Combating the COVID-19 infodemic using Prompt-Based curriculum learning

The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of neg...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 229; p. 120501
Main Authors Peng, Zifan, Li, Mingchen, Wang, Yue, Ho, George T.S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text’s reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources.
AbstractList The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text’s reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources.
The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this 'infodemic' has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text's reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources.The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this 'infodemic' has been identified as one of the top priorities of the World Health Organization, because false and misleading information can lead to a range of negative consequences, including the spread of false remedies, conspiracy theories, and xenophobia. This paper aims to combat the COVID-19 infodemic on multiple fronts, including determining the credibility of information, identifying its potential harm to society, and the necessity of intervention by relevant organizations. We present a prompt-based curriculum learning method to achieve this goal. The proposed method could overcome the challenges of data sparsity and class imbalance issues. Using online social media texts as input, the proposed model can verify content from multiple perspectives by answering a series of questions concerning the text's reliability. Experiments revealed the effectiveness of prompt tuning and curriculum learning in assessing the reliability of COVID-19-related text. The proposed method outperforms typical text classification methods, including fastText and BERT. In addition, the proposed method is robust to the hyperparameter settings, making it more applicable with limited infrastructure resources.
ArticleNumber 120501
Author Wang, Yue
Ho, George T.S.
Li, Mingchen
Peng, Zifan
Author_xml – sequence: 1
  givenname: Zifan
  surname: Peng
  fullname: Peng, Zifan
  email: zpengao@connect.ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
– sequence: 2
  givenname: Mingchen
  orcidid: 0000-0002-8489-2928
  surname: Li
  fullname: Li, Mingchen
  email: li.mingch@northeastern.edu
  organization: Khoury College of Computer Sciences, Northeastern University, Boston, USA
– sequence: 3
  givenname: Yue
  orcidid: 0000-0002-0185-6172
  surname: Wang
  fullname: Wang, Yue
  email: yuewang@hsu.edu.hk
  organization: Department of Supply Chain and Information Management, The Hang Seng University of Hong Kong, Hong Kong SAR, China
– sequence: 4
  givenname: George T.S.
  surname: Ho
  fullname: Ho, George T.S.
  organization: Department of Supply Chain and Information Management, The Hang Seng University of Hong Kong, Hong Kong SAR, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37274611$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVIaSZp_0AWxctuPLmSPJYNhdJMnhBIF223Qo_rRIMtTSU7pf8-MpOEtIusJLjnOwfOOST7Pngk5JjCkgKtTzZLTH_UkgHjS8pgBXSPLGgjeFmLlu-TBbQrUVZUVAfkMKUNABUA4j054IKJqqZ0QS7XYdBqdP6uGO-xWN_-uj4raVs43wWLgzPFlObj9xiG7VieqoS2MFOMzkz9NBQ9quiz4AN516k-4cen94j8vDj_sb4qb24vr9ffbkpTreqx7JTptGC2qQzU1FKdvw0zRtdcQWWV0hpM01pVUW45IGiwvGo1QiM6w4Afka873-2kB7QG_RhVL7fRDSr-lUE5-e_Fu3t5Fx5kbqzlDV1lh89PDjH8njCNcnDJYN8rj2FKkjWMCRBQz9JPr8NeUp7ry4JmJzAxpBSxk8aNuc0wZ7s-h865tdzIeSk5LyV3S2WU_Yc-u78JfdlBmCt-cBhlMg69QesimlHa4N7CHwGorK0C
CitedBy_id crossref_primary_10_1016_j_nlp_2024_100067
crossref_primary_10_1016_j_jretconser_2025_104255
crossref_primary_10_1109_ACCESS_2024_3469248
crossref_primary_10_1016_j_asoc_2025_112812
crossref_primary_10_1016_j_eswa_2024_123191
crossref_primary_10_1007_s11518_024_5600_5
crossref_primary_10_3390_fi16080286
crossref_primary_10_1007_s10994_024_06731_8
Cites_doi 10.1109/TII.2020.3043315
10.1016/j.eswa.2021.115190
10.18653/v1/W19-4810
10.18653/v1/2021.acl-long.165
10.1016/j.eswa.2020.114360
10.1016/j.jksus.2022.101898
10.18653/v1/2021.eacl-main.51
10.18653/v1/D19-1670
10.18653/v1/2021.findings-emnlp.297
10.1126/science.aao2998
10.3390/diagnostics12123181
10.3233/SW-170276
10.1016/j.imu.2022.101158
10.1109/TII.2021.3067141
10.1109/ACCESS.2021.3058066
10.18653/v1/2021.eacl-main.20
10.1162/tacl_a_00051
10.1016/j.osnem.2021.100123
10.1016/S1473-3099(20)30565-X
10.3115/v1/D14-1162
10.1371/journal.pone.0230322
10.1016/j.eswa.2020.114400
10.1016/j.eswa.2021.115030
10.1016/j.eswa.2022.117139
10.1001/jamaophthalmol.2016.2267
10.18653/v1/2021.bionlp-1.5
10.3390/app12136364
10.1155/2022/1307944
10.1016/j.chemolab.2022.104539
10.1162/neco.1997.9.8.1735
10.1109/TEM.2020.3021698
10.1016/j.patcog.2021.108102
10.1016/j.future.2022.12.004
10.1007/s00521-020-05410-8
10.18653/v1/2020.findings-emnlp.216
10.1109/TASE.2020.2986774
10.18653/v1/W19-3203
10.1145/3548458
ContentType Journal Article
Copyright 2023 Elsevier Ltd
2023 Elsevier Ltd. All rights reserved.
2023 Elsevier Ltd. All rights reserved. 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: 2023 Elsevier Ltd. All rights reserved.
– notice: 2023 Elsevier Ltd. All rights reserved. 2023 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.eswa.2023.120501
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
0957-4174
ExternalDocumentID PMC10193815
37274611
10_1016_j_eswa_2023_120501
S0957417423010035
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c456t-facfb72d84c061d1b2d882ccb63a04daabb0c89da413d30e0b0d349be087fc203
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Aug 21 18:37:13 EDT 2025
Fri Jul 11 04:44:30 EDT 2025
Thu Apr 03 07:07:55 EDT 2025
Tue Jul 01 04:06:11 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Fri Feb 23 02:37:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Text mining
Curriculum learning
CNN
LN
GELU
Social media
NLI
SVM
BiLSTM
MHSA
PLM
COVID-19
Deep learning
NLP
RNN
BERT
Language English
License 2023 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-facfb72d84c061d1b2d882ccb63a04daabb0c89da413d30e0b0d349be087fc203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0185-6172
0000-0002-8489-2928
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10193815
PMID 37274611
PQID 2822707065
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10193815
proquest_miscellaneous_2822707065
pubmed_primary_37274611
crossref_citationtrail_10_1016_j_eswa_2023_120501
crossref_primary_10_1016_j_eswa_2023_120501
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Expert systems with applications
PublicationTitleAlternate Expert Syst Appl
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Lai, Lian (b0065) 2022
Kolluri, Murthy (b0150) 2021; 22
Wang, Luo, Liu (b0285) 2022; 69
Barnes, Diaz, Arnaboldi (b0040) 2021; 169
(pp. 41–53).
Weissenbacher, D., Sarker, A. Magge, A. Daughton, A., O’Connor, K., Paul, M., & Gonzalez-Hernandez, G. (2019). Overview of the fourth social media mining for health (#SMM4H) Shared Task at ACL 2019.
Dadgar, S., & Ghatee, M. (2021). Checkovid: A COVID-19 misinformation detection system on Twitter using network and content mining perspectives. arXiv preprint arXiv:2107.09768.
Giuseppe, Bianca, Andrea, Marieke, Basave (b0110) 2017; 8
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606.
Nagi, Awan, Mohammed, Mahmoud, Majumdar, Thinnukool (b0200) 2022; 12
Sedik, Hammad, Abd El-Samie, Gupta, Abd El-Latif (b0225) 2021; 34
Wang, Li, Tsung (b0280) 2020; 17
Bai, Wang, Liu, Liu, Song, Sebe, Kim (b0035) 2021; 120
Deiner, Lietman, McLeod, Chodosh, Porco (b0085) 2016; 134
Alam, Shaar, Dalvi, Sajjad, Nikolov, Mubarak, Nakov (b0010) 2021
(pp. 1532–1543).
Chaki, Woźniak (b0060) 2023; 80
Bengio, Louradour, Collobert, Weston (b0030) 2009
Wang, Chen, Zhu (b0265) 2022; 44
(pp. 2395–2400).
Hammad, Tawalbeh, Iliyasu, Sedik, Abd El-Samie, Alkinani, Abd El-Latif (b0120) 2022; 34
Luo, L., & Wang, Y. (2019). EmotionX-HSU: Adopting pre-trained BERT for emotion classification. arXiv preprint arXiv:1907.09669.
Devlin, Chang, Lee, Toutanova (b0090) 2019
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
2022, 12, Article 3181.
Sarrouti, M., Abacha, A. B., Mrabet, Y., & Demner-Fushman, D. (2021). Evidence-based fact-checking of health-related claims.
Zheng, He, He (b0315) 2021; 178
Mohammed, Al-Khateeb, Yousif, Mostafa, Kadry, Abdulkareem, Garcia-Zapirain (b0190) 2022; 2022
Kim (b0145) 2014
Liu, Z., Xiong, C., Dai, Z., Sun, S., Sun, M., & Liu, Z. (2020). Adapting open domain fact extraction and verification to COVID-FACT through in-domain language modeling.
.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need.
Lin, Y. C., & Su, K.-Y. (2021). How fast can BERT learn simple natural language inference?
(pp. 3499–3512).
(pp. 6382–6388).
Rivadeneira, Yang, López-Ibáñez (b0210) 2021; 169
Hossain, Logan, Ugarte, Matsubara, Young, Singh (b0135) 2020
COVID-Fact: Fact extraction and verification of real-world claims on COVID-19 pandemic.
Joshi, Sparks, Karimi, Yan, Chughtai, Paris, MacIntyre (b0140) 2020; 15
Talman, A., & Chatzikyriakidis, S. (2019). Testing the generalization power of neural network models across NLI benchmarks.
(pp. 255-269).
WHO. (2021). Infodemic, online resource
Elhadad, Li, Gebali (b0100) 2021
Wang, Li, Mo (b0275) 2021; 17
Lazer, Baum, Benkler, Berinsky, Greenhill, Menczer, Schudson (b0160) 2018; 359
Serrano, J. C. M., Papakyriakopoulos, O., & Hegelich, S. (2020). NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube.
Bowman, Angeli, Potts, Manning (b0050) 2015
(pp. 5998 - 6008).
Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv preprint arXiv: 1606.08415.
(pp. 21–30).
Schick, Y., & Schütze., H. (2021). Exploiting cloze questions for few-shot text classification and natural language inference.
Woźniak, Siłka, Wieczorek (b0310) 2020
Sushil, M., Suster, S., & Daelemans, W. (2021). Are we there yet? Exploring clinical domain knowledge of BERT models.
(pp. 85–94).
(pp. 1–10).
Du, Dou, Xia, Cui, Ma, Yu (b0095) 2021
Aslan, Koca, Kobat, Dogan (b0020) 2022; 224
Tuncer, Barua, Dogan, Baygin, Tuncer, Tan, Acharya (b0250) 2023; 36
Hochreiter, Schmidhuber (b0130) 1997; 9
Mohr, I., Wührl, A., & Klinger, R. (2022). CoVERT: A corpus of fact-checked biomedical COVID-19 Tweets.
Wang, Li (b0270) 2021; 17
da Silva, Francisquini, Nascimento (b0075) 2021; 182
Chen, Lai (b0070) 2022
Luo, Wang, Liu (b0185) 2022; 200
Abdelminaam, Ismail, Taha, Taha, Houssein, Nabil (b0005) 2021; 9
Data of access: Dec 08, 2022.
Saakyan, A., Chakrabarty, T., & Muresan, S. (2021).
(pp. 626–633).
Erten, M., Acharya, M.R., Kamath, A.P., Sampathila, N., Bairy, G.M., Aydemir, E., Barua, P.D., Baygin, M., Tuncer, I., Dogan, S., & Tuncer, T. (2022). Hamlet-pattern-based automated COVID-19 and influenza detection model using protein sequences.
(pp. 244–257).
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586.
r
Wei, J., & Zou, K. (2019). EDA: Easy data augmentation techniques for boosting performance on text classification tasks.
Woźniak, Wieczorek, Siłka (b0305) 2023; 141
Korbar, B., Tran, D., & Torresani, L. (2018). Cooperative learning of audio and video models from self-supervised synchronization.
(pp. 7774–7785).
Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation.
Aljazeera (2020). Online resource
Editorial of the Lancet Infectious diseases (b0115) 2020; 20
(pp. 2116–2129).
Vijjali, R., Potluri, P., Kumar, S., & Teki, S. (2020). Two stage Transformer model for COVID-19 fake news detection and fact checking.
10.1016/j.eswa.2023.120501_b0240
Deiner (10.1016/j.eswa.2023.120501_b0085) 2016; 134
Woźniak (10.1016/j.eswa.2023.120501_b0305) 2023; 141
10.1016/j.eswa.2023.120501_b0165
Luo (10.1016/j.eswa.2023.120501_b0185) 2022; 200
10.1016/j.eswa.2023.120501_b0045
Rivadeneira (10.1016/j.eswa.2023.120501_b0210) 2021; 169
10.1016/j.eswa.2023.120501_b0245
10.1016/j.eswa.2023.120501_b0125
Kim (10.1016/j.eswa.2023.120501_b0145) 2014
10.1016/j.eswa.2023.120501_b0205
Wang (10.1016/j.eswa.2023.120501_b0265) 2022; 44
Devlin (10.1016/j.eswa.2023.120501_b0090) 2019
Chen (10.1016/j.eswa.2023.120501_b0070) 2022
Chaki (10.1016/j.eswa.2023.120501_b0060) 2023; 80
Kolluri (10.1016/j.eswa.2023.120501_b0150) 2021; 22
Bai (10.1016/j.eswa.2023.120501_b0035) 2021; 120
10.1016/j.eswa.2023.120501_b0290
Aslan (10.1016/j.eswa.2023.120501_b0020) 2022; 224
10.1016/j.eswa.2023.120501_b0170
Bengio (10.1016/j.eswa.2023.120501_b0030) 2009
10.1016/j.eswa.2023.120501_b0295
10.1016/j.eswa.2023.120501_b0175
Hochreiter (10.1016/j.eswa.2023.120501_b0130) 1997; 9
10.1016/j.eswa.2023.120501_b0255
10.1016/j.eswa.2023.120501_b0015
10.1016/j.eswa.2023.120501_b0215
Hammad (10.1016/j.eswa.2023.120501_b0120) 2022; 34
Wang (10.1016/j.eswa.2023.120501_b0275) 2021; 17
Zheng (10.1016/j.eswa.2023.120501_b0315) 2021; 178
Du (10.1016/j.eswa.2023.120501_b0095) 2021
Tuncer (10.1016/j.eswa.2023.120501_b0250) 2023; 36
10.1016/j.eswa.2023.120501_b0180
Mohammed (10.1016/j.eswa.2023.120501_b0190) 2022; 2022
10.1016/j.eswa.2023.120501_b0260
Nagi (10.1016/j.eswa.2023.120501_b0200) 2022; 12
10.1016/j.eswa.2023.120501_b0220
10.1016/j.eswa.2023.120501_b0025
10.1016/j.eswa.2023.120501_b0300
Abdelminaam (10.1016/j.eswa.2023.120501_b0005) 2021; 9
10.1016/j.eswa.2023.120501_b0105
Alam (10.1016/j.eswa.2023.120501_b0010) 2021
Woźniak (10.1016/j.eswa.2023.120501_b0310) 2020
Hossain (10.1016/j.eswa.2023.120501_b0135) 2020
Chen (10.1016/j.eswa.2023.120501_b0065) 2022
Bowman (10.1016/j.eswa.2023.120501_b0050) 2015
10.1016/j.eswa.2023.120501_b0195
Sedik (10.1016/j.eswa.2023.120501_b0225) 2021; 34
10.1016/j.eswa.2023.120501_b0230
10.1016/j.eswa.2023.120501_b0155
da Silva (10.1016/j.eswa.2023.120501_b0075) 2021; 182
10.1016/j.eswa.2023.120501_b0235
Wang (10.1016/j.eswa.2023.120501_b0270) 2021; 17
Joshi (10.1016/j.eswa.2023.120501_b0140) 2020; 15
Editorial of the Lancet Infectious diseases (10.1016/j.eswa.2023.120501_b0115) 2020; 20
Wang (10.1016/j.eswa.2023.120501_b0285) 2022; 69
Lazer (10.1016/j.eswa.2023.120501_b0160) 2018; 359
Barnes (10.1016/j.eswa.2023.120501_b0040) 2021; 169
Elhadad (10.1016/j.eswa.2023.120501_b0100) 2021
Wang (10.1016/j.eswa.2023.120501_b0280) 2020; 17
Giuseppe (10.1016/j.eswa.2023.120501_b0110) 2017; 8
10.1016/j.eswa.2023.120501_b0080
References_xml – reference: (pp. 2116–2129).
– reference: r
– reference: Weissenbacher, D., Sarker, A. Magge, A. Daughton, A., O’Connor, K., Paul, M., & Gonzalez-Hernandez, G. (2019). Overview of the fourth social media mining for health (#SMM4H) Shared Task at ACL 2019.
– reference: (pp. 5998 - 6008).
– volume: 182
  year: 2021
  ident: b0075
  article-title: Meteorological and human mobility data on predicting COVID-19 cases by a novel hybrid decomposition method with anomaly detection analysis: A case study in the capitals of Brazil
  publication-title: Expert Systems with Applications
– reference: (pp. 2395–2400).
– reference: COVID-Fact: Fact extraction and verification of real-world claims on COVID-19 pandemic.
– start-page: 110203
  year: 2020
  ident: b0310
  article-title: Neural network powered COVID-19 spread forecasting model
– volume: 200
  year: 2022
  ident: b0185
  article-title: COVID-19 personal health mention detection from Tweets using dual convolutional neural network
  publication-title: Expert Systems With Applications
– reference: (pp. 244–257).
– volume: 169
  year: 2021
  ident: b0040
  article-title: Understanding panic buying during COVID-19: A text analytics approach
  publication-title: Expert Systems with Applications
– reference: Serrano, J. C. M., Papakyriakopoulos, O., & Hegelich, S. (2020). NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube.
– reference: Aljazeera (2020). Online resource,
– volume: 2022
  year: 2022
  ident: b0190
  article-title: Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID-19 diagnostic model
– volume: 36
  year: 2023
  ident: b0250
  article-title: Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography
  publication-title: Inform Med Unlocked
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0130
  article-title: Long short-term memory
  publication-title: Neural Computation
– reference: Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation.
– year: 2022
  ident: b0070
  article-title: Using fuzzy clustering with deep learning models for detection of COVID-19 disinformation
– reference: Mohr, I., Wührl, A., & Klinger, R. (2022). CoVERT: A corpus of fact-checked biomedical COVID-19 Tweets.
– volume: 80
  year: 2023
  ident: b0060
  article-title: Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review
  publication-title: Biomedical Signal Processing and Control
– start-page: 1746
  year: 2014
  end-page: 1751
  ident: b0145
  article-title: Convolutional neural networks for sentence classification
  publication-title: In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
– reference: (pp. 255-269).
– volume: 22
  year: 2021
  ident: b0150
  article-title: CoVerifi: A COVID-19 news verification system
  publication-title: Online Social Networks and Media
– reference: (pp. 3499–3512).
– volume: 9
  start-page: 27840
  year: 2021
  end-page: 27867
  ident: b0005
  article-title: CoAID-DEEP: An optimized intelligent framework for automated eetecting COVID-19 misleading information on Twitter
  publication-title: IEEE Access
– start-page: 4171
  year: 2019
  end-page: 4186
  ident: b0090
  article-title: BERT: Pre-training of deep bidirectional Transformers for language understanding
  publication-title: In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
– volume: 359
  start-page: 1094
  year: 2018
  end-page: 1096
  ident: b0160
  article-title: The science of fake news
  publication-title: Science
– volume: 169
  year: 2021
  ident: b0210
  article-title: Predicting tweet impact using a novel evidential reasoning prediction method
  publication-title: Expert Systems with Applications
– volume: 120
  year: 2021
  ident: b0035
  article-title: Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments
  publication-title: Pattern Recognition
– reference: , Data of access: Dec 08, 2022.
– reference: (pp. 7774–7785).
– volume: 34
  start-page: 11423
  year: 2021
  end-page: 11440
  ident: b0225
  article-title: Efficient deep learning approach for augmented detection of coronavirus disease
  publication-title: Neural Computing and Applications
– year: 2022
  ident: b0065
  article-title: Using deep learning models to detect fake news about COVID-19
– volume: 12
  start-page: 6364
  year: 2022
  ident: b0200
  article-title: Performance analysis for COVID-19 diagnosis using custom and state-of-the-art deep learning models
  publication-title: Applied Science
– reference: (pp. 21–30).
– volume: 44
  start-page: 4555
  year: 2022
  end-page: 4576
  ident: b0265
  article-title: A survey on curriculum learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Dadgar, S., & Ghatee, M. (2021). Checkovid: A COVID-19 misinformation detection system on Twitter using network and content mining perspectives. arXiv preprint arXiv:2107.09768.
– volume: 20
  start-page: 875
  year: 2020
  ident: b0115
  article-title: The COVID-19 infordemic
  publication-title: The Lancet Infectious Diseases
– reference: (pp. 1–10).
– reference: WHO. (2021). Infodemic, online resource:
– start-page: 859
  year: 2021
  end-page: 862
  ident: b0095
  article-title: Cross-lingual COVID-19 fake news detection
  publication-title: In Proceedings of 2021 International Conference on Data Mining Workshops (ICDMW) Cross-lingual COVID-19 Fake News Detection
– reference: (pp. 1532–1543).
– volume: 178
  year: 2021
  ident: b0315
  article-title: An integrated probabilistic graphic model and FMEA approach to identify product defects from social media data
  publication-title: Expert Systems with Applications
– reference: 2022, 12, Article 3181.
– start-page: 1
  year: 2020
  end-page: 11
  ident: b0135
  article-title: COVIDLies: Detecting COVID-19 misinformation on social media
  publication-title: In Proceedings of the 1st Workshop on NLP for COVID-19
– reference: (pp. 85–94).
– reference: (pp. 626–633).
– reference: Sushil, M., Suster, S., & Daelemans, W. (2021). Are we there yet? Exploring clinical domain knowledge of BERT models.
– reference: Luo, L., & Wang, Y. (2019). EmotionX-HSU: Adopting pre-trained BERT for emotion classification. arXiv preprint arXiv:1907.09669.
– reference: Saakyan, A., Chakrabarty, T., & Muresan, S. (2021).
– reference: Sarrouti, M., Abacha, A. B., Mrabet, Y., & Demner-Fushman, D. (2021). Evidence-based fact-checking of health-related claims.
– reference: Lin, Y. C., & Su, K.-Y. (2021). How fast can BERT learn simple natural language inference?
– volume: 17
  start-page: 2038
  year: 2020
  end-page: 2047
  ident: b0280
  article-title: Configuration-based smart customization service: A multitask learning approach
  publication-title: IEEE Transactions on Automation Science and Engineering
– reference: Liu, Z., Xiong, C., Dai, Z., Sun, S., Sun, M., & Liu, Z. (2020). Adapting open domain fact extraction and verification to COVID-FACT through in-domain language modeling.
– reference: Vijjali, R., Potluri, P., Kumar, S., & Teki, S. (2020). Two stage Transformer model for COVID-19 fake news detection and fact checking.
– volume: 34
  year: 2022
  ident: b0120
  article-title: Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images
  publication-title: Journal of King Saud University - Science
– reference: Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586.
– volume: 134
  start-page: 1024
  year: 2016
  end-page: 1030
  ident: b0085
  article-title: Surveillance tools emerging from search engines and social media data for determining eye disease patterns
  publication-title: JAMA Ophthalmology
– reference: (pp. 41–53).
– reference: Erten, M., Acharya, M.R., Kamath, A.P., Sampathila, N., Bairy, G.M., Aydemir, E., Barua, P.D., Baygin, M., Tuncer, I., Dogan, S., & Tuncer, T. (2022). Hamlet-pattern-based automated COVID-19 and influenza detection model using protein sequences.
– volume: 17
  start-page: 8397
  year: 2021
  end-page: 8405
  ident: b0275
  article-title: Knowledge-empowered multitask learning to address the semantic gap between customer needs and design specifications
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 224
  year: 2022
  ident: b0020
  article-title: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images
  publication-title: Chemometrics and Intelligent Laboratory Systems
– reference: (pp. 6382–6388).
– reference: Korbar, B., Tran, D., & Torresani, L. (2018). Cooperative learning of audio and video models from self-supervised synchronization.
– start-page: 632
  year: 2015
  end-page: 642
  ident: b0050
  article-title: A large annotated corpus for learning natural language inference
  publication-title: In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
– volume: 69
  start-page: 1622
  year: 2022
  end-page: 1634
  ident: b0285
  article-title: Bridging the semantic gap between customer needs and design specifications using user-generated content
  publication-title: IEEE Transactions on Engineering Management
– start-page: 41
  year: 2009
  end-page: 48
  ident: b0030
  article-title: Curriculum learning
  publication-title: In Proceedings of the 26th annual International Conference on Machine Learning
– reference: Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606.
– start-page: 163
  year: 2021
  end-page: 176
  ident: b0100
  article-title: An ensemble deep learning technique to detect COVID-19 misleading information
  publication-title: Advances in Networked-Based Information Systems
– volume: 15
  start-page: 0230322
  year: 2020
  ident: b0140
  article-title: Automated monitoring of tweets for early detection of the 2014 Ebola epidemic
  publication-title: PLoS One
– volume: 8
  start-page: 667
  year: 2017
  end-page: 700
  ident: b0110
  article-title: Lessons learnt from the named entity recognition and linking (NEEL) challenge series
  publication-title: Semantic Web Journal
– reference: .
– reference: Wei, J., & Zou, K. (2019). EDA: Easy data augmentation techniques for boosting performance on text classification tasks.
– reference: Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
– reference: Schick, Y., & Schütze., H. (2021). Exploiting cloze questions for few-shot text classification and natural language inference.
– volume: 141
  start-page: 489
  year: 2023
  end-page: 499
  ident: b0305
  article-title: BiLSTM deep neural network model for imbalanced medical data of IoT systems
  publication-title: Future Generation Computer Systems
– reference: Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv preprint arXiv: 1606.08415.
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need.
– reference: Talman, A., & Chatzikyriakidis, S. (2019). Testing the generalization power of neural network models across NLI benchmarks.
– volume: 17
  start-page: 6192
  year: 2021
  end-page: 6199
  ident: b0270
  article-title: Mining product reviews for needs-based product configurator design: A transfer learning-based approach
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 611
  year: 2021
  end-page: 649
  ident: b0010
  article-title: Fighting the COVID-19 infodemic: Modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society
  publication-title: In Findings of the Association for Computational Linguistics: EMNLP
– volume: 17
  start-page: 6192
  issue: 9
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0270
  article-title: Mining product reviews for needs-based product configurator design: A transfer learning-based approach
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.3043315
– volume: 182
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0075
  article-title: Meteorological and human mobility data on predicting COVID-19 cases by a novel hybrid decomposition method with anomaly detection analysis: A case study in the capitals of Brazil
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115190
– ident: 10.1016/j.eswa.2023.120501_b0245
  doi: 10.18653/v1/W19-4810
– ident: 10.1016/j.eswa.2023.120501_b0180
– start-page: 41
  year: 2009
  ident: 10.1016/j.eswa.2023.120501_b0030
  article-title: Curriculum learning
– ident: 10.1016/j.eswa.2023.120501_b0215
  doi: 10.18653/v1/2021.acl-long.165
– volume: 169
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0040
  article-title: Understanding panic buying during COVID-19: A text analytics approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114360
– volume: 34
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0120
  article-title: Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images
  publication-title: Journal of King Saud University - Science
  doi: 10.1016/j.jksus.2022.101898
– ident: 10.1016/j.eswa.2023.120501_b0080
– volume: 80
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2023.120501_b0060
  article-title: Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review
  publication-title: Biomedical Signal Processing and Control
– ident: 10.1016/j.eswa.2023.120501_b0165
  doi: 10.18653/v1/2021.eacl-main.51
– ident: 10.1016/j.eswa.2023.120501_b0155
– ident: 10.1016/j.eswa.2023.120501_b0170
– start-page: 163
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0100
  article-title: An ensemble deep learning technique to detect COVID-19 misleading information
– ident: 10.1016/j.eswa.2023.120501_b0260
– ident: 10.1016/j.eswa.2023.120501_b0290
  doi: 10.18653/v1/D19-1670
– ident: 10.1016/j.eswa.2023.120501_b0220
  doi: 10.18653/v1/2021.findings-emnlp.297
– volume: 359
  start-page: 1094
  issue: 6380
  year: 2018
  ident: 10.1016/j.eswa.2023.120501_b0160
  article-title: The science of fake news
  publication-title: Science
  doi: 10.1126/science.aao2998
– ident: 10.1016/j.eswa.2023.120501_b0105
  doi: 10.3390/diagnostics12123181
– start-page: 110203
  year: 2020
  ident: 10.1016/j.eswa.2023.120501_b0310
– volume: 8
  start-page: 667
  issue: 5
  year: 2017
  ident: 10.1016/j.eswa.2023.120501_b0110
  article-title: Lessons learnt from the named entity recognition and linking (NEEL) challenge series
  publication-title: Semantic Web Journal
  doi: 10.3233/SW-170276
– volume: 36
  year: 2023
  ident: 10.1016/j.eswa.2023.120501_b0250
  article-title: Swin-textural: A novel textural features-based image classification model for COVID-19 detection on chest computed tomography
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2022.101158
– start-page: 859
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0095
  article-title: Cross-lingual COVID-19 fake news detection
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.120501_b0135
  article-title: COVIDLies: Detecting COVID-19 misinformation on social media
– volume: 17
  start-page: 8397
  issue: 12
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0275
  article-title: Knowledge-empowered multitask learning to address the semantic gap between customer needs and design specifications
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3067141
– volume: 9
  start-page: 27840
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0005
  article-title: CoAID-DEEP: An optimized intelligent framework for automated eetecting COVID-19 misleading information on Twitter
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058066
– ident: 10.1016/j.eswa.2023.120501_b0235
  doi: 10.18653/v1/2021.eacl-main.20
– ident: 10.1016/j.eswa.2023.120501_b0045
  doi: 10.1162/tacl_a_00051
– start-page: 632
  year: 2015
  ident: 10.1016/j.eswa.2023.120501_b0050
  article-title: A large annotated corpus for learning natural language inference
– volume: 22
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0150
  article-title: CoVerifi: A COVID-19 news verification system
  publication-title: Online Social Networks and Media
  doi: 10.1016/j.osnem.2021.100123
– volume: 20
  start-page: 875
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2023.120501_b0115
  article-title: The COVID-19 infordemic
  publication-title: The Lancet Infectious Diseases
  doi: 10.1016/S1473-3099(20)30565-X
– ident: 10.1016/j.eswa.2023.120501_b0205
  doi: 10.3115/v1/D14-1162
– ident: 10.1016/j.eswa.2023.120501_b0015
– ident: 10.1016/j.eswa.2023.120501_b0195
– volume: 15
  start-page: 0230322
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2023.120501_b0140
  article-title: Automated monitoring of tweets for early detection of the 2014 Ebola epidemic
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0230322
– volume: 169
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0210
  article-title: Predicting tweet impact using a novel evidential reasoning prediction method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114400
– volume: 178
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0315
  article-title: An integrated probabilistic graphic model and FMEA approach to identify product defects from social media data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115030
– volume: 200
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0185
  article-title: COVID-19 personal health mention detection from Tweets using dual convolutional neural network
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2022.117139
– start-page: 1746
  year: 2014
  ident: 10.1016/j.eswa.2023.120501_b0145
  article-title: Convolutional neural networks for sentence classification
– start-page: 611
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0010
  article-title: Fighting the COVID-19 infodemic: Modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society
– ident: 10.1016/j.eswa.2023.120501_b0025
– ident: 10.1016/j.eswa.2023.120501_b0300
– volume: 134
  start-page: 1024
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2023.120501_b0085
  article-title: Surveillance tools emerging from search engines and social media data for determining eye disease patterns
  publication-title: JAMA Ophthalmology
  doi: 10.1001/jamaophthalmol.2016.2267
– ident: 10.1016/j.eswa.2023.120501_b0125
– ident: 10.1016/j.eswa.2023.120501_b0240
  doi: 10.18653/v1/2021.bionlp-1.5
– volume: 12
  start-page: 6364
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0200
  article-title: Performance analysis for COVID-19 diagnosis using custom and state-of-the-art deep learning models
  publication-title: Applied Science
  doi: 10.3390/app12136364
– volume: 2022
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0190
  article-title: Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID-19 diagnostic model
  publication-title: Computational Intelligence Neuroscience
  doi: 10.1155/2022/1307944
– volume: 44
  start-page: 4555
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0265
  article-title: A survey on curriculum learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 224
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0020
  article-title: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104539
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.eswa.2023.120501_b0130
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0065
  article-title: Using deep learning models to detect fake news about COVID-19
  publication-title: ACM Transactions on Internet Technology
– ident: 10.1016/j.eswa.2023.120501_b0230
– ident: 10.1016/j.eswa.2023.120501_b0255
– volume: 69
  start-page: 1622
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0285
  article-title: Bridging the semantic gap between customer needs and design specifications using user-generated content
  publication-title: IEEE Transactions on Engineering Management
  doi: 10.1109/TEM.2020.3021698
– volume: 120
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0035
  article-title: Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108102
– volume: 141
  start-page: 489
  year: 2023
  ident: 10.1016/j.eswa.2023.120501_b0305
  article-title: BiLSTM deep neural network model for imbalanced medical data of IoT systems
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.12.004
– volume: 34
  start-page: 11423
  year: 2021
  ident: 10.1016/j.eswa.2023.120501_b0225
  article-title: Efficient deep learning approach for augmented detection of coronavirus disease
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05410-8
– ident: 10.1016/j.eswa.2023.120501_b0175
  doi: 10.18653/v1/2020.findings-emnlp.216
– volume: 17
  start-page: 2038
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2023.120501_b0280
  article-title: Configuration-based smart customization service: A multitask learning approach
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2020.2986774
– start-page: 4171
  year: 2019
  ident: 10.1016/j.eswa.2023.120501_b0090
  article-title: BERT: Pre-training of deep bidirectional Transformers for language understanding
– ident: 10.1016/j.eswa.2023.120501_b0295
  doi: 10.18653/v1/W19-3203
– year: 2022
  ident: 10.1016/j.eswa.2023.120501_b0070
  article-title: Using fuzzy clustering with deep learning models for detection of COVID-19 disinformation
  publication-title: ACM Transactions on Asian and Low-Resource Language Information Process
  doi: 10.1145/3548458
SSID ssj0017007
Score 2.493938
Snippet The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this ‘infodemic’ has been...
The COVID-19 pandemic has been accompanied by a proliferation of online misinformation and disinformation about the virus. Combating this 'infodemic' has been...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120501
SubjectTerms COVID-19
Curriculum learning
Deep learning
Social media
Text mining
Title Combating the COVID-19 infodemic using Prompt-Based curriculum learning
URI https://dx.doi.org/10.1016/j.eswa.2023.120501
https://www.ncbi.nlm.nih.gov/pubmed/37274611
https://www.proquest.com/docview/2822707065
https://pubmed.ncbi.nlm.nih.gov/PMC10193815
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvXDpA_pYWpCReqvM2rEdJ0fYli5UpZVaKm6WX6FboYBgUW_97Z3ZOBHbIg7cEseWrJnxzDjzzQwhb73wcMfxgiUnNFNVU7NaB85M1EomI3woMd_583E5PVFHp_p0hUz6XBiEVWbd3-n0hbbOI-NMzfHlbDb-Bs4BmEOMNMKdgktMNFfKoJTv_hlgHlh-znT19gzD2TlxpsN4pevfWHuokLui4Do3hrnDOP3vfP6LobxllA6eksfZm6R73YafkZXUrpMnfacGmg_uBvkIQ94hwpmCw0cnX34cvmeipiheC3g8Rfz7Gf16BUvnbB9MW6Rh-DtIc2-Js-fk5ODD98mU5RYKLIBnNGeNC403RaxUAMMdhYfHqgjBl9JxFZ3znoeqjg5sWZQ8cc-jVLVPvDJNKLh8QVbbiza9IrSMlQm1dE41GJEJXgFPq0bqkJrotBkR0dPOhlxfHNtcnNseSPbLIr0t0tt29B6Rd8Oay666xr2zdc8SuyQjFtT_vet2ev5ZODwYEXFturi5toihNRwjvSPysuPnsA8Jnp0qBayuljg9TMDC3Mtf2tnPRYFu2EcNnpDefOCGX5M1fOtSHt-Q1fnVTdoC32futxfCvU0e7R1-mh7_BdYkA8c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCF92N5GglOyF07duLkwAFayi59gESLenP9StmqSqvuVhUX_hR_kJmNE7GAekDqLXI80WjGnhlnPs8Q8tIJB2ccJ1i0ImeqrCtW5Z4zHXIloxbOF3jfeWu7GO2qj3v53hL52d2FQVhlsv2tTZ9b6zQyTNIcnkwmwy8QHIA7xEwjnCm47JCVG_H7OZzbpm_Ga6DkV1m2_n5ndcRSawHmIWKYsdr62ukslMqDQwvCwWOZee8KabkK1jrHfVkFCzY-SB6540GqykVe6tpnXMJ3r5CrCswFtk1Y-dHjSrDenW4L_GmG7KWbOi2oLE7PsdhRJldExvPUieYf3vDvaPdP0OZvXnD9FrmRwlf6tpXQbbIUmzvkZtcagiZLcZd8gCFnEVJNIcKkq5--jteYqCiu5zkenyLg_oB-PgXSGXsHvjRQ3_-OpKmZxcE9snspgr1PlpvjJj4ktAil9pW0VtWYAvJOwSIqa5n7WAeb6wERneyMTwXNsa_GkemQa4cG5W1Q3qaV94C87mlO2nIeF87OO5WYhUVpwN9cSPei05-B3YopGNvE47OpQdCu5phaHpAHrT57PiSEkqoQQF0uaLqfgJXAF980k2_ziuDARwWhV_7oPxl-Tq6NdrY2zeZ4e-MxuY5v2vuWT8jy7PQsPoXAa-aezRc6JfuXvbN-AbX3QRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combating+the+COVID-19+infodemic+using+Prompt-Based+curriculum+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Peng%2C+Zifan&rft.au=Li%2C+Mingchen&rft.au=Wang%2C+Yue&rft.au=Ho%2C+George+T.S.&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=229&rft_id=info:doi/10.1016%2Fj.eswa.2023.120501&rft.externalDocID=S0957417423010035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon