Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells
This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP‐2/MMP‐9 protein expression and mRN...
Saved in:
Published in | Journal of cellular physiology Vol. 229; no. 5; pp. 588 - 598 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.05.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP‐2/MMP‐9 protein expression and mRNA levels in U937, Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Moreover, amsacrine reduced both MMP‐2/MMP‐9 promoter luciferase activity and MMP‐2/MMP‐9 mRNA stability in leukemia cells. Studies on amsacrine‐treated U937 cells revealed that amsacrine‐elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho‐ERK level. Amsacrine‐induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP‐2/MMP‐9 promoter luciferase activity and promote MMP‐2/MMP‐9 mRNA decay, respectively. p38 MAPK/JNK activation led to up‐regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine‐treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP‐2/MMP‐9 mRNA stability in amsacrine‐treated cells, whereas PP2Acα over‐expression increased MMP‐2/MMP‐9 mRNA decay. Amsacrine‐induced MMP‐2/MMP‐9 down‐regulation was also related to PP2Acα up‐regulation on Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Collectively, our data indicate that amsacrine induces MMP‐2/MMP‐9 down‐regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. J. Cell. Physiol. 229: 588–598, 2014. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP‐2/MMP‐9 protein expression and mRNA levels in U937, Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Moreover, amsacrine reduced both MMP‐2/MMP‐9 promoter luciferase activity and MMP‐2/MMP‐9 mRNA stability in leukemia cells. Studies on amsacrine‐treated U937 cells revealed that amsacrine‐elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho‐ERK level. Amsacrine‐induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP‐2/MMP‐9 promoter luciferase activity and promote MMP‐2/MMP‐9 mRNA decay, respectively. p38 MAPK/JNK activation led to up‐regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine‐treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP‐2/MMP‐9 mRNA stability in amsacrine‐treated cells, whereas PP2Acα over‐expression increased MMP‐2/MMP‐9 mRNA decay. Amsacrine‐induced MMP‐2/MMP‐9 down‐regulation was also related to PP2Acα up‐regulation on Jurkat, HL‐60, K562, KU812, and MEG‐01 cells. Collectively, our data indicate that amsacrine induces MMP‐2/MMP‐9 down‐regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. J. Cell. Physiol. 229: 588–598, 2014. © 2013 Wiley Periodicals, Inc. This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells.This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit [alpha] (PP2Ac[alpha]) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Ac[alpha] over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Ac[alpha] up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells. J. Cell. Physiol. 229: 588-598, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] |
Author | Chen, Ying-Jung Chang, Long-Sen Liu, Wen-Hsin Chien, Jen-Hung |
Author_xml | – sequence: 1 givenname: Wen-Hsin surname: Liu fullname: Liu, Wen-Hsin organization: Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan – sequence: 2 givenname: Ying-Jung surname: Chen fullname: Chen, Ying-Jung organization: Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan – sequence: 3 givenname: Jen-Hung surname: Chien fullname: Chien, Jen-Hung organization: Department of Pediatrics, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan – sequence: 4 givenname: Long-Sen surname: Chang fullname: Chang, Long-Sen email: Correspondence to: Long-Sen Chang, Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan., lschang@mail.nsysu.edu.tw organization: Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24122234$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEURi1URNPCgj-ALLFpF9P4OR4vS6CFqoWAeCyNx3NHOJ0X9oya_nucJmFRweou7jmfru53hA66vgOEXlJyRglh85UbzpgQBX2CZpRolYlcsgM0SzuaaSnoITqKcUUI0ZrzZ-iQCcoY42KGfp630brgO8BxGoYAMULErR2DX-MWRts0_RD6EXxnI2QMn9zcLDN2Ot8MjWH9oPi-w77Dv6bWdriB6RZab7GDponP0dPaNhFe7OYx-nbx7uvifXb96fLD4vw6c0IqmhVlLmtXKa5VoYl2rgQHThIn80qVTnFZg-OqFo5RXlVElppVzqpSEqYUK_gxOtnmpmt_TxBH0_q4ucB20E_RUKEpyQXTNKGvH6Grfgpdum5DJajgRZ6oVztqKluozBB8a8O92f8uAfMt4EIfY4DaOD_aMf1iDNY3hhKzacekdsxDO8k4fWTsQ__F7tLvfAP3_wfN1WK5N7Kt4eMI67-GDbcmV1xJ8-PjpXlDxPcvb68-myX_A27xrAM |
CitedBy_id | crossref_primary_10_1016_j_ejmech_2021_113475 crossref_primary_10_1016_j_taap_2023_116625 crossref_primary_10_1016_j_bioorg_2024_108057 crossref_primary_10_1111_jcmm_15896 crossref_primary_10_18632_oncotarget_7360 crossref_primary_10_1016_j_molstruc_2024_141278 crossref_primary_10_1016_j_bbrc_2015_01_061 crossref_primary_10_1007_s10495_016_1307_5 crossref_primary_10_1007_s12013_015_0651_3 crossref_primary_10_1097_CAD_0000000000000263 crossref_primary_10_3390_ijms222111602 crossref_primary_10_1038_s41598_019_55365_7 crossref_primary_10_3892_mmr_2017_6943 crossref_primary_10_1016_j_ejmech_2021_113623 crossref_primary_10_1016_j_biopha_2016_06_019 crossref_primary_10_1016_j_ejmech_2017_09_052 crossref_primary_10_1016_j_taap_2015_02_005 crossref_primary_10_1007_s10103_016_2040_6 crossref_primary_10_18632_oncotarget_9750 crossref_primary_10_1111_wrr_13178 crossref_primary_10_1111_jpi_12365 crossref_primary_10_1016_j_bbrc_2014_09_013 crossref_primary_10_1016_j_snb_2017_05_142 crossref_primary_10_1016_j_ejmech_2019_111875 crossref_primary_10_1007_s10555_019_09828_y crossref_primary_10_1111_bph_13759 |
Cites_doi | 10.1074/jbc.M408850200 10.1074/jbc.M109.091645 10.1074/jbc.M204296200 10.1128/MCB.23.14.4901-4916.2003 10.1080/10428190290026358 10.4161/cbt.4.8.2134 10.1080/10245330701384179 10.1007/s00018-008-8170-7 10.1016/j.cardiores.2005.08.009 10.1046/j.1365-2141.2002.03510.x 10.1155/2011/792639 10.1093/carcin/bgs409 10.1182/blood-2006-02-005363 10.1167/iovs.06-1008 10.1016/S0741-5214(03)01022-X 10.1016/j.critrevonc.2003.09.001 10.2174/1874104501105010011 10.1080/10409230290771546 10.4161/cc.7.8.5645 10.1021/bi201159b 10.1016/j.cellsig.2013.05.021 10.1002/ijc.26158 10.1242/jcs.01708 10.1002/jcp.22180 10.1021/jm200046z 10.1006/bbrc.1997.6849 10.1016/S0190-9622(99)70086-1 10.1016/j.jphotobiol.2012.05.005 10.1073/pnas.0508888102 10.1007/s004320050161 10.1016/j.biocel.2012.08.021 10.1038/nrc745 10.1111/j.1529-8019.2007.00131.x 10.1158/0008-5472.CAN-07-1649 10.1016/j.leukres.2007.01.015 10.1038/onc.2008.460 10.1002/jcp.20616 10.1042/BJ20120053 |
ContentType | Journal Article |
Copyright | 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.24481 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 598 |
ExternalDocumentID | 3186366591 24122234 10_1002_jcp_24481 JCP24481 ark_67375_WNG_B04VRDJQ_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Council funderid: NSC102‐2320‐B110‐005 – fundername: Zuoying Branch of Kaohsiung Armed Forces General Hospital funderid: ZBH 102‐17 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4571-8b65fcd73978909ccbecec50c56d7bc735fec37f4c213dd05b92dca7b50277283 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 09:06:40 EDT 2025 Sat Aug 16 22:22:52 EDT 2025 Thu Apr 03 07:06:30 EDT 2025 Tue Jul 01 01:31:40 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 Wed Jan 22 16:22:09 EST 2025 Wed Oct 30 09:52:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4571-8b65fcd73978909ccbecec50c56d7bc735fec37f4c213dd05b92dca7b50277283 |
Notes | ark:/67375/WNG-B04VRDJQ-P istex:7F46610A01656CD12B9358EC28E886F33FFB9A9C ArticleID:JCP24481 Zuoying Branch of Kaohsiung Armed Forces General Hospital - No. ZBH 102-17 National Science Council - No. NSC102-2320-B110-005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24122234 |
PQID | 1490648386 |
PQPubID | 1006363 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1491064291 proquest_journals_1490648386 pubmed_primary_24122234 crossref_citationtrail_10_1002_jcp_24481 crossref_primary_10_1002_jcp_24481 wiley_primary_10_1002_jcp_24481_JCP24481 istex_primary_ark_67375_WNG_B04VRDJQ_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J. Cell. Physiol |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN. 2012. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int J Cancer 130:1660-1670. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. 2011. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct 2011:792639. Chen YW, Chen YL, Tseng CH, Liang CC, Yang CN, Yao YC, Lu PJ, Tzeng CC. 2011. Discovery of 4-anilinofuro[2,3-b]quinoline derivatives as selective and orally active compounds against non-small-cell lung cancers. J Med Chem 54:4446-4461. Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174. Valdes AF. 2011. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med Chem J 5:11-20. Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR. 1997. Novel homologues of CSBP/p38 MAP kinase activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235:533-538. Lin LI, Lin DT, Chang CJ, Lee CY, Tang JL, Tien HF. 2002. Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients ith acute myelogenous leukaemia. Br J Haematol 117:835-841. Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ESJM. 2004. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Rev Oncol Hematol 50:87-100. Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV. 2005. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 102:17448-17453. Taheri F, Bazan HE. 2007. Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:1931-1941. Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. 2008. Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle 7:1047-1053. Jangir DK, Dey SK, Kundu S, Mehrotra R. 2012. Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques. J Photochem Photobiol B 114:38-43. Stefanidakis M, Koivunen E. 2006. Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood 108:1441-1450. Ketron AC, Denny WA, Graves DE, Osheroff N. 2012. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry 51:1730-1739. Kalia S, Dutz JP. 2007. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther 20:160-174. Baran Y, Ural AU, Gunduz U. 2007. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 12:497-503. Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. 2010. Inhibition of NF-κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 285:19162-19172. Bruchova H, Borovanova T, Klamova H, Brdicka R. 2002. Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk Lymphoma 43:1289-1295. Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. 2013b. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit a and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 25:1845-1851. Stuhlmeier KM. 2003. Mepacrine inhibits matrix metalloproteinases-1 (MMP-1) and MMP-9 activation in human fibroblast-like synoviocytes. J Rheumatol 30:2330-2337. Murthy S, Ryan AJ, Carter AB. 2012. SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J 445:229-236. Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. 2006. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol 207:729-734. Sawicki G, Matsuzaki A, Janowska-Wieczorek A. 1998. Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion, J Cancer Res Clin Oncol 124:245-252. Liu WH, Chou WM, Chang LS. 2013a. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 34:818-827. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. 2007. Topoisomerase IIβ mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839-8846. Liu WH, Chen YL, Chang LS. 2012. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability. Int J Biochem Cell Biol 44:2212-2222. Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, Guo L, Liu W, Wang SJ, Yu XG. 2012. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol 40:1714-1724. Krishna M, Narang H. 2008. The complexity of mitogen activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525-3544. Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kähäri VM. 2002. Activation of p38α MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360-32368. Wang W, Ho WC, Dicker DT, MacKinnon C, Winkler JD, Marmorstein R, El-Deiry WS. 2005. Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol Ther 4:893-898. Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J, Eberhardt W. 2003. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23:4901-4916. Zwelling LA, Mitchell MJ, Satitpunwaycha P, Mayes J, Altschuler E, Hinds M, Baguley BC. 1992. Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine-sensitive or -resistant forms of topoisomerase II: Use of computer simulations in new drug development. Cancer Res 52:209-217. Liu J, Xiong W, Baca-Regen L, Nagase H, Baxter BT. 2003. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 38:1376-1383. Guo C, Gasparian AV, Zhuang Z, Bosykh DA, Komar AA, Gudkov AV, Gurova KV. 2009. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene 28:1151-1161. Huang YT, Huang DM, Guh JH, Chen IL, Tzeng CC, Teng CM. 2005. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J Biol Chem 280:2771-2779. Kaddu S, Zenahlik P, Beham-Schmid C, Kerl H, Cerroni L. 1999. Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol 40:966-978. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375-536. Suminoe A, Matsuzaki A, Hattori H, Koga Y, Ishii E, Hara T. 2007. Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement. Leuk Res 31:1437-1440. Ehsanian R, Van Waes C, Feller SM. 2011. Beyond DNA binding-A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal 15:9-13. Kaneta Y, Kagami Y, Tsunoda T, Ohno R, Nakamura Y, Katagiri T. 2003. Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray. Int J Oncol 23:681-691. Stuhlmeier KM, Pollaschek C. 2006. Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2-independent mechanism. J Rheumatol 33:472-480. Liu WH, Chang LS. 2010. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-Jun pathway. J Cell Physiol 224:775-785. Iyer V, Pumiglia K, DiPersio CM. 2005. α3β1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118:1185-1195. Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A. 2006. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69:736-745. 1997; 235 2002; 37 2013a; 34 2006; 33 2010; 224 2002; 277 2005; 118 2002; 117 2002; 2 2008; 7 2011; 54 2010; 285 2003; 38 2011; 15 1999; 40 2007; 31 2012; 445 2007; 12 2003; 30 2011; 5 2009; 28 2012; 51 1992; 52 2011; 2011 2005; 280 2012; 130 2004; 50 2013b; 25 2006; 207 2006; 108 2005; 102 2002; 43 2006; 69 2005; 4 2008; 65 2012; 114 2007; 20 1998; 124 2012; 44 2007; 67 2007; 48 2003; 23 2012; 40 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Stuhlmeier KM (e_1_2_6_37_1) 2003; 30 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_42_1 e_1_2_6_43_1 Xiao LJ (e_1_2_6_44_1) 2012; 40 e_1_2_6_21_1 e_1_2_6_20_1 Ehsanian R (e_1_2_6_7_1) 2011; 15 Kaneta Y (e_1_2_6_16_1) 2003; 23 e_1_2_6_41_1 e_1_2_6_40_1 Stuhlmeier KM (e_1_2_6_38_1) 2006; 33 Zwelling LA (e_1_2_6_45_1) 1992; 52 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. 2013b. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit a and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 25:1845-1851. – reference: Bruchova H, Borovanova T, Klamova H, Brdicka R. 2002. Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk Lymphoma 43:1289-1295. – reference: Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. 2008. Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle 7:1047-1053. – reference: Egeblad M, Werb Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174. – reference: Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375-536. – reference: Krishna M, Narang H. 2008. The complexity of mitogen activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525-3544. – reference: Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J, Eberhardt W. 2003. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23:4901-4916. – reference: Taheri F, Bazan HE. 2007. Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:1931-1941. – reference: Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR. 1997. Novel homologues of CSBP/p38 MAP kinase activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235:533-538. – reference: Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. 2011. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct 2011:792639. – reference: Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN. 2012. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int J Cancer 130:1660-1670. – reference: Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A. 2006. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69:736-745. – reference: Guo C, Gasparian AV, Zhuang Z, Bosykh DA, Komar AA, Gudkov AV, Gurova KV. 2009. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene 28:1151-1161. – reference: Liu WH, Chen YL, Chang LS. 2012. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability. Int J Biochem Cell Biol 44:2212-2222. – reference: Baran Y, Ural AU, Gunduz U. 2007. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology 12:497-503. – reference: Huang YT, Huang DM, Guh JH, Chen IL, Tzeng CC, Teng CM. 2005. CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J Biol Chem 280:2771-2779. – reference: Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D, Lvovskiy D, Webb TR, Stark GR, Gudkov AV. 2005. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 102:17448-17453. – reference: Lin LI, Lin DT, Chang CJ, Lee CY, Tang JL, Tien HF. 2002. Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients ith acute myelogenous leukaemia. Br J Haematol 117:835-841. – reference: Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kähäri VM. 2002. Activation of p38α MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360-32368. – reference: Stefanidakis M, Koivunen E. 2006. Cell-surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression. Blood 108:1441-1450. – reference: Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. 2006. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol 207:729-734. – reference: Ketron AC, Denny WA, Graves DE, Osheroff N. 2012. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry 51:1730-1739. – reference: Stuhlmeier KM, Pollaschek C. 2006. Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2-independent mechanism. J Rheumatol 33:472-480. – reference: Liu J, Xiong W, Baca-Regen L, Nagase H, Baxter BT. 2003. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 38:1376-1383. – reference: Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, Guo L, Liu W, Wang SJ, Yu XG. 2012. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol 40:1714-1724. – reference: Chen YW, Chen YL, Tseng CH, Liang CC, Yang CN, Yao YC, Lu PJ, Tzeng CC. 2011. Discovery of 4-anilinofuro[2,3-b]quinoline derivatives as selective and orally active compounds against non-small-cell lung cancers. J Med Chem 54:4446-4461. – reference: Suminoe A, Matsuzaki A, Hattori H, Koga Y, Ishii E, Hara T. 2007. Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement. Leuk Res 31:1437-1440. – reference: Sawicki G, Matsuzaki A, Janowska-Wieczorek A. 1998. Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion, J Cancer Res Clin Oncol 124:245-252. – reference: Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. 2010. Inhibition of NF-κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 285:19162-19172. – reference: Liu WH, Chou WM, Chang LS. 2013a. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 34:818-827. – reference: Zwelling LA, Mitchell MJ, Satitpunwaycha P, Mayes J, Altschuler E, Hinds M, Baguley BC. 1992. Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine-sensitive or -resistant forms of topoisomerase II: Use of computer simulations in new drug development. Cancer Res 52:209-217. – reference: Jangir DK, Dey SK, Kundu S, Mehrotra R. 2012. Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques. J Photochem Photobiol B 114:38-43. – reference: Kaddu S, Zenahlik P, Beham-Schmid C, Kerl H, Cerroni L. 1999. Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol 40:966-978. – reference: Kalia S, Dutz JP. 2007. New concepts in antimalarial use and mode of action in dermatology. Dermatol Ther 20:160-174. – reference: Kaneta Y, Kagami Y, Tsunoda T, Ohno R, Nakamura Y, Katagiri T. 2003. Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray. Int J Oncol 23:681-691. – reference: Ehsanian R, Van Waes C, Feller SM. 2011. Beyond DNA binding-A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal 15:9-13. – reference: Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. 2007. Topoisomerase IIβ mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839-8846. – reference: Klein G, Vellenga E, Fraaije MW, Kamps WA, de Bont ESJM. 2004. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Rev Oncol Hematol 50:87-100. – reference: Stuhlmeier KM. 2003. Mepacrine inhibits matrix metalloproteinases-1 (MMP-1) and MMP-9 activation in human fibroblast-like synoviocytes. J Rheumatol 30:2330-2337. – reference: Wang W, Ho WC, Dicker DT, MacKinnon C, Winkler JD, Marmorstein R, El-Deiry WS. 2005. Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol Ther 4:893-898. – reference: Valdes AF. 2011. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med Chem J 5:11-20. – reference: Liu WH, Chang LS. 2010. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-Jun pathway. J Cell Physiol 224:775-785. – reference: Murthy S, Ryan AJ, Carter AB. 2012. SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J 445:229-236. – reference: Iyer V, Pumiglia K, DiPersio CM. 2005. α3β1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118:1185-1195. – volume: 4 start-page: 893 year: 2005 end-page: 898 article-title: Acridine derivatives activate p53 and induce tumor cell death through Bax publication-title: Cancer Biol Ther – volume: 117 start-page: 835 year: 2002 end-page: 841 article-title: Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: Potential role of MMP‐9 as a surrogate marker to monitor leukaemic status in patients ith acute myelogenous leukaemia publication-title: Br J Haematol – volume: 2 start-page: 161 year: 2002 end-page: 174 article-title: New functions for the matrix metalloproteinases in cancer progression publication-title: Nat Rev Cancer – volume: 2011 start-page: 792639 year: 2011 article-title: Mitogen‐activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways publication-title: J Signal Transduct – volume: 54 start-page: 4446 year: 2011 end-page: 4461 article-title: Discovery of 4‐anilinofuro[2,3‐b]quinoline derivatives as selective and orally active compounds against non‐small‐cell lung cancers publication-title: J Med Chem – volume: 33 start-page: 472 year: 2006 end-page: 480 article-title: Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2‐independent mechanism publication-title: J Rheumatol – volume: 15 start-page: 9 year: 2011 end-page: 13 article-title: Beyond DNA binding—A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers publication-title: Cell Commun Signal – volume: 48 start-page: 1931 year: 2007 end-page: 1941 article-title: Platelet‐activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP‐9 in human corneal epithelial cells publication-title: Invest Ophthalmol Vis Sci – volume: 31 start-page: 1437 year: 2007 end-page: 1440 article-title: Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement publication-title: Leuk Res – volume: 50 start-page: 87 year: 2004 end-page: 100 article-title: The possible role of matrix metalloproteinase (MMP)‐2 and MMP‐9 in cancer, e.g. acute leukemia publication-title: Critical Rev Oncol Hematol – volume: 23 start-page: 4901 year: 2003 end-page: 4916 article-title: Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA‐stabilizing factor HuR publication-title: Mol Cell Biol – volume: 285 start-page: 19162 year: 2010 end-page: 19172 article-title: Inhibition of NF‐κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) or oxaliplatin publication-title: J Biol Chem – volume: 20 start-page: 160 year: 2007 end-page: 174 article-title: New concepts in antimalarial use and mode of action in dermatology publication-title: Dermatol Ther – volume: 207 start-page: 729 year: 2006 end-page: 734 article-title: Src oncogene activates MMP‐2 expression via the ERK/Sp1 pathway publication-title: J Cell Physiol – volume: 44 start-page: 2212 year: 2012 end-page: 2222 article-title: CIL‐102 induces matrix metalloproteinase‐2 (MMP‐2)/MMP‐9 down‐regulation via simultaneous suppression of genetic transcription and mRNA stability publication-title: Int J Biochem Cell Biol – volume: 38 start-page: 1376 year: 2003 end-page: 1383 article-title: Mechanism of inhibition of matrix metalloproteinase‐2 expression by doxycycline in human aortic smooth muscle cells publication-title: J Vasc Surg – volume: 108 start-page: 1441 year: 2006 end-page: 1450 article-title: Cell‐surface association between matrix metalloproteinases and integrins: Role of the complexes in leukocyte migration and cancer progression publication-title: Blood – volume: 12 start-page: 497 year: 2007 end-page: 503 article-title: Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells publication-title: Hematology – volume: 23 start-page: 681 year: 2003 end-page: 691 article-title: Genome‐wide analysis of gene‐expression profiles in chronic myeloid leukemia cells using a cDNA microarray publication-title: Int J Oncol – volume: 34 start-page: 818 year: 2013a end-page: 827 article-title: p38 MAPK/PP2Acα/TTP pathway on the connection of TNF‐α and caspases activation on hydroquinone‐induced apoptosis publication-title: Carcinogenesis – volume: 445 start-page: 229 year: 2012 end-page: 236 article-title: SP‐1 regulation of MMP‐9 expression requires Ser586 in the PEST domain publication-title: Biochem J – volume: 37 start-page: 375 year: 2002 end-page: 536 article-title: Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase‐9 (MMP‐9) publication-title: Crit Rev Biochem Mol Biol – volume: 280 start-page: 2771 year: 2005 end-page: 2779 article-title: CIL‐102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC‐3 cell line publication-title: J Biol Chem – volume: 114 start-page: 38 year: 2012 end-page: 43 article-title: Assessment of amsacrine binding with DNA using UV‐visible, circular dichroism and Raman spectroscopic techniques publication-title: J Photochem Photobiol B – volume: 277 start-page: 32360 year: 2002 end-page: 32368 article-title: Activation of p38α MAPK enhances collagenase‐1 (matrix metalloproteinase (MMP)‐1) and stromelysin‐1 (MMP‐3) expression by mRNA stabilization publication-title: J Biol Chem – volume: 40 start-page: 966 year: 1999 end-page: 978 article-title: Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria publication-title: J Am Acad Dermatol – volume: 124 start-page: 245 year: 1998 end-page: 252 article-title: Expression of the active form of MMP‐2 on the surface of leukemic cells accounts for their in vitro invasion publication-title: J Cancer Res Clin Oncol – volume: 40 start-page: 1714 year: 2012 end-page: 1724 article-title: ADAM17 targets MMP‐2 and MMP‐9 via EGFR‐MEK‐ERK pathway activation to promote prostate cancer cell invasion publication-title: Int J Oncol – volume: 102 start-page: 17448 year: 2005 end-page: 17453 article-title: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF‐κB‐dependent mechanism of p53 suppression in tumors publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1845 year: 2013b end-page: 1851 article-title: Cross talk between p38MAPK and ERK is mediated through MAPK‐mediated protein phosphatase 2A catalytic subunit a and MAPK phosphatase‐1 expression in human leukemia U937 cells publication-title: Cell Signal – volume: 118 start-page: 1185 year: 2005 end-page: 1195 article-title: α3β1 integrin regulates MMP‐9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin‐mediated MMP gene expression publication-title: J Cell Sci – volume: 51 start-page: 1730 year: 2012 end-page: 1739 article-title: Amsacrine as a topoisomerase II poison: Importance of drug‐DNA interactions publication-title: Biochemistry – volume: 67 start-page: 8839 year: 2007 end-page: 8846 article-title: Topoisomerase IIβ mediated DNA double‐strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane publication-title: Cancer Res – volume: 28 start-page: 1151 year: 2009 end-page: 1161 article-title: 9‐Aminoacridine‐based anticancer drugs target the PI3K/AKT/mTOR, NF‐κB and p53 pathways publication-title: Oncogene – volume: 52 start-page: 209 year: 1992 end-page: 217 article-title: Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine‐sensitive or ‐resistant forms of topoisomerase II: Use of computer simulations in new drug development publication-title: Cancer Res – volume: 224 start-page: 775 year: 2010 end-page: 785 article-title: Caffeine induces matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 down‐regulation in human leukemia U937 cells via Ca /ROS‐mediated suppression of ERK/c‐fos pathway and activation of p38 MAPK/c‐Jun pathway publication-title: J Cell Physiol – volume: 130 start-page: 1660 year: 2012 end-page: 1670 article-title: Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity publication-title: Int J Cancer – volume: 43 start-page: 1289 year: 2002 end-page: 1295 article-title: Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea publication-title: Leuk Lymphoma – volume: 7 start-page: 1047 year: 2008 end-page: 1053 article-title: Cell‐surface MMP‐9 regulates the invasive capacity of leukemia blast cells with monocytic features publication-title: Cell Cycle – volume: 69 start-page: 736 year: 2006 end-page: 745 article-title: Matrix metalloproteinase‐2 and ‐9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase publication-title: Cardiovasc Res – volume: 30 start-page: 2330 year: 2003 end-page: 2337 article-title: Mepacrine inhibits matrix metalloproteinases‐1 (MMP‐1) and MMP‐9 activation in human fibroblast‐like synoviocytes publication-title: J Rheumatol – volume: 5 start-page: 11 year: 2011 end-page: 20 article-title: Acridine and acridinones: Old and new structures with antimalarial activity publication-title: Open Med Chem J – volume: 65 start-page: 3525 year: 2008 end-page: 3544 article-title: The complexity of mitogen activated protein kinases (MAPKs) made simple publication-title: Cell Mol Life Sci – volume: 235 start-page: 533 year: 1997 end-page: 538 article-title: Novel homologues of CSBP/p38 MAP kinase activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles publication-title: Biochem Biophys Res Commun – ident: e_1_2_6_10_1 doi: 10.1074/jbc.M408850200 – ident: e_1_2_6_13_1 doi: 10.1074/jbc.M109.091645 – ident: e_1_2_6_32_1 doi: 10.1074/jbc.M204296200 – ident: e_1_2_6_2_1 doi: 10.1128/MCB.23.14.4901-4916.2003 – ident: e_1_2_6_4_1 doi: 10.1080/10428190290026358 – ident: e_1_2_6_43_1 doi: 10.4161/cbt.4.8.2134 – ident: e_1_2_6_3_1 doi: 10.1080/10245330701384179 – ident: e_1_2_6_19_1 doi: 10.1007/s00018-008-8170-7 – ident: e_1_2_6_35_1 doi: 10.1016/j.cardiores.2005.08.009 – volume: 33 start-page: 472 year: 2006 ident: e_1_2_6_38_1 article-title: Quinacrine but not chloroquine inhibits PMA induced upregulation of matrix metalloproteinases in leukocytes: Quinacrine acts at the transcriptional level through a PLA2‐independent mechanism publication-title: J Rheumatol – ident: e_1_2_6_22_1 doi: 10.1046/j.1365-2141.2002.03510.x – ident: e_1_2_6_34_1 doi: 10.1155/2011/792639 – ident: e_1_2_6_26_1 doi: 10.1093/carcin/bgs409 – ident: e_1_2_6_36_1 doi: 10.1182/blood-2006-02-005363 – volume: 30 start-page: 2330 year: 2003 ident: e_1_2_6_37_1 article-title: Mepacrine inhibits matrix metalloproteinases‐1 (MMP‐1) and MMP‐9 activation in human fibroblast‐like synoviocytes publication-title: J Rheumatol – ident: e_1_2_6_40_1 doi: 10.1167/iovs.06-1008 – ident: e_1_2_6_24_1 doi: 10.1016/S0741-5214(03)01022-X – ident: e_1_2_6_18_1 doi: 10.1016/j.critrevonc.2003.09.001 – volume: 23 start-page: 681 year: 2003 ident: e_1_2_6_16_1 article-title: Genome‐wide analysis of gene‐expression profiles in chronic myeloid leukemia cells using a cDNA microarray publication-title: Int J Oncol – ident: e_1_2_6_41_1 doi: 10.2174/1874104501105010011 – ident: e_1_2_6_42_1 doi: 10.1080/10409230290771546 – ident: e_1_2_6_30_1 doi: 10.4161/cc.7.8.5645 – ident: e_1_2_6_17_1 doi: 10.1021/bi201159b – ident: e_1_2_6_27_1 doi: 10.1016/j.cellsig.2013.05.021 – ident: e_1_2_6_31_1 doi: 10.1002/ijc.26158 – ident: e_1_2_6_11_1 doi: 10.1242/jcs.01708 – ident: e_1_2_6_23_1 doi: 10.1002/jcp.22180 – volume: 40 start-page: 1714 year: 2012 ident: e_1_2_6_44_1 article-title: ADAM17 targets MMP‐2 and MMP‐9 via EGFR‐MEK‐ERK pathway activation to promote prostate cancer cell invasion publication-title: Int J Oncol – ident: e_1_2_6_5_1 doi: 10.1021/jm200046z – ident: e_1_2_6_20_1 doi: 10.1006/bbrc.1997.6849 – ident: e_1_2_6_14_1 doi: 10.1016/S0190-9622(99)70086-1 – ident: e_1_2_6_12_1 doi: 10.1016/j.jphotobiol.2012.05.005 – ident: e_1_2_6_9_1 doi: 10.1073/pnas.0508888102 – ident: e_1_2_6_33_1 doi: 10.1007/s004320050161 – ident: e_1_2_6_25_1 doi: 10.1016/j.biocel.2012.08.021 – ident: e_1_2_6_6_1 doi: 10.1038/nrc745 – ident: e_1_2_6_15_1 doi: 10.1111/j.1529-8019.2007.00131.x – ident: e_1_2_6_28_1 doi: 10.1158/0008-5472.CAN-07-1649 – volume: 52 start-page: 209 year: 1992 ident: e_1_2_6_45_1 article-title: Relative activity of structural analogues of amsacrine against human leukemia cell lines containing amsacrine‐sensitive or ‐resistant forms of topoisomerase II: Use of computer simulations in new drug development publication-title: Cancer Res – ident: e_1_2_6_39_1 doi: 10.1016/j.leukres.2007.01.015 – volume: 15 start-page: 9 year: 2011 ident: e_1_2_6_7_1 article-title: Beyond DNA binding—A review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers publication-title: Cell Commun Signal – ident: e_1_2_6_8_1 doi: 10.1038/onc.2008.460 – ident: e_1_2_6_21_1 doi: 10.1002/jcp.20616 – ident: e_1_2_6_29_1 doi: 10.1042/BJ20120053 |
SSID | ssj0009933 |
Score | 2.2716367 |
Snippet | This study explores the suppression mechanism of amsacrine (4‐(9‐Acridinylamino)‐N‐(methanesulfonyl)‐m‐anisidine hydrochloride) on matrix metalloproteinase‐2... This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 588 |
SubjectTerms | Amsacrine - chemistry Amsacrine - pharmacology Decay Down-Regulation Enzyme Inhibitors - pharmacology Gene Expression Regulation, Neoplastic Humans Inactivation Leukemia Leukemia - enzymology MAP Kinase Kinase 4 - genetics MAP Kinase Kinase 4 - metabolism Matrix Metalloproteinase 2 - genetics Matrix Metalloproteinase 2 - metabolism Matrix Metalloproteinase 9 - genetics Matrix Metalloproteinase 9 - metabolism Molecular Structure p38 Mitogen-Activated Protein Kinases - genetics p38 Mitogen-Activated Protein Kinases - metabolism Protein Phosphatase 2 - classification Protein Phosphatase 2 - genetics Protein Phosphatase 2 - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism U937 Cells Up-Regulation |
Title | Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells |
URI | https://api.istex.fr/ark:/67375/WNG-B04VRDJQ-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.24481 https://www.ncbi.nlm.nih.gov/pubmed/24122234 https://www.proquest.com/docview/1490648386 https://www.proquest.com/docview/1491064291 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemISRe-LMB6zaQQWgaD2nTxI5j8VQGY6rUqUwM9oBk2Y4jlS5ZtTRSxxMfgc_IJ-FsJ5mGhoR4s5RLHF_u4t_Z598h9IrH3MSMxRDkhDQgMlQBJ4QGTCZpBvEBREL27PDkODk6JeMzeraG3rRnYTw_RLfgZj3D_a-tg0tVDa5JQ7_pRR_mJnfs2uZqWUB0ck0dxZsy8i4FgZJhyyoURoPuzhtz0R2r1tVtQPMmbnUTz-ED9LV9ZZ9vMu_XS9XX3_9gc_zPMT1E9xtAikfegh6hNVNuoM1RCcF4cYX3sEsRdWvvG-iur1x5tYnyUVFJbU8O4qpeuGRaU-HC8v2vcGGWdjvfUUDMSpgmf_34GeH9yWRqG68HvsGxWTVZuCWeldhVC8Tnpp6bYiax3VGoHqPTw_efDo6CpmRDoAllwyBVCc11xgDlpDzkWoOJGE1DTZOMKc1imhsds5zoaBhnWUgVjzItmaJ2LxmgzhO0Xl6UZgthCKW0CrNcGpNbEjiZw0MzDvIqSRRJe2i__XhCN3zmtqzGufBMzJEAbQqnzR562YkuPInHbUJ7zgI6CXk5t1lvjIovxx_E25B8Pnk3_iimPbTbmohoHL6CCIoDuEvjNOmhF91lcFWrLVmai9rJDG28x6Gvp960us4ASFmkRmBUzkD-_p5ifDB1je1_F91B9wDoEZ-ouYvWl5e1eQZgaqmeO6_5DTUDGw4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4amxC74WeDURhgEEzjIm2a2El8wUVZGV23VmXaxu5C4jhS6ZpWSyNarngEHoRX4SV4Eo6dn2loSNzsgjtLObJj-9jnHPvzdwBecptL23VtDHJMZtDADA1OKTPcwPEijA8wElJvh3t9p3NMu6fsdAl-lG9hcn6I6sBNrQy9X6sFrg6kGxesoZ_FtI7GyWsWkMp9ufiCAVv6Zq-Ns_vKsnbfHe10jCKngCEoc5uGFzosFpGLZtjjJhcC-yAFMwVzIjcUrs1iKWw3psJq2lFkspBbkQjckKnLTrTFWO8NWFEZxBVTf_vwgqyKF4nrNeiB0WbJY2RajepXL1m_FTWR86tc28uesjZ1u3fgZzlIOcJlVM9mYV18_YM_8n8Zxbtwu_C5SStfJPdgSSZrsN5KgtlkvCBbRKNg9fXCGtzMk3Mu1iFujdNAqMeRJM2mGi8sUzJWKQ3mZCxnCrGgWS6GCXoCv759t8h2rzdQhdeNvMCJnBdA44QME6ITIpIzmY3keBgQdWmS3ofja-n7A1hOJol8CASjRRGaURxIGSueuyDGSiOO8qHjhNSrwXapLb4oKNtV5pAzPyebtnycPV_PXg1eVKLTnKfkKqEtrXKVRHA-UsA-l_kf--_9tyY9OWx3P_iDGmyWOukXe1qKQSJH_9WzPacGz6vPuBup0QoSOcm0TFOFtBzb2sh1uWoMfUXljFLsldbIv_-n390Z6MKjfxd9Brc6R70D_2Cvv_8YVtGvpTkudROWZ-eZfIK-4yx8qpcsgU_Xrd2_AXUdei4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qrUBseLQ8AgUGBFVZOPFjxvYsWISG0KYkClUL3Rl7PJZCGieqHZGw4hP4D36Fr-BLuDN-VEVFYtMFu5FyZXtm7sw9N3PmXIDn3OHS8TwHkxyTGTQ0I4NTygwvdP0Y8wPMhNTd4f7A3T2ivWN2vAI_qrswhT5E_YebWhl6v1YLfBYnrTPR0M9i1sTY5Fslo3JfLr9gvpa92uvg5L6w7e6bw51doywpYAjKPMvwI5clIvYwCvvc5EJgF6RgpmBu7EXCc1giheMlVNiWE8cmi7gdi9CLmDrrxFCMz70Ca9Q1uaoT0Tk406riZd16zXlg1KpkjEy7VX_queC3puZxcRGyPQ-UdaTr3oSf1RgVBJdxc55HTfH1D_nI_2QQb8GNEnGTdrFEbsOKTNdho52G-XSyJFtEc2D14cI6XC1Kcy43IGlPslCoq5Ekm880W1hmZKIKGizIROaKr6A1LkYp4oBf377bZLvfH6rGy1bR4EQuSppxSkYp0eUQyYmcj-VkFBJ1ZJLdgaNL6ftdWE2nqbwPBHNFEZlxEkqZKJW7MMGHxhztI9eNqN-A7cpZAlEKtqu6ISdBITVtBzh7gZ69BjyrTWeFSslFRlva42qL8HSsaH0eCz4O3gavTfrhoNN7HwwbsFm5ZFDuaBmmiBzRq-_4bgOe1j_jXqRGK0zldK5tLJXQcnzXvcKV65chUlRQlGKvtEP-_TuD3s5QNx78u-kTuDbsdIN3e4P9h3AdQS0tSKmbsJqfzuUjBI559FgvWAKfLtu5fwOCl3jd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amsacrine+suppresses+matrix+metalloproteinase-2+%28MMP-2%29%2FMMP-9+expression+in+human+leukemia+cells&rft.jtitle=Journal+of+cellular+physiology&rft.au=Liu%2C+Wen-Hsin&rft.au=Chen%2C+Ying-Jung&rft.au=Chien%2C+Jen-Hung&rft.au=Chang%2C+Long-Sen&rft.date=2014-05-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=229&rft.issue=5&rft.spage=588&rft_id=info:doi/10.1002%2Fjcp.24481&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |