Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells

This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP‐2/MMP‐9 protein expression and mRN...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 229; no. 5; pp. 588 - 598
Main Authors Liu, Wen-Hsin, Chen, Ying-Jung, Chien, Jen-Hung, Chang, Long-Sen
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.05.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP‐2/MMP‐9 protein expression and mRNA levels in U937, Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Moreover, amsacrine reduced both MMP‐2/MMP‐9 promoter luciferase activity and MMP‐2/MMP‐9 mRNA stability in leukemia cells. Studies on amsacrine‐treated U937 cells revealed that amsacrine‐elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho‐ERK level. Amsacrine‐induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP‐2/MMP‐9 promoter luciferase activity and promote MMP‐2/MMP‐9 mRNA decay, respectively. p38 MAPK/JNK activation led to up‐regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine‐treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP‐2/MMP‐9 mRNA stability in amsacrine‐treated cells, whereas PP2Acα over‐expression increased MMP‐2/MMP‐9 mRNA decay. Amsacrine‐induced MMP‐2/MMP‐9 down‐regulation was also related to PP2Acα up‐regulation on Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Collectively, our data indicate that amsacrine induces MMP‐2/MMP‐9 down‐regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. J. Cell. Physiol. 229: 588–598, 2014. © 2013 Wiley Periodicals, Inc.
AbstractList This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells.
This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP‐2/MMP‐9 protein expression and mRNA levels in U937, Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Moreover, amsacrine reduced both MMP‐2/MMP‐9 promoter luciferase activity and MMP‐2/MMP‐9 mRNA stability in leukemia cells. Studies on amsacrine‐treated U937 cells revealed that amsacrine‐elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho‐ERK level. Amsacrine‐induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP‐2/MMP‐9 promoter luciferase activity and promote MMP‐2/MMP‐9 mRNA decay, respectively. p38 MAPK/JNK activation led to up‐regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine‐treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP‐2/MMP‐9 mRNA stability in amsacrine‐treated cells, whereas PP2Acα over‐expression increased MMP‐2/MMP‐9 mRNA decay. Amsacrine‐induced MMP‐2/MMP‐9 down‐regulation was also related to PP2Acα up‐regulation on Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Collectively, our data indicate that amsacrine induces MMP‐2/MMP‐9 down‐regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. J. Cell. Physiol. 229: 588–598, 2014. © 2013 Wiley Periodicals, Inc.
This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells.This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells.
This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit [alpha] (PP2Ac[alpha]) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Ac[alpha] over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Ac[alpha] up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. J. Cell. Physiol. 229: 588-598, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Chen, Ying-Jung
Chang, Long-Sen
Liu, Wen-Hsin
Chien, Jen-Hung
Author_xml – sequence: 1
  givenname: Wen-Hsin
  surname: Liu
  fullname: Liu, Wen-Hsin
  organization: Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
– sequence: 2
  givenname: Ying-Jung
  surname: Chen
  fullname: Chen, Ying-Jung
  organization: Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
– sequence: 3
  givenname: Jen-Hung
  surname: Chien
  fullname: Chien, Jen-Hung
  organization: Department of Pediatrics, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
– sequence: 4
  givenname: Long-Sen
  surname: Chang
  fullname: Chang, Long-Sen
  email: Correspondence to: Long-Sen Chang, Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan., lschang@mail.nsysu.edu.tw
  organization: Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24122234$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEURi1URNPCgj-ALLFpF9P4OR4vS6CFqoWAeCyNx3NHOJ0X9oya_nucJmFRweou7jmfru53hA66vgOEXlJyRglh85UbzpgQBX2CZpRolYlcsgM0SzuaaSnoITqKcUUI0ZrzZ-iQCcoY42KGfp630brgO8BxGoYAMULErR2DX-MWRts0_RD6EXxnI2QMn9zcLDN2Ot8MjWH9oPi-w77Dv6bWdriB6RZab7GDponP0dPaNhFe7OYx-nbx7uvifXb96fLD4vw6c0IqmhVlLmtXKa5VoYl2rgQHThIn80qVTnFZg-OqFo5RXlVElppVzqpSEqYUK_gxOtnmpmt_TxBH0_q4ucB20E_RUKEpyQXTNKGvH6Grfgpdum5DJajgRZ6oVztqKluozBB8a8O92f8uAfMt4EIfY4DaOD_aMf1iDNY3hhKzacekdsxDO8k4fWTsQ__F7tLvfAP3_wfN1WK5N7Kt4eMI67-GDbcmV1xJ8-PjpXlDxPcvb68-myX_A27xrAM
CitedBy_id crossref_primary_10_1016_j_ejmech_2021_113475
crossref_primary_10_1016_j_taap_2023_116625
crossref_primary_10_1016_j_bioorg_2024_108057
crossref_primary_10_1111_jcmm_15896
crossref_primary_10_18632_oncotarget_7360
crossref_primary_10_1016_j_molstruc_2024_141278
crossref_primary_10_1016_j_bbrc_2015_01_061
crossref_primary_10_1007_s10495_016_1307_5
crossref_primary_10_1007_s12013_015_0651_3
crossref_primary_10_1097_CAD_0000000000000263
crossref_primary_10_3390_ijms222111602
crossref_primary_10_1038_s41598_019_55365_7
crossref_primary_10_3892_mmr_2017_6943
crossref_primary_10_1016_j_ejmech_2021_113623
crossref_primary_10_1016_j_biopha_2016_06_019
crossref_primary_10_1016_j_ejmech_2017_09_052
crossref_primary_10_1016_j_taap_2015_02_005
crossref_primary_10_1007_s10103_016_2040_6
crossref_primary_10_18632_oncotarget_9750
crossref_primary_10_1111_wrr_13178
crossref_primary_10_1111_jpi_12365
crossref_primary_10_1016_j_bbrc_2014_09_013
crossref_primary_10_1016_j_snb_2017_05_142
crossref_primary_10_1016_j_ejmech_2019_111875
crossref_primary_10_1007_s10555_019_09828_y
crossref_primary_10_1111_bph_13759
Cites_doi 10.1074/jbc.M408850200
10.1074/jbc.M109.091645
10.1074/jbc.M204296200
10.1128/MCB.23.14.4901-4916.2003
10.1080/10428190290026358
10.4161/cbt.4.8.2134
10.1080/10245330701384179
10.1007/s00018-008-8170-7
10.1016/j.cardiores.2005.08.009
10.1046/j.1365-2141.2002.03510.x
10.1155/2011/792639
10.1093/carcin/bgs409
10.1182/blood-2006-02-005363
10.1167/iovs.06-1008
10.1016/S0741-5214(03)01022-X
10.1016/j.critrevonc.2003.09.001
10.2174/1874104501105010011
10.1080/10409230290771546
10.4161/cc.7.8.5645
10.1021/bi201159b
10.1016/j.cellsig.2013.05.021
10.1002/ijc.26158
10.1242/jcs.01708
10.1002/jcp.22180
10.1021/jm200046z
10.1006/bbrc.1997.6849
10.1016/S0190-9622(99)70086-1
10.1016/j.jphotobiol.2012.05.005
10.1073/pnas.0508888102
10.1007/s004320050161
10.1016/j.biocel.2012.08.021
10.1038/nrc745
10.1111/j.1529-8019.2007.00131.x
10.1158/0008-5472.CAN-07-1649
10.1016/j.leukres.2007.01.015
10.1038/onc.2008.460
10.1002/jcp.20616
10.1042/BJ20120053
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.24481
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 598
ExternalDocumentID 3186366591
24122234
10_1002_jcp_24481
JCP24481
ark_67375_WNG_B04VRDJQ_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Council
  funderid: NSC102‐2320‐B110‐005
– fundername: Zuoying Branch of Kaohsiung Armed Forces General Hospital
  funderid: ZBH 102‐17
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4571-8b65fcd73978909ccbecec50c56d7bc735fec37f4c213dd05b92dca7b50277283
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 09:06:40 EDT 2025
Sat Aug 16 22:22:52 EDT 2025
Thu Apr 03 07:06:30 EDT 2025
Tue Jul 01 01:31:40 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Wed Jan 22 16:22:09 EST 2025
Wed Oct 30 09:52:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4571-8b65fcd73978909ccbecec50c56d7bc735fec37f4c213dd05b92dca7b50277283
Notes ark:/67375/WNG-B04VRDJQ-P
istex:7F46610A01656CD12B9358EC28E886F33FFB9A9C
ArticleID:JCP24481
Zuoying Branch of Kaohsiung Armed Forces General Hospital - No. ZBH 102-17
National Science Council - No. NSC102-2320-B110-005
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24122234
PQID 1490648386
PQPubID 1006363
PageCount 11
ParticipantIDs proquest_miscellaneous_1491064291
proquest_journals_1490648386
pubmed_primary_24122234
crossref_citationtrail_10_1002_jcp_24481
crossref_primary_10_1002_jcp_24481
wiley_primary_10_1002_jcp_24481_JCP24481
istex_primary_ark_67375_WNG_B04VRDJQ_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J. Cell. Physiol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN. 2012. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int J Cancer 130:1660-1670.
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. 2011. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct 2011:792639.
Chen YW, Chen YL, Tseng CH, Liang CC, Yang CN, Yao YC, Lu PJ, Tzeng CC. 2011. Discovery of 4-anilinofuro[2,3-b]quinoline derivatives as selective and orally active compounds against non-small-cell lung cancers. J Med Chem 54:4446-4461.
Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174.
Valdes AF. 2011. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med Chem J 5:11-20.
Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR. 1997. Novel homologues of CSBP/p38 MAP kinase activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235:533-538.
Lin LI, Lin DT, Chang CJ, Lee CY, Tang JL, Tien HF. 2002. Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients ith acute myelogenous leukaemia. Br J Haematol 117:835-841.
Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ESJM. 2004. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Rev Oncol Hematol 50:87-100.
Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV. 2005. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 102:17448-17453.
Taheri F, Bazan HE. 2007. Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:1931-1941.
Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. 2008. Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle 7:1047-1053.
Jangir DK, Dey SK, Kundu S, Mehrotra R. 2012. Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques. J Photochem Photobiol B 114:38-43.
Stefanidakis M, Koivunen E. 2006. Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood 108:1441-1450.
Ketron AC, Denny WA, Graves DE, Osheroff N. 2012. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry 51:1730-1739.
Kalia S, Dutz JP. 2007. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther 20:160-174.
Baran Y, Ural AU, Gunduz U. 2007. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 12:497-503.
Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. 2010. Inhibition of NF-κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 285:19162-19172.
Bruchova H, Borovanova T, Klamova H, Brdicka R. 2002. Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk Lymphoma 43:1289-1295.
Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. 2013b. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit a and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 25:1845-1851.
Stuhlmeier KM. 2003. Mepacrine inhibits matrix metalloproteinases-1 (MMP-1) and MMP-9 activation in human fibroblast-like synoviocytes. J Rheumatol 30:2330-2337.
Murthy S, Ryan AJ, Carter AB. 2012. SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J 445:229-236.
Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. 2006. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol 207:729-734.
Sawicki G, Matsuzaki A, Janowska-Wieczorek A. 1998. Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion, J Cancer Res Clin Oncol 124:245-252.
Liu WH, Chou WM, Chang LS. 2013a. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 34:818-827.
Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. 2007. Topoisomerase IIβ mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839-8846.
Liu WH, Chen YL, Chang LS. 2012. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability. Int J Biochem Cell Biol 44:2212-2222.
Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, Guo L, Liu W, Wang SJ, Yu XG. 2012. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol 40:1714-1724.
Krishna M, Narang H. 2008. The complexity of mitogen activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525-3544.
Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kähäri VM. 2002. Activation of p38α MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360-32368.
Wang W, Ho WC, Dicker DT, MacKinnon C, Winkler JD, Marmorstein R, El-Deiry WS. 2005. Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol Ther 4:893-898.
Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J, Eberhardt W. 2003. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23:4901-4916.
Zwelling LA, Mitchell MJ, Satitpunwaycha P, Mayes J, Altschuler E, Hinds M, Baguley BC. 1992. Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine-sensitive or -resistant forms of topoisomerase II: Use of computer simulations in new drug development. Cancer Res 52:209-217.
Liu J, Xiong W, Baca-Regen L, Nagase H, Baxter BT. 2003. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 38:1376-1383.
Guo C, Gasparian AV, Zhuang Z, Bosykh DA, Komar AA, Gudkov AV, Gurova KV. 2009. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene 28:1151-1161.
Huang YT, Huang DM, Guh JH, Chen IL, Tzeng CC, Teng CM. 2005. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J Biol Chem 280:2771-2779.
Kaddu S, Zenahlik P, Beham-Schmid C, Kerl H, Cerroni L. 1999. Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol 40:966-978.
Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375-536.
Suminoe A, Matsuzaki A, Hattori H, Koga Y, Ishii E, Hara T. 2007. Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement. Leuk Res 31:1437-1440.
Ehsanian R, Van Waes C, Feller SM. 2011. Beyond DNA binding-A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal 15:9-13.
Kaneta Y, Kagami Y, Tsunoda T, Ohno R, Nakamura Y, Katagiri T. 2003. Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray. Int J Oncol 23:681-691.
Stuhlmeier KM, Pollaschek C. 2006. Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2-independent mechanism. J Rheumatol 33:472-480.
Liu WH, Chang LS. 2010. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-Jun pathway. J Cell Physiol 224:775-785.
Iyer V, Pumiglia K, DiPersio CM. 2005. α3β1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118:1185-1195.
Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A. 2006. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69:736-745.
1997; 235
2002; 37
2013a; 34
2006; 33
2010; 224
2002; 277
2005; 118
2002; 117
2002; 2
2008; 7
2011; 54
2010; 285
2003; 38
2011; 15
1999; 40
2007; 31
2012; 445
2007; 12
2003; 30
2011; 5
2009; 28
2012; 51
1992; 52
2011; 2011
2005; 280
2012; 130
2004; 50
2013b; 25
2006; 207
2006; 108
2005; 102
2002; 43
2006; 69
2005; 4
2008; 65
2012; 114
2007; 20
1998; 124
2012; 44
2007; 67
2007; 48
2003; 23
2012; 40
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Stuhlmeier KM (e_1_2_6_37_1) 2003; 30
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_42_1
e_1_2_6_43_1
Xiao LJ (e_1_2_6_44_1) 2012; 40
e_1_2_6_21_1
e_1_2_6_20_1
Ehsanian R (e_1_2_6_7_1) 2011; 15
Kaneta Y (e_1_2_6_16_1) 2003; 23
e_1_2_6_41_1
e_1_2_6_40_1
Stuhlmeier KM (e_1_2_6_38_1) 2006; 33
Zwelling LA (e_1_2_6_45_1) 1992; 52
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. 2013b. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit a and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 25:1845-1851.
– reference: Bruchova H, Borovanova T, Klamova H, Brdicka R. 2002. Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk Lymphoma 43:1289-1295.
– reference: Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. 2008. Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle 7:1047-1053.
– reference: Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174.
– reference: Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375-536.
– reference: Krishna M, Narang H. 2008. The complexity of mitogen activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525-3544.
– reference: Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J, Eberhardt W. 2003. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23:4901-4916.
– reference: Taheri F, Bazan HE. 2007. Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:1931-1941.
– reference: Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR. 1997. Novel homologues of CSBP/p38 MAP kinase activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235:533-538.
– reference: Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. 2011. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct 2011:792639.
– reference: Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN. 2012. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int J Cancer 130:1660-1670.
– reference: Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A. 2006. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69:736-745.
– reference: Guo C, Gasparian AV, Zhuang Z, Bosykh DA, Komar AA, Gudkov AV, Gurova KV. 2009. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene 28:1151-1161.
– reference: Liu WH, Chen YL, Chang LS. 2012. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability. Int J Biochem Cell Biol 44:2212-2222.
– reference: Baran Y, Ural AU, Gunduz U. 2007. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 12:497-503.
– reference: Huang YT, Huang DM, Guh JH, Chen IL, Tzeng CC, Teng CM. 2005. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J Biol Chem 280:2771-2779.
– reference: Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV. 2005. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 102:17448-17453.
– reference: Lin LI, Lin DT, Chang CJ, Lee CY, Tang JL, Tien HF. 2002. Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients ith acute myelogenous leukaemia. Br J Haematol 117:835-841.
– reference: Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kähäri VM. 2002. Activation of p38α MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360-32368.
– reference: Stefanidakis M, Koivunen E. 2006. Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood 108:1441-1450.
– reference: Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. 2006. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol 207:729-734.
– reference: Ketron AC, Denny WA, Graves DE, Osheroff N. 2012. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry 51:1730-1739.
– reference: Stuhlmeier KM, Pollaschek C. 2006. Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2-independent mechanism. J Rheumatol 33:472-480.
– reference: Liu J, Xiong W, Baca-Regen L, Nagase H, Baxter BT. 2003. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 38:1376-1383.
– reference: Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, Guo L, Liu W, Wang SJ, Yu XG. 2012. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol 40:1714-1724.
– reference: Chen YW, Chen YL, Tseng CH, Liang CC, Yang CN, Yao YC, Lu PJ, Tzeng CC. 2011. Discovery of 4-anilinofuro[2,3-b]quinoline derivatives as selective and orally active compounds against non-small-cell lung cancers. J Med Chem 54:4446-4461.
– reference: Suminoe A, Matsuzaki A, Hattori H, Koga Y, Ishii E, Hara T. 2007. Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement. Leuk Res 31:1437-1440.
– reference: Sawicki G, Matsuzaki A, Janowska-Wieczorek A. 1998. Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion, J Cancer Res Clin Oncol 124:245-252.
– reference: Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. 2010. Inhibition of NF-κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 285:19162-19172.
– reference: Liu WH, Chou WM, Chang LS. 2013a. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 34:818-827.
– reference: Zwelling LA, Mitchell MJ, Satitpunwaycha P, Mayes J, Altschuler E, Hinds M, Baguley BC. 1992. Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine-sensitive or -resistant forms of topoisomerase II: Use of computer simulations in new drug development. Cancer Res 52:209-217.
– reference: Jangir DK, Dey SK, Kundu S, Mehrotra R. 2012. Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques. J Photochem Photobiol B 114:38-43.
– reference: Kaddu S, Zenahlik P, Beham-Schmid C, Kerl H, Cerroni L. 1999. Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol 40:966-978.
– reference: Kalia S, Dutz JP. 2007. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther 20:160-174.
– reference: Kaneta Y, Kagami Y, Tsunoda T, Ohno R, Nakamura Y, Katagiri T. 2003. Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray. Int J Oncol 23:681-691.
– reference: Ehsanian R, Van Waes C, Feller SM. 2011. Beyond DNA binding-A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal 15:9-13.
– reference: Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. 2007. Topoisomerase IIβ mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839-8846.
– reference: Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ESJM. 2004. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Rev Oncol Hematol 50:87-100.
– reference: Stuhlmeier KM. 2003. Mepacrine inhibits matrix metalloproteinases-1 (MMP-1) and MMP-9 activation in human fibroblast-like synoviocytes. J Rheumatol 30:2330-2337.
– reference: Wang W, Ho WC, Dicker DT, MacKinnon C, Winkler JD, Marmorstein R, El-Deiry WS. 2005. Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol Ther 4:893-898.
– reference: Valdes AF. 2011. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med Chem J 5:11-20.
– reference: Liu WH, Chang LS. 2010. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-Jun pathway. J Cell Physiol 224:775-785.
– reference: Murthy S, Ryan AJ, Carter AB. 2012. SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J 445:229-236.
– reference: Iyer V, Pumiglia K, DiPersio CM. 2005. α3β1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118:1185-1195.
– volume: 4
  start-page: 893
  year: 2005
  end-page: 898
  article-title: Acridine derivatives activate p53 and induce tumor cell death through Bax
  publication-title: Cancer Biol Ther
– volume: 117
  start-page: 835
  year: 2002
  end-page: 841
  article-title: Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP‐9 as a surrogate marker to monitor leukaemic status in patients ith acute myelogenous leukaemia
  publication-title: Br J Haematol
– volume: 2
  start-page: 161
  year: 2002
  end-page: 174
  article-title: New functions for the matrix metalloproteinases in cancer progression
  publication-title: Nat Rev Cancer
– volume: 2011
  start-page: 792639
  year: 2011
  article-title: Mitogen‐activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways
  publication-title: J Signal Transduct
– volume: 54
  start-page: 4446
  year: 2011
  end-page: 4461
  article-title: Discovery of 4‐anilinofuro[2,3‐b]quinoline derivatives as selective and orally active compounds against non‐small‐cell lung cancers
  publication-title: J Med Chem
– volume: 33
  start-page: 472
  year: 2006
  end-page: 480
  article-title: Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2‐independent mechanism
  publication-title: J Rheumatol
– volume: 15
  start-page: 9
  year: 2011
  end-page: 13
  article-title: Beyond DNA binding—A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers
  publication-title: Cell Commun Signal
– volume: 48
  start-page: 1931
  year: 2007
  end-page: 1941
  article-title: Platelet‐activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP‐9 in human corneal epithelial cells
  publication-title: Invest Ophthalmol Vis Sci
– volume: 31
  start-page: 1437
  year: 2007
  end-page: 1440
  article-title: Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement
  publication-title: Leuk Res
– volume: 50
  start-page: 87
  year: 2004
  end-page: 100
  article-title: The possible role of matrix metalloproteinase (MMP)‐2 and MMP‐9 in cancer, e.g. acute leukemia
  publication-title: Critical Rev Oncol Hematol
– volume: 23
  start-page: 4901
  year: 2003
  end-page: 4916
  article-title: Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA‐stabilizing factor HuR
  publication-title: Mol Cell Biol
– volume: 285
  start-page: 19162
  year: 2010
  end-page: 19172
  article-title: Inhibition of NF‐κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) or oxaliplatin
  publication-title: J Biol Chem
– volume: 20
  start-page: 160
  year: 2007
  end-page: 174
  article-title: New concepts in antimalarial use and mode of action in dermatology
  publication-title: Dermatol Ther
– volume: 207
  start-page: 729
  year: 2006
  end-page: 734
  article-title: Src oncogene activates MMP‐2 expression via the ERK/Sp1 pathway
  publication-title: J Cell Physiol
– volume: 44
  start-page: 2212
  year: 2012
  end-page: 2222
  article-title: CIL‐102 induces matrix metalloproteinase‐2 (MMP‐2)/MMP‐9 down‐regulation via simultaneous suppression of genetic transcription and mRNA stability
  publication-title: Int J Biochem Cell Biol
– volume: 38
  start-page: 1376
  year: 2003
  end-page: 1383
  article-title: Mechanism of inhibition of matrix metalloproteinase‐2 expression by doxycycline in human aortic smooth muscle cells
  publication-title: J Vasc Surg
– volume: 108
  start-page: 1441
  year: 2006
  end-page: 1450
  article-title: Cell‐surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression
  publication-title: Blood
– volume: 12
  start-page: 497
  year: 2007
  end-page: 503
  article-title: Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells
  publication-title: Hematology
– volume: 23
  start-page: 681
  year: 2003
  end-page: 691
  article-title: Genome‐wide analysis of gene‐expression profiles in chronic myeloid leukemia cells using a cDNA microarray
  publication-title: Int J Oncol
– volume: 34
  start-page: 818
  year: 2013a
  end-page: 827
  article-title: p38 MAPK/PP2Acα/TTP pathway on the connection of TNF‐α and caspases activation on hydroquinone‐induced apoptosis
  publication-title: Carcinogenesis
– volume: 445
  start-page: 229
  year: 2012
  end-page: 236
  article-title: SP‐1 regulation of MMP‐9 expression requires Ser586 in the PEST domain
  publication-title: Biochem J
– volume: 37
  start-page: 375
  year: 2002
  end-page: 536
  article-title: Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase‐9 (MMP‐9)
  publication-title: Crit Rev Biochem Mol Biol
– volume: 280
  start-page: 2771
  year: 2005
  end-page: 2779
  article-title: CIL‐102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC‐3 cell line
  publication-title: J Biol Chem
– volume: 114
  start-page: 38
  year: 2012
  end-page: 43
  article-title: Assessment of amsacrine binding with DNA using UV‐visible, circular dichroism and Raman spectroscopic techniques
  publication-title: J Photochem Photobiol B
– volume: 277
  start-page: 32360
  year: 2002
  end-page: 32368
  article-title: Activation of p38α MAPK enhances collagenase‐1 (matrix metalloproteinase (MMP)‐1) and stromelysin‐1 (MMP‐3) expression by mRNA stabilization
  publication-title: J Biol Chem
– volume: 40
  start-page: 966
  year: 1999
  end-page: 978
  article-title: Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria
  publication-title: J Am Acad Dermatol
– volume: 124
  start-page: 245
  year: 1998
  end-page: 252
  article-title: Expression of the active form of MMP‐2 on the surface of leukemic cells accounts for their in vitro invasion
  publication-title: J Cancer Res Clin Oncol
– volume: 40
  start-page: 1714
  year: 2012
  end-page: 1724
  article-title: ADAM17 targets MMP‐2 and MMP‐9 via EGFR‐MEK‐ERK pathway activation to promote prostate cancer cell invasion
  publication-title: Int J Oncol
– volume: 102
  start-page: 17448
  year: 2005
  end-page: 17453
  article-title: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF‐κB‐dependent mechanism of p53 suppression in tumors
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1845
  year: 2013b
  end-page: 1851
  article-title: Cross talk between p38MAPK and ERK is mediated through MAPK‐mediated protein phosphatase 2A catalytic subunit a and MAPK phosphatase‐1 expression in human leukemia U937 cells
  publication-title: Cell Signal
– volume: 118
  start-page: 1185
  year: 2005
  end-page: 1195
  article-title: α3β1 integrin regulates MMP‐9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin‐mediated MMP gene expression
  publication-title: J Cell Sci
– volume: 51
  start-page: 1730
  year: 2012
  end-page: 1739
  article-title: Amsacrine as a topoisomerase II poison: Importance of drug‐DNA interactions
  publication-title: Biochemistry
– volume: 67
  start-page: 8839
  year: 2007
  end-page: 8846
  article-title: Topoisomerase IIβ mediated DNA double‐strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane
  publication-title: Cancer Res
– volume: 28
  start-page: 1151
  year: 2009
  end-page: 1161
  article-title: 9‐Aminoacridine‐based anticancer drugs target the PI3K/AKT/mTOR, NF‐κB and p53 pathways
  publication-title: Oncogene
– volume: 52
  start-page: 209
  year: 1992
  end-page: 217
  article-title: Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine‐sensitive or ‐resistant forms of topoisomerase II: Use of computer simulations in new drug development
  publication-title: Cancer Res
– volume: 224
  start-page: 775
  year: 2010
  end-page: 785
  article-title: Caffeine induces matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 down‐regulation in human leukemia U937 cells via Ca /ROS‐mediated suppression of ERK/c‐fos pathway and activation of p38 MAPK/c‐Jun pathway
  publication-title: J Cell Physiol
– volume: 130
  start-page: 1660
  year: 2012
  end-page: 1670
  article-title: Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity
  publication-title: Int J Cancer
– volume: 43
  start-page: 1289
  year: 2002
  end-page: 1295
  article-title: Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea
  publication-title: Leuk Lymphoma
– volume: 7
  start-page: 1047
  year: 2008
  end-page: 1053
  article-title: Cell‐surface MMP‐9 regulates the invasive capacity of leukemia blast cells with monocytic features
  publication-title: Cell Cycle
– volume: 69
  start-page: 736
  year: 2006
  end-page: 745
  article-title: Matrix metalloproteinase‐2 and ‐9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase
  publication-title: Cardiovasc Res
– volume: 30
  start-page: 2330
  year: 2003
  end-page: 2337
  article-title: Mepacrine inhibits matrix metalloproteinases‐1 (MMP‐1) and MMP‐9 activation in human fibroblast‐like synoviocytes
  publication-title: J Rheumatol
– volume: 5
  start-page: 11
  year: 2011
  end-page: 20
  article-title: Acridine and acridinones: Old and new structures with antimalarial activity
  publication-title: Open Med Chem J
– volume: 65
  start-page: 3525
  year: 2008
  end-page: 3544
  article-title: The complexity of mitogen activated protein kinases (MAPKs) made simple
  publication-title: Cell Mol Life Sci
– volume: 235
  start-page: 533
  year: 1997
  end-page: 538
  article-title: Novel homologues of CSBP/p38 MAP kinase activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles
  publication-title: Biochem Biophys Res Commun
– ident: e_1_2_6_10_1
  doi: 10.1074/jbc.M408850200
– ident: e_1_2_6_13_1
  doi: 10.1074/jbc.M109.091645
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.M204296200
– ident: e_1_2_6_2_1
  doi: 10.1128/MCB.23.14.4901-4916.2003
– ident: e_1_2_6_4_1
  doi: 10.1080/10428190290026358
– ident: e_1_2_6_43_1
  doi: 10.4161/cbt.4.8.2134
– ident: e_1_2_6_3_1
  doi: 10.1080/10245330701384179
– ident: e_1_2_6_19_1
  doi: 10.1007/s00018-008-8170-7
– ident: e_1_2_6_35_1
  doi: 10.1016/j.cardiores.2005.08.009
– volume: 33
  start-page: 472
  year: 2006
  ident: e_1_2_6_38_1
  article-title: Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2‐independent mechanism
  publication-title: J Rheumatol
– ident: e_1_2_6_22_1
  doi: 10.1046/j.1365-2141.2002.03510.x
– ident: e_1_2_6_34_1
  doi: 10.1155/2011/792639
– ident: e_1_2_6_26_1
  doi: 10.1093/carcin/bgs409
– ident: e_1_2_6_36_1
  doi: 10.1182/blood-2006-02-005363
– volume: 30
  start-page: 2330
  year: 2003
  ident: e_1_2_6_37_1
  article-title: Mepacrine inhibits matrix metalloproteinases‐1 (MMP‐1) and MMP‐9 activation in human fibroblast‐like synoviocytes
  publication-title: J Rheumatol
– ident: e_1_2_6_40_1
  doi: 10.1167/iovs.06-1008
– ident: e_1_2_6_24_1
  doi: 10.1016/S0741-5214(03)01022-X
– ident: e_1_2_6_18_1
  doi: 10.1016/j.critrevonc.2003.09.001
– volume: 23
  start-page: 681
  year: 2003
  ident: e_1_2_6_16_1
  article-title: Genome‐wide analysis of gene‐expression profiles in chronic myeloid leukemia cells using a cDNA microarray
  publication-title: Int J Oncol
– ident: e_1_2_6_41_1
  doi: 10.2174/1874104501105010011
– ident: e_1_2_6_42_1
  doi: 10.1080/10409230290771546
– ident: e_1_2_6_30_1
  doi: 10.4161/cc.7.8.5645
– ident: e_1_2_6_17_1
  doi: 10.1021/bi201159b
– ident: e_1_2_6_27_1
  doi: 10.1016/j.cellsig.2013.05.021
– ident: e_1_2_6_31_1
  doi: 10.1002/ijc.26158
– ident: e_1_2_6_11_1
  doi: 10.1242/jcs.01708
– ident: e_1_2_6_23_1
  doi: 10.1002/jcp.22180
– volume: 40
  start-page: 1714
  year: 2012
  ident: e_1_2_6_44_1
  article-title: ADAM17 targets MMP‐2 and MMP‐9 via EGFR‐MEK‐ERK pathway activation to promote prostate cancer cell invasion
  publication-title: Int J Oncol
– ident: e_1_2_6_5_1
  doi: 10.1021/jm200046z
– ident: e_1_2_6_20_1
  doi: 10.1006/bbrc.1997.6849
– ident: e_1_2_6_14_1
  doi: 10.1016/S0190-9622(99)70086-1
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jphotobiol.2012.05.005
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.0508888102
– ident: e_1_2_6_33_1
  doi: 10.1007/s004320050161
– ident: e_1_2_6_25_1
  doi: 10.1016/j.biocel.2012.08.021
– ident: e_1_2_6_6_1
  doi: 10.1038/nrc745
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1529-8019.2007.00131.x
– ident: e_1_2_6_28_1
  doi: 10.1158/0008-5472.CAN-07-1649
– volume: 52
  start-page: 209
  year: 1992
  ident: e_1_2_6_45_1
  article-title: Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine‐sensitive or ‐resistant forms of topoisomerase II: Use of computer simulations in new drug development
  publication-title: Cancer Res
– ident: e_1_2_6_39_1
  doi: 10.1016/j.leukres.2007.01.015
– volume: 15
  start-page: 9
  year: 2011
  ident: e_1_2_6_7_1
  article-title: Beyond DNA binding—A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers
  publication-title: Cell Commun Signal
– ident: e_1_2_6_8_1
  doi: 10.1038/onc.2008.460
– ident: e_1_2_6_21_1
  doi: 10.1002/jcp.20616
– ident: e_1_2_6_29_1
  doi: 10.1042/BJ20120053
SSID ssj0009933
Score 2.2716367
Snippet This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2...
This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 588
SubjectTerms Amsacrine - chemistry
Amsacrine - pharmacology
Decay
Down-Regulation
Enzyme Inhibitors - pharmacology
Gene Expression Regulation, Neoplastic
Humans
Inactivation
Leukemia
Leukemia - enzymology
MAP Kinase Kinase 4 - genetics
MAP Kinase Kinase 4 - metabolism
Matrix Metalloproteinase 2 - genetics
Matrix Metalloproteinase 2 - metabolism
Matrix Metalloproteinase 9 - genetics
Matrix Metalloproteinase 9 - metabolism
Molecular Structure
p38 Mitogen-Activated Protein Kinases - genetics
p38 Mitogen-Activated Protein Kinases - metabolism
Protein Phosphatase 2 - classification
Protein Phosphatase 2 - genetics
Protein Phosphatase 2 - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
U937 Cells
Up-Regulation
Title Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells
URI https://api.istex.fr/ark:/67375/WNG-B04VRDJQ-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.24481
https://www.ncbi.nlm.nih.gov/pubmed/24122234
https://www.proquest.com/docview/1490648386
https://www.proquest.com/docview/1491064291
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemISRe-LMB6zaQQWgaD2nTxI5j8VQGY6rUqUwM9oBk2Y4jlS5ZtTRSxxMfgc_IJ-FsJ5mGhoR4s5RLHF_u4t_Z598h9IrH3MSMxRDkhDQgMlQBJ4QGTCZpBvEBREL27PDkODk6JeMzeraG3rRnYTw_RLfgZj3D_a-tg0tVDa5JQ7_pRR_mJnfs2uZqWUB0ck0dxZsy8i4FgZJhyyoURoPuzhtz0R2r1tVtQPMmbnUTz-ED9LV9ZZ9vMu_XS9XX3_9gc_zPMT1E9xtAikfegh6hNVNuoM1RCcF4cYX3sEsRdWvvG-iur1x5tYnyUVFJbU8O4qpeuGRaU-HC8v2vcGGWdjvfUUDMSpgmf_34GeH9yWRqG68HvsGxWTVZuCWeldhVC8Tnpp6bYiax3VGoHqPTw_efDo6CpmRDoAllwyBVCc11xgDlpDzkWoOJGE1DTZOMKc1imhsds5zoaBhnWUgVjzItmaJ2LxmgzhO0Xl6UZgthCKW0CrNcGpNbEjiZw0MzDvIqSRRJe2i__XhCN3zmtqzGufBMzJEAbQqnzR562YkuPInHbUJ7zgI6CXk5t1lvjIovxx_E25B8Pnk3_iimPbTbmohoHL6CCIoDuEvjNOmhF91lcFWrLVmai9rJDG28x6Gvp960us4ASFmkRmBUzkD-_p5ifDB1je1_F91B9wDoEZ-ouYvWl5e1eQZgaqmeO6_5DTUDGw4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4amxC74WeDURhgEEzjIm2a2El8wUVZGV23VmXaxu5C4jhS6ZpWSyNarngEHoRX4SV4Eo6dn2loSNzsgjtLObJj-9jnHPvzdwBecptL23VtDHJMZtDADA1OKTPcwPEijA8wElJvh3t9p3NMu6fsdAl-lG9hcn6I6sBNrQy9X6sFrg6kGxesoZ_FtI7GyWsWkMp9ufiCAVv6Zq-Ns_vKsnbfHe10jCKngCEoc5uGFzosFpGLZtjjJhcC-yAFMwVzIjcUrs1iKWw3psJq2lFkspBbkQjckKnLTrTFWO8NWFEZxBVTf_vwgqyKF4nrNeiB0WbJY2RajepXL1m_FTWR86tc28uesjZ1u3fgZzlIOcJlVM9mYV18_YM_8n8Zxbtwu_C5SStfJPdgSSZrsN5KgtlkvCBbRKNg9fXCGtzMk3Mu1iFujdNAqMeRJM2mGi8sUzJWKQ3mZCxnCrGgWS6GCXoCv759t8h2rzdQhdeNvMCJnBdA44QME6ITIpIzmY3keBgQdWmS3ofja-n7A1hOJol8CASjRRGaURxIGSueuyDGSiOO8qHjhNSrwXapLb4oKNtV5pAzPyebtnycPV_PXg1eVKLTnKfkKqEtrXKVRHA-UsA-l_kf--_9tyY9OWx3P_iDGmyWOukXe1qKQSJH_9WzPacGz6vPuBup0QoSOcm0TFOFtBzb2sh1uWoMfUXljFLsldbIv_-n390Z6MKjfxd9Brc6R70D_2Cvv_8YVtGvpTkudROWZ-eZfIK-4yx8qpcsgU_Xrd2_AXUdei4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qrUBseLQ8AgUGBFVZOPFjxvYsWISG0KYkClUL3Rl7PJZCGieqHZGw4hP4D36Fr-BLuDN-VEVFYtMFu5FyZXtm7sw9N3PmXIDn3OHS8TwHkxyTGTQ0I4NTygwvdP0Y8wPMhNTd4f7A3T2ivWN2vAI_qrswhT5E_YebWhl6v1YLfBYnrTPR0M9i1sTY5Fslo3JfLr9gvpa92uvg5L6w7e6bw51doywpYAjKPMvwI5clIvYwCvvc5EJgF6RgpmBu7EXCc1giheMlVNiWE8cmi7gdi9CLmDrrxFCMz70Ca9Q1uaoT0Tk406riZd16zXlg1KpkjEy7VX_queC3puZxcRGyPQ-UdaTr3oSf1RgVBJdxc55HTfH1D_nI_2QQb8GNEnGTdrFEbsOKTNdho52G-XSyJFtEc2D14cI6XC1Kcy43IGlPslCoq5Ekm880W1hmZKIKGizIROaKr6A1LkYp4oBf377bZLvfH6rGy1bR4EQuSppxSkYp0eUQyYmcj-VkFBJ1ZJLdgaNL6ftdWE2nqbwPBHNFEZlxEkqZKJW7MMGHxhztI9eNqN-A7cpZAlEKtqu6ISdBITVtBzh7gZ69BjyrTWeFSslFRlva42qL8HSsaH0eCz4O3gavTfrhoNN7HwwbsFm5ZFDuaBmmiBzRq-_4bgOe1j_jXqRGK0zldK5tLJXQcnzXvcKV65chUlRQlGKvtEP-_TuD3s5QNx78u-kTuDbsdIN3e4P9h3AdQS0tSKmbsJqfzuUjBI559FgvWAKfLtu5fwOCl3jd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amsacrine+suppresses+matrix+metalloproteinase-2+%28MMP-2%29%2FMMP-9+expression+in+human+leukemia+cells&rft.jtitle=Journal+of+cellular+physiology&rft.au=Liu%2C+Wen-Hsin&rft.au=Chen%2C+Ying-Jung&rft.au=Chien%2C+Jen-Hung&rft.au=Chang%2C+Long-Sen&rft.date=2014-05-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=229&rft.issue=5&rft.spage=588&rft_id=info:doi/10.1002%2Fjcp.24481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon