Computational flow cytometry as a diagnostic tool in suspected‐myelodysplastic syndromes
The diagnostic work‐up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected‐MDS. The computationa...
Saved in:
Published in | Cytometry. Part A Vol. 99; no. 8; pp. 814 - 824 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.08.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The diagnostic work‐up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected‐MDS. The computational diagnostic workflow consists of methods for pre‐processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient). |
---|---|
AbstractList | The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected-MDS. The computational diagnostic workflow consists of methods for pre-processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient). The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected-MDS. The computational diagnostic workflow consists of methods for pre-processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient).The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected-MDS. The computational diagnostic workflow consists of methods for pre-processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest). Based on a six tubes FC panel, the workflow obtained a 90% sensitivity and 93% specificity in an independent validation cohort. For practical advantages (e.g., reduced processing time and costs), a second computational diagnostic workflow was trained, solely based on the best performing single tube of the training cohort. This workflow obtained 97% sensitivity and 95% specificity in the prospective validation cohort. Both workflows outperformed the conventional, expert analyzed flow cytometry scores for diagnosis with respect to accuracy, objectivity and time investment (less than 2 min per patient). |
Author | Loosdrecht, Arjan A. Van Gassen, Sofie Saeys, Yvan Westers, Theresia M. Duetz, Carolien Spronsen, Margot F. Bachas, Costa |
AuthorAffiliation | 2 VIB Inflammation Research Center Ghent University Ghent Belgium 3 Department of Applied Mathematics, Computer Science and Statistics Ghent University Ghent Belgium 1 Department of Hematology, Amsterdam UMC VU University Medical Center, Cancer Center Amsterdam Amsterdam Netherlands |
AuthorAffiliation_xml | – name: 3 Department of Applied Mathematics, Computer Science and Statistics Ghent University Ghent Belgium – name: 2 VIB Inflammation Research Center Ghent University Ghent Belgium – name: 1 Department of Hematology, Amsterdam UMC VU University Medical Center, Cancer Center Amsterdam Amsterdam Netherlands |
Author_xml | – sequence: 1 givenname: Carolien orcidid: 0000-0002-2905-0699 surname: Duetz fullname: Duetz, Carolien organization: VU University Medical Center, Cancer Center Amsterdam – sequence: 2 givenname: Sofie surname: Van Gassen fullname: Van Gassen, Sofie organization: Ghent University – sequence: 3 givenname: Theresia M. surname: Westers fullname: Westers, Theresia M. organization: VU University Medical Center, Cancer Center Amsterdam – sequence: 4 givenname: Margot F. surname: Spronsen fullname: Spronsen, Margot F. organization: VU University Medical Center, Cancer Center Amsterdam – sequence: 5 givenname: Costa surname: Bachas fullname: Bachas, Costa organization: VU University Medical Center, Cancer Center Amsterdam – sequence: 6 givenname: Yvan surname: Saeys fullname: Saeys, Yvan organization: Ghent University – sequence: 7 givenname: Arjan A. surname: Loosdrecht fullname: Loosdrecht, Arjan A. email: a.vandeloosdrecht@amsterdamumc.nl organization: VU University Medical Center, Cancer Center Amsterdam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33942494$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAYhS3Uil5gxxpFYsOCGXyN4w1SNSoXqVI3ZQEby7Gd4sqxQ-xQZddH6DP2SfA07QgqwcqW_J3j8__nCOyFGCwArxBcIwjxez3nuFZrTEkNn4FDxBheUUHg3u6O8QE4SukKQsIgwc_BASGCYiroIfi-if0wZZVdDMpXnY_X1daxt3mcK5UqVRmnLkNM2ekqx-grF6o0pcHqbM3dzW0_Wx_NnAav7pk0BzMWfXoB9jvlk335cB6Drx9PLzafV2fnn75sTs5WmjIOSz6OWmghggQKZjnsNNOWGC46jknbWkFtbbhhgnCMITcN0i1vWg6NanFNyDH4sPgOU9tbo23Io_JyGF2vxllG5eTfL8H9kJfxl2woIwLVxeDtg8EYf042Zdm7pK33Ktg4JYkZxqgRqGkK-uYJehWnsWxuS9UQcVYLXKjXfybaRXlcewHeLYAeY0qj7XYIgnLbqtx2IJW8b7Xg-Amu3VJZmcf5f4noIrp23s7__UBuvl2cnyyy3yMdugU |
CitedBy_id | crossref_primary_10_3389_fmed_2024_1487234 crossref_primary_10_1038_s41375_024_02234_6 crossref_primary_10_1111_bjh_18802 crossref_primary_10_1002_cyto_b_22044 crossref_primary_10_3390_cancers14082011 crossref_primary_10_1002_cyto_b_22067 crossref_primary_10_1002_cyto_b_22177 crossref_primary_10_1080_17474086_2023_2289534 crossref_primary_10_1093_ajcp_aqac083 crossref_primary_10_1002_cyto_a_24478 crossref_primary_10_1016_j_cll_2023_06_006 crossref_primary_10_1111_ijlh_14346 crossref_primary_10_1002_hem3_70075 crossref_primary_10_3389_fonc_2024_1447001 crossref_primary_10_1002_cyto_a_24913 crossref_primary_10_3390_cancers16010065 crossref_primary_10_1007_s00439_022_02439_8 crossref_primary_10_1071_RD23212 crossref_primary_10_1097_CCO_0000000000000790 crossref_primary_10_3390_cancers17030499 crossref_primary_10_1038_s41375_024_02203_z crossref_primary_10_1002_cyto_b_22106 crossref_primary_10_1002_cyto_b_22059 crossref_primary_10_1002_cyto_b_22108 |
Cites_doi | 10.1007/s00277-008-0483-y 10.1038/leu.2012.122 10.1109/5254.708428 10.1111/ijlh.12151 10.1038/leu.2017.313 10.1093/bioinformatics/btw191 10.1002/cyto.b.21931 10.1182/blood-2015-03-631747 10.1016/j.leukres.2012.02.014 10.1038/leu.2014.191 10.1038/leu.2017.29 10.18637/jss.v033.i01 10.1182/blood-2016-03-643544 10.1182/blood-2002-09-2768 10.1111/j.1365-2362.2009.02151.x 10.3324/haematol.2009.008532 10.1007/BF00994018 10.1093/bioinformatics/btt383 10.3324/haematol.2016.147843 10.1038/nri.2016.56 10.1182/blood-2012-03-420489 10.1182/blood-2015-08-667063 10.1023/A:1010933404324 10.1038/leu.2013.178 10.1002/cyto.b.21333 10.1182/blood-2016-03-703702 10.1002/cyto.a.22625 10.1159/000490727 10.1002/cyto.a.23030 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. – notice: 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1002/cyto.a.24360 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Engineering Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Duetz et al |
EISSN | 1552-4930 |
EndPage | 824 |
ExternalDocumentID | PMC8453916 33942494 10_1002_cyto_a_24360 CYTOA24360 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation programme funderid: 634789 – fundername: European Union's Horizon 2020 research and innovation programme grantid: 634789 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c4570-4971b0e0103095e70fc5ce3d79f723bbe94e6d7d59372207d81cb78b70dab2633 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 1552-4930 |
IngestDate | Thu Aug 21 18:20:04 EDT 2025 Thu Jul 10 22:37:36 EDT 2025 Fri Jul 25 21:19:38 EDT 2025 Wed Feb 19 02:27:28 EST 2025 Thu Apr 24 23:01:22 EDT 2025 Tue Jul 01 00:49:20 EDT 2025 Wed Jan 22 16:28:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | hematological malignancies flow cytometry machine learning diagnostic test myelodysplastic syndromes |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4570-4971b0e0103095e70fc5ce3d79f723bbe94e6d7d59372207d81cb78b70dab2633 |
Notes | Funding information Yvan Saeys and Arjan A. van de Loosdrecht contributed equally to this work. European Union's Horizon 2020 research and innovation programme, Grant/Award Number: 634789 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information European Union's Horizon 2020 research and innovation programme, Grant/Award Number: 634789 |
ORCID | 0000-0002-2905-0699 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24360 |
PMID | 33942494 |
PQID | 2560175692 |
PQPubID | 2045167 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8453916 proquest_miscellaneous_2522189188 proquest_journals_2560175692 pubmed_primary_33942494 crossref_primary_10_1002_cyto_a_24360 crossref_citationtrail_10_1002_cyto_a_24360 wiley_primary_10_1002_cyto_a_24360_CYTOA24360 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 33 2013; 29 2012; 120 2013; 27 2015; 126 2016; 32 2016; 128 2016; 127 2014; 28 2020; 98 2012; 36 2001; 45 2016; 16 1995; 20 2016; 5 2018; 133 2017; 31 2019; 86 2016; 90 2009; 94 2015; 87 2018 2014; 36 2008; 87 2012; 26 2013 2003; 102 2017; 102 2018; 32 2016; 89 2009; 39 1998; 13 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 Kittang AO (e_1_2_8_26_1) 2016; 5 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 Louppe G (e_1_2_8_23_1) 2013 e_1_2_8_15_1 e_1_2_8_16_1 Cloos J (e_1_2_8_18_1) 2018; 133 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 36 start-page: 184 year: 2014 end-page: 96 article-title: Assessment of normal erythropoiesis by flow cytometry: important considerations for specimen preparation publication-title: Int J Lab Hematol – volume: 27 start-page: 1981 year: 2013 end-page: 7 article-title: Flow cytometric detection of dyserythropoiesis: a sensitive and powerful diagnostic tool for myelodysplastic syndromes publication-title: Leukemia – volume: 20 start-page: 273 year: 1995 end-page: 97 article-title: Support‐vector networks publication-title: Mach Learn – volume: 36 start-page: 727 year: 2012 end-page: 34 article-title: Evaluation of dysplasia through detailed cytomorphology in 3156 patients from the Düsseldorf registry on myelodysplastic syndromes publication-title: Leuk Res – volume: 126 start-page: 9 year: 2015 end-page: 16 article-title: Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes publication-title: Blood – volume: 87 start-page: 515 year: 2008 end-page: 26 article-title: Cytogenetic features in myelodysplastic syndromes publication-title: Ann Hematol – volume: 87 start-page: 636 year: 2015 end-page: 45 article-title: FlowSOM: using self‐organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A – volume: 33 start-page: 1 year: 2010 end-page: 22 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw – year: 2018 – volume: 28 start-page: 1793 year: 2014 article-title: Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes—proposal from the international/European LeukemiaNet working Group for Flow Cytometry in MDS publication-title: Leukemia – volume: 90 start-page: 358 year: 2016 end-page: 67 article-title: Application of flow cytometry for myelodysplastic syndromes: pitfalls and technical considerations publication-title: Cytometry B Clin Cytom – volume: 127 start-page: 2391 year: 2016 end-page: 405 article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia publication-title: Blood – volume: 128 start-page: 1193 year: 2016 end-page: 205 article-title: Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment publication-title: Blood – volume: 133 start-page: 56386 year: 2018 article-title: Comprehensive protocol to sample and process bone marrow for measuring measurable residual disease and leukemic stem cells in acute myeloid leukemia publication-title: J Vis Exp – start-page: 431 year: 2013 end-page: 439 – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 26 start-page: 1986 year: 2012 end-page: 2010 article-title: EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols publication-title: Leukemia – volume: 120 start-page: 2454 year: 2012 end-page: 65 article-title: Revised international prognostic scoring system for Myelodysplastic syndromes publication-title: Blood – volume: 86 start-page: 14 year: 2019 end-page: 23 article-title: Clinical implication of multi‐parameter flow Cytometry in Myelodysplastic syndromes publication-title: Pathobiology – volume: 16 start-page: 449 year: 2016 end-page: 62 article-title: Computational flow cytometry: helping to make sense of high‐dimensional immunology data publication-title: Nat Rev Immunol – volume: 102 start-page: 394 year: 2003 end-page: 403 article-title: Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation publication-title: Blood – volume: 32 start-page: 2473 year: 2016 end-page: 80 article-title: flowAI: automatic and interactive anomaly discerning tools for flow cytometry data publication-title: Bioinformatics – volume: 32 start-page: 874 year: 2018 end-page: 81 article-title: Automated database‐guided expert‐supervised orientation for immunophenotypic diagnosis and classification of acute leukemia publication-title: Leukemia – volume: 89 start-page: 1084 year: 2016 end-page: 96 article-title: Comparison of clustering methods for high‐dimensional single‐cell flow and mass cytometry data publication-title: Cytometry A – volume: 39 start-page: 548 year: 2009 end-page: 53 article-title: Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions publication-title: Eur J Clin Investig – volume: 5 year: 2016 article-title: Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome publication-title: Onco Targets Ther – volume: 102 start-page: 320 year: 2017 end-page: 6 article-title: Implementation of erythroid lineage analysis by flow cytometry in diagnostic models for myelodysplastic syndromes publication-title: Haematologica – volume: 94 start-page: 1066 year: 2009 end-page: 74 article-title: Diagnostic utility of flow cytometry in low‐grade myelodysplastic syndromes: a prospective validation study publication-title: Haematologica – volume: 29 start-page: 2365 year: 2013 end-page: 8 article-title: mRMRe: an R package for parallelized mRMR ensemble feature selection publication-title: Bioinformatics – volume: 31 start-page: 2094 year: 2017 end-page: 103 article-title: Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma publication-title: Leukemia – volume: 126 start-page: 2355 year: 2015 end-page: 61 article-title: MDS‐associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance publication-title: Blood – volume: 13 start-page: 18 year: 1998 end-page: 28 article-title: Support vector machines publication-title: IEEE Intell Syst – volume: 98 start-page: 399 year: 2020 end-page: 411 article-title: Analysis of erythroid maturation in the nonlysed bone marrow with help of radar plots facilitates detection of flow cytometric aberrations in myelodysplastic syndromes publication-title: Cytometry B Clin Cytom – ident: e_1_2_8_4_1 doi: 10.1007/s00277-008-0483-y – ident: e_1_2_8_17_1 doi: 10.1038/leu.2012.122 – ident: e_1_2_8_34_1 doi: 10.1109/5254.708428 – ident: e_1_2_8_20_1 – ident: e_1_2_8_32_1 doi: 10.1111/ijlh.12151 – ident: e_1_2_8_31_1 doi: 10.1038/leu.2017.313 – ident: e_1_2_8_16_1 doi: 10.1093/bioinformatics/btw191 – ident: e_1_2_8_33_1 doi: 10.1002/cyto.b.21931 – ident: e_1_2_8_27_1 doi: 10.1182/blood-2015-03-631747 – ident: e_1_2_8_5_1 doi: 10.1016/j.leukres.2012.02.014 – ident: e_1_2_8_6_1 doi: 10.1038/leu.2014.191 – ident: e_1_2_8_30_1 doi: 10.1038/leu.2017.29 – ident: e_1_2_8_22_1 doi: 10.18637/jss.v033.i01 – ident: e_1_2_8_3_1 doi: 10.1182/blood-2016-03-643544 – ident: e_1_2_8_9_1 doi: 10.1182/blood-2002-09-2768 – volume: 5 start-page: e1062208 year: 2016 ident: e_1_2_8_26_1 article-title: Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome publication-title: Onco Targets Ther – start-page: 431 volume-title: Advances in neural information processing systems. Proceedings of the 26th International Conference on Neural Information Processing Systems ‐ Volume 1 (NIPS'13) year: 2013 ident: e_1_2_8_23_1 – ident: e_1_2_8_28_1 doi: 10.1111/j.1365-2362.2009.02151.x – ident: e_1_2_8_8_1 doi: 10.3324/haematol.2009.008532 – ident: e_1_2_8_21_1 doi: 10.1007/BF00994018 – ident: e_1_2_8_24_1 doi: 10.1093/bioinformatics/btt383 – ident: e_1_2_8_11_1 doi: 10.3324/haematol.2016.147843 – ident: e_1_2_8_12_1 doi: 10.1038/nri.2016.56 – ident: e_1_2_8_2_1 doi: 10.1182/blood-2012-03-420489 – ident: e_1_2_8_29_1 doi: 10.1182/blood-2015-08-667063 – ident: e_1_2_8_15_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_10_1 doi: 10.1038/leu.2013.178 – volume: 133 start-page: 56386 year: 2018 ident: e_1_2_8_18_1 article-title: Comprehensive protocol to sample and process bone marrow for measuring measurable residual disease and leukemic stem cells in acute myeloid leukemia publication-title: J Vis Exp – ident: e_1_2_8_19_1 doi: 10.1002/cyto.b.21333 – ident: e_1_2_8_25_1 doi: 10.1182/blood-2016-03-703702 – ident: e_1_2_8_14_1 doi: 10.1002/cyto.a.22625 – ident: e_1_2_8_7_1 doi: 10.1159/000490727 – ident: e_1_2_8_13_1 doi: 10.1002/cyto.a.23030 |
SSID | ssj0035032 |
Score | 2.4486334 |
Snippet | The diagnostic work‐up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this... The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 814 |
SubjectTerms | Bone marrow Computer applications Cytogenetics diagnostic test Disorders Flow cytometry hematological malignancies Learning algorithms Machine learning Morphology Myelodysplastic syndrome myelodysplastic syndromes Original Sensitivity Software Tubes Workflow |
Title | Computational flow cytometry as a diagnostic tool in suspected‐myelodysplastic syndromes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.24360 https://www.ncbi.nlm.nih.gov/pubmed/33942494 https://www.proquest.com/docview/2560175692 https://www.proquest.com/docview/2522189188 https://pubmed.ncbi.nlm.nih.gov/PMC8453916 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB60IPji_ZJaywr6JDnN2d1ks4-lWIrgBWmh-hL2FiyeJqXJocQnf4K_0V_izm5O7LEo6FtgZ5Nsdib7ze7MNwDPlRMe9xYsLal1KXJIpZKzOjVSKj7H3EWO-c5v3hYHR_z1cX48brhhLkzkh5g23NAywv8aDVzpbucXaagZ-namZpSzAl12DNdCTPRhYo9ieRbqkyHJWMolpWPcu---c7nz-op0BWZejZa8jGLDMrR_G6rVAGL0yZfZstcz8_U3bsf_H-EduDUiVLIbVeouXHPNPbgRa1YO9-FTrAMx7iGSetFeELzFqevPB6I6ooiN4Xu-P-nbdkFOGtItQ0qnsz--fT8d3KK1Q3fmgTvKrEgTugdwtP_qcO8gHQs0pIbnIsPqdHOdOSwV4ZGaE1ltcuOYFbIWlGntJHeFFTb3GIjSTNhybrQotcis0rRg7CFsNG3jHgOpnXdUnRTW8JJTQ7ULWKlAB8tZyhJ4uZqkyozs5VhEY1FF3mVa4VArVYWvlcCLSfossnb8QW5rNd_VaLtdFZxUkReSJvBsavZWh0cpqnHtEmWox0ZyXpYJPIrqMT2IMcm9U8sTEGuKMwkgo_d6S3PyOTB7lzzHROgE0qAXf333au_j4bvdcLn5j_JP4CbF0JwQx7gFG_350j312KrX23Cd8vfbwY5-AgyjI9I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hVgguLZ9tSgEjwQllm7WdOD5WFdUCbZHQVipcQvwRUbFNqiarKpz4CfxGfgkeJxu6VCAhbpE8TuLYk7xxZt4DeJ5b4XBvwsKUGhsih1QoOStCLWXOx1i7yLHe-fAomRzzNyfxSa9zirUwHT_EsOGGnuHf1-jguCG984s1VLdNNcpHlLPExeyrKOrtY6r3A38UiyOvUIY0YyGXlPaZ767_ztXey9-ka0Dzer7kVRzrP0T76_BpMYQu_-TLaN6okf76G7vjf4zxDqz1IJXsdqvqLtyw5T242clWtvfhYycF0W8jkmJWXRI8xZltLlqS1yQnpsvgc_1JU1UzclqSeu6rOq358e37WWtnlWnrc4fd0WbBm1A_gOP9V9O9SdhrNISaxyJCgbqxiiyqRTiwZkVU6FhbZoQsBGVKWcltYoSJHQyiNBImHWslUiUikyuaMPYQVsqqtJtACutiVSuF0TzlVFNlPVxKMMayhrIAXi5mKdM9gTnqaMyyjnqZZjjULM_80wrgxWB93hF3_MFuezHhWe--debjVBEnkgbwbGh2jod_U_LSVnO0oQ4eyXGaBrDRrY_hQoxJ7uJaHoBYWjmDAZJ6L7eUp589uXfKY6yFDiD0C-Ov957tfZi-2_WHW_9o_xRuTaaHB9nB66O3j-A2xUwdn9a4DSvNxdw-dlCrUU-8O_0EPUcnFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hViAutPyVlAJGghPKNms7cXysWlblryDUSoWLldiOqNgmqyarKpx4BJ6xT4LHyYYuFUhwi-RxEscz8Tf2zDcAzzIrHO5NWJhSY0PkkAolZ0Wopcz4GHMXOeY7vztI9o_46-P4uN9ww1yYjh9i2HBDy_D_azTwmSm2f5GG6rapRtmIcpY4l32VJ1GKWr33caCPYnHkC5Qhy1jIJaV94Lvrv3259_KSdAVnXg2XvAxj_To0WQO1GEEXfvJ1NG_ykf72G7nj_w9xHW71EJXsdDp1G67Z8g5c74pWtnfhc1cIot9EJMW0Oid4i1PbnLUkq0lGTBe_5_qTpqqm5KQk9dzndFpz8f3HaWunlWnrmUPuKLNgTajvwdHk5eHufthXaAg1j0WE5enGeWSxVoSDalZEhY61ZUbIQlCW51ZymxhhYgeCKI2EScc6F2kuIpPlNGHsPqyUVWkfACms81StFEbzlFNNc-vBUoIeljWUBfBiMUlK9_TlWEVjqjriZapwqCpT_msF8HyQnnW0HX-Q21rMt-qNt1beSxVxImkAT4dmZ3Z4lpKVtpqjDHXgSI7TNICNTj2GBzEmufNqeQBiSXEGAaT0Xm4pT754au-Ux5gJHUDo9eKv7652Px2-3_GXm_8o_wRufNibqLevDt48hJsUw3R8TOMWrDRnc_vI4awmf-yN6SfYACXO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+flow+cytometry+as+a+diagnostic+tool+in+suspected-myelodysplastic+syndromes&rft.jtitle=Cytometry.+Part+A&rft.au=Duetz%2C+Carolien&rft.au=Van+Gassen%2C+Sofie&rft.au=Westers%2C+Theresia+M&rft.au=van+Spronsen%2C+Margot+F&rft.date=2021-08-01&rft.eissn=1552-4930&rft_id=info:doi/10.1002%2Fcyto.a.24360&rft_id=info%3Apmid%2F33942494&rft.externalDocID=33942494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |