Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects
Purpose: To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects. Materials and Methods: Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft‐tissue suppress...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 31; no. 4; pp. 954 - 963 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.22130 |
Cover
Loading…
Abstract | Purpose:
To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.
Materials and Methods:
Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft‐tissue suppression, image resolution, signal‐to‐noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2–3‐month‐old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton‐free materials was utilized to produce a strong B1 field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals.
Results:
Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes.
Conclusion:
WASPI of the solid matrix of bone in humans and animals in vivo is feasible. J. Magn. Reson. Imaging 2010;31:954–963. ©2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | Purpose:
To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.
Materials and Methods:
Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft‐tissue suppression, image resolution, signal‐to‐noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2–3‐month‐old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton‐free materials was utilized to produce a strong B1 field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals.
Results:
Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes.
Conclusion:
WASPI of the solid matrix of bone in humans and animals in vivo is feasible. J. Magn. Reson. Imaging 2010;31:954–963. ©2010 Wiley‐Liss, Inc. To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.PURPOSETo demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft-tissue suppression, image resolution, signal-to-noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2-3-month-old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton-free materials was utilized to produce a strong B(1) field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals.MATERIALS AND METHODSPig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft-tissue suppression, image resolution, signal-to-noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2-3-month-old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton-free materials was utilized to produce a strong B(1) field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals.Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes.RESULTSClear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes.WASPI of the solid matrix of bone in humans and animals in vivo is feasible.CONCLUSIONWASPI of the solid matrix of bone in humans and animals in vivo is feasible. To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects. Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft-tissue suppression, image resolution, signal-to-noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2-3-month-old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton-free materials was utilized to produce a strong B(1) field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals. Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes. WASPI of the solid matrix of bone in humans and animals in vivo is feasible. |
Author | Ecklund, Kirsten Hrovat, Mirko I. Ackerman, Jerome L. Cao, Haihui Reese, Timothy G. Glimcher, Melvin J. Wu, Yaotang |
AuthorAffiliation | 4 Department of Radiology, Children’s Hospital, Boston, MA 02115 1 Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115 3 Mirtech, Inc., Brockton, MA 02301 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 5 Harvard Medical School, Boston, MA 02115 |
AuthorAffiliation_xml | – name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 – name: 3 Mirtech, Inc., Brockton, MA 02301 – name: 1 Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115 – name: 5 Harvard Medical School, Boston, MA 02115 – name: 4 Department of Radiology, Children’s Hospital, Boston, MA 02115 |
Author_xml | – sequence: 1 givenname: Yaotang surname: Wu fullname: Wu, Yaotang email: yaotang.wu@childrens.harvard.edu organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA – sequence: 2 givenname: Mirko I. surname: Hrovat fullname: Hrovat, Mirko I. organization: Mirtech, Brockton, Massachusetts, USA – sequence: 3 givenname: Jerome L. surname: Ackerman fullname: Ackerman, Jerome L. organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA – sequence: 4 givenname: Timothy G. surname: Reese fullname: Reese, Timothy G. organization: Athinoula A. Martinos Center for Biomedical Imaging, Department ofRadiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA – sequence: 5 givenname: Haihui surname: Cao fullname: Cao, Haihui organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA – sequence: 6 givenname: Kirsten surname: Ecklund fullname: Ecklund, Kirsten organization: Harvard Medical School, Boston, Massachusetts, USA – sequence: 7 givenname: Melvin J. surname: Glimcher fullname: Glimcher, Melvin J. organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20373441$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB-w4Qcg7yhIaf2I43iD1FZ0GNTyRrO07MRpPSRxsJ1p59_jdDoVIMTqXtnfOde-Zx_s9K43ADzH6AgjRI6XnbdHhGCKHoE9zAjJCCuLndQjRjNcIr4L9kNYIoSEyNkTsEsQ5TTP8R7wp8kLdip6ewttp65MDW0PV3bloF7DGxWNz6Dqa9iomIVxGLwJIUGDd9H1U1maKtrUXn6Zw8PFyddP81fQNUmT7No76fXYqR6GUU9oeAoeN6oN5tl9PQDfz99-O3uXXXyczc9OLrIqZxxljUp_q5UglBclwaXhNcekEDqdVVQLzZtcMMwMYxU2hWZciMIUTJdcaYFzegDebHyHUXemrkwfvWrl4NO7_Fo6ZeWfN729llduJUlZloyiZPDy3sC7n6MJUXY2VKZtVW_cGCSnlAokijKRL34f9TBju-cEoA1QeReCN42sbFTT2tJk20qM5BSlnKKUd1Emyeu_JFvXf8J4A9_Y1qz_Q8r3KaatJttobIjm9kGj_A9ZcMqZXHyYyQWln8_RjKfmF6PYvlE |
CitedBy_id | crossref_primary_10_1016_j_jmr_2016_08_013 crossref_primary_10_1016_j_jmr_2011_10_005 crossref_primary_10_1002_jbmr_1709 crossref_primary_10_1055_s_0043_1776431 crossref_primary_10_1002_jmri_26664 crossref_primary_10_1053_j_ro_2024_02_006 crossref_primary_10_1073_pnas_1115107109 crossref_primary_10_1002_mrm_23017 crossref_primary_10_1002_nbm_3228 crossref_primary_10_7498_aps_62_088701 crossref_primary_10_1002_mrm_25658 crossref_primary_10_1097_SCS_0000000000006626 crossref_primary_10_1089_ten_teb_2013_0635 crossref_primary_10_1016_j_bone_2023_116996 crossref_primary_10_1016_j_ejrad_2021_109915 crossref_primary_10_1016_j_acra_2020_03_001 crossref_primary_10_1007_s12020_012_9691_2 crossref_primary_10_1007_s00774_020_01198_8 crossref_primary_10_1016_j_jmr_2013_03_002 crossref_primary_10_1002_jmri_22637 crossref_primary_10_1007_s11926_011_0174_x crossref_primary_10_3389_fendo_2020_555756 crossref_primary_10_1002_mrm_26875 crossref_primary_10_1002_jmri_29361 crossref_primary_10_1111_wrr_12167 crossref_primary_10_1007_s40134_013_0035_7 crossref_primary_10_1002_mrm_27625 crossref_primary_10_1007_s40846_020_00506_x crossref_primary_10_1088_0031_9155_60_20_N369 crossref_primary_10_1016_j_mri_2013_11_002 crossref_primary_10_1002_mrm_23267 crossref_primary_10_1007_s10548_022_00933_w crossref_primary_10_1016_j_pnmrs_2019_07_001 crossref_primary_10_1155_2021_4928396 crossref_primary_10_1016_j_mrl_2023_05_002 crossref_primary_10_1002_nbm_2906 crossref_primary_10_1016_j_mri_2022_01_009 |
Cites_doi | 10.1210/jc.2004-0682 10.1210/jc.2005-1258 10.1002/jmri.20851 10.2165/00023210-200115080-00006 10.1016/j.jmr.2006.05.014 10.1002/mrm.21050 10.1021/jp981753z 10.1007/BF01623782 10.1002/mrm.21174 10.1016/j.seizure.2007.11.020 10.1359/jbmr.2001.16.5.806 10.1359/jbmr.090201 10.1159/000223692 10.1016/S0002-9343(99)00460-X 10.1359/jbmr.1998.13.7.1175 10.1016/j.bone.2008.07.188 10.1016/B978-012068700-8/50003-7 10.1016/j.jocd.2007.12.010 10.1007/s002230050015 10.1006/jmre.2001.2340 10.1002/mrm.1910340502 10.1002/mrm.21771 10.1073/pnas.96.4.1574 10.1053/crad.2003.1157 10.1016/j.joca.2008.02.018 10.1007/s002239900471 10.1002/nbm.1179 10.1002/mrm.10512 10.1148/radiology.179.3.2027991 10.1002/mrm.20055 10.1002/jmri.1880050621 10.1002/mrm.21593 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/jmri.22130 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 963 |
ExternalDocumentID | PMC2888530 20373441 10_1002_jmri_22130 JMRI22130 ark_67375_WNG_W33QF0G7_W |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA‐NIH – fundername: NIBIB‐NIH – fundername: NIBIB NIH HHS grantid: R01 EB004012 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c4570-fa002da923768218e7d71269bda9c3b9b7f49515e55c1e6b57996e65b87ab9143 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 18:40:00 EDT 2025 Fri Jul 11 12:18:20 EDT 2025 Sat May 31 02:12:20 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Jul 01 01:41:22 EDT 2025 Wed Jan 22 16:48:33 EST 2025 Wed Oct 30 09:48:24 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4570-fa002da923768218e7d71269bda9c3b9b7f49515e55c1e6b57996e65b87ab9143 |
Notes | ArticleID:JMRI22130 NIBIB-NIH ark:/67375/WNG-W33QF0G7-W NIA-NIH istex:12A44E2A7A299FFA61DC600EBBC5D220FBE8E5D9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2888530 |
PMID | 20373441 |
PQID | 733390968 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888530 proquest_miscellaneous_733390968 pubmed_primary_20373441 crossref_citationtrail_10_1002_jmri_22130 crossref_primary_10_1002_jmri_22130 wiley_primary_10_1002_jmri_22130_JMRI22130 istex_primary_ark_67375_WNG_W33QF0G7_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2010 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Ernst RR, Bodenhausen G, Wokaun A. In: Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon Press; 1987. Reese TG, Davis TL, Weisskoff RM. Automated shimming at 1.5T using echo planar image frequency maps. J Magn Reson Imaging 1995; 5: 739-745. Pack AM, Morrell MJ. Adverse effects of antiepileptic drugs on bone structure: epidemiology, mechanisms and therapeutic implications. CNS Drugs 2001; 15: 633-642. Riaz S, Alam M, Umer M. Frequency of osteomalacia in elderly patients with hip fractures. J Pak Med Assoc 2006; 56: 273-276. Hollis BW. Editorial. The determination of circulating 25-hydroxyvitamin D: No easy task. J Clin Endocrinol Metab 2004; 89: 3149-3151. Allgrove J. A practical approach to rickets. Endocr Dev 2009; 16: 115-132. Anumula S, Magland J, Wehrli SL, et al. Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid-state 3D radial imaging. Magn Reson Med 2006; 56: 946-952. Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction imaging. Radiology 1991; 179: 777-781. Hangartner TN. Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images. J Musculoskelet Neuronal Interact 2007; 7: 9-16. Gourion-Arsiquaud S, Burket JC, Havill LM, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 2009; 24: 1271-1281. Kuehn B, Stampa B, Heller M, Gluer C. In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 1997; 7: 291. Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson 2006; 181: 342-349. Engelke K, Adams J, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 2008; 11: 123-162. Rajapakse CS, Magland JF, Wehrli FW. Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies. Magn Reson Med 2008; 59: 1120-1126. Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000; 66: 74-78. Gold GE, Pauly JM, Macovski A, Herfkens RJ. MR spectroscopic imaging of collagen: tendons and knee menisci. Magn Reson Med 1995; 34: 647-654. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 6508-6515. Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med 2004; 51: 888-892. Wu Y, Chesler DA, Glimcher ML, et al. Multinuclear solid state three dimensional MRI of bone and synthetic calcium phosphates. Proc Natl Acad Sci U S A 1999; 96: 1574-1578. Wu Y, Dai G, Ackerman JL, et al. Water and fat suppression projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007; 57: 554-567. Bolbos RI, Zuo J, Banerjee S, et al. Relationship between trabecular bone structure and articular morphology and relaxation times in early OA of knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 2008; 16: 1150-1159. Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed 2008; 21: 59-70. Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water and fat suppressed proton projection MRI. Magn Reson Med 2003; 50: 59-68. Link TM, Majumdar S, Qugat P, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13: 1175-1182. Pack A. Bone health in people with epilepsy: is it impaired and what are the risk factors. Seizure 2008; 17: 181-186. Garwood M, DelaBarre L. Advances in magnetic resonance: the return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 2001; 153: 155-177. Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 2008; 60: 1433-1443. Gathouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 2003; 58: 1-19. Basha B, Rao DS, Han Z-H, Parfitt AM. Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med 2000; 108: 296-300. Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations. J Magn Reson Imaging 2007; 25: 279-289. Wu Y, Ackerman JL, Chesler DA, et al. Evaluation of bone mineral density using three dimensional solid state phosphorus-31 NMR projection imaging. Calcif Tissue Int 1998; 62: 512-518. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D. Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 1997; 7: 390-406. Collins MT, Chebli C, Jones J, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal fibular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001; 16: 806-813. Hansen EW, Kristiansen PE, Pedersen B. Crystallinity of polyethylene derived from solid state proton NMR free induction decay. J Phys Chem B 1998; 102: 5444-5450. 2009; 24 1991; 179 2006; 56 2005; 90 2000; 66 1995; 34 2004; 89 2008; 16 2008; 17 1998 2008 2008; 59 2003; 58 1996 2004 2008; 11 1998; 62 2003; 50 2007; 57 1995; 5 1997; 7 2004; 51 2001; 153 2000; 108 1987 2007; 7 2001; 15 2008; 21 2006; 181 2001; 16 1999; 96 1998; 102 2008; 60 2009; 16 2007; 25 1998; 13 e_1_2_6_31_2 e_1_2_6_30_2 Bringhurst FR (e_1_2_6_9_2) 2008 Lindsay R (e_1_2_6_8_2) 2008 e_1_2_6_19_2 Ernst RR (e_1_2_6_39_2) 1987 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 Wu Y (e_1_2_6_33_2) 1998; 62 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 Hangartner TN (e_1_2_6_6_2) 2007; 7 e_1_2_6_41_2 e_1_2_6_40_2 Riaz S (e_1_2_6_18_2) 2006; 56 Kuehn B (e_1_2_6_23_2) 1997; 7 e_1_2_6_7_2 Sartoris DJ (e_1_2_6_4_2) 1996 e_1_2_6_29_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson 2006; 181: 342-349. – reference: Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 2008; 60: 1433-1443. – reference: Ernst RR, Bodenhausen G, Wokaun A. In: Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon Press; 1987. – reference: Gourion-Arsiquaud S, Burket JC, Havill LM, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 2009; 24: 1271-1281. – reference: Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed 2008; 21: 59-70. – reference: Bolbos RI, Zuo J, Banerjee S, et al. Relationship between trabecular bone structure and articular morphology and relaxation times in early OA of knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 2008; 16: 1150-1159. – reference: Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water and fat suppressed proton projection MRI. Magn Reson Med 2003; 50: 59-68. – reference: Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 6508-6515. – reference: Riaz S, Alam M, Umer M. Frequency of osteomalacia in elderly patients with hip fractures. J Pak Med Assoc 2006; 56: 273-276. – reference: Engelke K, Adams J, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 2008; 11: 123-162. – reference: Gold GE, Pauly JM, Macovski A, Herfkens RJ. MR spectroscopic imaging of collagen: tendons and knee menisci. Magn Reson Med 1995; 34: 647-654. – reference: Gathouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 2003; 58: 1-19. – reference: Kuehn B, Stampa B, Heller M, Gluer C. In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 1997; 7: 291. – reference: Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D. Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 1997; 7: 390-406. – reference: Hangartner TN. Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images. J Musculoskelet Neuronal Interact 2007; 7: 9-16. – reference: Wu Y, Dai G, Ackerman JL, et al. Water and fat suppression projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007; 57: 554-567. – reference: Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000; 66: 74-78. – reference: Pack AM, Morrell MJ. Adverse effects of antiepileptic drugs on bone structure: epidemiology, mechanisms and therapeutic implications. CNS Drugs 2001; 15: 633-642. – reference: Anumula S, Magland J, Wehrli SL, et al. Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid-state 3D radial imaging. Magn Reson Med 2006; 56: 946-952. – reference: Garwood M, DelaBarre L. Advances in magnetic resonance: the return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 2001; 153: 155-177. – reference: Hollis BW. Editorial. The determination of circulating 25-hydroxyvitamin D: No easy task. J Clin Endocrinol Metab 2004; 89: 3149-3151. – reference: Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction imaging. Radiology 1991; 179: 777-781. – reference: Rajapakse CS, Magland JF, Wehrli FW. Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies. Magn Reson Med 2008; 59: 1120-1126. – reference: Wu Y, Ackerman JL, Chesler DA, et al. Evaluation of bone mineral density using three dimensional solid state phosphorus-31 NMR projection imaging. Calcif Tissue Int 1998; 62: 512-518. – reference: Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med 2004; 51: 888-892. – reference: Collins MT, Chebli C, Jones J, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal fibular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001; 16: 806-813. – reference: Pack A. Bone health in people with epilepsy: is it impaired and what are the risk factors. Seizure 2008; 17: 181-186. – reference: Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations. J Magn Reson Imaging 2007; 25: 279-289. – reference: Basha B, Rao DS, Han Z-H, Parfitt AM. Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med 2000; 108: 296-300. – reference: Allgrove J. A practical approach to rickets. Endocr Dev 2009; 16: 115-132. – reference: Hansen EW, Kristiansen PE, Pedersen B. Crystallinity of polyethylene derived from solid state proton NMR free induction decay. J Phys Chem B 1998; 102: 5444-5450. – reference: Wu Y, Chesler DA, Glimcher ML, et al. Multinuclear solid state three dimensional MRI of bone and synthetic calcium phosphates. Proc Natl Acad Sci U S A 1999; 96: 1574-1578. – reference: Link TM, Majumdar S, Qugat P, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13: 1175-1182. – reference: Reese TG, Davis TL, Weisskoff RM. Automated shimming at 1.5T using echo planar image frequency maps. J Magn Reson Imaging 1995; 5: 739-745. – volume: 57 start-page: 554 year: 2007 end-page: 567 article-title: Water and fat suppression projection MRI (WASPI) of rat femur bone publication-title: Magn Reson Med – volume: 17 start-page: 181 year: 2008 end-page: 186 article-title: Bone health in people with epilepsy: is it impaired and what are the risk factors publication-title: Seizure – volume: 51 start-page: 888 year: 2004 end-page: 892 article-title: Human imaging of phosphorus in cortical and trabecular bone in vivo publication-title: Magn Reson Med – volume: 179 start-page: 777 year: 1991 end-page: 781 article-title: Lung parenchyma: projection reconstruction imaging publication-title: Radiology – volume: 96 start-page: 1574 year: 1999 end-page: 1578 article-title: Multinuclear solid state three dimensional MRI of bone and synthetic calcium phosphates publication-title: Proc Natl Acad Sci U S A – volume: 102 start-page: 5444 year: 1998 end-page: 5450 article-title: Crystallinity of polyethylene derived from solid state proton NMR free induction decay publication-title: J Phys Chem B – volume: 7 start-page: 9 year: 2007 end-page: 16 article-title: Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images publication-title: J Musculoskelet Neuronal Interact – volume: 90 start-page: 6508 year: 2005 end-page: 6515 article-title: In vivo assessment of trabecular bone microarchitecture by high‐resolution peripheral quantitative computed tomography publication-title: J Clin Endocrinol Metab – volume: 60 start-page: 1433 year: 2008 end-page: 1443 article-title: Quantitative bone matrix density measurement by water‐ and fat‐suppressed proton projection MRI (WASPI) with polymer calibration phantoms publication-title: Magn Reson Med – year: 1987 – volume: 16 start-page: 1150 year: 2008 end-page: 1159 article-title: Relationship between trabecular bone structure and articular morphology and relaxation times in early OA of knee joint using parallel MRI at 3T publication-title: Osteoarthritis Cartilage – year: 1996 – volume: 56 start-page: 273 year: 2006 end-page: 276 article-title: Frequency of osteomalacia in elderly patients with hip fractures publication-title: J Pak Med Assoc – volume: 66 start-page: 74 year: 2000 end-page: 78 article-title: Magnetic resonance imaging measurements of bone density and cross‐sectional geometry publication-title: Calcif Tissue Int – volume: 58 start-page: 1 year: 2003 end-page: 19 article-title: Magnetic resonance imaging of short T2 components in tissue publication-title: Clin Radiol – volume: 59 start-page: 1120 year: 2008 end-page: 1126 article-title: Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies publication-title: Magn Reson Med – volume: 62 start-page: 512 year: 1998 end-page: 518 article-title: Evaluation of bone mineral density using three dimensional solid state phosphorus‐31 NMR projection imaging publication-title: Calcif Tissue Int – volume: 89 start-page: 3149 year: 2004 end-page: 3151 article-title: Editorial. The determination of circulating 25‐hydroxyvitamin D: No easy task publication-title: J Clin Endocrinol Metab – volume: 7 start-page: 390 year: 1997 end-page: 406 article-title: Guidelines for diagnosis and management of osteoporosis publication-title: Osteoporos Int – year: 1998 – volume: 16 start-page: 115 year: 2009 end-page: 132 article-title: A practical approach to rickets publication-title: Endocr Dev – volume: 24 start-page: 1271 year: 2009 end-page: 1281 article-title: Spatial variation in osteonal bone properties relative to tissue and animal age publication-title: J Bone Miner Res – volume: 7 start-page: 291 year: 1997 article-title: In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging publication-title: Osteoporos Int – volume: 16 start-page: 806 year: 2001 end-page: 813 article-title: Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal fibular dysfunction similar to that seen in tumor‐induced osteomalacia publication-title: J Bone Miner Res – volume: 21 start-page: 59 year: 2008 end-page: 70 article-title: In vivo MRI of submillisecond T2 species with two‐dimensional and three‐dimensional radial sequences and applications to the measurement of cortical bone water publication-title: NMR Biomed – year: 2008 – volume: 13 start-page: 1175 year: 1998 end-page: 1182 article-title: In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients publication-title: J Bone Miner Res – year: 2004 – volume: 56 start-page: 946 year: 2006 end-page: 952 article-title: Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid‐state 3D radial imaging publication-title: Magn Reson Med – volume: 50 start-page: 59 year: 2003 end-page: 68 article-title: Density of organic matrix of native mineralized bone measured by water and fat suppressed proton projection MRI publication-title: Magn Reson Med – volume: 5 start-page: 739 year: 1995 end-page: 745 article-title: Automated shimming at 1.5T using echo planar image frequency maps publication-title: J Magn Reson Imaging – volume: 34 start-page: 647 year: 1995 end-page: 654 article-title: MR spectroscopic imaging of collagen: tendons and knee menisci publication-title: Magn Reson Med – volume: 153 start-page: 155 year: 2001 end-page: 177 article-title: Advances in magnetic resonance: the return of the frequency sweep: designing adiabatic pulses for contemporary NMR publication-title: J Magn Reson – volume: 181 start-page: 342 year: 2006 end-page: 349 article-title: Fast and quiet MRI using a swept radiofrequency publication-title: J Magn Reson – volume: 11 start-page: 123 year: 2008 end-page: 162 article-title: Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions publication-title: J Clin Densitom – volume: 108 start-page: 296 year: 2000 end-page: 300 article-title: Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption publication-title: Am J Med – volume: 25 start-page: 279 year: 2007 end-page: 289 article-title: Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations publication-title: J Magn Reson Imaging – volume: 15 start-page: 633 year: 2001 end-page: 642 article-title: Adverse effects of antiepileptic drugs on bone structure: epidemiology, mechanisms and therapeutic implications publication-title: CNS Drugs – ident: e_1_2_6_16_2 doi: 10.1210/jc.2004-0682 – ident: e_1_2_6_7_2 doi: 10.1210/jc.2005-1258 – ident: e_1_2_6_28_2 doi: 10.1002/jmri.20851 – ident: e_1_2_6_15_2 doi: 10.2165/00023210-200115080-00006 – volume-title: Bone and joint imaging year: 1996 ident: e_1_2_6_4_2 – ident: e_1_2_6_32_2 doi: 10.1016/j.jmr.2006.05.014 – ident: e_1_2_6_30_2 doi: 10.1002/mrm.21050 – ident: e_1_2_6_3_2 – ident: e_1_2_6_40_2 doi: 10.1021/jp981753z – ident: e_1_2_6_10_2 doi: 10.1007/BF01623782 – ident: e_1_2_6_35_2 doi: 10.1002/mrm.21174 – ident: e_1_2_6_13_2 doi: 10.1016/j.seizure.2007.11.020 – ident: e_1_2_6_14_2 doi: 10.1359/jbmr.2001.16.5.806 – ident: e_1_2_6_11_2 doi: 10.1359/jbmr.090201 – volume-title: Principles of nuclear magnetic resonance in one and two dimensions year: 1987 ident: e_1_2_6_39_2 – ident: e_1_2_6_12_2 doi: 10.1159/000223692 – ident: e_1_2_6_17_2 doi: 10.1016/S0002-9343(99)00460-X – ident: e_1_2_6_22_2 doi: 10.1359/jbmr.1998.13.7.1175 – ident: e_1_2_6_38_2 doi: 10.1016/j.bone.2008.07.188 – ident: e_1_2_6_2_2 doi: 10.1016/B978-012068700-8/50003-7 – ident: e_1_2_6_5_2 doi: 10.1016/j.jocd.2007.12.010 – ident: e_1_2_6_21_2 doi: 10.1007/s002230050015 – ident: e_1_2_6_31_2 doi: 10.1006/jmre.2001.2340 – ident: e_1_2_6_25_2 doi: 10.1002/mrm.1910340502 – ident: e_1_2_6_37_2 doi: 10.1002/mrm.21771 – volume: 56 start-page: 273 year: 2006 ident: e_1_2_6_18_2 article-title: Frequency of osteomalacia in elderly patients with hip fractures publication-title: J Pak Med Assoc – ident: e_1_2_6_34_2 doi: 10.1073/pnas.96.4.1574 – ident: e_1_2_6_26_2 doi: 10.1053/crad.2003.1157 – ident: e_1_2_6_19_2 doi: 10.1016/j.joca.2008.02.018 – volume: 62 start-page: 512 year: 1998 ident: e_1_2_6_33_2 article-title: Evaluation of bone mineral density using three dimensional solid state phosphorus‐31 NMR projection imaging publication-title: Calcif Tissue Int doi: 10.1007/s002239900471 – volume: 7 start-page: 291 year: 1997 ident: e_1_2_6_23_2 article-title: In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging publication-title: Osteoporos Int – ident: e_1_2_6_29_2 doi: 10.1002/nbm.1179 – volume-title: Harrison's principles of internal medicine year: 2008 ident: e_1_2_6_9_2 – ident: e_1_2_6_36_2 doi: 10.1002/mrm.10512 – volume: 7 start-page: 9 year: 2007 ident: e_1_2_6_6_2 article-title: Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images publication-title: J Musculoskelet Neuronal Interact – ident: e_1_2_6_24_2 doi: 10.1148/radiology.179.3.2027991 – ident: e_1_2_6_27_2 doi: 10.1002/mrm.20055 – volume-title: Harrison's principles of internal medicine year: 2008 ident: e_1_2_6_8_2 – ident: e_1_2_6_41_2 doi: 10.1002/jmri.1880050621 – ident: e_1_2_6_20_2 doi: 10.1002/mrm.21593 |
SSID | ssj0009945 |
Score | 2.1525764 |
Snippet | Purpose:
To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human... To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.... To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 954 |
SubjectTerms | Adipose Tissue - metabolism Adipose Tissue - pathology Animals bone Bone and Bones - pathology Diagnostic Imaging - methods Female Humans Imaging, Three-Dimensional - methods Lower Extremity - pathology Magnetic Resonance Imaging - methods MRI osteomalacia osteoporosis Phantoms, Imaging Protons Swine UTE ultrashort T2 imaging WASPI Water - chemistry Wrist - pathology |
Title | Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects |
URI | https://api.istex.fr/ark:/67375/WNG-W33QF0G7-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22130 https://www.ncbi.nlm.nih.gov/pubmed/20373441 https://www.proquest.com/docview/733390968 https://pubmed.ncbi.nlm.nih.gov/PMC2888530 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamTULc8A8LDGRpCDGkdIldx4nEzYbofqROMJi6G2TZriPC1mRqmjK42iPsGfckHDtpusKEBHdRcmzl2Mf2d46PPyP0MrKHOyOmfYC30kariC85Yb6RUrNQx5q7gFv_INo96u4fs-Ml9HZ2Fqbmh2gDbnZkuPnaDnCpys05aei30TjrEAJzMEzANlnLIqLDOXdUkrgbigE_UD-MA95yk5LNedGF1WjFNuz5TVDzz4zJ60jWLUW9u-jLTIk6A-WkU01UR__8jd_xf7W8h-40GBVv1UZ1Hy2Z_AG61W924R-i6XaRGzyy5P7nOBvBjDTEWY6n2bTA6gf-DvB1fHVxiWU-xKmcwGNZnbmEWxC0xBBFjpsIEFgF7h_u4deDrU8f9jZwkUIpqPLUFXYXCOKyUla0fISOeu8_v9v1m_sbfN1lPPBTCToMZWITb2KAEoYPeUiiRME7TVWieAruWcgMYzo0kWIcnC8TMRVzqRIAco_Rcg4KrSLMuDIkBm-GKPBfFZFJoE3A0m6QEhXRwEMbs34UuiE3t3dsnIqalpkI25DCNaSH1lvZs5rS40apV84cWhE5PrFJcJyJwcGOGFD6sRfscDHwEJ7Zi4ChafdbZG6KqhScUpqAixh76EltPm1lJKCcAhL1EF8wrFbAsn4vfsmzr479m8QxQCz4vzfObv6igtiHDnRPT_9F-Bm6XadI2PSkNbQ8GVfmOSCviXrhRtgvHMQq6g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pdwtQRCDCldYtdx8jgQXTvWCsam7s2yXUeErcnUNGXwxE_gN_JLOHaylMKEBG9RcmzF9rH9nePj7yD0LLKXOyOmfYC30nqriC85Yb6RUrNQx5o7h9twFPUPujuH7LCJzbF3YWp-iNbhZmeGW6_tBLcO6c0la-in6SzrEAKL8EW0blN6O4tqb8kelSQuRzEgCOqHccBbdlKyuSy7sh-t2649PQ9s_hkz-SuWdZtR71qdcbV0HIY2BuWoU81VR3_9jeHxv9t5HV1tYCreqvXqBrpg8pvo0rA5iL-FFq-K3OCp5fc_xdkUFqUJznK8yBYFVl_wZ0Cwsx_fvmOZT3Aq5_BYVicu5hYELTdEkePGCQSKgYd7A_xivPXh3WADFymUgiqPXWGXQxCXlbKi5W100Huz_7rvNykcfN1lPPBTCW2YyMTG3sSAJgyf8JBEiYJ3mqpE8RQstJAZxnRoIsU42F8mYirmUiWA5e6gtRwadA9hxpUhMRg0RIEJq4hMAm0ClnaDlKiIBh7aOBtIoRt-c5tm41jUzMxE2I4UriM99LSVPalZPc6Veu70oRWRsyMbB8eZGI-2xZjS971gm4uxh_CZwgiYnfbIReamqErBKaUJWImxh-7W-tNWRgLKKYBRD_EVzWoFLPH36pc8--gIwEkcA8qC_3vpFOcvTRA7MIDu6f6_CD9Bl_v7w12xOxi9fYCu1BETNlrpIVqbzyrzCIDYXD120-0no1ovBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJk3cjH8Iv5ZAiCGlS5w6TiRuBqNbB63GYOpukGU7jha2JlXblMEVj8Az8iQcO2lKYUKCuyg5tnLsY_s7x8efEXoSmsOdIVUuwFtholXEFYxQVwuhqK8ixWzArdcP947a-8f0eAW9mJ-FqfghmoCbGRl2vjYDfJSkWwvS0E_DcdYiBObgS2itHXqRsemdwwV5VBzbK4oBQASuH3msISclW4uyS8vRmmnZ84uw5p8pk79CWbsWda6gj3MtqhSU01Y5lS319TeCx_9V8yraqEEq3q6s6hpa0fl1tN6rt-FvoNnLItd4aNj9z3E2hCkpwVmOZ9mswPIL_gz4dfzj23cs8gSnYgqPk3JkM25B0DBDFDmuQ0BgFrh32MXPBtvvD7qbuEihFFR5ZgvbGwTxpJRGdHITHXVef3i159YXOLiqTZnnpgJ0SERsMm8iwBKaJcwnYSzhnQpkLFkK_plPNaXK16GkDLwvHVIZMSFjQHK30GoOCt1BmDKpSQTuDJHgwEoiYk9pj6ZtLyUyDDwHbc77kaua3dxcsnHGK15mwk1DctuQDnrcyI4qTo8LpZ5ac2hExPjUZMExygf9XT4Igncdb5fxgYPw3F44jE2z4SJyXZQTzoIgiMFHjBx0uzKfpjLiBSwAKOogtmRYjYCh_V7-kmcnlv6bRBFgLPi_59Zu_qIC34cOtE93_0X4EVo_2Onwt93-m3vocpUuYVKV7qPV6bjUDwCFTeVDO9h-AhtFLb0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+matrix+imaged+in+vivo+by+water%E2%80%90+and+fat%E2%80%90suppressed+proton+projection+MRI+%28WASPI%29+of+animal+and+human+subjects&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Wu%2C+Yaotang&rft.au=Hrovat%2C+Mirko+I.&rft.au=Ackerman%2C+Jerome+L.&rft.au=Reese%2C+Timothy+G.&rft.date=2010-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=31&rft.issue=4&rft.spage=954&rft.epage=963&rft_id=info:doi/10.1002%2Fjmri.22130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_22130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |