Machine Learning Classification of Self-Organized Surface Structures in Ultrashort-Pulse Laser Processing Based on Light Microscopic Images

In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 15; no. 4; p. 491
Main Authors Thomas, Robert, Westphal, Erik, Schnell, Georg, Seitz, Hermann
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control.
AbstractList In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control.In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control.
In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control.
Audience Academic
Author Schnell, Georg
Seitz, Hermann
Thomas, Robert
Westphal, Erik
Author_xml – sequence: 1
  givenname: Robert
  surname: Thomas
  fullname: Thomas, Robert
– sequence: 2
  givenname: Erik
  orcidid: 0000-0002-4514-9445
  surname: Westphal
  fullname: Westphal, Erik
– sequence: 3
  givenname: Georg
  orcidid: 0000-0002-7099-8502
  surname: Schnell
  fullname: Schnell, Georg
– sequence: 4
  givenname: Hermann
  orcidid: 0000-0003-3401-0090
  surname: Seitz
  fullname: Seitz, Hermann
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38675302$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFDEUx4NUbF374geQgC8iTM3kMpk8touXhS0trAXfhkwus1lmJmsy86BfwS_t2W6rUkwgCYf_-Z2cy0t0MsbRIfS6JBeMKfJhCKUgnHBVPkNnlEhaVFX17eSf9yk6z3lHYEmp4HiBTlldScEIPUO_rrXZhtHhtdNpDGOHl73OOfhg9BTiiKPHG9f74iZ1egw_ncWbOXltHN5MaTbTnFzGYcR3_ZR03sY0FbdznwGos0v4NkXjgAfgKzBYDMh16LYTvg4mxWziPhi8GnTn8iv03GtwPX-4F-ju08evyy_F-ubzanm5LgwX1VR46wnn2pe6lpZKQlolyrKVJWHcV0JYL6hXvnVcSiasIjXnLVPG0YpqJgRboNWRa6PeNfsUBp1-NFGH5t4QU9foNAXTu0Zwwixk21JLeakgEuGtcL5yratrWgHr3ZG1T_H77PLUDCEb1_d6dHHODSNcKkGh1iB9-0S6i3MaIdODqlKV4rUC1cVR1WmIH0Yfoa4GtnVDMNB7H8B-KRVkQih8b4HePGDndnD2Tz6PPQYBOQoO9c7J-caE6b65QA59U5LmMEnN30kCl_dPXB6p_xH_Bonkx6g
CitedBy_id crossref_primary_10_1016_j_rineng_2024_103419
crossref_primary_10_3390_met14121458
crossref_primary_10_3390_technologies13030094
Cites_doi 10.1364/AO.49.005983
10.3390/nano11123326
10.1016/j.apsusc.2021.151115
10.1364/OE.16.011259
10.1007/s00339-018-1621-6
10.1007/978-3-030-05318-5
10.1016/j.apsusc.2004.03.229
10.1007/s11263-019-01228-7
10.1109/CVPR.2017.690
10.1021/jp902294m
10.1364/OE.15.013838
10.3390/ma13040969
10.1007/s00339-008-4895-2
10.1070/PU2002v045n03ABEH000966
10.1016/j.apsusc.2012.11.137
10.1364/OE.17.021124
10.1063/1.1447555
10.1016/j.jmatprotec.2022.117716
10.1186/s40537-019-0192-5
10.1364/OL.30.001773
10.3390/ma11050801
10.1016/j.apsusc.2019.07.106
10.1103/PhysRevB.72.195422
10.1007/978-3-319-99900-5
10.1063/1.2834902
10.1089/ten.tec.2009.0216
10.1016/j.apsusc.2014.08.111
10.1063/1.2227629
10.1063/1.3553235
10.1364/OE.21.008460
10.1088/2515-7647/aad5a0
10.1515/aot-2021-0038
10.1016/j.actbio.2010.01.016
10.1007/BF00348232
10.1163/016942410X508000
10.1002/lpor.201200017
10.1364/OE.18.004329
10.1063/1.2842403
10.1038/nphoton.2008.47
10.1007/978-3-319-69537-2
10.1016/j.jmapro.2022.11.004
10.1007/s00339-004-2805-9
10.1038/lsa.2014.30
10.3390/ma12132210
10.1103/PhysRevB.75.235414
10.1103/PhysRevB.78.045437
10.1109/CVPR.2016.91
10.1088/2515-7647/ab281a
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.3390/mi15040491
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_5403dfacb2d2419b9504b5ef6ebe8826
A793550240
38675302
10_3390_mi15040491
Genre Journal Article
GeographicLocations United States
Germany
GeographicLocations_xml – name: Germany
– name: United States
GrantInformation_xml – fundername: Federal Ministry for Economic Affairs and Climate Action
  grantid: KK5037203BS0
– fundername: Deutsche Forschungsgemeinschaft
  grantid: INST 264/124-1 FUGG
– fundername: Federal Ministry for Economic Affairs and Climate Action
  grantid: ZF4018413LL9
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
NPM
PQGLB
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c456t-fdf044af1a87d2700b9511b71034f655df52f9fbe47735d90844b39ce262a3553
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 01:31:14 EDT 2025
Fri Jul 11 08:31:21 EDT 2025
Fri Jul 25 12:07:33 EDT 2025
Tue Jul 01 05:40:14 EDT 2025
Mon Jul 21 05:45:48 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Tue Jul 01 03:41:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords automated classification
femtosecond laser
self-organized
machine learning analysis
nano- and microstructures
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-fdf044af1a87d2700b9511b71034f655df52f9fbe47735d90844b39ce262a3553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4514-9445
0000-0002-7099-8502
0000-0003-3401-0090
OpenAccessLink https://doaj.org/article/5403dfacb2d2419b9504b5ef6ebe8826
PMID 38675302
PQID 3046969489
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_5403dfacb2d2419b9504b5ef6ebe8826
proquest_miscellaneous_3047952302
proquest_journals_3046969489
gale_infotracacademiconefile_A793550240
pubmed_primary_38675302
crossref_citationtrail_10_3390_mi15040491
crossref_primary_10_3390_mi15040491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Westphal (ref_51) 2021; 41
ref_14
ref_58
Vorobyev (ref_28) 2008; 92
ref_57
Kaakkunen (ref_22) 2009; 94
Jaeggi (ref_13) 2017; 12
ref_52
Fadeeva (ref_30) 2010; 24
Vorobyev (ref_12) 2013; 7
ref_15
Vorobyev (ref_19) 2005; 72
Iyengar (ref_20) 2010; 49
ref_59
Weber (ref_1) 2021; 10
Gamaly (ref_7) 2002; 9
Upadhyay (ref_11) 2008; 78
Selvaraju (ref_56) 2020; 128
Wang (ref_40) 2022; 308
Zhigilei (ref_9) 2009; 113
Anisimov (ref_6) 2002; 45
Sanz (ref_27) 2013; 278
Papadopoulou (ref_32) 2010; 16
Zuhlke (ref_54) 2013; 21
Allahyari (ref_16) 2018; 124
Carey (ref_25) 2005; 30
Zuhlke (ref_24) 2010; 18
Heitz (ref_53) 1994; 59
Vorobyev (ref_29) 2008; 103
ref_36
ref_34
ref_31
Rethfeld (ref_8) 2004; 79
Povarnitsyn (ref_10) 2007; 75
Ranella (ref_33) 2010; 6
Paivasaari (ref_21) 2007; 15
Bonse (ref_18) 2015; 336
Na (ref_39) 2022; 84
Johnson (ref_48) 2019; 6
ref_47
Serna (ref_17) 2019; 493
ref_46
Huang (ref_26) 2006; 89
ref_45
ref_44
Xie (ref_37) 2019; 1
ref_43
Sugioka (ref_2) 2014; 3
ref_42
Mannion (ref_55) 2004; 233
ref_41
Yang (ref_35) 2009; 17
Gattass (ref_5) 2008; 2
Schnell (ref_3) 2021; 570
Mills (ref_38) 2019; 1
ref_49
Yang (ref_23) 2008; 16
ref_4
References_xml – volume: 49
  start-page: 5983
  year: 2010
  ident: ref_20
  article-title: Ultralow reflectance metal surfaces by ultrafast laser texturing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.005983
– ident: ref_49
– ident: ref_36
  doi: 10.3390/nano11123326
– volume: 570
  start-page: 151115
  year: 2021
  ident: ref_3
  article-title: Heat accumulation during femtosecond laser treatment at high repetition rate—A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151115
– volume: 16
  start-page: 11259
  year: 2008
  ident: ref_23
  article-title: Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses
  publication-title: Opt. Express
  doi: 10.1364/OE.16.011259
– ident: ref_42
– volume: 124
  start-page: 198
  year: 2018
  ident: ref_16
  article-title: Influence of ambient pressure on surface structures generated by ultrashort laser pulse irradiation
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-018-1621-6
– ident: ref_45
  doi: 10.1007/978-3-030-05318-5
– volume: 233
  start-page: 275
  year: 2004
  ident: ref_55
  article-title: The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.03.229
– volume: 128
  start-page: 336
  year: 2020
  ident: ref_56
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– ident: ref_58
  doi: 10.1109/CVPR.2017.690
– volume: 113
  start-page: 11892
  year: 2009
  ident: ref_9
  article-title: Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp902294m
– volume: 15
  start-page: 13838
  year: 2007
  ident: ref_21
  article-title: Enhanced optical absorptance of metals using interferometric femtosecond ablation
  publication-title: Opt. Express
  doi: 10.1364/OE.15.013838
– ident: ref_15
  doi: 10.3390/ma13040969
– volume: 94
  start-page: 215
  year: 2009
  ident: ref_22
  article-title: Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-008-4895-2
– volume: 45
  start-page: 293
  year: 2002
  ident: ref_6
  article-title: Selected problems of laser ablation theory
  publication-title: Phys. Usp.
  doi: 10.1070/PU2002v045n03ABEH000966
– ident: ref_41
– volume: 278
  start-page: 325
  year: 2013
  ident: ref_27
  article-title: Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.11.137
– volume: 17
  start-page: 21124
  year: 2009
  ident: ref_35
  article-title: Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: A new approach to improving biocompatibility
  publication-title: Opt. Express
  doi: 10.1364/OE.17.021124
– volume: 9
  start-page: 949
  year: 2002
  ident: ref_7
  article-title: Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1447555
– volume: 308
  start-page: 117716
  year: 2022
  ident: ref_40
  article-title: A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2022.117716
– volume: 6
  start-page: 27
  year: 2019
  ident: ref_48
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0192-5
– volume: 30
  start-page: 1773
  year: 2005
  ident: ref_25
  article-title: Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.001773
– ident: ref_52
  doi: 10.3390/ma11050801
– volume: 493
  start-page: 948
  year: 2019
  ident: ref_17
  article-title: Tuning the period of femtosecond laser induced surface structures in steel: From angled incidence to quill writing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.106
– volume: 72
  start-page: 195422
  year: 2005
  ident: ref_19
  article-title: Enhanced absorptance of gold following multipulse femtosecond laser ablation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.195422
– volume: 12
  start-page: 267
  year: 2017
  ident: ref_13
  article-title: Laser Micromachining of Metals with Ultra-Short Pulses: Factors Limiting the Scale-Up Process
  publication-title: JLMN
– ident: ref_59
– ident: ref_4
  doi: 10.1007/978-3-319-99900-5
– volume: 92
  start-page: 041914
  year: 2008
  ident: ref_28
  article-title: Colorizing metals with femtosecond laser pulses
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2834902
– volume: 16
  start-page: 497
  year: 2010
  ident: ref_32
  article-title: Silicon scaffolds promoting three-dimensional neuronal web of cytoplasmic processes
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2009.0216
– volume: 336
  start-page: 21
  year: 2015
  ident: ref_18
  article-title: Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.08.111
– ident: ref_47
– volume: 89
  start-page: 033506
  year: 2006
  ident: ref_26
  article-title: Microstructured silicon photodetector
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2227629
– ident: ref_31
  doi: 10.1063/1.3553235
– volume: 21
  start-page: 8460
  year: 2013
  ident: ref_54
  article-title: Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses
  publication-title: Opt. Express
  doi: 10.1364/OE.21.008460
– volume: 1
  start-page: 15008
  year: 2019
  ident: ref_38
  article-title: Image-based monitoring of femtosecond laser machining via a neural network
  publication-title: J. Phys. Photonics
  doi: 10.1088/2515-7647/aad5a0
– volume: 10
  start-page: 239
  year: 2021
  ident: ref_1
  article-title: The challenges of productive materials processing with ultrafast lasers
  publication-title: Adv. Opt. Technol.
  doi: 10.1515/aot-2021-0038
– ident: ref_44
– volume: 6
  start-page: 2711
  year: 2010
  ident: ref_33
  article-title: Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.01.016
– volume: 59
  start-page: 289
  year: 1994
  ident: ref_53
  article-title: Femtosecond excimer-laser-induced structure formation on polymers
  publication-title: Appl. Phys. A
  doi: 10.1007/BF00348232
– volume: 24
  start-page: 2257
  year: 2010
  ident: ref_30
  article-title: Selective Cell Control by Surface Structuring for Orthopedic Applications
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/016942410X508000
– volume: 7
  start-page: 385
  year: 2013
  ident: ref_12
  article-title: Direct femtosecond laser surface nano/microstructuring and its applications
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201200017
– volume: 18
  start-page: 4329
  year: 2010
  ident: ref_24
  article-title: Self assembled nanoparticle aggregates from line focused femtosecond laser ablation
  publication-title: Opt. Express
  doi: 10.1364/OE.18.004329
– ident: ref_50
– volume: 41
  start-page: 101965
  year: 2021
  ident: ref_51
  article-title: A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks
  publication-title: Addit. Manuf.
– volume: 103
  start-page: 043513
  year: 2008
  ident: ref_29
  article-title: Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2842403
– ident: ref_46
– volume: 2
  start-page: 219
  year: 2008
  ident: ref_5
  article-title: Femtosecond laser micromachining in transparent materials
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.47
– ident: ref_14
  doi: 10.1007/978-3-319-69537-2
– volume: 84
  start-page: 1274
  year: 2022
  ident: ref_39
  article-title: Prediction of surface morphology and reflection spectrum of laser-induced periodic surface structures using deep learning
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.11.004
– volume: 79
  start-page: 767
  year: 2004
  ident: ref_8
  article-title: Timescales in the response of materials to femtosecond laser excitation
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-004-2805-9
– volume: 3
  start-page: e149
  year: 2014
  ident: ref_2
  article-title: Ultrafast lasers—Reliable tools for advanced materials processing
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.30
– ident: ref_34
  doi: 10.3390/ma12132210
– ident: ref_43
– volume: 75
  start-page: 235414
  year: 2007
  ident: ref_10
  article-title: Material decomposition mechanisms in femtosecond laser interactions with metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.235414
– volume: 78
  start-page: 045437
  year: 2008
  ident: ref_11
  article-title: Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045437
– ident: ref_57
  doi: 10.1109/CVPR.2016.91
– volume: 1
  start-page: 35002
  year: 2019
  ident: ref_37
  article-title: Deep learning for the monitoring and process control of femtosecond laser machining
  publication-title: J. Phys. Photonics
  doi: 10.1088/2515-7647/ab281a
SSID ssj0000779007
Score 2.319967
Snippet In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 491
SubjectTerms Ablation
Algorithms
automated classification
Cell growth
Classification
femtosecond laser
Hot work tool steels
Hot working
Image classification
Laser processing
Lasers
Machine learning
machine learning analysis
Manufacturing
Micromachining
Morphology
nano- and microstructures
Neural networks
Parameter modification
Process parameters
Pulsed lasers
Quality assurance
Quality control
Scanning electron microscopy
self-organized
Stainless steel
Stainless steels
Substrates
Technology application
Tool-steel
Topography
Web applications
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ED4k2gICOQEIeoeTiJfUJd1KqgtqpYVurNcvwoK22Tso9fwZ9mxvGmvMQ1HlmOZzz-xh5_A_BWispmrtKp1ZkeAhSNwD513Auee0lqp2yLs_p4xj9fVBfxwG0V0yq3PjE4atsbOiPfpxs8WUsu5Ifr7ylVjaLb1VhC4zbsogsWGHztTg7Pzr-MpywZ0ellzcBLWmJ8v381RwjEERfnv-1EgbD_b7f8B9gMm87RfbgX0SI7GNT7AG657iHc_YVD8BH8OA3pkI5FptRLFupcUgZQmHTWezZ1C5_GV5fOsulm6bVxbBq4YzcYcLN5x2aL9VKvviEcT883uGGyE9zgliy-JKCOJ_jBMuzyhCJ6dkq5fPSqZW7Ypyv0S6vHMDs6_PrxOI0VFlKDwGmdeuszzrXPtWgsXUG3CLjyFlFHyX1dVdZXhZe-dbxpysrKTHDeltK4oi40IpXyCex0feeeATPemJLX1gqirM-ltFZLFM5aLgotRQLvt7OtTKQfpyoYC4VhCGlG3WgmgTej7PVAuvFPqQkpbZQgouzwoV9eqrjuFALS0uKctoVFrCLx_zLeVs7XaLwYXNQJvCOVK1rOOByj46sE_CkixlIHDRHQExFcAntbq1Bxna_UjVUm8HpsxhVK1y66c_0myDSSDt-LBJ4O1jSOuRQYsGHL8_93_gLuFDiGIWNoD3bQPNxLBEPr9lW0-J8GjQnc
  priority: 102
  providerName: ProQuest
Title Machine Learning Classification of Self-Organized Surface Structures in Ultrashort-Pulse Laser Processing Based on Light Microscopic Images
URI https://www.ncbi.nlm.nih.gov/pubmed/38675302
https://www.proquest.com/docview/3046969489
https://www.proquest.com/docview/3047952302
https://doaj.org/article/5403dfacb2d2419b9504b5ef6ebe8826
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucCh4t1AuzICCXGImoeT2Mdu1aWgtqpYVurNcvyAlbZZtI9f0T_dGcddlofEhas9cmzP2PNNPP4M8E6Kymau0qnVme4DFI3APnXcC557SWqnbIuL-nTCP19VV1tPfVFOWE8P3E_cISKK0npt2sKis5GtrDLeVs7X-HVEh4FsG33eVjAV9mCi0cuano-0xLj-8HqK0IcjHs5_8UCBqP_P7fg3kBmczegx7EaUyI763j2Be657Co-2uAOfwc15SIN0LDKkfmPhfUvK_AmTzeaejd3Mp_G2pbNsvF7gEB0bB87YNQbabNqxyWy10MvvCMPTyzU6SnaGjm3B4g0CaniIBZZhk2cUybNzyuGj2yxTwz5d4360fA6T0cnX49M0vqyQGgRMq9Rbn3Gufa5FY-noGac1z1tEGyX3dVVZXxVe-tbxpikrKzPBeVtK44q60IhQyhew0807twfMeGNKXlsriKo-l9JaLVE4a7kotBQJfLibbWUi7Ti9fjFTGH6QZtRPzSTwdiP7oyfb-KvUkJS2kSCC7FCAZqOi2ah_mU0C70nlipYxdsfoeBsBB0WEWOqoIeJ5IoBLYP_OKlRc30tF58myllzIBN5sqnFl0nGL7tx8HWQaST_diwRe9ta06XMpMFDDmlf_Yyyv4WGBPe3zifZhB43IHSBUWrUDuC9GHwfwYHhycfllENbILRewE88
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBYwAIQ5R83AePiDUAssu3a2Qtiv1ljp-tCttk7IPIX4D_4XfyIyTbHmJW6-xZTme8cw39vgbgBciT3RgEulrGcgmQJEI7H3Dbc5DK0jslG1xkPYn_NNRcrQBP7q3MJRW2dlEZ6h1reiMfIdu8EQqeC7enn_xqWoU3a52JTQatdg3375iyLZ4M3iP8n0ZRb0Ph-_6fltVwFcIFpa-1TbgXNpQ5pmma9cSQUZYoqeNuU2TRNskssKWhmdZnGgR5JyXsVAmSiOJ3jnGca_AVR7HgnZU3vu4PtMJiLwvyBoWVGwPds6mCLg4ovDwN7_nygP87QT-gLbOxfVuwo0Wm7LdRpluwYapbsPWL4yFd-D7yCVfGtbysp4wV1WT8o2ciFlt2djMrN--8TSajVdzK5VhY8dUu8Lwnk0rNpkt53JxiuDf_7xC98yG6E7nrH23QAPv4QfNcMghnR-wEWUO0huaqWKDM7SCi7swuZSVvwebVV2ZB8CUVSrmqdY5EeSHQmgtBXYOSp5HUuQevO5Wu1At2TnV3JgVGPSQZIoLyXjwfN33vKH4-GevPRLaugfRcrsP9fykaHd5gfA31rimZaQRGQn8v4CXibEpbhUMZVIPXpHICzIeOB0l2zcQ-FNEw1XsZkR3T7RzHmx3WlG0VmVRXOwBD56tm9Ee0CWPrEy9cn0yQUf9kQf3G21azznOMTzElof_H_wpXOsfjobFcHCw_wiuRzifJldpGzZRVcxjhGHL8onTfQbHl73ZfgLOyEQO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnY4ARIMRD1Fycix8QWtmqlXVVRam0t-DE9lapS0YvQvwG_hG_jnMSp-Mm3vYaW5bjc7fP-Q7AS5FGytORdJX0ZBOgSHTsXc1Nyn0jiOyUbTGKD6f8w0l0sgU_2loYSqtsdWKtqFVV0B15l17wRCx4KrrGpkWM9_vvLr641EGKXlrbdhoNixzpb18xfFu-HewjrV8FQf_g0_tD13YYcAt0HFauUcbjXBpfpomiJ9gcHQ4_R6sbchNHkTJRYITJNU-SMFLCSznPQ1HoIA4kWuoQ170G2wlGRV4HtnsHo_HHzQ2PR1B-XtJgooah8LrnM3S_OPrk_m9WsG4W8LdJ-MPRrQ1e_zbcsp4q22tY6w5s6fIu3PwFv_AefD-uUzE1syitp6zusUnZRzXBWWXYRM-Nays-tWKT9cLIQrNJjVu7xmCfzUo2na8WcnmGoYA7XqOxZkM0rgtmqxho4R5-UAyXHNJtAjumPEKqqJkVbHCOOnF5H6ZXcvYPoFNWpX4ErDBFEfJYqZTg8n0hlJICJ3s5TwMpUgfetKedFRb6nDpwzDMMgYgy2SVlHHixmXvRAH78c1aPiLaZQSDd9YdqcZpZmc_QGQ4VnmkeKPSTBP6fx_NImxgFBwOb2IHXRPKMVAlup5C2IgJ_ikC5sr2EwO8JhM6B3ZYrMqtjltmlRDjwfDOM2oGefGSpq3U9JxF08R848LDhps2ewxSDRRzZ-f_iz-A6Clo2HIyOHsONALfTJC7tQgc5RT9Bn2yVP7XMz-DzVcvbT0ukSaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Classification+of+Self-Organized+Surface+Structures+in+Ultrashort-Pulse+Laser+Processing+Based+on+Light+Microscopic+Images&rft.jtitle=Micromachines+%28Basel%29&rft.au=Thomas%2C+Robert&rft.au=Westphal%2C+Erik&rft.au=Schnell%2C+Georg&rft.au=Seitz%2C+Hermann&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=15&rft.issue=4&rft_id=info:doi/10.3390%2Fmi15040491&rft.externalDocID=A793550240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon