Combating the COVID-19 infodemic using Prompt-Based curriculum learning
The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of neg...
Saved in:
Published in | Expert systems with applications Vol. 229; p. 120501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text’s reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources. |
---|---|
AbstractList | The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text’s reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources. The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this 'infodemic' has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text's reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources.The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this 'infodemic' has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text's reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources. |
ArticleNumber | 120501 |
Author | Wang, Yue Ho, George T.S. Li, Mingchen Peng, Zifan |
Author_xml | – sequence: 1 givenname: Zifan surname: Peng fullname: Peng, Zifan email: zpengao@connect.ust.hk organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China – sequence: 2 givenname: Mingchen orcidid: 0000-0002-8489-2928 surname: Li fullname: Li, Mingchen email: li.mingch@northeastern.edu organization: Khoury College of Computer Sciences, Northeastern University, Boston, USA – sequence: 3 givenname: Yue orcidid: 0000-0002-0185-6172 surname: Wang fullname: Wang, Yue email: yuewang@hsu.edu.hk organization: Department of Supply Chain and Information Management, The Hang Seng University of Hong Kong, Hong Kong SAR, China – sequence: 4 givenname: George T.S. surname: Ho fullname: Ho, George T.S. organization: Department of Supply Chain and Information Management, The Hang Seng University of Hong Kong, Hong Kong SAR, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37274611$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVIaSZp_0AWxctuPLmSPJYNhdJMnhBIF223Qo_rRIMtTSU7pf8-MpOEtIusJLjnOwfOOST7Pngk5JjCkgKtTzZLTH_UkgHjS8pgBXSPLGgjeFmLlu-TBbQrUVZUVAfkMKUNABUA4j054IKJqqZ0QS7XYdBqdP6uGO-xWN_-uj4raVs43wWLgzPFlObj9xiG7VieqoS2MFOMzkz9NBQ9quiz4AN516k-4cen94j8vDj_sb4qb24vr9ffbkpTreqx7JTptGC2qQzU1FKdvw0zRtdcQWWV0hpM01pVUW45IGiwvGo1QiM6w4Afka873-2kB7QG_RhVL7fRDSr-lUE5-e_Fu3t5Fx5kbqzlDV1lh89PDjH8njCNcnDJYN8rj2FKkjWMCRBQz9JPr8NeUp7ry4JmJzAxpBSxk8aNuc0wZ7s-h865tdzIeSk5LyV3S2WU_Yc-u78JfdlBmCt-cBhlMg69QesimlHa4N7CHwGorK0C |
CitedBy_id | crossref_primary_10_1016_j_nlp_2024_100067 crossref_primary_10_1016_j_jretconser_2025_104255 crossref_primary_10_1109_ACCESS_2024_3469248 crossref_primary_10_1016_j_asoc_2025_112812 crossref_primary_10_1016_j_eswa_2024_123191 crossref_primary_10_1007_s11518_024_5600_5 crossref_primary_10_3390_fi16080286 crossref_primary_10_1007_s10994_024_06731_8 |
Cites_doi | 10.1109/TII.2020.3043315 10.1016/j.eswa.2021.115190 10.18653/v1/W19-4810 10.18653/v1/2021.acl-long.165 10.1016/j.eswa.2020.114360 10.1016/j.jksus.2022.101898 10.18653/v1/2021.eacl-main.51 10.18653/v1/D19-1670 10.18653/v1/2021.findings-emnlp.297 10.1126/science.aao2998 10.3390/diagnostics12123181 10.3233/SW-170276 10.1016/j.imu.2022.101158 10.1109/TII.2021.3067141 10.1109/ACCESS.2021.3058066 10.18653/v1/2021.eacl-main.20 10.1162/tacl_a_00051 10.1016/j.osnem.2021.100123 10.1016/S1473-3099(20)30565-X 10.3115/v1/D14-1162 10.1371/journal.pone.0230322 10.1016/j.eswa.2020.114400 10.1016/j.eswa.2021.115030 10.1016/j.eswa.2022.117139 10.1001/jamaophthalmol.2016.2267 10.18653/v1/2021.bionlp-1.5 10.3390/app12136364 10.1155/2022/1307944 10.1016/j.chemolab.2022.104539 10.1162/neco.1997.9.8.1735 10.1109/TEM.2020.3021698 10.1016/j.patcog.2021.108102 10.1016/j.future.2022.12.004 10.1007/s00521-020-05410-8 10.18653/v1/2020.findings-emnlp.216 10.1109/TASE.2020.2986774 10.18653/v1/W19-3203 10.1145/3548458 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd 2023 Elsevier Ltd. All rights reserved. 2023 Elsevier Ltd. All rights reserved. 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: 2023 Elsevier Ltd. All rights reserved. – notice: 2023 Elsevier Ltd. All rights reserved. 2023 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.eswa.2023.120501 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 0957-4174 |
ExternalDocumentID | PMC10193815 37274611 10_1016_j_eswa_2023_120501 S0957417423010035 |
Genre | Journal Article |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c456t-facfb72d84c061d1b2d882ccb63a04daabb0c89da413d30e0b0d349be087fc203 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Aug 21 18:37:13 EDT 2025 Fri Jul 11 04:44:30 EDT 2025 Thu Apr 03 07:07:55 EDT 2025 Tue Jul 01 04:06:11 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Fri Feb 23 02:37:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Text mining Curriculum learning CNN LN GELU Social media NLI SVM BiLSTM MHSA PLM COVID-19 Deep learning NLP RNN BERT |
Language | English |
License | 2023 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-facfb72d84c061d1b2d882ccb63a04daabb0c89da413d30e0b0d349be087fc203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0185-6172 0000-0002-8489-2928 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10193815 |
PMID | 37274611 |
PQID | 2822707065 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10193815 proquest_miscellaneous_2822707065 pubmed_primary_37274611 crossref_citationtrail_10_1016_j_eswa_2023_120501 crossref_primary_10_1016_j_eswa_2023_120501 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Expert systems with applications |
PublicationTitleAlternate | Expert Syst Appl |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Lai, Lian (b0065) 2022 Kolluri, Murthy (b0150) 2021; 22 Wang, Luo, Liu (b0285) 2022; 69 Barnes, Diaz, Arnaboldi (b0040) 2021; 169 (pp. 41–53). Weissenbacher, D., Sarker, A. Magge, A. Daughton, A., O’Connor, K., Paul, M., & Gonzalez-Hernandez, G. (2019). Overview of the fourth social media mining for health (#SMM4H) Shared Task at ACL 2019. Dadgar, S., & Ghatee, M. (2021). Checkovid: A COVID-19 misinformation detection system on Twitter using network and content mining perspectives. arXiv preprint arXiv:2107.09768. Giuseppe, Bianca, Andrea, Marieke, Basave (b0110) 2017; 8 Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606. Nagi, Awan, Mohammed, Mahmoud, Majumdar, Thinnukool (b0200) 2022; 12 Sedik, Hammad, Abd El-Samie, Gupta, Abd El-Latif (b0225) 2021; 34 Wang, Li, Tsung (b0280) 2020; 17 Bai, Wang, Liu, Liu, Song, Sebe, Kim (b0035) 2021; 120 Deiner, Lietman, McLeod, Chodosh, Porco (b0085) 2016; 134 Alam, Shaar, Dalvi, Sajjad, Nikolov, Mubarak, Nakov (b0010) 2021 (pp. 1532–1543). Chaki, Woźniak (b0060) 2023; 80 Bengio, Louradour, Collobert, Weston (b0030) 2009 Wang, Chen, Zhu (b0265) 2022; 44 (pp. 2395–2400). Hammad, Tawalbeh, Iliyasu, Sedik, Abd El-Samie, Alkinani, Abd El-Latif (b0120) 2022; 34 Luo, L., & Wang, Y. (2019). EmotionX-HSU: Adopting pre-trained BERT for emotion classification. arXiv preprint arXiv:1907.09669. Devlin, Chang, Lee, Toutanova (b0090) 2019 Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450. 2022, 12, Article 3181. Sarrouti, M., Abacha, A. B., Mrabet, Y., & Demner-Fushman, D. (2021). Evidence-based fact-checking of health-related claims. Zheng, He, He (b0315) 2021; 178 Mohammed, Al-Khateeb, Yousif, Mostafa, Kadry, Abdulkareem, Garcia-Zapirain (b0190) 2022; 2022 Kim (b0145) 2014 Liu, Z., Xiong, C., Dai, Z., Sun, S., Sun, M., & Liu, Z. (2020). Adapting open domain fact extraction and verification to COVID-FACT through in-domain language modeling. . Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Lin, Y. C., & Su, K.-Y. (2021). How fast can BERT learn simple natural language inference? (pp. 3499–3512). (pp. 6382–6388). Rivadeneira, Yang, López-Ibáñez (b0210) 2021; 169 Hossain, Logan, Ugarte, Matsubara, Young, Singh (b0135) 2020 COVID-Fact: Fact extraction and verification of real-world claims on COVID-19 pandemic. Joshi, Sparks, Karimi, Yan, Chughtai, Paris, MacIntyre (b0140) 2020; 15 Talman, A., & Chatzikyriakidis, S. (2019). Testing the generalization power of neural network models across NLI benchmarks. (pp. 255-269). WHO. (2021). Infodemic, online resource Elhadad, Li, Gebali (b0100) 2021 Wang, Li, Mo (b0275) 2021; 17 Lazer, Baum, Benkler, Berinsky, Greenhill, Menczer, Schudson (b0160) 2018; 359 Serrano, J. C. M., Papakyriakopoulos, O., & Hegelich, S. (2020). NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube. Bowman, Angeli, Potts, Manning (b0050) 2015 (pp. 5998 - 6008). Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv preprint arXiv: 1606.08415. (pp. 21–30). Schick, Y., & Schütze., H. (2021). Exploiting cloze questions for few-shot text classification and natural language inference. Woźniak, Siłka, Wieczorek (b0310) 2020 Sushil, M., Suster, S., & Daelemans, W. (2021). Are we there yet? Exploring clinical domain knowledge of BERT models. (pp. 85–94). (pp. 1–10). Du, Dou, Xia, Cui, Ma, Yu (b0095) 2021 Aslan, Koca, Kobat, Dogan (b0020) 2022; 224 Tuncer, Barua, Dogan, Baygin, Tuncer, Tan, Acharya (b0250) 2023; 36 Hochreiter, Schmidhuber (b0130) 1997; 9 Mohr, I., Wührl, A., & Klinger, R. (2022). CoVERT: A corpus of fact-checked biomedical COVID-19 Tweets. Wang, Li (b0270) 2021; 17 da Silva, Francisquini, Nascimento (b0075) 2021; 182 Chen, Lai (b0070) 2022 Luo, Wang, Liu (b0185) 2022; 200 Abdelminaam, Ismail, Taha, Taha, Houssein, Nabil (b0005) 2021; 9 Data of access: Dec 08, 2022. Saakyan, A., Chakrabarty, T., & Muresan, S. (2021). (pp. 626–633). Erten, M., Acharya, M.R., Kamath, A.P., Sampathila, N., Bairy, G.M., Aydemir, E., Barua, P.D., Baygin, M., Tuncer, I., Dogan, S., & Tuncer, T. (2022). Hamlet-pattern-based automated COVID-19 and influenza detection model using protein sequences. (pp. 244–257). Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586. r Wei, J., & Zou, K. (2019). EDA: Easy data augmentation techniques for boosting performance on text classification tasks. Woźniak, Wieczorek, Siłka (b0305) 2023; 141 Korbar, B., Tran, D., & Torresani, L. (2018). Cooperative learning of audio and video models from self-supervised synchronization. (pp. 7774–7785). Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. Aljazeera (2020). Online resource Editorial of the Lancet Infectious diseases (b0115) 2020; 20 (pp. 2116–2129). Vijjali, R., Potluri, P., Kumar, S., & Teki, S. (2020). Two stage Transformer model for COVID-19 fake news detection and fact checking. 10.1016/j.eswa.2023.120501_b0240 Deiner (10.1016/j.eswa.2023.120501_b0085) 2016; 134 Woźniak (10.1016/j.eswa.2023.120501_b0305) 2023; 141 10.1016/j.eswa.2023.120501_b0165 Luo (10.1016/j.eswa.2023.120501_b0185) 2022; 200 10.1016/j.eswa.2023.120501_b0045 Rivadeneira (10.1016/j.eswa.2023.120501_b0210) 2021; 169 10.1016/j.eswa.2023.120501_b0245 10.1016/j.eswa.2023.120501_b0125 Kim (10.1016/j.eswa.2023.120501_b0145) 2014 10.1016/j.eswa.2023.120501_b0205 Wang (10.1016/j.eswa.2023.120501_b0265) 2022; 44 Devlin (10.1016/j.eswa.2023.120501_b0090) 2019 Chen (10.1016/j.eswa.2023.120501_b0070) 2022 Chaki (10.1016/j.eswa.2023.120501_b0060) 2023; 80 Kolluri (10.1016/j.eswa.2023.120501_b0150) 2021; 22 Bai (10.1016/j.eswa.2023.120501_b0035) 2021; 120 10.1016/j.eswa.2023.120501_b0290 Aslan (10.1016/j.eswa.2023.120501_b0020) 2022; 224 10.1016/j.eswa.2023.120501_b0170 Bengio (10.1016/j.eswa.2023.120501_b0030) 2009 10.1016/j.eswa.2023.120501_b0295 10.1016/j.eswa.2023.120501_b0175 Hochreiter (10.1016/j.eswa.2023.120501_b0130) 1997; 9 10.1016/j.eswa.2023.120501_b0255 10.1016/j.eswa.2023.120501_b0015 10.1016/j.eswa.2023.120501_b0215 Hammad (10.1016/j.eswa.2023.120501_b0120) 2022; 34 Wang (10.1016/j.eswa.2023.120501_b0275) 2021; 17 Zheng (10.1016/j.eswa.2023.120501_b0315) 2021; 178 Du (10.1016/j.eswa.2023.120501_b0095) 2021 Tuncer (10.1016/j.eswa.2023.120501_b0250) 2023; 36 10.1016/j.eswa.2023.120501_b0180 Mohammed (10.1016/j.eswa.2023.120501_b0190) 2022; 2022 10.1016/j.eswa.2023.120501_b0260 Nagi (10.1016/j.eswa.2023.120501_b0200) 2022; 12 10.1016/j.eswa.2023.120501_b0220 10.1016/j.eswa.2023.120501_b0025 10.1016/j.eswa.2023.120501_b0300 Abdelminaam (10.1016/j.eswa.2023.120501_b0005) 2021; 9 10.1016/j.eswa.2023.120501_b0105 Alam (10.1016/j.eswa.2023.120501_b0010) 2021 Woźniak (10.1016/j.eswa.2023.120501_b0310) 2020 Hossain (10.1016/j.eswa.2023.120501_b0135) 2020 Chen (10.1016/j.eswa.2023.120501_b0065) 2022 Bowman (10.1016/j.eswa.2023.120501_b0050) 2015 10.1016/j.eswa.2023.120501_b0195 Sedik (10.1016/j.eswa.2023.120501_b0225) 2021; 34 10.1016/j.eswa.2023.120501_b0230 10.1016/j.eswa.2023.120501_b0155 da Silva (10.1016/j.eswa.2023.120501_b0075) 2021; 182 10.1016/j.eswa.2023.120501_b0235 Wang (10.1016/j.eswa.2023.120501_b0270) 2021; 17 Joshi (10.1016/j.eswa.2023.120501_b0140) 2020; 15 Editorial of the Lancet Infectious diseases (10.1016/j.eswa.2023.120501_b0115) 2020; 20 Wang (10.1016/j.eswa.2023.120501_b0285) 2022; 69 Lazer (10.1016/j.eswa.2023.120501_b0160) 2018; 359 Barnes (10.1016/j.eswa.2023.120501_b0040) 2021; 169 Elhadad (10.1016/j.eswa.2023.120501_b0100) 2021 Wang (10.1016/j.eswa.2023.120501_b0280) 2020; 17 Giuseppe (10.1016/j.eswa.2023.120501_b0110) 2017; 8 10.1016/j.eswa.2023.120501_b0080 |
References_xml | – reference: (pp. 2116–2129). – reference: r – reference: Weissenbacher, D., Sarker, A. Magge, A. Daughton, A., O’Connor, K., Paul, M., & Gonzalez-Hernandez, G. (2019). Overview of the fourth social media mining for health (#SMM4H) Shared Task at ACL 2019. – reference: (pp. 5998 - 6008). – volume: 182 year: 2021 ident: b0075 article-title: Meteorological and human mobility data on predicting COVID-19 cases by a novel hybrid decomposition method with anomaly detection analysis: A case study in the capitals of Brazil publication-title: Expert Systems with Applications – reference: (pp. 2395–2400). – reference: COVID-Fact: Fact extraction and verification of real-world claims on COVID-19 pandemic. – start-page: 110203 year: 2020 ident: b0310 article-title: Neural network powered COVID-19 spread forecasting model – volume: 200 year: 2022 ident: b0185 article-title: COVID-19 personal health mention detection from Tweets using dual convolutional neural network publication-title: Expert Systems With Applications – reference: (pp. 244–257). – volume: 169 year: 2021 ident: b0040 article-title: Understanding panic buying during COVID-19: A text analytics approach publication-title: Expert Systems with Applications – reference: Serrano, J. C. M., Papakyriakopoulos, O., & Hegelich, S. (2020). NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube. – reference: Aljazeera (2020). Online resource, – volume: 2022 year: 2022 ident: b0190 article-title: Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID-19 diagnostic model – volume: 36 year: 2023 ident: b0250 article-title: Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography publication-title: Inform Med Unlocked – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0130 article-title: Long short-term memory publication-title: Neural Computation – reference: Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. – year: 2022 ident: b0070 article-title: Using fuzzy clustering with deep learning models for detection of COVID-19 disinformation – reference: Mohr, I., Wührl, A., & Klinger, R. (2022). CoVERT: A corpus of fact-checked biomedical COVID-19 Tweets. – volume: 80 year: 2023 ident: b0060 article-title: Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review publication-title: Biomedical Signal Processing and Control – start-page: 1746 year: 2014 end-page: 1751 ident: b0145 article-title: Convolutional neural networks for sentence classification publication-title: In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing – reference: (pp. 255-269). – volume: 22 year: 2021 ident: b0150 article-title: CoVerifi: A COVID-19 news verification system publication-title: Online Social Networks and Media – reference: (pp. 3499–3512). – volume: 9 start-page: 27840 year: 2021 end-page: 27867 ident: b0005 article-title: CoAID-DEEP: An optimized intelligent framework for automated eetecting COVID-19 misleading information on Twitter publication-title: IEEE Access – start-page: 4171 year: 2019 end-page: 4186 ident: b0090 article-title: BERT: Pre-training of deep bidirectional Transformers for language understanding publication-title: In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – volume: 359 start-page: 1094 year: 2018 end-page: 1096 ident: b0160 article-title: The science of fake news publication-title: Science – volume: 169 year: 2021 ident: b0210 article-title: Predicting tweet impact using a novel evidential reasoning prediction method publication-title: Expert Systems with Applications – volume: 120 year: 2021 ident: b0035 article-title: Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments publication-title: Pattern Recognition – reference: , Data of access: Dec 08, 2022. – reference: (pp. 7774–7785). – volume: 34 start-page: 11423 year: 2021 end-page: 11440 ident: b0225 article-title: Efficient deep learning approach for augmented detection of coronavirus disease publication-title: Neural Computing and Applications – year: 2022 ident: b0065 article-title: Using deep learning models to detect fake news about COVID-19 – volume: 12 start-page: 6364 year: 2022 ident: b0200 article-title: Performance analysis for COVID-19 diagnosis using custom and state-of-the-art deep learning models publication-title: Applied Science – reference: (pp. 21–30). – volume: 44 start-page: 4555 year: 2022 end-page: 4576 ident: b0265 article-title: A survey on curriculum learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Dadgar, S., & Ghatee, M. (2021). Checkovid: A COVID-19 misinformation detection system on Twitter using network and content mining perspectives. arXiv preprint arXiv:2107.09768. – volume: 20 start-page: 875 year: 2020 ident: b0115 article-title: The COVID-19 infordemic publication-title: The Lancet Infectious Diseases – reference: (pp. 1–10). – reference: WHO. (2021). Infodemic, online resource: – start-page: 859 year: 2021 end-page: 862 ident: b0095 article-title: Cross-lingual COVID-19 fake news detection publication-title: In Proceedings of 2021 International Conference on Data Mining Workshops (ICDMW) Cross-lingual COVID-19 Fake News Detection – reference: (pp. 1532–1543). – volume: 178 year: 2021 ident: b0315 article-title: An integrated probabilistic graphic model and FMEA approach to identify product defects from social media data publication-title: Expert Systems with Applications – reference: 2022, 12, Article 3181. – start-page: 1 year: 2020 end-page: 11 ident: b0135 article-title: COVIDLies: Detecting COVID-19 misinformation on social media publication-title: In Proceedings of the 1st Workshop on NLP for COVID-19 – reference: (pp. 85–94). – reference: (pp. 626–633). – reference: Sushil, M., Suster, S., & Daelemans, W. (2021). Are we there yet? Exploring clinical domain knowledge of BERT models. – reference: Luo, L., & Wang, Y. (2019). EmotionX-HSU: Adopting pre-trained BERT for emotion classification. arXiv preprint arXiv:1907.09669. – reference: Saakyan, A., Chakrabarty, T., & Muresan, S. (2021). – reference: Sarrouti, M., Abacha, A. B., Mrabet, Y., & Demner-Fushman, D. (2021). Evidence-based fact-checking of health-related claims. – reference: Lin, Y. C., & Su, K.-Y. (2021). How fast can BERT learn simple natural language inference? – volume: 17 start-page: 2038 year: 2020 end-page: 2047 ident: b0280 article-title: Configuration-based smart customization service: A multitask learning approach publication-title: IEEE Transactions on Automation Science and Engineering – reference: Liu, Z., Xiong, C., Dai, Z., Sun, S., Sun, M., & Liu, Z. (2020). Adapting open domain fact extraction and verification to COVID-FACT through in-domain language modeling. – reference: Vijjali, R., Potluri, P., Kumar, S., & Teki, S. (2020). Two stage Transformer model for COVID-19 fake news detection and fact checking. – volume: 34 year: 2022 ident: b0120 article-title: Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images publication-title: Journal of King Saud University - Science – reference: Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586. – volume: 134 start-page: 1024 year: 2016 end-page: 1030 ident: b0085 article-title: Surveillance tools emerging from search engines and social media data for determining eye disease patterns publication-title: JAMA Ophthalmology – reference: (pp. 41–53). – reference: Erten, M., Acharya, M.R., Kamath, A.P., Sampathila, N., Bairy, G.M., Aydemir, E., Barua, P.D., Baygin, M., Tuncer, I., Dogan, S., & Tuncer, T. (2022). Hamlet-pattern-based automated COVID-19 and influenza detection model using protein sequences. – volume: 17 start-page: 8397 year: 2021 end-page: 8405 ident: b0275 article-title: Knowledge-empowered multitask learning to address the semantic gap between customer needs and design specifications publication-title: IEEE Transactions on Industrial Informatics – volume: 224 year: 2022 ident: b0020 article-title: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images publication-title: Chemometrics and Intelligent Laboratory Systems – reference: (pp. 6382–6388). – reference: Korbar, B., Tran, D., & Torresani, L. (2018). Cooperative learning of audio and video models from self-supervised synchronization. – start-page: 632 year: 2015 end-page: 642 ident: b0050 article-title: A large annotated corpus for learning natural language inference publication-title: In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing – volume: 69 start-page: 1622 year: 2022 end-page: 1634 ident: b0285 article-title: Bridging the semantic gap between customer needs and design specifications using user-generated content publication-title: IEEE Transactions on Engineering Management – start-page: 41 year: 2009 end-page: 48 ident: b0030 article-title: Curriculum learning publication-title: In Proceedings of the 26th annual International Conference on Machine Learning – reference: Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606. – start-page: 163 year: 2021 end-page: 176 ident: b0100 article-title: An ensemble deep learning technique to detect COVID-19 misleading information publication-title: Advances in Networked-Based Information Systems – volume: 15 start-page: 0230322 year: 2020 ident: b0140 article-title: Automated monitoring of tweets for early detection of the 2014 Ebola epidemic publication-title: PLoS One – volume: 8 start-page: 667 year: 2017 end-page: 700 ident: b0110 article-title: Lessons learnt from the named entity recognition and linking (NEEL) challenge series publication-title: Semantic Web Journal – reference: . – reference: Wei, J., & Zou, K. (2019). EDA: Easy data augmentation techniques for boosting performance on text classification tasks. – reference: Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450. – reference: Schick, Y., & Schütze., H. (2021). Exploiting cloze questions for few-shot text classification and natural language inference. – volume: 141 start-page: 489 year: 2023 end-page: 499 ident: b0305 article-title: BiLSTM deep neural network model for imbalanced medical data of IoT systems publication-title: Future Generation Computer Systems – reference: Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv preprint arXiv: 1606.08415. – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. – reference: Talman, A., & Chatzikyriakidis, S. (2019). Testing the generalization power of neural network models across NLI benchmarks. – volume: 17 start-page: 6192 year: 2021 end-page: 6199 ident: b0270 article-title: Mining product reviews for needs-based product configurator design: A transfer learning-based approach publication-title: IEEE Transactions on Industrial Informatics – start-page: 611 year: 2021 end-page: 649 ident: b0010 article-title: Fighting the COVID-19 infodemic: Modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society publication-title: In Findings of the Association for Computational Linguistics: EMNLP – volume: 17 start-page: 6192 issue: 9 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0270 article-title: Mining product reviews for needs-based product configurator design: A transfer learning-based approach publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.3043315 – volume: 182 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0075 article-title: Meteorological and human mobility data on predicting COVID-19 cases by a novel hybrid decomposition method with anomaly detection analysis: A case study in the capitals of Brazil publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115190 – ident: 10.1016/j.eswa.2023.120501_b0245 doi: 10.18653/v1/W19-4810 – ident: 10.1016/j.eswa.2023.120501_b0180 – start-page: 41 year: 2009 ident: 10.1016/j.eswa.2023.120501_b0030 article-title: Curriculum learning – ident: 10.1016/j.eswa.2023.120501_b0215 doi: 10.18653/v1/2021.acl-long.165 – volume: 169 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0040 article-title: Understanding panic buying during COVID-19: A text analytics approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114360 – volume: 34 issue: 3 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0120 article-title: Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images publication-title: Journal of King Saud University - Science doi: 10.1016/j.jksus.2022.101898 – ident: 10.1016/j.eswa.2023.120501_b0080 – volume: 80 issue: 1 year: 2023 ident: 10.1016/j.eswa.2023.120501_b0060 article-title: Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review publication-title: Biomedical Signal Processing and Control – ident: 10.1016/j.eswa.2023.120501_b0165 doi: 10.18653/v1/2021.eacl-main.51 – ident: 10.1016/j.eswa.2023.120501_b0155 – ident: 10.1016/j.eswa.2023.120501_b0170 – start-page: 163 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0100 article-title: An ensemble deep learning technique to detect COVID-19 misleading information – ident: 10.1016/j.eswa.2023.120501_b0260 – ident: 10.1016/j.eswa.2023.120501_b0290 doi: 10.18653/v1/D19-1670 – ident: 10.1016/j.eswa.2023.120501_b0220 doi: 10.18653/v1/2021.findings-emnlp.297 – volume: 359 start-page: 1094 issue: 6380 year: 2018 ident: 10.1016/j.eswa.2023.120501_b0160 article-title: The science of fake news publication-title: Science doi: 10.1126/science.aao2998 – ident: 10.1016/j.eswa.2023.120501_b0105 doi: 10.3390/diagnostics12123181 – start-page: 110203 year: 2020 ident: 10.1016/j.eswa.2023.120501_b0310 – volume: 8 start-page: 667 issue: 5 year: 2017 ident: 10.1016/j.eswa.2023.120501_b0110 article-title: Lessons learnt from the named entity recognition and linking (NEEL) challenge series publication-title: Semantic Web Journal doi: 10.3233/SW-170276 – volume: 36 year: 2023 ident: 10.1016/j.eswa.2023.120501_b0250 article-title: Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2022.101158 – start-page: 859 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0095 article-title: Cross-lingual COVID-19 fake news detection – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.120501_b0135 article-title: COVIDLies: Detecting COVID-19 misinformation on social media – volume: 17 start-page: 8397 issue: 12 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0275 article-title: Knowledge-empowered multitask learning to address the semantic gap between customer needs and design specifications publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3067141 – volume: 9 start-page: 27840 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0005 article-title: CoAID-DEEP: An optimized intelligent framework for automated eetecting COVID-19 misleading information on Twitter publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058066 – ident: 10.1016/j.eswa.2023.120501_b0235 doi: 10.18653/v1/2021.eacl-main.20 – ident: 10.1016/j.eswa.2023.120501_b0045 doi: 10.1162/tacl_a_00051 – start-page: 632 year: 2015 ident: 10.1016/j.eswa.2023.120501_b0050 article-title: A large annotated corpus for learning natural language inference – volume: 22 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0150 article-title: CoVerifi: A COVID-19 news verification system publication-title: Online Social Networks and Media doi: 10.1016/j.osnem.2021.100123 – volume: 20 start-page: 875 issue: 8 year: 2020 ident: 10.1016/j.eswa.2023.120501_b0115 article-title: The COVID-19 infordemic publication-title: The Lancet Infectious Diseases doi: 10.1016/S1473-3099(20)30565-X – ident: 10.1016/j.eswa.2023.120501_b0205 doi: 10.3115/v1/D14-1162 – ident: 10.1016/j.eswa.2023.120501_b0015 – ident: 10.1016/j.eswa.2023.120501_b0195 – volume: 15 start-page: 0230322 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.120501_b0140 article-title: Automated monitoring of tweets for early detection of the 2014 Ebola epidemic publication-title: PLoS One doi: 10.1371/journal.pone.0230322 – volume: 169 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0210 article-title: Predicting tweet impact using a novel evidential reasoning prediction method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114400 – volume: 178 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0315 article-title: An integrated probabilistic graphic model and FMEA approach to identify product defects from social media data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115030 – volume: 200 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0185 article-title: COVID-19 personal health mention detection from Tweets using dual convolutional neural network publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2022.117139 – start-page: 1746 year: 2014 ident: 10.1016/j.eswa.2023.120501_b0145 article-title: Convolutional neural networks for sentence classification – start-page: 611 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0010 article-title: Fighting the COVID-19 infodemic: Modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society – ident: 10.1016/j.eswa.2023.120501_b0025 – ident: 10.1016/j.eswa.2023.120501_b0300 – volume: 134 start-page: 1024 issue: 9 year: 2016 ident: 10.1016/j.eswa.2023.120501_b0085 article-title: Surveillance tools emerging from search engines and social media data for determining eye disease patterns publication-title: JAMA Ophthalmology doi: 10.1001/jamaophthalmol.2016.2267 – ident: 10.1016/j.eswa.2023.120501_b0125 – ident: 10.1016/j.eswa.2023.120501_b0240 doi: 10.18653/v1/2021.bionlp-1.5 – volume: 12 start-page: 6364 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0200 article-title: Performance analysis for COVID-19 diagnosis using custom and state-of-the-art deep learning models publication-title: Applied Science doi: 10.3390/app12136364 – volume: 2022 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0190 article-title: Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID-19 diagnostic model publication-title: Computational Intelligence Neuroscience doi: 10.1155/2022/1307944 – volume: 44 start-page: 4555 issue: 9 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0265 article-title: A survey on curriculum learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 224 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0020 article-title: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2022.104539 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.eswa.2023.120501_b0130 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – year: 2022 ident: 10.1016/j.eswa.2023.120501_b0065 article-title: Using deep learning models to detect fake news about COVID-19 publication-title: ACM Transactions on Internet Technology – ident: 10.1016/j.eswa.2023.120501_b0230 – ident: 10.1016/j.eswa.2023.120501_b0255 – volume: 69 start-page: 1622 issue: 4 year: 2022 ident: 10.1016/j.eswa.2023.120501_b0285 article-title: Bridging the semantic gap between customer needs and design specifications using user-generated content publication-title: IEEE Transactions on Engineering Management doi: 10.1109/TEM.2020.3021698 – volume: 120 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0035 article-title: Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108102 – volume: 141 start-page: 489 year: 2023 ident: 10.1016/j.eswa.2023.120501_b0305 article-title: BiLSTM deep neural network model for imbalanced medical data of IoT systems publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2022.12.004 – volume: 34 start-page: 11423 year: 2021 ident: 10.1016/j.eswa.2023.120501_b0225 article-title: Efficient deep learning approach for augmented detection of coronavirus disease publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05410-8 – ident: 10.1016/j.eswa.2023.120501_b0175 doi: 10.18653/v1/2020.findings-emnlp.216 – volume: 17 start-page: 2038 issue: 4 year: 2020 ident: 10.1016/j.eswa.2023.120501_b0280 article-title: Configuration-based smart customization service: A multitask learning approach publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2020.2986774 – start-page: 4171 year: 2019 ident: 10.1016/j.eswa.2023.120501_b0090 article-title: BERT: Pre-training of deep bidirectional Transformers for language understanding – ident: 10.1016/j.eswa.2023.120501_b0295 doi: 10.18653/v1/W19-3203 – year: 2022 ident: 10.1016/j.eswa.2023.120501_b0070 article-title: Using fuzzy clustering with deep learning models for detection of COVID-19 disinformation publication-title: ACM Transactions on Asian and Low-Resource Language Information Process doi: 10.1145/3548458 |
SSID | ssj0017007 |
Score | 2.493938 |
Snippet | The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been... The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this 'infodemic' has been... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120501 |
SubjectTerms | COVID-19 Curriculum learning Deep learning Social media Text mining |
Title | Combating the COVID-19 infodemic using Prompt-Based curriculum learning |
URI | https://dx.doi.org/10.1016/j.eswa.2023.120501 https://www.ncbi.nlm.nih.gov/pubmed/37274611 https://www.proquest.com/docview/2822707065 https://pubmed.ncbi.nlm.nih.gov/PMC10193815 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvXDpA_pYWpCReqvM2rEdJ0fYli5UpZVaKm6WX6FboYBgUW_97Z3ZOBHbIg7cEseWrJnxzDjzzQwhb73wcMfxgiUnNFNVU7NaB85M1EomI3woMd_583E5PVFHp_p0hUz6XBiEVWbd3-n0hbbOI-NMzfHlbDb-Bs4BmEOMNMKdgktMNFfKoJTv_hlgHlh-znT19gzD2TlxpsN4pevfWHuokLui4Do3hrnDOP3vfP6LobxllA6eksfZm6R73YafkZXUrpMnfacGmg_uBvkIQ94hwpmCw0cnX34cvmeipiheC3g8Rfz7Gf16BUvnbB9MW6Rh-DtIc2-Js-fk5ODD98mU5RYKLIBnNGeNC403RaxUAMMdhYfHqgjBl9JxFZ3znoeqjg5sWZQ8cc-jVLVPvDJNKLh8QVbbiza9IrSMlQm1dE41GJEJXgFPq0bqkJrotBkR0dPOhlxfHNtcnNseSPbLIr0t0tt29B6Rd8Oay666xr2zdc8SuyQjFtT_vet2ev5ZODwYEXFturi5toihNRwjvSPysuPnsA8Jnp0qBayuljg9TMDC3Mtf2tnPRYFu2EcNnpDefOCGX5M1fOtSHt-Q1fnVTdoC32futxfCvU0e7R1-mh7_BdYkA8c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCF92N5GglOyF07duLkwAFayi59gESLenP9StmqSqvuVhUX_hR_kJmNE7GAekDqLXI80WjGnhlnPs8Q8tIJB2ccJ1i0ImeqrCtW5Z4zHXIloxbOF3jfeWu7GO2qj3v53hL52d2FQVhlsv2tTZ9b6zQyTNIcnkwmwy8QHIA7xEwjnCm47JCVG_H7OZzbpm_Ga6DkV1m2_n5ndcRSawHmIWKYsdr62ukslMqDQwvCwWOZee8KabkK1jrHfVkFCzY-SB6540GqykVe6tpnXMJ3r5CrCswFtk1Y-dHjSrDenW4L_GmG7KWbOi2oLE7PsdhRJldExvPUieYf3vDvaPdP0OZvXnD9FrmRwlf6tpXQbbIUmzvkZtcagiZLcZd8gCFnEVJNIcKkq5--jteYqCiu5zkenyLg_oB-PgXSGXsHvjRQ3_-OpKmZxcE9snspgr1PlpvjJj4ktAil9pW0VtWYAvJOwSIqa5n7WAeb6wERneyMTwXNsa_GkemQa4cG5W1Q3qaV94C87mlO2nIeF87OO5WYhUVpwN9cSPei05-B3YopGNvE47OpQdCu5phaHpAHrT57PiSEkqoQQF0uaLqfgJXAF980k2_ziuDARwWhV_7oPxl-Tq6NdrY2zeZ4e-MxuY5v2vuWT8jy7PQsPoXAa-aezRc6JfuXvbN-AbX3QRk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+the+COVID-19+infodemic+using+Prompt-Based+curriculum+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Peng%2C+Zifan&rft.au=Li%2C+Mingchen&rft.au=Wang%2C+Yue&rft.au=Ho%2C+George+T.S.&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=229&rft_id=info:doi/10.1016%2Fj.eswa.2023.120501&rft.externalDocID=S0957417423010035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |