Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects

Purpose: To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects. Materials and Methods: Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft‐tissue suppress...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 31; no. 4; pp. 954 - 963
Main Authors Wu, Yaotang, Hrovat, Mirko I., Ackerman, Jerome L., Reese, Timothy G., Cao, Haihui, Ecklund, Kirsten, Glimcher, Melvin J.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2010
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.22130

Cover

Loading…
Abstract Purpose: To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects. Materials and Methods: Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft‐tissue suppression, image resolution, signal‐to‐noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2–3‐month‐old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton‐free materials was utilized to produce a strong B1 field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals. Results: Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes. Conclusion: WASPI of the solid matrix of bone in humans and animals in vivo is feasible. J. Magn. Reson. Imaging 2010;31:954–963. ©2010 Wiley‐Liss, Inc.
AbstractList Purpose: To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects. Materials and Methods: Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft‐tissue suppression, image resolution, signal‐to‐noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2–3‐month‐old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton‐free materials was utilized to produce a strong B1 field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals. Results: Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes. Conclusion: WASPI of the solid matrix of bone in humans and animals in vivo is feasible. J. Magn. Reson. Imaging 2010;31:954–963. ©2010 Wiley‐Liss, Inc.
To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.PURPOSETo demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects.Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft-tissue suppression, image resolution, signal-to-noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2-3-month-old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton-free materials was utilized to produce a strong B(1) field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals.MATERIALS AND METHODSPig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft-tissue suppression, image resolution, signal-to-noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2-3-month-old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton-free materials was utilized to produce a strong B(1) field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals.Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes.RESULTSClear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes.WASPI of the solid matrix of bone in humans and animals in vivo is feasible.CONCLUSIONWASPI of the solid matrix of bone in humans and animals in vivo is feasible.
To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects. Pig bone specimens and polymer pellets were used to optimize the WASPI method in terms of soft-tissue suppression, image resolution, signal-to-noise ratio, and scan time on a 3T MRI scanner. The ankles of healthy 2-3-month-old live Yorkshire pigs were scanned with the optimized method. The method was also applied to the wrists of six healthy adult human volunteers to demonstrate the feasibility of the WASPI method in human subjects. A transmit/receive coil built with proton-free materials was utilized to produce a strong B(1) field. A fast transmit/receive switch was developed to reduce the long receiver dead time that would otherwise obscure the signals. Clear 3D WASPI images of pig ankles and human wrists, showing only the solid bone matrix and other tissues with high solid content (eg, tendons), with a spatial resolution of 2.0 mm in all three dimensions were obtained in as briefly as 12 minutes. WASPI of the solid matrix of bone in humans and animals in vivo is feasible.
Author Ecklund, Kirsten
Hrovat, Mirko I.
Ackerman, Jerome L.
Cao, Haihui
Reese, Timothy G.
Glimcher, Melvin J.
Wu, Yaotang
AuthorAffiliation 4 Department of Radiology, Children’s Hospital, Boston, MA 02115
1 Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115
3 Mirtech, Inc., Brockton, MA 02301
2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
5 Harvard Medical School, Boston, MA 02115
AuthorAffiliation_xml – name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129
– name: 3 Mirtech, Inc., Brockton, MA 02301
– name: 1 Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA 02115
– name: 5 Harvard Medical School, Boston, MA 02115
– name: 4 Department of Radiology, Children’s Hospital, Boston, MA 02115
Author_xml – sequence: 1
  givenname: Yaotang
  surname: Wu
  fullname: Wu, Yaotang
  email: yaotang.wu@childrens.harvard.edu
  organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA
– sequence: 2
  givenname: Mirko I.
  surname: Hrovat
  fullname: Hrovat, Mirko I.
  organization: Mirtech, Brockton, Massachusetts, USA
– sequence: 3
  givenname: Jerome L.
  surname: Ackerman
  fullname: Ackerman, Jerome L.
  organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA
– sequence: 4
  givenname: Timothy G.
  surname: Reese
  fullname: Reese, Timothy G.
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department ofRadiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
– sequence: 5
  givenname: Haihui
  surname: Cao
  fullname: Cao, Haihui
  organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA
– sequence: 6
  givenname: Kirsten
  surname: Ecklund
  fullname: Ecklund, Kirsten
  organization: Harvard Medical School, Boston, Massachusetts, USA
– sequence: 7
  givenname: Melvin J.
  surname: Glimcher
  fullname: Glimcher, Melvin J.
  organization: Department of Orthopaedic Surgery, Children's Hospital, Boston, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20373441$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB-w4Qcg7yhIaf2I43iD1FZ0GNTyRrO07MRpPSRxsJ1p59_jdDoVIMTqXtnfOde-Zx_s9K43ADzH6AgjRI6XnbdHhGCKHoE9zAjJCCuLndQjRjNcIr4L9kNYIoSEyNkTsEsQ5TTP8R7wp8kLdip6ewttp65MDW0PV3bloF7DGxWNz6Dqa9iomIVxGLwJIUGDd9H1U1maKtrUXn6Zw8PFyddP81fQNUmT7No76fXYqR6GUU9oeAoeN6oN5tl9PQDfz99-O3uXXXyczc9OLrIqZxxljUp_q5UglBclwaXhNcekEDqdVVQLzZtcMMwMYxU2hWZciMIUTJdcaYFzegDebHyHUXemrkwfvWrl4NO7_Fo6ZeWfN729llduJUlZloyiZPDy3sC7n6MJUXY2VKZtVW_cGCSnlAokijKRL34f9TBju-cEoA1QeReCN42sbFTT2tJk20qM5BSlnKKUd1Emyeu_JFvXf8J4A9_Y1qz_Q8r3KaatJttobIjm9kGj_A9ZcMqZXHyYyQWln8_RjKfmF6PYvlE
CitedBy_id crossref_primary_10_1016_j_jmr_2016_08_013
crossref_primary_10_1016_j_jmr_2011_10_005
crossref_primary_10_1002_jbmr_1709
crossref_primary_10_1055_s_0043_1776431
crossref_primary_10_1002_jmri_26664
crossref_primary_10_1053_j_ro_2024_02_006
crossref_primary_10_1073_pnas_1115107109
crossref_primary_10_1002_mrm_23017
crossref_primary_10_1002_nbm_3228
crossref_primary_10_7498_aps_62_088701
crossref_primary_10_1002_mrm_25658
crossref_primary_10_1097_SCS_0000000000006626
crossref_primary_10_1089_ten_teb_2013_0635
crossref_primary_10_1016_j_bone_2023_116996
crossref_primary_10_1016_j_ejrad_2021_109915
crossref_primary_10_1016_j_acra_2020_03_001
crossref_primary_10_1007_s12020_012_9691_2
crossref_primary_10_1007_s00774_020_01198_8
crossref_primary_10_1016_j_jmr_2013_03_002
crossref_primary_10_1002_jmri_22637
crossref_primary_10_1007_s11926_011_0174_x
crossref_primary_10_3389_fendo_2020_555756
crossref_primary_10_1002_mrm_26875
crossref_primary_10_1002_jmri_29361
crossref_primary_10_1111_wrr_12167
crossref_primary_10_1007_s40134_013_0035_7
crossref_primary_10_1002_mrm_27625
crossref_primary_10_1007_s40846_020_00506_x
crossref_primary_10_1088_0031_9155_60_20_N369
crossref_primary_10_1016_j_mri_2013_11_002
crossref_primary_10_1002_mrm_23267
crossref_primary_10_1007_s10548_022_00933_w
crossref_primary_10_1016_j_pnmrs_2019_07_001
crossref_primary_10_1155_2021_4928396
crossref_primary_10_1016_j_mrl_2023_05_002
crossref_primary_10_1002_nbm_2906
crossref_primary_10_1016_j_mri_2022_01_009
Cites_doi 10.1210/jc.2004-0682
10.1210/jc.2005-1258
10.1002/jmri.20851
10.2165/00023210-200115080-00006
10.1016/j.jmr.2006.05.014
10.1002/mrm.21050
10.1021/jp981753z
10.1007/BF01623782
10.1002/mrm.21174
10.1016/j.seizure.2007.11.020
10.1359/jbmr.2001.16.5.806
10.1359/jbmr.090201
10.1159/000223692
10.1016/S0002-9343(99)00460-X
10.1359/jbmr.1998.13.7.1175
10.1016/j.bone.2008.07.188
10.1016/B978-012068700-8/50003-7
10.1016/j.jocd.2007.12.010
10.1007/s002230050015
10.1006/jmre.2001.2340
10.1002/mrm.1910340502
10.1002/mrm.21771
10.1073/pnas.96.4.1574
10.1053/crad.2003.1157
10.1016/j.joca.2008.02.018
10.1007/s002239900471
10.1002/nbm.1179
10.1002/mrm.10512
10.1148/radiology.179.3.2027991
10.1002/mrm.20055
10.1002/jmri.1880050621
10.1002/mrm.21593
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/jmri.22130
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 963
ExternalDocumentID PMC2888530
20373441
10_1002_jmri_22130
JMRI22130
ark_67375_WNG_W33QF0G7_W
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA‐NIH
– fundername: NIBIB‐NIH
– fundername: NIBIB NIH HHS
  grantid: R01 EB004012
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c4570-fa002da923768218e7d71269bda9c3b9b7f49515e55c1e6b57996e65b87ab9143
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 18:40:00 EDT 2025
Fri Jul 11 12:18:20 EDT 2025
Sat May 31 02:12:20 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Tue Jul 01 01:41:22 EDT 2025
Wed Jan 22 16:48:33 EST 2025
Wed Oct 30 09:48:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4570-fa002da923768218e7d71269bda9c3b9b7f49515e55c1e6b57996e65b87ab9143
Notes ArticleID:JMRI22130
NIBIB-NIH
ark:/67375/WNG-W33QF0G7-W
NIA-NIH
istex:12A44E2A7A299FFA61DC600EBBC5D220FBE8E5D9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2888530
PMID 20373441
PQID 733390968
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888530
proquest_miscellaneous_733390968
pubmed_primary_20373441
crossref_citationtrail_10_1002_jmri_22130
crossref_primary_10_1002_jmri_22130
wiley_primary_10_1002_jmri_22130_JMRI22130
istex_primary_ark_67375_WNG_W33QF0G7_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Ernst RR, Bodenhausen G, Wokaun A. In: Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon Press; 1987.
Reese TG, Davis TL, Weisskoff RM. Automated shimming at 1.5T using echo planar image frequency maps. J Magn Reson Imaging 1995; 5: 739-745.
Pack AM, Morrell MJ. Adverse effects of antiepileptic drugs on bone structure: epidemiology, mechanisms and therapeutic implications. CNS Drugs 2001; 15: 633-642.
Riaz S, Alam M, Umer M. Frequency of osteomalacia in elderly patients with hip fractures. J Pak Med Assoc 2006; 56: 273-276.
Hollis BW. Editorial. The determination of circulating 25-hydroxyvitamin D: No easy task. J Clin Endocrinol Metab 2004; 89: 3149-3151.
Allgrove J. A practical approach to rickets. Endocr Dev 2009; 16: 115-132.
Anumula S, Magland J, Wehrli SL, et al. Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid-state 3D radial imaging. Magn Reson Med 2006; 56: 946-952.
Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction imaging. Radiology 1991; 179: 777-781.
Hangartner TN. Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images. J Musculoskelet Neuronal Interact 2007; 7: 9-16.
Gourion-Arsiquaud S, Burket JC, Havill LM, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 2009; 24: 1271-1281.
Kuehn B, Stampa B, Heller M, Gluer C. In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 1997; 7: 291.
Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson 2006; 181: 342-349.
Engelke K, Adams J, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 2008; 11: 123-162.
Rajapakse CS, Magland JF, Wehrli FW. Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies. Magn Reson Med 2008; 59: 1120-1126.
Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000; 66: 74-78.
Gold GE, Pauly JM, Macovski A, Herfkens RJ. MR spectroscopic imaging of collagen: tendons and knee menisci. Magn Reson Med 1995; 34: 647-654.
Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 6508-6515.
Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med 2004; 51: 888-892.
Wu Y, Chesler DA, Glimcher ML, et al. Multinuclear solid state three dimensional MRI of bone and synthetic calcium phosphates. Proc Natl Acad Sci U S A 1999; 96: 1574-1578.
Wu Y, Dai G, Ackerman JL, et al. Water and fat suppression projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007; 57: 554-567.
Bolbos RI, Zuo J, Banerjee S, et al. Relationship between trabecular bone structure and articular morphology and relaxation times in early OA of knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 2008; 16: 1150-1159.
Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed 2008; 21: 59-70.
Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water and fat suppressed proton projection MRI. Magn Reson Med 2003; 50: 59-68.
Link TM, Majumdar S, Qugat P, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13: 1175-1182.
Pack A. Bone health in people with epilepsy: is it impaired and what are the risk factors. Seizure 2008; 17: 181-186.
Garwood M, DelaBarre L. Advances in magnetic resonance: the return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 2001; 153: 155-177.
Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 2008; 60: 1433-1443.
Gathouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 2003; 58: 1-19.
Basha B, Rao DS, Han Z-H, Parfitt AM. Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med 2000; 108: 296-300.
Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations. J Magn Reson Imaging 2007; 25: 279-289.
Wu Y, Ackerman JL, Chesler DA, et al. Evaluation of bone mineral density using three dimensional solid state phosphorus-31 NMR projection imaging. Calcif Tissue Int 1998; 62: 512-518.
Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D. Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 1997; 7: 390-406.
Collins MT, Chebli C, Jones J, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal fibular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001; 16: 806-813.
Hansen EW, Kristiansen PE, Pedersen B. Crystallinity of polyethylene derived from solid state proton NMR free induction decay. J Phys Chem B 1998; 102: 5444-5450.
2009; 24
1991; 179
2006; 56
2005; 90
2000; 66
1995; 34
2004; 89
2008; 16
2008; 17
1998
2008
2008; 59
2003; 58
1996
2004
2008; 11
1998; 62
2003; 50
2007; 57
1995; 5
1997; 7
2004; 51
2001; 153
2000; 108
1987
2007; 7
2001; 15
2008; 21
2006; 181
2001; 16
1999; 96
1998; 102
2008; 60
2009; 16
2007; 25
1998; 13
e_1_2_6_31_2
e_1_2_6_30_2
Bringhurst FR (e_1_2_6_9_2) 2008
Lindsay R (e_1_2_6_8_2) 2008
e_1_2_6_19_2
Ernst RR (e_1_2_6_39_2) 1987
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
Wu Y (e_1_2_6_33_2) 1998; 62
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Hangartner TN (e_1_2_6_6_2) 2007; 7
e_1_2_6_41_2
e_1_2_6_40_2
Riaz S (e_1_2_6_18_2) 2006; 56
Kuehn B (e_1_2_6_23_2) 1997; 7
e_1_2_6_7_2
Sartoris DJ (e_1_2_6_4_2) 1996
e_1_2_6_29_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI using a swept radiofrequency. J Magn Reson 2006; 181: 342-349.
– reference: Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 2008; 60: 1433-1443.
– reference: Ernst RR, Bodenhausen G, Wokaun A. In: Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon Press; 1987.
– reference: Gourion-Arsiquaud S, Burket JC, Havill LM, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 2009; 24: 1271-1281.
– reference: Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T2 species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed 2008; 21: 59-70.
– reference: Bolbos RI, Zuo J, Banerjee S, et al. Relationship between trabecular bone structure and articular morphology and relaxation times in early OA of knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 2008; 16: 1150-1159.
– reference: Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water and fat suppressed proton projection MRI. Magn Reson Med 2003; 50: 59-68.
– reference: Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 6508-6515.
– reference: Riaz S, Alam M, Umer M. Frequency of osteomalacia in elderly patients with hip fractures. J Pak Med Assoc 2006; 56: 273-276.
– reference: Engelke K, Adams J, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 2008; 11: 123-162.
– reference: Gold GE, Pauly JM, Macovski A, Herfkens RJ. MR spectroscopic imaging of collagen: tendons and knee menisci. Magn Reson Med 1995; 34: 647-654.
– reference: Gathouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 2003; 58: 1-19.
– reference: Kuehn B, Stampa B, Heller M, Gluer C. In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 1997; 7: 291.
– reference: Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D. Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 1997; 7: 390-406.
– reference: Hangartner TN. Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images. J Musculoskelet Neuronal Interact 2007; 7: 9-16.
– reference: Wu Y, Dai G, Ackerman JL, et al. Water and fat suppression projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007; 57: 554-567.
– reference: Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000; 66: 74-78.
– reference: Pack AM, Morrell MJ. Adverse effects of antiepileptic drugs on bone structure: epidemiology, mechanisms and therapeutic implications. CNS Drugs 2001; 15: 633-642.
– reference: Anumula S, Magland J, Wehrli SL, et al. Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid-state 3D radial imaging. Magn Reson Med 2006; 56: 946-952.
– reference: Garwood M, DelaBarre L. Advances in magnetic resonance: the return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 2001; 153: 155-177.
– reference: Hollis BW. Editorial. The determination of circulating 25-hydroxyvitamin D: No easy task. J Clin Endocrinol Metab 2004; 89: 3149-3151.
– reference: Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction imaging. Radiology 1991; 179: 777-781.
– reference: Rajapakse CS, Magland JF, Wehrli FW. Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies. Magn Reson Med 2008; 59: 1120-1126.
– reference: Wu Y, Ackerman JL, Chesler DA, et al. Evaluation of bone mineral density using three dimensional solid state phosphorus-31 NMR projection imaging. Calcif Tissue Int 1998; 62: 512-518.
– reference: Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med 2004; 51: 888-892.
– reference: Collins MT, Chebli C, Jones J, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal fibular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001; 16: 806-813.
– reference: Pack A. Bone health in people with epilepsy: is it impaired and what are the risk factors. Seizure 2008; 17: 181-186.
– reference: Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations. J Magn Reson Imaging 2007; 25: 279-289.
– reference: Basha B, Rao DS, Han Z-H, Parfitt AM. Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med 2000; 108: 296-300.
– reference: Allgrove J. A practical approach to rickets. Endocr Dev 2009; 16: 115-132.
– reference: Hansen EW, Kristiansen PE, Pedersen B. Crystallinity of polyethylene derived from solid state proton NMR free induction decay. J Phys Chem B 1998; 102: 5444-5450.
– reference: Wu Y, Chesler DA, Glimcher ML, et al. Multinuclear solid state three dimensional MRI of bone and synthetic calcium phosphates. Proc Natl Acad Sci U S A 1999; 96: 1574-1578.
– reference: Link TM, Majumdar S, Qugat P, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998; 13: 1175-1182.
– reference: Reese TG, Davis TL, Weisskoff RM. Automated shimming at 1.5T using echo planar image frequency maps. J Magn Reson Imaging 1995; 5: 739-745.
– volume: 57
  start-page: 554
  year: 2007
  end-page: 567
  article-title: Water and fat suppression projection MRI (WASPI) of rat femur bone
  publication-title: Magn Reson Med
– volume: 17
  start-page: 181
  year: 2008
  end-page: 186
  article-title: Bone health in people with epilepsy: is it impaired and what are the risk factors
  publication-title: Seizure
– volume: 51
  start-page: 888
  year: 2004
  end-page: 892
  article-title: Human imaging of phosphorus in cortical and trabecular bone in vivo
  publication-title: Magn Reson Med
– volume: 179
  start-page: 777
  year: 1991
  end-page: 781
  article-title: Lung parenchyma: projection reconstruction imaging
  publication-title: Radiology
– volume: 96
  start-page: 1574
  year: 1999
  end-page: 1578
  article-title: Multinuclear solid state three dimensional MRI of bone and synthetic calcium phosphates
  publication-title: Proc Natl Acad Sci U S A
– volume: 102
  start-page: 5444
  year: 1998
  end-page: 5450
  article-title: Crystallinity of polyethylene derived from solid state proton NMR free induction decay
  publication-title: J Phys Chem B
– volume: 7
  start-page: 9
  year: 2007
  end-page: 16
  article-title: Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images
  publication-title: J Musculoskelet Neuronal Interact
– volume: 90
  start-page: 6508
  year: 2005
  end-page: 6515
  article-title: In vivo assessment of trabecular bone microarchitecture by high‐resolution peripheral quantitative computed tomography
  publication-title: J Clin Endocrinol Metab
– volume: 60
  start-page: 1433
  year: 2008
  end-page: 1443
  article-title: Quantitative bone matrix density measurement by water‐ and fat‐suppressed proton projection MRI (WASPI) with polymer calibration phantoms
  publication-title: Magn Reson Med
– year: 1987
– volume: 16
  start-page: 1150
  year: 2008
  end-page: 1159
  article-title: Relationship between trabecular bone structure and articular morphology and relaxation times in early OA of knee joint using parallel MRI at 3T
  publication-title: Osteoarthritis Cartilage
– year: 1996
– volume: 56
  start-page: 273
  year: 2006
  end-page: 276
  article-title: Frequency of osteomalacia in elderly patients with hip fractures
  publication-title: J Pak Med Assoc
– volume: 66
  start-page: 74
  year: 2000
  end-page: 78
  article-title: Magnetic resonance imaging measurements of bone density and cross‐sectional geometry
  publication-title: Calcif Tissue Int
– volume: 58
  start-page: 1
  year: 2003
  end-page: 19
  article-title: Magnetic resonance imaging of short T2 components in tissue
  publication-title: Clin Radiol
– volume: 59
  start-page: 1120
  year: 2008
  end-page: 1126
  article-title: Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies
  publication-title: Magn Reson Med
– volume: 62
  start-page: 512
  year: 1998
  end-page: 518
  article-title: Evaluation of bone mineral density using three dimensional solid state phosphorus‐31 NMR projection imaging
  publication-title: Calcif Tissue Int
– volume: 89
  start-page: 3149
  year: 2004
  end-page: 3151
  article-title: Editorial. The determination of circulating 25‐hydroxyvitamin D: No easy task
  publication-title: J Clin Endocrinol Metab
– volume: 7
  start-page: 390
  year: 1997
  end-page: 406
  article-title: Guidelines for diagnosis and management of osteoporosis
  publication-title: Osteoporos Int
– year: 1998
– volume: 16
  start-page: 115
  year: 2009
  end-page: 132
  article-title: A practical approach to rickets
  publication-title: Endocr Dev
– volume: 24
  start-page: 1271
  year: 2009
  end-page: 1281
  article-title: Spatial variation in osteonal bone properties relative to tissue and animal age
  publication-title: J Bone Miner Res
– volume: 7
  start-page: 291
  year: 1997
  article-title: In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging
  publication-title: Osteoporos Int
– volume: 16
  start-page: 806
  year: 2001
  end-page: 813
  article-title: Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal fibular dysfunction similar to that seen in tumor‐induced osteomalacia
  publication-title: J Bone Miner Res
– volume: 21
  start-page: 59
  year: 2008
  end-page: 70
  article-title: In vivo MRI of submillisecond T2 species with two‐dimensional and three‐dimensional radial sequences and applications to the measurement of cortical bone water
  publication-title: NMR Biomed
– year: 2008
– volume: 13
  start-page: 1175
  year: 1998
  end-page: 1182
  article-title: In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients
  publication-title: J Bone Miner Res
– year: 2004
– volume: 56
  start-page: 946
  year: 2006
  end-page: 952
  article-title: Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid‐state 3D radial imaging
  publication-title: Magn Reson Med
– volume: 50
  start-page: 59
  year: 2003
  end-page: 68
  article-title: Density of organic matrix of native mineralized bone measured by water and fat suppressed proton projection MRI
  publication-title: Magn Reson Med
– volume: 5
  start-page: 739
  year: 1995
  end-page: 745
  article-title: Automated shimming at 1.5T using echo planar image frequency maps
  publication-title: J Magn Reson Imaging
– volume: 34
  start-page: 647
  year: 1995
  end-page: 654
  article-title: MR spectroscopic imaging of collagen: tendons and knee menisci
  publication-title: Magn Reson Med
– volume: 153
  start-page: 155
  year: 2001
  end-page: 177
  article-title: Advances in magnetic resonance: the return of the frequency sweep: designing adiabatic pulses for contemporary NMR
  publication-title: J Magn Reson
– volume: 181
  start-page: 342
  year: 2006
  end-page: 349
  article-title: Fast and quiet MRI using a swept radiofrequency
  publication-title: J Magn Reson
– volume: 11
  start-page: 123
  year: 2008
  end-page: 162
  article-title: Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions
  publication-title: J Clin Densitom
– volume: 108
  start-page: 296
  year: 2000
  end-page: 300
  article-title: Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption
  publication-title: Am J Med
– volume: 25
  start-page: 279
  year: 2007
  end-page: 289
  article-title: Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 633
  year: 2001
  end-page: 642
  article-title: Adverse effects of antiepileptic drugs on bone structure: epidemiology, mechanisms and therapeutic implications
  publication-title: CNS Drugs
– ident: e_1_2_6_16_2
  doi: 10.1210/jc.2004-0682
– ident: e_1_2_6_7_2
  doi: 10.1210/jc.2005-1258
– ident: e_1_2_6_28_2
  doi: 10.1002/jmri.20851
– ident: e_1_2_6_15_2
  doi: 10.2165/00023210-200115080-00006
– volume-title: Bone and joint imaging
  year: 1996
  ident: e_1_2_6_4_2
– ident: e_1_2_6_32_2
  doi: 10.1016/j.jmr.2006.05.014
– ident: e_1_2_6_30_2
  doi: 10.1002/mrm.21050
– ident: e_1_2_6_3_2
– ident: e_1_2_6_40_2
  doi: 10.1021/jp981753z
– ident: e_1_2_6_10_2
  doi: 10.1007/BF01623782
– ident: e_1_2_6_35_2
  doi: 10.1002/mrm.21174
– ident: e_1_2_6_13_2
  doi: 10.1016/j.seizure.2007.11.020
– ident: e_1_2_6_14_2
  doi: 10.1359/jbmr.2001.16.5.806
– ident: e_1_2_6_11_2
  doi: 10.1359/jbmr.090201
– volume-title: Principles of nuclear magnetic resonance in one and two dimensions
  year: 1987
  ident: e_1_2_6_39_2
– ident: e_1_2_6_12_2
  doi: 10.1159/000223692
– ident: e_1_2_6_17_2
  doi: 10.1016/S0002-9343(99)00460-X
– ident: e_1_2_6_22_2
  doi: 10.1359/jbmr.1998.13.7.1175
– ident: e_1_2_6_38_2
  doi: 10.1016/j.bone.2008.07.188
– ident: e_1_2_6_2_2
  doi: 10.1016/B978-012068700-8/50003-7
– ident: e_1_2_6_5_2
  doi: 10.1016/j.jocd.2007.12.010
– ident: e_1_2_6_21_2
  doi: 10.1007/s002230050015
– ident: e_1_2_6_31_2
  doi: 10.1006/jmre.2001.2340
– ident: e_1_2_6_25_2
  doi: 10.1002/mrm.1910340502
– ident: e_1_2_6_37_2
  doi: 10.1002/mrm.21771
– volume: 56
  start-page: 273
  year: 2006
  ident: e_1_2_6_18_2
  article-title: Frequency of osteomalacia in elderly patients with hip fractures
  publication-title: J Pak Med Assoc
– ident: e_1_2_6_34_2
  doi: 10.1073/pnas.96.4.1574
– ident: e_1_2_6_26_2
  doi: 10.1053/crad.2003.1157
– ident: e_1_2_6_19_2
  doi: 10.1016/j.joca.2008.02.018
– volume: 62
  start-page: 512
  year: 1998
  ident: e_1_2_6_33_2
  article-title: Evaluation of bone mineral density using three dimensional solid state phosphorus‐31 NMR projection imaging
  publication-title: Calcif Tissue Int
  doi: 10.1007/s002239900471
– volume: 7
  start-page: 291
  year: 1997
  ident: e_1_2_6_23_2
  article-title: In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging
  publication-title: Osteoporos Int
– ident: e_1_2_6_29_2
  doi: 10.1002/nbm.1179
– volume-title: Harrison's principles of internal medicine
  year: 2008
  ident: e_1_2_6_9_2
– ident: e_1_2_6_36_2
  doi: 10.1002/mrm.10512
– volume: 7
  start-page: 9
  year: 2007
  ident: e_1_2_6_6_2
  article-title: Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and μCT images
  publication-title: J Musculoskelet Neuronal Interact
– ident: e_1_2_6_24_2
  doi: 10.1148/radiology.179.3.2027991
– ident: e_1_2_6_27_2
  doi: 10.1002/mrm.20055
– volume-title: Harrison's principles of internal medicine
  year: 2008
  ident: e_1_2_6_8_2
– ident: e_1_2_6_41_2
  doi: 10.1002/jmri.1880050621
– ident: e_1_2_6_20_2
  doi: 10.1002/mrm.21593
SSID ssj0009945
Score 2.1525764
Snippet Purpose: To demonstrate water‐ and fat‐suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human...
To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human subjects....
To demonstrate water- and fat-suppressed proton projection MRI (WASPI) in a clinical scanner to visualize the solid bone matrix in animal and human...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 954
SubjectTerms Adipose Tissue - metabolism
Adipose Tissue - pathology
Animals
bone
Bone and Bones - pathology
Diagnostic Imaging - methods
Female
Humans
Imaging, Three-Dimensional - methods
Lower Extremity - pathology
Magnetic Resonance Imaging - methods
MRI
osteomalacia
osteoporosis
Phantoms, Imaging
Protons
Swine
UTE ultrashort T2 imaging
WASPI
Water - chemistry
Wrist - pathology
Title Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects
URI https://api.istex.fr/ark:/67375/WNG-W33QF0G7-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22130
https://www.ncbi.nlm.nih.gov/pubmed/20373441
https://www.proquest.com/docview/733390968
https://pubmed.ncbi.nlm.nih.gov/PMC2888530
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamTULc8A8LDGRpCDGkdIldx4nEzYbofqROMJi6G2TZriPC1mRqmjK42iPsGfckHDtpusKEBHdRcmzl2Mf2d46PPyP0MrKHOyOmfYC30kariC85Yb6RUrNQx5q7gFv_INo96u4fs-Ml9HZ2Fqbmh2gDbnZkuPnaDnCpys05aei30TjrEAJzMEzANlnLIqLDOXdUkrgbigE_UD-MA95yk5LNedGF1WjFNuz5TVDzz4zJ60jWLUW9u-jLTIk6A-WkU01UR__8jd_xf7W8h-40GBVv1UZ1Hy2Z_AG61W924R-i6XaRGzyy5P7nOBvBjDTEWY6n2bTA6gf-DvB1fHVxiWU-xKmcwGNZnbmEWxC0xBBFjpsIEFgF7h_u4deDrU8f9jZwkUIpqPLUFXYXCOKyUla0fISOeu8_v9v1m_sbfN1lPPBTCToMZWITb2KAEoYPeUiiRME7TVWieAruWcgMYzo0kWIcnC8TMRVzqRIAco_Rcg4KrSLMuDIkBm-GKPBfFZFJoE3A0m6QEhXRwEMbs34UuiE3t3dsnIqalpkI25DCNaSH1lvZs5rS40apV84cWhE5PrFJcJyJwcGOGFD6sRfscDHwEJ7Zi4ChafdbZG6KqhScUpqAixh76EltPm1lJKCcAhL1EF8wrFbAsn4vfsmzr479m8QxQCz4vzfObv6igtiHDnRPT_9F-Bm6XadI2PSkNbQ8GVfmOSCviXrhRtgvHMQq6g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pdwtQRCDCldYtdx8jgQXTvWCsam7s2yXUeErcnUNGXwxE_gN_JLOHaylMKEBG9RcmzF9rH9nePj7yD0LLKXOyOmfYC30nqriC85Yb6RUrNQx5o7h9twFPUPujuH7LCJzbF3YWp-iNbhZmeGW6_tBLcO6c0la-in6SzrEAKL8EW0blN6O4tqb8kelSQuRzEgCOqHccBbdlKyuSy7sh-t2649PQ9s_hkz-SuWdZtR71qdcbV0HIY2BuWoU81VR3_9jeHxv9t5HV1tYCreqvXqBrpg8pvo0rA5iL-FFq-K3OCp5fc_xdkUFqUJznK8yBYFVl_wZ0Cwsx_fvmOZT3Aq5_BYVicu5hYELTdEkePGCQSKgYd7A_xivPXh3WADFymUgiqPXWGXQxCXlbKi5W100Huz_7rvNykcfN1lPPBTCW2YyMTG3sSAJgyf8JBEiYJ3mqpE8RQstJAZxnRoIsU42F8mYirmUiWA5e6gtRwadA9hxpUhMRg0RIEJq4hMAm0ClnaDlKiIBh7aOBtIoRt-c5tm41jUzMxE2I4UriM99LSVPalZPc6Veu70oRWRsyMbB8eZGI-2xZjS971gm4uxh_CZwgiYnfbIReamqErBKaUJWImxh-7W-tNWRgLKKYBRD_EVzWoFLPH36pc8--gIwEkcA8qC_3vpFOcvTRA7MIDu6f6_CD9Bl_v7w12xOxi9fYCu1BETNlrpIVqbzyrzCIDYXD120-0no1ovBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJk3cjH8Iv5ZAiCGlS5w6TiRuBqNbB63GYOpukGU7jha2JlXblMEVj8Az8iQcO2lKYUKCuyg5tnLsY_s7x8efEXoSmsOdIVUuwFtholXEFYxQVwuhqK8ixWzArdcP947a-8f0eAW9mJ-FqfghmoCbGRl2vjYDfJSkWwvS0E_DcdYiBObgS2itHXqRsemdwwV5VBzbK4oBQASuH3msISclW4uyS8vRmmnZ84uw5p8pk79CWbsWda6gj3MtqhSU01Y5lS319TeCx_9V8yraqEEq3q6s6hpa0fl1tN6rt-FvoNnLItd4aNj9z3E2hCkpwVmOZ9mswPIL_gz4dfzj23cs8gSnYgqPk3JkM25B0DBDFDmuQ0BgFrh32MXPBtvvD7qbuEihFFR5ZgvbGwTxpJRGdHITHXVef3i159YXOLiqTZnnpgJ0SERsMm8iwBKaJcwnYSzhnQpkLFkK_plPNaXK16GkDLwvHVIZMSFjQHK30GoOCt1BmDKpSQTuDJHgwEoiYk9pj6ZtLyUyDDwHbc77kaua3dxcsnHGK15mwk1DctuQDnrcyI4qTo8LpZ5ac2hExPjUZMExygf9XT4Igncdb5fxgYPw3F44jE2z4SJyXZQTzoIgiMFHjBx0uzKfpjLiBSwAKOogtmRYjYCh_V7-kmcnlv6bRBFgLPi_59Zu_qIC34cOtE93_0X4EVo_2Onwt93-m3vocpUuYVKV7qPV6bjUDwCFTeVDO9h-AhtFLb0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+matrix+imaged+in+vivo+by+water%E2%80%90+and+fat%E2%80%90suppressed+proton+projection+MRI+%28WASPI%29+of+animal+and+human+subjects&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Wu%2C+Yaotang&rft.au=Hrovat%2C+Mirko+I.&rft.au=Ackerman%2C+Jerome+L.&rft.au=Reese%2C+Timothy+G.&rft.date=2010-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=31&rft.issue=4&rft.spage=954&rft.epage=963&rft_id=info:doi/10.1002%2Fjmri.22130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_22130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon