Machine Learning Classification of Self-Organized Surface Structures in Ultrashort-Pulse Laser Processing Based on Light Microscopic Images
In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome...
Saved in:
Published in | Micromachines (Basel) Vol. 15; no. 4; p. 491 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control. |
---|---|
AbstractList | In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control.In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control. In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems for monitoring surface modification are still lacking. Automated laser processing routines featuring machine learning (ML) can help overcome these limitations, but they are largely absent in the literature and still lack practical applications. This paper presents a new methodology for machine learning classification of self-organized surface structures based on light microscopic images. For this purpose, three application-relevant types of self-organized surface structures are fabricated using a 300 fs laser system on hot working tool steel and stainless-steel substrates. Optical images of the hot working tool steel substrates were used to learn a classification algorithm based on the open-source tool Teachable Machine from Google. The trained classification algorithm achieved very high accuracy in distinguishing the surface types for the hot working steel substrate learned on, as well as for surface structures on the stainless-steel substrate. In addition, the algorithm also achieved very high accuracy in classifying the images of a specific structure class captured at different optical magnifications. Thus, the methodology proposed represents a simple and robust automated classification of surface structures that can be used as a basis for further development of quality assurance systems, automated process parameter recommendation, and inline laser parameter control. |
Audience | Academic |
Author | Schnell, Georg Seitz, Hermann Thomas, Robert Westphal, Erik |
Author_xml | – sequence: 1 givenname: Robert surname: Thomas fullname: Thomas, Robert – sequence: 2 givenname: Erik orcidid: 0000-0002-4514-9445 surname: Westphal fullname: Westphal, Erik – sequence: 3 givenname: Georg orcidid: 0000-0002-7099-8502 surname: Schnell fullname: Schnell, Georg – sequence: 4 givenname: Hermann orcidid: 0000-0003-3401-0090 surname: Seitz fullname: Seitz, Hermann |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38675302$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltrFDEUx4NUbF374geQgC8iTM3kMpk8touXhS0trAXfhkwus1lmJmsy86BfwS_t2W6rUkwgCYf_-Z2cy0t0MsbRIfS6JBeMKfJhCKUgnHBVPkNnlEhaVFX17eSf9yk6z3lHYEmp4HiBTlldScEIPUO_rrXZhtHhtdNpDGOHl73OOfhg9BTiiKPHG9f74iZ1egw_ncWbOXltHN5MaTbTnFzGYcR3_ZR03sY0FbdznwGos0v4NkXjgAfgKzBYDMh16LYTvg4mxWziPhi8GnTn8iv03GtwPX-4F-ju08evyy_F-ubzanm5LgwX1VR46wnn2pe6lpZKQlolyrKVJWHcV0JYL6hXvnVcSiasIjXnLVPG0YpqJgRboNWRa6PeNfsUBp1-NFGH5t4QU9foNAXTu0Zwwixk21JLeakgEuGtcL5yratrWgHr3ZG1T_H77PLUDCEb1_d6dHHODSNcKkGh1iB9-0S6i3MaIdODqlKV4rUC1cVR1WmIH0Yfoa4GtnVDMNB7H8B-KRVkQih8b4HePGDndnD2Tz6PPQYBOQoO9c7J-caE6b65QA59U5LmMEnN30kCl_dPXB6p_xH_Bonkx6g |
CitedBy_id | crossref_primary_10_1016_j_rineng_2024_103419 crossref_primary_10_3390_met14121458 crossref_primary_10_3390_technologies13030094 |
Cites_doi | 10.1364/AO.49.005983 10.3390/nano11123326 10.1016/j.apsusc.2021.151115 10.1364/OE.16.011259 10.1007/s00339-018-1621-6 10.1007/978-3-030-05318-5 10.1016/j.apsusc.2004.03.229 10.1007/s11263-019-01228-7 10.1109/CVPR.2017.690 10.1021/jp902294m 10.1364/OE.15.013838 10.3390/ma13040969 10.1007/s00339-008-4895-2 10.1070/PU2002v045n03ABEH000966 10.1016/j.apsusc.2012.11.137 10.1364/OE.17.021124 10.1063/1.1447555 10.1016/j.jmatprotec.2022.117716 10.1186/s40537-019-0192-5 10.1364/OL.30.001773 10.3390/ma11050801 10.1016/j.apsusc.2019.07.106 10.1103/PhysRevB.72.195422 10.1007/978-3-319-99900-5 10.1063/1.2834902 10.1089/ten.tec.2009.0216 10.1016/j.apsusc.2014.08.111 10.1063/1.2227629 10.1063/1.3553235 10.1364/OE.21.008460 10.1088/2515-7647/aad5a0 10.1515/aot-2021-0038 10.1016/j.actbio.2010.01.016 10.1007/BF00348232 10.1163/016942410X508000 10.1002/lpor.201200017 10.1364/OE.18.004329 10.1063/1.2842403 10.1038/nphoton.2008.47 10.1007/978-3-319-69537-2 10.1016/j.jmapro.2022.11.004 10.1007/s00339-004-2805-9 10.1038/lsa.2014.30 10.3390/ma12132210 10.1103/PhysRevB.75.235414 10.1103/PhysRevB.78.045437 10.1109/CVPR.2016.91 10.1088/2515-7647/ab281a |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.3390/mi15040491 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_5403dfacb2d2419b9504b5ef6ebe8826 A793550240 38675302 10_3390_mi15040491 |
Genre | Journal Article |
GeographicLocations | United States Germany |
GeographicLocations_xml | – name: Germany – name: United States |
GrantInformation_xml | – fundername: Federal Ministry for Economic Affairs and Climate Action grantid: KK5037203BS0 – fundername: Deutsche Forschungsgemeinschaft grantid: INST 264/124-1 FUGG – fundername: Federal Ministry for Economic Affairs and Climate Action grantid: ZF4018413LL9 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS NPM PQGLB 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c456t-fdf044af1a87d2700b9511b71034f655df52f9fbe47735d90844b39ce262a3553 |
IEDL.DBID | DOA |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:31:14 EDT 2025 Fri Jul 11 08:31:21 EDT 2025 Fri Jul 25 12:07:33 EDT 2025 Tue Jul 01 05:40:14 EDT 2025 Mon Jul 21 05:45:48 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Tue Jul 01 03:41:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | automated classification femtosecond laser self-organized machine learning analysis nano- and microstructures |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-fdf044af1a87d2700b9511b71034f655df52f9fbe47735d90844b39ce262a3553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4514-9445 0000-0002-7099-8502 0000-0003-3401-0090 |
OpenAccessLink | https://doaj.org/article/5403dfacb2d2419b9504b5ef6ebe8826 |
PMID | 38675302 |
PQID | 3046969489 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5403dfacb2d2419b9504b5ef6ebe8826 proquest_miscellaneous_3047952302 proquest_journals_3046969489 gale_infotracacademiconefile_A793550240 pubmed_primary_38675302 crossref_citationtrail_10_3390_mi15040491 crossref_primary_10_3390_mi15040491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationTitleAlternate | Micromachines (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Westphal (ref_51) 2021; 41 ref_14 ref_58 Vorobyev (ref_28) 2008; 92 ref_57 Kaakkunen (ref_22) 2009; 94 Jaeggi (ref_13) 2017; 12 ref_52 Fadeeva (ref_30) 2010; 24 Vorobyev (ref_12) 2013; 7 ref_15 Vorobyev (ref_19) 2005; 72 Iyengar (ref_20) 2010; 49 ref_59 Weber (ref_1) 2021; 10 Gamaly (ref_7) 2002; 9 Upadhyay (ref_11) 2008; 78 Selvaraju (ref_56) 2020; 128 Wang (ref_40) 2022; 308 Zhigilei (ref_9) 2009; 113 Anisimov (ref_6) 2002; 45 Sanz (ref_27) 2013; 278 Papadopoulou (ref_32) 2010; 16 Zuhlke (ref_54) 2013; 21 Allahyari (ref_16) 2018; 124 Carey (ref_25) 2005; 30 Zuhlke (ref_24) 2010; 18 Heitz (ref_53) 1994; 59 Vorobyev (ref_29) 2008; 103 ref_36 ref_34 ref_31 Rethfeld (ref_8) 2004; 79 Povarnitsyn (ref_10) 2007; 75 Ranella (ref_33) 2010; 6 Paivasaari (ref_21) 2007; 15 Bonse (ref_18) 2015; 336 Na (ref_39) 2022; 84 Johnson (ref_48) 2019; 6 ref_47 Serna (ref_17) 2019; 493 ref_46 Huang (ref_26) 2006; 89 ref_45 ref_44 Xie (ref_37) 2019; 1 ref_43 Sugioka (ref_2) 2014; 3 ref_42 Mannion (ref_55) 2004; 233 ref_41 Yang (ref_35) 2009; 17 Gattass (ref_5) 2008; 2 Schnell (ref_3) 2021; 570 Mills (ref_38) 2019; 1 ref_49 Yang (ref_23) 2008; 16 ref_4 |
References_xml | – volume: 49 start-page: 5983 year: 2010 ident: ref_20 article-title: Ultralow reflectance metal surfaces by ultrafast laser texturing publication-title: Appl. Opt. doi: 10.1364/AO.49.005983 – ident: ref_49 – ident: ref_36 doi: 10.3390/nano11123326 – volume: 570 start-page: 151115 year: 2021 ident: ref_3 article-title: Heat accumulation during femtosecond laser treatment at high repetition rate—A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151115 – volume: 16 start-page: 11259 year: 2008 ident: ref_23 article-title: Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses publication-title: Opt. Express doi: 10.1364/OE.16.011259 – ident: ref_42 – volume: 124 start-page: 198 year: 2018 ident: ref_16 article-title: Influence of ambient pressure on surface structures generated by ultrashort laser pulse irradiation publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-018-1621-6 – ident: ref_45 doi: 10.1007/978-3-030-05318-5 – volume: 233 start-page: 275 year: 2004 ident: ref_55 article-title: The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.03.229 – volume: 128 start-page: 336 year: 2020 ident: ref_56 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – ident: ref_58 doi: 10.1109/CVPR.2017.690 – volume: 113 start-page: 11892 year: 2009 ident: ref_9 article-title: Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion publication-title: J. Phys. Chem. C doi: 10.1021/jp902294m – volume: 15 start-page: 13838 year: 2007 ident: ref_21 article-title: Enhanced optical absorptance of metals using interferometric femtosecond ablation publication-title: Opt. Express doi: 10.1364/OE.15.013838 – ident: ref_15 doi: 10.3390/ma13040969 – volume: 94 start-page: 215 year: 2009 ident: ref_22 article-title: Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-008-4895-2 – volume: 45 start-page: 293 year: 2002 ident: ref_6 article-title: Selected problems of laser ablation theory publication-title: Phys. Usp. doi: 10.1070/PU2002v045n03ABEH000966 – ident: ref_41 – volume: 278 start-page: 325 year: 2013 ident: ref_27 article-title: Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.11.137 – volume: 17 start-page: 21124 year: 2009 ident: ref_35 article-title: Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: A new approach to improving biocompatibility publication-title: Opt. Express doi: 10.1364/OE.17.021124 – volume: 9 start-page: 949 year: 2002 ident: ref_7 article-title: Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics publication-title: Phys. Plasmas doi: 10.1063/1.1447555 – volume: 308 start-page: 117716 year: 2022 ident: ref_40 article-title: A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2022.117716 – volume: 6 start-page: 27 year: 2019 ident: ref_48 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data doi: 10.1186/s40537-019-0192-5 – volume: 30 start-page: 1773 year: 2005 ident: ref_25 article-title: Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes publication-title: Opt. Lett. doi: 10.1364/OL.30.001773 – ident: ref_52 doi: 10.3390/ma11050801 – volume: 493 start-page: 948 year: 2019 ident: ref_17 article-title: Tuning the period of femtosecond laser induced surface structures in steel: From angled incidence to quill writing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.106 – volume: 72 start-page: 195422 year: 2005 ident: ref_19 article-title: Enhanced absorptance of gold following multipulse femtosecond laser ablation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.195422 – volume: 12 start-page: 267 year: 2017 ident: ref_13 article-title: Laser Micromachining of Metals with Ultra-Short Pulses: Factors Limiting the Scale-Up Process publication-title: JLMN – ident: ref_59 – ident: ref_4 doi: 10.1007/978-3-319-99900-5 – volume: 92 start-page: 041914 year: 2008 ident: ref_28 article-title: Colorizing metals with femtosecond laser pulses publication-title: Appl. Phys. Lett. doi: 10.1063/1.2834902 – volume: 16 start-page: 497 year: 2010 ident: ref_32 article-title: Silicon scaffolds promoting three-dimensional neuronal web of cytoplasmic processes publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2009.0216 – volume: 336 start-page: 21 year: 2015 ident: ref_18 article-title: Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.08.111 – ident: ref_47 – volume: 89 start-page: 033506 year: 2006 ident: ref_26 article-title: Microstructured silicon photodetector publication-title: Appl. Phys. Lett. doi: 10.1063/1.2227629 – ident: ref_31 doi: 10.1063/1.3553235 – volume: 21 start-page: 8460 year: 2013 ident: ref_54 article-title: Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses publication-title: Opt. Express doi: 10.1364/OE.21.008460 – volume: 1 start-page: 15008 year: 2019 ident: ref_38 article-title: Image-based monitoring of femtosecond laser machining via a neural network publication-title: J. Phys. Photonics doi: 10.1088/2515-7647/aad5a0 – volume: 10 start-page: 239 year: 2021 ident: ref_1 article-title: The challenges of productive materials processing with ultrafast lasers publication-title: Adv. Opt. Technol. doi: 10.1515/aot-2021-0038 – ident: ref_44 – volume: 6 start-page: 2711 year: 2010 ident: ref_33 article-title: Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.01.016 – volume: 59 start-page: 289 year: 1994 ident: ref_53 article-title: Femtosecond excimer-laser-induced structure formation on polymers publication-title: Appl. Phys. A doi: 10.1007/BF00348232 – volume: 24 start-page: 2257 year: 2010 ident: ref_30 article-title: Selective Cell Control by Surface Structuring for Orthopedic Applications publication-title: J. Adhes. Sci. Technol. doi: 10.1163/016942410X508000 – volume: 7 start-page: 385 year: 2013 ident: ref_12 article-title: Direct femtosecond laser surface nano/microstructuring and its applications publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201200017 – volume: 18 start-page: 4329 year: 2010 ident: ref_24 article-title: Self assembled nanoparticle aggregates from line focused femtosecond laser ablation publication-title: Opt. Express doi: 10.1364/OE.18.004329 – ident: ref_50 – volume: 41 start-page: 101965 year: 2021 ident: ref_51 article-title: A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks publication-title: Addit. Manuf. – volume: 103 start-page: 043513 year: 2008 ident: ref_29 article-title: Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals publication-title: J. Appl. Phys. doi: 10.1063/1.2842403 – ident: ref_46 – volume: 2 start-page: 219 year: 2008 ident: ref_5 article-title: Femtosecond laser micromachining in transparent materials publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.47 – ident: ref_14 doi: 10.1007/978-3-319-69537-2 – volume: 84 start-page: 1274 year: 2022 ident: ref_39 article-title: Prediction of surface morphology and reflection spectrum of laser-induced periodic surface structures using deep learning publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.11.004 – volume: 79 start-page: 767 year: 2004 ident: ref_8 article-title: Timescales in the response of materials to femtosecond laser excitation publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-004-2805-9 – volume: 3 start-page: e149 year: 2014 ident: ref_2 article-title: Ultrafast lasers—Reliable tools for advanced materials processing publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.30 – ident: ref_34 doi: 10.3390/ma12132210 – ident: ref_43 – volume: 75 start-page: 235414 year: 2007 ident: ref_10 article-title: Material decomposition mechanisms in femtosecond laser interactions with metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.235414 – volume: 78 start-page: 045437 year: 2008 ident: ref_11 article-title: Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045437 – ident: ref_57 doi: 10.1109/CVPR.2016.91 – volume: 1 start-page: 35002 year: 2019 ident: ref_37 article-title: Deep learning for the monitoring and process control of femtosecond laser machining publication-title: J. Phys. Photonics doi: 10.1088/2515-7647/ab281a |
SSID | ssj0000779007 |
Score | 2.319967 |
Snippet | In ultrashort-pulsed laser processing, surface modification is subject to complex laser and scanning parameter studies. In addition, quality assurance systems... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 491 |
SubjectTerms | Ablation Algorithms automated classification Cell growth Classification femtosecond laser Hot work tool steels Hot working Image classification Laser processing Lasers Machine learning machine learning analysis Manufacturing Micromachining Morphology nano- and microstructures Neural networks Parameter modification Process parameters Pulsed lasers Quality assurance Quality control Scanning electron microscopy self-organized Stainless steel Stainless steels Substrates Technology application Tool-steel Topography Web applications |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ED4k2gICOQEIeoeTiJfUJd1KqgtqpYVurNcvwoK22Tso9fwZ9mxvGmvMQ1HlmOZzz-xh5_A_BWispmrtKp1ZkeAhSNwD513Auee0lqp2yLs_p4xj9fVBfxwG0V0yq3PjE4atsbOiPfpxs8WUsu5Ifr7ylVjaLb1VhC4zbsogsWGHztTg7Pzr-MpywZ0ellzcBLWmJ8v381RwjEERfnv-1EgbD_b7f8B9gMm87RfbgX0SI7GNT7AG657iHc_YVD8BH8OA3pkI5FptRLFupcUgZQmHTWezZ1C5_GV5fOsulm6bVxbBq4YzcYcLN5x2aL9VKvviEcT883uGGyE9zgliy-JKCOJ_jBMuzyhCJ6dkq5fPSqZW7Ypyv0S6vHMDs6_PrxOI0VFlKDwGmdeuszzrXPtWgsXUG3CLjyFlFHyX1dVdZXhZe-dbxpysrKTHDeltK4oi40IpXyCex0feeeATPemJLX1gqirM-ltFZLFM5aLgotRQLvt7OtTKQfpyoYC4VhCGlG3WgmgTej7PVAuvFPqQkpbZQgouzwoV9eqrjuFALS0uKctoVFrCLx_zLeVs7XaLwYXNQJvCOVK1rOOByj46sE_CkixlIHDRHQExFcAntbq1Bxna_UjVUm8HpsxhVK1y66c_0myDSSDt-LBJ4O1jSOuRQYsGHL8_93_gLuFDiGIWNoD3bQPNxLBEPr9lW0-J8GjQnc priority: 102 providerName: ProQuest |
Title | Machine Learning Classification of Self-Organized Surface Structures in Ultrashort-Pulse Laser Processing Based on Light Microscopic Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38675302 https://www.proquest.com/docview/3046969489 https://www.proquest.com/docview/3047952302 https://doaj.org/article/5403dfacb2d2419b9504b5ef6ebe8826 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucCh4t1AuzICCXGImoeT2Mdu1aWgtqpYVurNcvyAlbZZtI9f0T_dGcddlofEhas9cmzP2PNNPP4M8E6Kymau0qnVme4DFI3APnXcC557SWqnbIuL-nTCP19VV1tPfVFOWE8P3E_cISKK0npt2sKis5GtrDLeVs7X-HVEh4FsG33eVjAV9mCi0cuano-0xLj-8HqK0IcjHs5_8UCBqP_P7fg3kBmczegx7EaUyI763j2Be657Co-2uAOfwc15SIN0LDKkfmPhfUvK_AmTzeaejd3Mp_G2pbNsvF7gEB0bB87YNQbabNqxyWy10MvvCMPTyzU6SnaGjm3B4g0CaniIBZZhk2cUybNzyuGj2yxTwz5d4360fA6T0cnX49M0vqyQGgRMq9Rbn3Gufa5FY-noGac1z1tEGyX3dVVZXxVe-tbxpikrKzPBeVtK44q60IhQyhew0807twfMeGNKXlsriKo-l9JaLVE4a7kotBQJfLibbWUi7Ti9fjFTGH6QZtRPzSTwdiP7oyfb-KvUkJS2kSCC7FCAZqOi2ah_mU0C70nlipYxdsfoeBsBB0WEWOqoIeJ5IoBLYP_OKlRc30tF58myllzIBN5sqnFl0nGL7tx8HWQaST_diwRe9ta06XMpMFDDmlf_Yyyv4WGBPe3zifZhB43IHSBUWrUDuC9GHwfwYHhycfllENbILRewE88 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBYwAIQ5R83AePiDUAssu3a2Qtiv1ljp-tCttk7IPIX4D_4XfyIyTbHmJW6-xZTme8cw39vgbgBciT3RgEulrGcgmQJEI7H3Dbc5DK0jslG1xkPYn_NNRcrQBP7q3MJRW2dlEZ6h1reiMfIdu8EQqeC7enn_xqWoU3a52JTQatdg3375iyLZ4M3iP8n0ZRb0Ph-_6fltVwFcIFpa-1TbgXNpQ5pmma9cSQUZYoqeNuU2TRNskssKWhmdZnGgR5JyXsVAmSiOJ3jnGca_AVR7HgnZU3vu4PtMJiLwvyBoWVGwPds6mCLg4ovDwN7_nygP87QT-gLbOxfVuwo0Wm7LdRpluwYapbsPWL4yFd-D7yCVfGtbysp4wV1WT8o2ciFlt2djMrN--8TSajVdzK5VhY8dUu8Lwnk0rNpkt53JxiuDf_7xC98yG6E7nrH23QAPv4QfNcMghnR-wEWUO0huaqWKDM7SCi7swuZSVvwebVV2ZB8CUVSrmqdY5EeSHQmgtBXYOSp5HUuQevO5Wu1At2TnV3JgVGPSQZIoLyXjwfN33vKH4-GevPRLaugfRcrsP9fykaHd5gfA31rimZaQRGQn8v4CXibEpbhUMZVIPXpHICzIeOB0l2zcQ-FNEw1XsZkR3T7RzHmx3WlG0VmVRXOwBD56tm9Ee0CWPrEy9cn0yQUf9kQf3G21azznOMTzElof_H_wpXOsfjobFcHCw_wiuRzifJldpGzZRVcxjhGHL8onTfQbHl73ZfgLOyEQO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnY4ARIMRD1Fycix8QWtmqlXVVRam0t-DE9lapS0YvQvwG_hG_jnMSp-Mm3vYaW5bjc7fP-Q7AS5FGytORdJX0ZBOgSHTsXc1Nyn0jiOyUbTGKD6f8w0l0sgU_2loYSqtsdWKtqFVV0B15l17wRCx4KrrGpkWM9_vvLr641EGKXlrbdhoNixzpb18xfFu-HewjrV8FQf_g0_tD13YYcAt0HFauUcbjXBpfpomiJ9gcHQ4_R6sbchNHkTJRYITJNU-SMFLCSznPQ1HoIA4kWuoQ170G2wlGRV4HtnsHo_HHzQ2PR1B-XtJgooah8LrnM3S_OPrk_m9WsG4W8LdJ-MPRrQ1e_zbcsp4q22tY6w5s6fIu3PwFv_AefD-uUzE1syitp6zusUnZRzXBWWXYRM-Nays-tWKT9cLIQrNJjVu7xmCfzUo2na8WcnmGoYA7XqOxZkM0rgtmqxho4R5-UAyXHNJtAjumPEKqqJkVbHCOOnF5H6ZXcvYPoFNWpX4ErDBFEfJYqZTg8n0hlJICJ3s5TwMpUgfetKedFRb6nDpwzDMMgYgy2SVlHHixmXvRAH78c1aPiLaZQSDd9YdqcZpZmc_QGQ4VnmkeKPSTBP6fx_NImxgFBwOb2IHXRPKMVAlup5C2IgJ_ikC5sr2EwO8JhM6B3ZYrMqtjltmlRDjwfDOM2oGefGSpq3U9JxF08R848LDhps2ewxSDRRzZ-f_iz-A6Clo2HIyOHsONALfTJC7tQgc5RT9Bn2yVP7XMz-DzVcvbT0ukSaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Classification+of+Self-Organized+Surface+Structures+in+Ultrashort-Pulse+Laser+Processing+Based+on+Light+Microscopic+Images&rft.jtitle=Micromachines+%28Basel%29&rft.au=Thomas%2C+Robert&rft.au=Westphal%2C+Erik&rft.au=Schnell%2C+Georg&rft.au=Seitz%2C+Hermann&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=15&rft.issue=4&rft_id=info:doi/10.3390%2Fmi15040491&rft.externalDocID=A793550240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |