceae), two hybridizing Mexican red oaks publication-title: Botanical Journal of the Linnean Society – volume: 19 start-page: 1645 year: 2013 end-page: 1661 article-title: Potential for evolutionary responses to climate change – evidence from tree populations publication-title: Global Change Biology – volume: 7 start-page: 747 year: 2007 end-page: 756 article-title: Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study publication-title: Molecular Ecology Notes – year: 2007 – volume: 284 start-page: 231 year: 2010 end-page: 253 article-title: Geographic patterns of morphological variation in subsp. pinnatifida (Turneraceae) publication-title: Plant Systematics and Evolution – volume: 100 start-page: 106 year: 2009 end-page: 113 article-title: Simultaneous estimation of null alleles and inbreeding coefficients publication-title: Journal of Heredity – volume: 182 start-page: 565 year: 2009 end-page: 588 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis publication-title: New Phytologist – volume: 10 start-page: 556 year: 2010 end-page: 557 article-title: SMOGD: software for the measurement of genetic diversity publication-title: Molecular Ecology Resources – volume: 59 start-page: 1633 year: 2005 end-page: 1638 article-title: A standardized genetic differentiation measure publication-title: Evolution – start-page: 1 year: 2006 end-page: 29 – volume: 23 start-page: 3171 year: 2014 end-page: 3190 article-title: Range‐wide analysis of genetic structure in a widespread, highly mobile species ( ) reveals the importance of historical biogeography publication-title: Molecular Ecology – volume: 103 start-page: 73 year: 2016 end-page: 85 article-title: Association of genetic and phenotypic variability with geography and climate in three southern California publication-title: American Journal of Botany – start-page: 33 year: 2002 end-page: 52 – volume: 26 start-page: 1137 year: 2012 end-page: 1144 article-title: Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential publication-title: Trees – volume: 164 start-page: S143 year: 2003 end-page: S164 article-title: The evolution of plant functional variation: traits, spectra, and strategies publication-title: International Journal of Plant Sciences – volume: 60 start-page: 403 year: 2011 end-page: 414 article-title: Why are there so many plant species in the Neotropics? publication-title: Taxon – volume: 14 start-page: 2611 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study publication-title: Molecular Ecology – volume: 181 start-page: 21 year: 2016 end-page: 36 article-title: Species‐specific phylogeographic patterns and Pleistocene east‐west divergence in (Annonaceae) trees in the Brazilian Cerrado publication-title: Botanical Journal of the Linnean Society – volume: 165 start-page: 131 year: 1969 end-page: 137 article-title: Speciation in Amazonian forest birds publication-title: Science – volume: 62 start-page: 774 year: 2008 end-page: 792 article-title: Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes publication-title: Evolution – year: 2002 – volume: 24 start-page: 127 year: 2009 end-page: 135 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology and Evolution – volume: 2 start-page: 466 year: 2010 end-page: 540 article-title: Fluctuating asymmetry: methods, theory, and application publication-title: Symmetry – volume: 41 start-page: 101 year: 2011 end-page: 107 article-title: Dispersal and predation of araticum seeds in the Cerrado of Mato Grosso, Brasil publication-title: Ciência Rural – volume: 40 start-page: 5 year: 2006 end-page: 13 article-title: Leaf morphological and physiological responses of along an altitudinal gradient publication-title: Silva Fennica – volume: 100 start-page: 1219 year: 2007 end-page: 1228 article-title: Phylogeography of the tree (Fabaceae: Caesalpinioideae) and the influence of Quaternary climate changes in the Brazilian Cerrado publication-title: Annals of Botany – year: 2009 – volume: 19 start-page: 1804 year: 2013 end-page: 1815 article-title: Agricultural intensification in Brazil and its effects on land‐use patterns: an analysis of the 1975–2006 period publication-title: Global Change Biology – volume: 10 start-page: 169 year: 2012 end-page: 176 article-title: Recovering the demographic history of a Brazilian Cerrado tree species : coupling ecological niche modelling and coalescent analyses publication-title: Brazilian Journal of Nature Conservation – volume: 33 start-page: 1 year: 2010 end-page: 22 article-title: MCMC methods for multi‐response generalized linear mixed models: the MCMCglmm R package publication-title: Journal of Statistical Software – year: 2001 – volume: 10 start-page: 152 year: 2012 end-page: 159 article-title: Areas of climate stability in the Brazilian Cerrado: disentangling uncertainties through time publication-title: Natureza & Conservação – start-page: 291 year: 2002 end-page: 303 – volume: 3 start-page: 207 year: 1978 end-page: 222 article-title: The origin and evolution of the Amazon flora publication-title: Interciencia – volume: 176 start-page: 749 year: 2007 end-page: 763 article-title: Ecological limits to plant phenotypic plasticity publication-title: New Phytologist – volume: 60 start-page: 57 year: 2003 end-page: 109 article-title: Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas publication-title: Edinburgh Journal of Botany – volume: 100 start-page: 206 year: 2009 end-page: 216 article-title: Phylogeographic structure of the neotropical forest tree (Leguminosae: Caesalpinioideae) and its relationship with the vicariant from Cerrado publication-title: Journal of Heredity – volume: 8 start-page: e82198 year: 2013 article-title: Concordance between phylogeographic and biogeographic patterns in the Brazilian Cerrado: diversification of the endemic tree (Fabaceae) publication-title: PLoS One – volume: 15 start-page: 684 year: 2010 end-page: 692 article-title: Plant phenotypic plasticity in a changing climate publication-title: Trends in Plant Science – volume: 88 start-page: 964 year: 2000 end-page: 977 article-title: Shifts in trait‐combinations along rainfall and phosphorus gradients publication-title: Journal of Ecology – volume: 281 start-page: 180 year: 2009 end-page: 195 article-title: Present‐day South American climate publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 38 start-page: 1358 year: 1984 end-page: 1370 article-title: Estimating F‐statistics for the analysis of population structure publication-title: Evolution – volume: 259 start-page: 2026 year: 2010 end-page: 2035 article-title: Detecting interspecific and geographic differentiation patterns in two inter fertile oak species ( (Matt.) Liebl. and L.) using small sets of microsatellite markers publication-title: Forest Ecology and Management – volume: 19 start-page: 713 year: 2004 end-page: 720 article-title: Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations publication-title: Journal of Quaternary Science – volume: 23 start-page: 5649 year: 2014 end-page: 5662 article-title: Isolation by environment publication-title: Molecular Ecology – volume: 43 start-page: 695 year: 2011 end-page: 703 article-title: Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest? publication-title: Biotropica – volume: 256 start-page: 2121 year: 2008 end-page: 2126 article-title: Foliar morphological variation in the white oak Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation publication-title: Forest Ecology and Management – year: 2015 – volume: 3 start-page: e1745 year: 2008 article-title: Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate publication-title: PLoS One – volume: 173 start-page: 711 year: 2012 end-page: 723 article-title: Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado publication-title: International Journal of Plant Sciences – volume: 139 start-page: 457 year: 1995 end-page: 462 article-title: A measure of population subdivision based on microsatellite allele frequencies publication-title: Genetics – volume: 27 start-page: 237 year: 1996 end-page: 277 article-title: Evolutionary significance of local genetic differentiation in plants publication-title: Annual Review of Ecology and Systematics – volume: 6 start-page: 288 year: 2006 end-page: 295 article-title: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research publication-title: Molecular Ecology Notes – volume: 205 start-page: 581 year: 1979 end-page: 598 article-title: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme publication-title: Proceedings of the Royal Society B – volume: 8 start-page: 754 year: 2006 end-page: 758 article-title: Morphological variation in leaf traits of Oliv. natural populations publication-title: International Journal of Agriculture & Biology – volume: 23 start-page: 4373 year: 2014 end-page: 4386 article-title: Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in (Restionaceae) publication-title: Molecular Ecology – volume: 14 start-page: 143 year: 1999 end-page: 152 article-title: Pollination and evolution in neotropical Annonaceae publication-title: Plant Species Biology – volume: 8 start-page: 112 year: 2006 end-page: 119 article-title: Variability in fruit and seed morphology among and within populations of (Leguminosae‐Mimosoideae) in areas of the Cerrado, the Atlantic Forest, and transitional sites publication-title: Plant Biology – volume: 117 start-page: 579 year: 2014 end-page: 587 article-title: Climate change hotspots over South America: from CMIP3 to CMIP5 multi‐model datasets publication-title: Theoretical and Applied Climatology – volume: 355 start-page: 1553 year: 2000 end-page: 1562 article-title: Genetic hitchhiking publication-title: Philosophical Transactions of the Royal Society B – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 67 start-page: 3258 year: 2013 end-page: 3273 article-title: Disentangling the effects of geographic and ecological isolation on genetic differentiation publication-title: Evolution – volume: 19 start-page: 1803 year: 2006 end-page: 1812 article-title: Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of three spine sticklebacks publication-title: Journal of Evolutionary Biology – volume: 14 start-page: 208 year: 2012 end-page: 215 article-title: Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna) publication-title: Plant Biology – volume: 17 start-page: 164 year: 2003 end-page: 172 article-title: Within and among tree variation in leaf morphology of (Matt.) Liebl. natural populations publication-title: Trees – start-page: 31 year: 2006 end-page: 66 – volume: 43 start-page: 223 year: 1989 end-page: 225 article-title: Analyzing tables of statistical tests publication-title: Evolution – volume: 52 start-page: 233 year: 2002 end-page: 243 article-title: Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions publication-title: Journal of Arid Environments – volume: 102 start-page: 447 year: 2014 end-page: 455 article-title: Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients publication-title: Journal of Ecology – ident: e_1_2_7_26_1 doi: 10.1590/S0103-84782011000100016 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_7_90_1 doi: 10.1007/s00468-012-0690-y – ident: e_1_2_7_44_1 doi: 10.1111/mec.12803 – ident: e_1_2_7_87_1 doi: 10.1093/aob/mcj004 – ident: e_1_2_7_35_1 doi: 10.18637/jss.v033.i02 – ident: e_1_2_7_68_1 doi: 10.1111/j.1469-8137.2009.02830.x – ident: e_1_2_7_12_1 doi: 10.1111/evo.12193 – volume: 6 start-page: 7 year: 2006 ident: e_1_2_7_67_1 article-title: CODA: convergence diagnosis and output analysis for MCMC publication-title: R News – ident: e_1_2_7_91_1 doi: 10.1007/s00704-013-1030-x – ident: e_1_2_7_85_1 doi: 10.4238/2012.March.22.6 – ident: e_1_2_7_58_1 doi: 10.1111/j.1365-294X.2010.04530.x – ident: e_1_2_7_6_1 doi: 10.1111/j.1438-8677.2011.00474.x – ident: e_1_2_7_16_1 doi: 10.1093/jhered/esn088 – ident: e_1_2_7_64_1 doi: 10.1201/9781420004496-1 – ident: e_1_2_7_82_1 doi: 10.1038/72708 – ident: e_1_2_7_86_1 doi: 10.1111/1365-2745.12204 – ident: e_1_2_7_10_1 doi: 10.1016/j.tree.2008.10.008 – ident: e_1_2_7_23_1 doi: 10.1046/j.1365-2745.2000.00506.x – ident: e_1_2_7_60_1 doi: 10.7312/oliv12042 – ident: e_1_2_7_9_1 doi: 10.1006/qres.1997.1932 – ident: e_1_2_7_13_1 doi: 10.1007/s00468-002-0218-y – ident: e_1_2_7_30_1 doi: 10.1055/s-2005-865964 – ident: e_1_2_7_5_1 doi: 10.1111/gcb.12174 – ident: e_1_2_7_38_1 doi: 10.1111/evo.12159 – ident: e_1_2_7_37_1 doi: 10.2108/zsj.19.1279 – ident: e_1_2_7_79_1 doi: 10.1111/j.1558-5646.1989.tb04220.x – ident: e_1_2_7_29_1 – start-page: 31 volume-title: Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation year: 2006 ident: e_1_2_7_76_1 doi: 10.1201/9781420004496-2 – ident: e_1_2_7_46_1 doi: 10.1111/j.1420-9101.2006.01182.x – ident: e_1_2_7_61_1 doi: 10.1017/S0960428600000949 – ident: e_1_2_7_72_1 doi: 10.1016/j.actao.2014.04.004 – ident: e_1_2_7_93_1 doi: 10.1111/j.1469-8137.2007.02275.x – ident: e_1_2_7_71_1 – ident: e_1_2_7_80_1 doi: 10.3732/ajb.1500135 – ident: e_1_2_7_57_1 doi: 10.1111/nph.13001 – ident: e_1_2_7_78_1 doi: 10.1111/boj.12394 – ident: e_1_2_7_48_1 doi: 10.14214/sf.348 – ident: e_1_2_7_18_1 doi: 10.1111/j.1755-0998.2009.02801.x – ident: e_1_2_7_81_1 doi: 10.1007/s00468-013-0864-2 – ident: e_1_2_7_53_1 doi: 10.1111/j.1558-5646.2008.00332.x – volume: 8 start-page: 754 year: 2006 ident: e_1_2_7_14_1 article-title: Morphological variation in leaf traits of Populus euphratica Oliv. natural populations publication-title: International Journal of Agriculture & Biology – ident: e_1_2_7_36_1 doi: 10.1126/science.165.3889.131 – ident: e_1_2_7_95_1 doi: 10.1111/j.1365-294X.2009.04465.x – ident: e_1_2_7_99_1 – ident: e_1_2_7_25_1 doi: 10.1016/j.palaeo.2007.10.032 – ident: e_1_2_7_49_1 doi: 10.1146/annurev.ecolsys.27.1.237 – ident: e_1_2_7_33_1 doi: 10.3390/sym2020466 – ident: e_1_2_7_22_1 doi: 10.1016/j.tig.2012.03.009 – ident: e_1_2_7_45_1 doi: 10.7312/oliv12042-002 – ident: e_1_2_7_41_1 doi: 10.1126/science.1194585 – ident: e_1_2_7_66_1 doi: 10.1111/j.1523-1739.1998.96489.x – ident: e_1_2_7_59_1 doi: 10.1371/journal.pone.0082198 – ident: e_1_2_7_74_1 doi: 10.1093/jhered/esn092 – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-294X.2008.03887.x – ident: e_1_2_7_21_1 doi: 10.1111/j.1755-0998.2010.02847.x – ident: e_1_2_7_39_1 doi: 10.1111/j.0014-3820.2005.tb01814.x – start-page: 291 volume-title: Seed Dispersal and Frugivory: Ecology, Evolution and Conservation year: 2002 ident: e_1_2_7_52_1 – ident: e_1_2_7_62_1 doi: 10.1111/j.1471-8286.2005.01155.x – ident: e_1_2_7_8_1 doi: 10.1016/S0034-6667(97)00044-4 – ident: e_1_2_7_96_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_7_32_1 doi: 10.1098/rspb.1979.0086 – ident: e_1_2_7_50_1 doi: 10.1002/jqs.887 – ident: e_1_2_7_75_1 doi: 10.1017/S0960428603000064 – ident: e_1_2_7_92_1 doi: 10.1016/j.foreco.2008.08.002 – ident: e_1_2_7_7_1 doi: 10.1098/rstb.2000.0716 – ident: e_1_2_7_15_1 doi: 10.1111/j.1471-8286.2007.01769.x – ident: e_1_2_7_54_1 doi: 10.1007/s00606-009-0249-6 – ident: e_1_2_7_19_1 doi: 10.1007/BF02859158 – ident: e_1_2_7_73_1 doi: 10.1093/aob/mcm221 – ident: e_1_2_7_4_1 doi: 10.1002/tax.602010 – volume: 3 start-page: 207 year: 1978 ident: e_1_2_7_69_1 article-title: The origin and evolution of the Amazon flora publication-title: Interciencia – ident: e_1_2_7_63_1 doi: 10.1093/bioinformatics/bts460 – ident: e_1_2_7_83_1 doi: 10.1086/665973 – ident: e_1_2_7_65_1 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-294X.2012.05454.x – ident: e_1_2_7_31_1 doi: 10.1111/j.1744-7429.2011.00760.x – ident: e_1_2_7_40_1 doi: 10.1006/jare.2002.0989 – ident: e_1_2_7_2_1 doi: 10.1111/gcb.12181 – ident: e_1_2_7_84_1 doi: 10.1093/genetics/139.1.457 – volume: 10 start-page: 169 year: 2012 ident: e_1_2_7_17_1 article-title: Recovering the demographic history of a Brazilian Cerrado tree species Caryocar brasiliense: coupling ecological niche modelling and coalescent analyses publication-title: Brazilian Journal of Nature Conservation – ident: e_1_2_7_89_1 doi: 10.1111/j.1365-294X.2010.04737.x – ident: e_1_2_7_34_1 doi: 10.1111/j.1744-7429.2005.00081.x – ident: e_1_2_7_70_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_7_47_1 doi: 10.1111/mec.12870 – ident: e_1_2_7_28_1 doi: 10.1046/j.1442-1984.1999.00018.x – ident: e_1_2_7_88_1 doi: 10.4322/natcon.2012.025 – ident: e_1_2_7_98_1 doi: 10.1111/j.1365-2699.2012.02715.x – ident: e_1_2_7_77_1 doi: 10.1086/374368 – ident: e_1_2_7_24_1 doi: 10.1007/s00468-004-0394-z – ident: e_1_2_7_97_1 doi: 10.1016/j.quascirev.2011.03.009 – ident: e_1_2_7_94_1 doi: 10.1111/mec.12938 – ident: e_1_2_7_51_1 doi: 10.1046/j.1420-9101.2001.00348.x – ident: e_1_2_7_56_1 doi: 10.1016/j.tplants.2010.09.008 – ident: e_1_2_7_43_1 doi: 10.1111/1365-2745.12177 – ident: e_1_2_7_55_1 doi: 10.1016/j.foreco.2010.02.013 – ident: e_1_2_7_11_1 doi: 10.1111/mec.12780 – ident: e_1_2_7_27_1 doi: 10.1111/j.1095-8339.2004.00394.x |
SSID | ssj0003206 |
Score | 2.3273613 |
Snippet | The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3789 |
SubjectTerms | Annona Annona - genetics Annona crassiflora Biogeography Brazil Cerrado Climate change climatic change climatic factors genetic divergence Genetic diversity Genetic structure Genetic Variation Grassland isolation by distance isolation by environment leaf area leaf traits variation Leaves microsatellite repeats Phenology phylogeography phytogeography Plant Leaves Rain regression analysis Savannahs savannas Seasonal variations Seasons Species diversity summer surveys Surveys and Questionnaires Temperature Trees winter |
Title | Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas |
URI | https://api.istex.fr/ark:/67375/WNG-N7SCM1KP-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13312 https://www.ncbi.nlm.nih.gov/pubmed/27062055 https://www.proquest.com/docview/1829959200 https://www.proquest.com/docview/1826665558 https://www.proquest.com/docview/1837342967 https://www.proquest.com/docview/2020862650 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfDFj9Nq2iqrSPElR5LNZu_0qT3aK8odohb7ICyT7EZCj5wkd2L7D_hvO7P5qJVWxLeE_EI2uzM7v0nmg7GX6NugXYLAR2Oe-lS-xYfIjHwIzChEt9lIQ8nJs3lyfBK_PZWnG-xNlwvT1IfoP7iRZrj9mhQc0vo3Jf-apUN0sFyHYYrVIkL04bJ0lIhcX81QyBi3mlC0VYUoiqe_84otukXT-uM6onmVtzrDc3SPfemG3MSbnA3Xq3SYXfxRzfE_3-k-u9sSUr7fSNADtmHLAbvdtKg8H7Ctw8tMOIS1W0E9YN4M6faycjC-xyeLArmvO3vIfjZnRcZN5eI--DLnCws5p44Uq5pDaThKrnUQQriSoLwoOfJRTj_K-X5ZopPAswrZfZEvUFJfc-BptQTDawoDx9HU6-q7Pe9uO6jgoqCvNrwG9A9KqB-xk6PDT5Njv-344GexVJEvkM6BzQORxyK3EGVC5VEikMXA2Fj0fdIwNiFaW6NkqCBEAz_OwBoJYBMlQGyxTRycfcK4TEfxOAegLn3x2AQjZcC6POREIEU2HnvVrb3O2nLoNAcL3blFuBjaLYbHXvTQb00NkOtAe06AegRUZxQ0p6T-PJ_qufo4mYXv3uupx3Y7CdPtflFr9PKo8BtuWR573l9GTaffN1Da5dph0Nek-mx_wwglkGIk6mZMRH1Z0Y-V-KzHjYT3g45UkESBlDg7Tk5vfl89nRy4g-1_h-6wO8g3kyaVc5dtrqq1fYqcbpU-c8r7C7qZRi0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamTQhe-FEYdAwwCE28pEriOG4RL1vZWthaIdi0vaDoEjtTtCpFSYvY_gH-be6cH2NoQ4i3Rv2iOPbZ951z_o6x1xjboF8C10FnHjsk3-KAr_sOuLrvYdispabDyZNpOD4KPp7IkxX2rjkLU-lDtBtuNDPsek0TnDakf5vlp0ncwwiLSgyvUUVvUs5___lSPEr4trKmJ2SAi40nal0hyuNpb73ijdaoY39cRzWvMlfrevbusa9No6uMk7PechH3kos_9Bz_963us7s1J-XblRE9YCsm77BbVZXK8w5b3708DIewejUoO6w7QcY9LyyMb_HhLEP6a68esp_VVZZwXdjUDz5P-cxAyqkoxaLkkGuOxmsshBBWFZRnOUdKyulbOd_Oc4wTeFIgwc_SGRrrWw48LuageUmZ4Niacll8N-fNbTsFXGS0ccNLwBAhh_IRO9rbPRyOnbrog5MEUvmOQEYHJnVFGojUgJ8IlfqhQCIDA20w_Im9QHvocLWSngIPffwgAaMlgAmVALHOVrFx5gnjMu4HgxSACvUFA-32lQZjjyKHAlmy7rI3zeBHSa2ITn0wi5rICAcjsoPRZa9a6LdKBuQ60Ja1oBYBxRnlzSkZHU9H0VR9GU68_U_RqMs2GxOL6iWjjDDQI-03XLW67GX7N052-oIDuZkvLQbDTZJo-xtGKIEsI1Q3Y3wqzYqhrMRnPa5MvG20r9zQd6XE3rGGevP7RqPhjv2x8e_QF-z2-HByEB18mO4_ZXeQfobVyc5NtrooluYZUrxF_NzO5F_5AUpJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTSBeBhQGgQEGoYmXVEkcxw08bd3awWg1ARN7QLIusTNFq9IpaRHbP8C_zdn5GEMbQrwlyi-KY9_5fpfcByGv0bdBuwSei8Y8cU35FhcCNXDBUwMf3WbFlUlOnkyj_aPwwzE_XiHv2lyYuj5E98HNaIbdr42Cn6nsNyU_SZM-Olimw_BaGHmx6duw--mydhQLbGNNn_EQ9xqfNWWFTBhPd-sVY7Rm5vXHdUzzKnG1lmd0l3xrx1wHnJz2l4ukn178Uc7xP1_qHllvGCndrkXoPlnRRY_cqntUnvfIxt5lKhzCmr2g6hFngnx7XloY3aLDWY7k1549ID_rszylqrSBH3Se0ZmGjJqWFIuKQqEoiq62EIOwNUFpXlAkpNT8KafbRYFeAk1LpPd5NkNRfUuBJuUcFK1MHDiOplqW3_V5e9tOCRe5-WxDK0AHoYDqITka7X0Z7rtNywc3DbkIXIZ8DnTmsSxkmYYgZSILIoY0BmKl0flJ_FD5aG6V4L4AHy18nIJWHEBHggHbIKs4OP2YUJ4MwjgDMG36wlh5A6FA20TkiCFHVg550669TJt66GYOZrL1i3AxpF0Mh7zqoGd1EZDrQFtWgDoElKcmak5w-XU6llPxeTjxDw7l2CGbrYTJZsOoJLp5pvIb7lkOedldRlU3_2-g0POlxaCzaQq0_Q3DBEOOEYmbMYFpzIqOLMdnPaolvBt0ILwo8DjH2bFyevP7yvFwxx48-XfoC3L7cHckP76fHjwld5B7RnVa5yZZXZRL_Qz53SJ5bvX4F96XSPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climatic+drivers+of+leaf+traits+and+genetic+divergence+in+the+tree+Annona+crassiflora%3A+a+broad+spatial+survey+in+the+Brazilian+savannas&rft.jtitle=Global+change+biology&rft.au=Ribeiro%2C+Priciane+C&rft.au=Souza%2C+Matheus+L&rft.au=Muller%2C+Larissa+A+C&rft.au=Ellis%2C+Vincenzo+A&rft.date=2016-11-01&rft.issn=1354-1013&rft.volume=22&rft.issue=11+p.3789-3803&rft.spage=3789&rft.epage=3803&rft_id=info:doi/10.1111%2Fgcb.13312&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |