Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co
Dislocation-precipitate interaction and solute segregation play important roles in controlling the mechanical behavior of Ni-based superalloys at high temperature. In particular, the increased mobility of solutes at high temperature leads to increased dislocation-solute interaction. For example, ato...
Saved in:
Published in | Acta materialia Vol. 175; pp. 250 - 261 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2019
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1359-6454 1873-2453 |
DOI | 10.1016/j.actamat.2019.06.008 |
Cover
Loading…
Abstract | Dislocation-precipitate interaction and solute segregation play important roles in controlling the mechanical behavior of Ni-based superalloys at high temperature. In particular, the increased mobility of solutes at high temperature leads to increased dislocation-solute interaction. For example, atom probe tomography (APT) results [1] for single crystal MC2 superalloy indicate significant segregation of solute elements such as Co and Cr to dislocations and stacking faults in γ′ precipitates. To gain further insight into solute segregation, dislocation-solute interaction, and its effect on the mechanical behavior in such Ni-superalloys, finite-deformation phase field chemomechanics [2] is applied in this work to develop a model for dislocation-solute-precipitate interaction in the two-phase γ-γ′ Ni-based superalloy model system Ni–Al–Co. Identification and quantification of this model is based in particular on the corresponding Ni–Al–Co embedded atom method (EAM) potential [3]. Simulation results imply both Cottrell- and Suzuki-type segregation of Co in γ and γ'. Significant segregation of Co to dislocation cores and faults in γ′ is also predicted, in agreement with APT results. Predicted as well is the drag of Co by γ dislocations entering and shearing γ'. Since solute elements such as Co generally prefer the γ phase, Co depletion in γ′ could be reversed by such dislocation drag. The resulting change in precipitate chemistry may in turn affect its stability and play a role in precipitate coarsening and rafting.
[Display omitted] |
---|---|
AbstractList | Dislocation-precipitate interaction and solute segregation play important roles in controlling the mechanical behavior of Ni-based superalloys at high temperature. In particular, the increased mobility of solutes at high temperature leads to increased dislocation-solute interaction. For example, atom probe tomography (APT) results [1] for single crystal MC2 superalloy indicate significant segregation of solute elements such as Co and Cr to dislocations and stacking faults in γ′ precipitates. To gain further insight into solute segregation, dislocation-solute interaction, and its effect on the mechanical behavior in such Ni-superalloys, finite-deformation phase field chemomechanics [2] is applied in this work to develop a model for dislocation-solute-precipitate interaction in the two-phase γ-γ′ Ni-based superalloy model system Ni--Al--Co. Identification and quantification of this model is based in particular on the corresponding Ni--Al--Co embedded atom method (EAM) potential [3]. Simulation results imply both Cottrell- and Suzuki-type segregation of Co in γ and γ'. Significant segregation of Co to dislocation cores and faults in γ′ is also predicted, in agreement with APT results. Predicted as well is the drag of Co by γ dislocations entering and shearing γ'. Since solute elements such as Co generally prefer the γ phase, Co depletion in γ′ could be reversed by such dislocation drag. The resulting change in precipitate chemistry may in turn affect its stability and play a role in precipitate coarsening and rafting. Dislocation-precipitate interaction and solute segregation play important roles in controlling the mechanical behavior of Ni-based superalloys at high temperature. In particular, the increased mobility of solutes at high temperature leads to increased dislocation-solute interaction. For example, atom probe tomography (APT) results [1] for single crystal MC2 superalloy indicate significant segregation of solute elements such as Co and Cr to dislocations and stacking faults in γ′ precipitates. To gain further insight into solute segregation, dislocation-solute interaction, and its effect on the mechanical behavior in such Ni-superalloys, finite-deformation phase field chemomechanics [2] is applied in this work to develop a model for dislocation-solute-precipitate interaction in the two-phase γ-γ′ Ni-based superalloy model system Ni–Al–Co. Identification and quantification of this model is based in particular on the corresponding Ni–Al–Co embedded atom method (EAM) potential [3]. Simulation results imply both Cottrell- and Suzuki-type segregation of Co in γ and γ'. Significant segregation of Co to dislocation cores and faults in γ′ is also predicted, in agreement with APT results. Predicted as well is the drag of Co by γ dislocations entering and shearing γ'. Since solute elements such as Co generally prefer the γ phase, Co depletion in γ′ could be reversed by such dislocation drag. The resulting change in precipitate chemistry may in turn affect its stability and play a role in precipitate coarsening and rafting. [Display omitted] |
Author | Cormier, Jonathan Svendsen, Bob Shanthraj, Pratheek Kontis, Paraskevas Gault, Baptiste Raabe, Dierk Mianroodi, Jaber Rezaei |
Author_xml | – sequence: 1 givenname: Jaber Rezaei surname: Mianroodi fullname: Mianroodi, Jaber Rezaei email: j.mianroodi@mpie.de organization: Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany – sequence: 2 givenname: Pratheek orcidid: 0000-0002-6324-0306 surname: Shanthraj fullname: Shanthraj, Pratheek organization: Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany – sequence: 3 givenname: Paraskevas orcidid: 0000-0002-4169-0445 surname: Kontis fullname: Kontis, Paraskevas organization: Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany – sequence: 4 givenname: Jonathan surname: Cormier fullname: Cormier, Jonathan organization: Institut Pprime, Physics and Mechanics of Materials Department, UPR CNRS 3346, ISAE-ENSMA, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope-, Chasseneuil, France – sequence: 5 givenname: Baptiste orcidid: 0000-0002-4934-0458 surname: Gault fullname: Gault, Baptiste organization: Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany – sequence: 6 givenname: Bob surname: Svendsen fullname: Svendsen, Bob organization: Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany – sequence: 7 givenname: Dierk surname: Raabe fullname: Raabe, Dierk organization: Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany |
BackLink | https://hal.science/hal-02285951$$DView record in HAL |
BookMark | eNqFkMGO1DAMQCO0SOwufAJSrxxanLZJWnFAoxHLIo3gAufIk7iMR2kzasJK3PgH_pAvIaNZceCyl8Sy_Sz73YirJS4kxGsJjQSp3x4bdBlnzE0LcmxANwDDM3EtB9PVba-6qxJ3aqx1r_oX4ialI4BsTQ_XImxynDlldtXpgImqiSn4yh1ojjO5Ay7sMFRz9BR4-V7FqfKcQnSYOS51iuFHpvq0kuMTZ8xU8ZJpLQuVcomrz_zn1-9NKM82vhTPJwyJXj3-t-Lb3Yev2_t69-Xjp-1mV7te6VxP0tAI-8l7Y9TU7mGve_S6HbQahwFxr7QZUCuUsgNFUkmtDBg_Ge-g89TdijeXuQcM9rTyjOtPG5Ht_WZnzzlo20GNSj7I0qsuvW6NKa00_QMk2LNee7SPeu1ZrwVti97CvfuPc-f7y9V5RQ5P0u8vNBUND0yrTY5pceS5qMzWR35iwl8Mzp9J |
CitedBy_id | crossref_primary_10_1016_j_msea_2020_139571 crossref_primary_10_1016_j_actamat_2024_119955 crossref_primary_10_1016_j_cpc_2020_107315 crossref_primary_10_1063_5_0049502 crossref_primary_10_1016_j_commatsci_2022_111419 crossref_primary_10_1016_j_mtcomm_2021_103088 crossref_primary_10_1007_s11661_020_05947_2 crossref_primary_10_1016_j_actamat_2021_116966 crossref_primary_10_1016_j_actamat_2022_117899 crossref_primary_10_1016_j_scriptamat_2020_05_004 crossref_primary_10_1016_j_jallcom_2020_157355 crossref_primary_10_1016_j_actamat_2020_08_056 crossref_primary_10_1016_j_mechmat_2023_104806 crossref_primary_10_1038_s41467_019_14062_9 crossref_primary_10_1038_s41524_021_00660_z crossref_primary_10_1073_pnas_2203399119 crossref_primary_10_1016_j_actamat_2020_02_012 crossref_primary_10_3390_met10040426 crossref_primary_10_1016_j_jmrt_2024_12_103 crossref_primary_10_1016_j_scriptamat_2020_11_011 crossref_primary_10_1016_j_actamat_2021_116704 crossref_primary_10_1016_j_net_2023_01_018 crossref_primary_10_1016_j_ijplas_2024_104004 crossref_primary_10_1016_j_intermet_2021_107124 crossref_primary_10_1016_j_mtla_2020_100913 crossref_primary_10_1016_j_mtcomm_2023_106987 crossref_primary_10_1080_02670836_2022_2081774 crossref_primary_10_3390_ma14071787 crossref_primary_10_1038_s41524_022_00764_0 crossref_primary_10_3390_cryst12101496 crossref_primary_10_1016_j_commatsci_2024_113021 crossref_primary_10_1016_j_jmst_2024_11_026 crossref_primary_10_1016_j_commatsci_2023_112652 crossref_primary_10_1080_09500839_2020_1866220 crossref_primary_10_1016_j_intermet_2023_107976 crossref_primary_10_1016_j_jmrt_2024_08_090 crossref_primary_10_1016_j_jmps_2022_105031 crossref_primary_10_1016_j_mechmat_2024_105164 crossref_primary_10_1186_s40323_019_0138_7 crossref_primary_10_1002_adem_202402338 crossref_primary_10_1557_s43579_022_00251_z crossref_primary_10_1016_j_jmst_2023_05_074 crossref_primary_10_3390_ma13102238 crossref_primary_10_1002_adem_201901044 crossref_primary_10_1016_j_jmps_2023_105514 crossref_primary_10_1080_09603409_2022_2046386 crossref_primary_10_1016_j_cma_2020_113029 crossref_primary_10_1016_j_jmps_2020_104253 crossref_primary_10_2139_ssrn_3984148 crossref_primary_10_1126_sciadv_abf0563 crossref_primary_10_1016_j_intermet_2022_107528 crossref_primary_10_1088_1361_651X_ad2fd6 crossref_primary_10_1016_j_commatsci_2020_109907 crossref_primary_10_1016_j_actamat_2023_118873 crossref_primary_10_1016_j_commatsci_2023_112490 crossref_primary_10_1021_acs_chemrev_2c00799 crossref_primary_10_1146_annurev_matsci_102419_011433 crossref_primary_10_1016_j_mechmat_2020_103555 |
Cites_doi | 10.1007/BF02651757 10.1088/0965-0393/18/1/015012 10.1016/j.scriptamat.2018.07.042 10.1016/j.jmps.2017.10.005 10.1088/1361-651X/aaaf94 10.1016/j.actamat.2003.10.014 10.1063/1.328693 10.1103/PhysRevB.61.8714 10.1126/science.aab2633 10.1016/j.scriptamat.2014.06.032 10.1103/PhysRevB.95.174101 10.1016/j.scriptamat.2017.10.005 10.1016/j.actamat.2007.07.048 10.1016/j.scriptamat.2018.05.014 10.1016/j.actamat.2011.11.024 10.1016/0038-1098(96)00279-7 10.1016/j.actamat.2010.03.041 10.1006/jcph.1995.1039 10.1080/14786435.2011.630691 10.1080/09500839.2010.489887 10.1016/j.actamat.2009.10.041 10.1016/j.actamat.2012.01.054 10.1016/j.commatsci.2017.01.024 10.1016/j.actamat.2018.05.074 10.1016/j.jmps.2013.09.012 10.1080/14786435.2016.1157270 10.1103/PhysRevB.84.144108 10.1103/PhysRevB.69.134103 10.1016/j.crhy.2007.11.005 10.1016/j.actamat.2012.03.023 10.1007/s11661-018-4748-3 10.1088/0965-0393/21/2/025015 10.1016/j.jmps.2018.03.008 10.1103/PhysRevB.84.054103 10.1088/0370-1298/62/1/308 10.1016/j.mtla.2018.09.018 10.1007/BF00729354 10.1016/j.actamat.2017.03.067 10.1016/j.commatsci.2018.04.030 10.1016/j.actamat.2018.01.055 10.1016/S1359-6454(01)00075-1 10.1016/j.jmps.2016.04.029 10.1016/j.actamat.2007.11.033 10.1007/s11837-018-2802-7 10.1088/0965-0393/23/6/065006 10.1016/S1359-6454(01)00383-4 10.1016/j.actamat.2019.02.022 10.1016/j.actamat.2011.02.022 10.1016/j.jmps.2015.01.007 |
ContentType | Journal Article |
Copyright | 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.actamat.2019.06.008 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2453 |
EndPage | 261 |
ExternalDocumentID | oai_HAL_hal_02285951v1 10_1016_j_actamat_2019_06_008 S1359645419303672 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB R2- SEW SSH T9H ZY4 1XC |
ID | FETCH-LOGICAL-c456t-f17e90bfdd775f2b0b64ad62865988aab5678a65a11305e15165707df7dc03de3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Fri May 09 12:13:31 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Jul 01 01:20:46 EDT 2025 Fri Feb 23 02:38:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solute segregation Ni-based superalloys Dislocation glide Atomistic phase field chemomechanics Dislocation-solute interaction |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-f17e90bfdd775f2b0b64ad62865988aab5678a65a11305e15165707df7dc03de3 |
ORCID | 0000-0002-4934-0458 0000-0002-4169-0445 0000-0002-6324-0306 0000-0002-4613-4472 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1359645419303672 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_02285951v1 crossref_primary_10_1016_j_actamat_2019_06_008 crossref_citationtrail_10_1016_j_actamat_2019_06_008 elsevier_sciencedirect_doi_10_1016_j_actamat_2019_06_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-15 |
PublicationDateYYYYMMDD | 2019-08-15 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Acta materialia |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mianroodi, Svendsen (bib26) 2015; 77 Llewelyn, Christofidou, Araullo-Peters, Jones, Hardy, Marquis, Stone (bib41) 2017; 131 Wang, Jin, Cutiño, Khachaturyan (bib21) 2001; 49 Ghazisaeidi, Trinkle (bib12) 2012; 60 Mendez, Ponga, Ortiz (bib19) 2018; 115 Mianroodi, Hunter, Beyerlein, Svendsen (bib27) 2016; 95 Stukowski (bib40) 2010; 18 Ruban, Skriver (bib34) 1996; 99 Nabarro, de Villiers (bib8) 1995 Vorontsov, Shen, Wang, Dye, Rae (bib28) 2010; 58 Wang, Li (bib23) 2010; 58 Bulatov, Cai (bib36) 2006 Li, Sarkar, Cox, Lenosky, Bitzek, Wang (bib18) 2011; 84 Campbell, Boettinger, Kattner (bib43) 2002; 50 Zhou, Shen, Mills, Li, Wang (bib33) 2011; 59 Ponga, Sun (bib20) 2018; 26 Cormier, Jouiad, Hamon, Villechaise, Milhet (bib46) 2010; 90 Wu, Makineni, Kontis, Dehm, Raabe, Gault, Eggeler (bib7) 2018; 4 Viswanathan, Shi, Genc, Vorontsov, Kovarik, Rae, Mills (bib10) 2015; 94 Svendsen, Shanthraj, Raabe (bib2) 2018; 112 Plimpton (bib37) 1995; 117 Makineni, Lenz, Kontis, Li, Kumar, Felfer, Neumeier, Herbig, Spiecker, Raabe, Gault (bib50) 2018; 70 Xiang, Wei, Ming, E (bib42) 2008; 56 Shen, Wang (bib22) 2004; 52 Purja Pun, Yamakov, Mishin (bib3) 2015; 23 Turlo, Rupert (bib17) 2018; 154 Rodney, Martin (bib16) 2000; 61 Minamino, Jung, Yamane, Hirao (bib44) 1992; 23 Shinoda, Shiga, Mikami (bib39) 2004; 69 Suzuki (bib55) 1952; vol. 4 Hunter, Beyerlein, Germann, Koslowski (bib24) 2011; 84 Hunter, Zhang, Beyerlein, Germann, Koslowski (bib25) 2013; 21 Makineni, Kumar, Lenz, Kontis, Meiners, Zenk, Zaefferer, Eggeler, Neumeier, Spiecker, Raabe, Gault (bib51) 2018; 155 Mianroodi, Peerlings, Svendsen (bib14) 2016; 96 Makineni, Lenz, Neumeier, Spiecker, Raabe, Gault (bib52) 2018; 157 Jung, Yamane, Minamino, Hirao, Araki, Saji (bib45) 1992; 11 Kontis, Li, Collins, Cormier, Raabe, Gault (bib1) 2018; 145 Meid, Eggeler, Watermeyer, Kostka, Hammerschmidt, Drautz, Eggeler, Bartsch (bib6) 2019; 168 Cottrell, Bilby (bib4) 1949; 62 Koizumi, Nukaya, Suzuki, Kurosu, Li, Matsumoto, Sato, Tanaka, Chiba (bib9) 2012; 60 Darvishi Kamachali, Schwarze (bib31) 2017; 130 Reed (bib5) 2006 Parrinello, Rahman (bib38) 1981; 52 Schwarze, Gupta, Hickel, Darvishi Kamachali (bib30) 2017; 95 Šilhavý (bib35) 1997 Cormier, Milhet, Mendez (bib47) 2007; 55 Hamadi, Hamon, Delautre, Cormier, Villechaise, Utada, Kontis, Bozzolo (bib49) 2018; 49 Roters, Diehl, Shanthraj, Eisenlohr, Reuber, Wong, Maiti, Ebrahimi, Hochrainer, Fabritius, Nikolov, Friák, Fujita, Grilli, Janssens, Jia, Kok, Ma, Meier, Werner, Stricker, Weygand, Raabe (bib53) 2019; 158 Hochrainer, Sandfeld, Zaiser, Gumbsch (bib15) 2014; 63 Hirth, Lothe (bib54) 1982 Kuzmina, Herbig, Ponge, Sandlöbes, Raabe (bib48) 2015; 349 Fivel (bib13) 2008; 9 Kundin, Mushongera, Goehler, Emmerich (bib32) 2012; 60 Rao, Smith, Mills, Ghazisaeidi (bib11) 2018; 148 Vorontsov, Voskoboinikov, Rae (bib29) 2012; 92 Nabarro (10.1016/j.actamat.2019.06.008_bib8) 1995 Mendez (10.1016/j.actamat.2019.06.008_bib19) 2018; 115 Vorontsov (10.1016/j.actamat.2019.06.008_bib28) 2010; 58 Svendsen (10.1016/j.actamat.2019.06.008_bib2) 2018; 112 Koizumi (10.1016/j.actamat.2019.06.008_bib9) 2012; 60 Ponga (10.1016/j.actamat.2019.06.008_bib20) 2018; 26 Jung (10.1016/j.actamat.2019.06.008_bib45) 1992; 11 Hochrainer (10.1016/j.actamat.2019.06.008_bib15) 2014; 63 Hamadi (10.1016/j.actamat.2019.06.008_bib49) 2018; 49 Suzuki (10.1016/j.actamat.2019.06.008_bib55) 1952; vol. 4 Kontis (10.1016/j.actamat.2019.06.008_bib1) 2018; 145 Plimpton (10.1016/j.actamat.2019.06.008_bib37) 1995; 117 Fivel (10.1016/j.actamat.2019.06.008_bib13) 2008; 9 Shinoda (10.1016/j.actamat.2019.06.008_bib39) 2004; 69 Mianroodi (10.1016/j.actamat.2019.06.008_bib14) 2016; 96 Mianroodi (10.1016/j.actamat.2019.06.008_bib27) 2016; 95 Makineni (10.1016/j.actamat.2019.06.008_bib51) 2018; 155 Llewelyn (10.1016/j.actamat.2019.06.008_bib41) 2017; 131 Ghazisaeidi (10.1016/j.actamat.2019.06.008_bib12) 2012; 60 Mianroodi (10.1016/j.actamat.2019.06.008_bib26) 2015; 77 Wang (10.1016/j.actamat.2019.06.008_bib21) 2001; 49 Roters (10.1016/j.actamat.2019.06.008_bib53) 2019; 158 Parrinello (10.1016/j.actamat.2019.06.008_bib38) 1981; 52 Makineni (10.1016/j.actamat.2019.06.008_bib52) 2018; 157 Kuzmina (10.1016/j.actamat.2019.06.008_bib48) 2015; 349 Hirth (10.1016/j.actamat.2019.06.008_bib54) 1982 Zhou (10.1016/j.actamat.2019.06.008_bib33) 2011; 59 Shen (10.1016/j.actamat.2019.06.008_bib22) 2004; 52 Turlo (10.1016/j.actamat.2019.06.008_bib17) 2018; 154 Wu (10.1016/j.actamat.2019.06.008_bib7) 2018; 4 Xiang (10.1016/j.actamat.2019.06.008_bib42) 2008; 56 Cormier (10.1016/j.actamat.2019.06.008_bib46) 2010; 90 Makineni (10.1016/j.actamat.2019.06.008_bib50) 2018; 70 Meid (10.1016/j.actamat.2019.06.008_bib6) 2019; 168 Schwarze (10.1016/j.actamat.2019.06.008_bib30) 2017; 95 Purja Pun (10.1016/j.actamat.2019.06.008_bib3) 2015; 23 Reed (10.1016/j.actamat.2019.06.008_bib5) 2006 Cottrell (10.1016/j.actamat.2019.06.008_bib4) 1949; 62 Hunter (10.1016/j.actamat.2019.06.008_bib24) 2011; 84 Hunter (10.1016/j.actamat.2019.06.008_bib25) 2013; 21 Stukowski (10.1016/j.actamat.2019.06.008_bib40) 2010; 18 Vorontsov (10.1016/j.actamat.2019.06.008_bib29) 2012; 92 Rao (10.1016/j.actamat.2019.06.008_bib11) 2018; 148 Ruban (10.1016/j.actamat.2019.06.008_bib34) 1996; 99 Bulatov (10.1016/j.actamat.2019.06.008_bib36) 2006 Wang (10.1016/j.actamat.2019.06.008_bib23) 2010; 58 Kundin (10.1016/j.actamat.2019.06.008_bib32) 2012; 60 Darvishi Kamachali (10.1016/j.actamat.2019.06.008_bib31) 2017; 130 Rodney (10.1016/j.actamat.2019.06.008_bib16) 2000; 61 Cormier (10.1016/j.actamat.2019.06.008_bib47) 2007; 55 Li (10.1016/j.actamat.2019.06.008_bib18) 2011; 84 Šilhavý (10.1016/j.actamat.2019.06.008_bib35) 1997 Minamino (10.1016/j.actamat.2019.06.008_bib44) 1992; 23 Campbell (10.1016/j.actamat.2019.06.008_bib43) 2002; 50 Viswanathan (10.1016/j.actamat.2019.06.008_bib10) 2015; 94 |
References_xml | – volume: 92 start-page: 608 year: 2012 end-page: 634 ident: bib29 article-title: Shearing of publication-title: Phil. Mag. – volume: 77 start-page: 109 year: 2015 end-page: 122 ident: bib26 article-title: Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems publication-title: J. Mech. Phys. Solids – volume: 52 start-page: 7182 year: 1981 ident: bib38 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. – volume: 145 start-page: 76 year: 2018 end-page: 80 ident: bib1 article-title: The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys publication-title: Scripta Mater. – volume: 95 start-page: 719 year: 2016 end-page: 741 ident: bib27 article-title: Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals publication-title: J. Mech. Phys. Solids – year: 1982 ident: bib54 article-title: Theory of Dislocations – volume: 49 start-page: 1847 year: 2001 end-page: 1857 ident: bib21 article-title: Nanoscale phase field microelasticity theory of dislocations: model and 3d simulations publication-title: Acta Mater. – volume: 99 start-page: 813 year: 1996 end-page: 817 ident: bib34 article-title: Calculated site substitution in publication-title: Solid State Commun. – volume: 58 start-page: 4110 year: 2010 end-page: 4119 ident: bib28 article-title: Shearing of publication-title: Acta Mater. – volume: 52 start-page: 683 year: 2004 end-page: 691 ident: bib22 article-title: Incorporation of gamma-surface to phase field model of dislocations: simulation dislocation dissociation in fcc crystals publication-title: Acta Mater. – volume: 95 start-page: 1 year: 2017 end-page: 14 ident: bib30 article-title: Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling publication-title: Phys. Rev. B – volume: 157 start-page: 62 year: 2018 end-page: 66 ident: bib52 article-title: Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy publication-title: Scripta Mater. – volume: 69 start-page: 134103 year: 2004 ident: bib39 article-title: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress publication-title: Phys. Rev. B – volume: 4 start-page: 109 year: 2018 end-page: 114 ident: bib7 article-title: On the segregation of Re at dislocations in the publication-title: Materialia – volume: 130 start-page: 292 year: 2017 end-page: 296 ident: bib31 article-title: Inverse ripening and rearrangement of precipitates under chemomechanical coupling publication-title: Comput. Mater. Sci. – volume: 155 start-page: 362 year: 2018 end-page: 371 ident: bib51 article-title: On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy publication-title: Acta Mater. – year: 1997 ident: bib35 article-title: The Mechanics and Thermodynamics of Continuous Media – year: 2006 ident: bib5 article-title: The Superalloys: Fundamentals and Applications – volume: 168 start-page: 343 year: 2019 end-page: 352 ident: bib6 article-title: Stress-induced formation of TCP phases during high temperature low cycle fatigue loading of the single-crystal Ni-base superalloy ERBO/1 publication-title: Acta Mater. – volume: 70 start-page: 1736 year: 2018 end-page: 1743 ident: bib50 article-title: Correlative microscopy—novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: a case study in superalloys publication-title: JOM – volume: 26 year: 2018 ident: bib20 article-title: A unified framework for heat and mass transport at the atomic scale publication-title: Model. Simul. Mater. Sci. Eng. – volume: 112 start-page: 619 year: 2018 end-page: 636 ident: bib2 article-title: Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids publication-title: J. Mech. Phys. Solids – volume: 23 start-page: 65006 year: 2015 ident: bib3 article-title: Interatomic potential for the ternary Ni-Al-Co system and application to atomistic modeling of the B2-L10 martensitic transformation publication-title: Model. Simul. Mater. Sci. Eng. – volume: 96 start-page: 1171 year: 2016 end-page: 1187 ident: bib14 article-title: Strongly non-local modelling of dislocation transport and pile-up publication-title: Phil. Mag. – volume: 59 start-page: 3484 year: 2011 end-page: 3497 ident: bib33 article-title: Modeling displacive-diffusional coupled dislocation shearing of publication-title: Acta Mater. – volume: 23 start-page: 2783 year: 1992 end-page: 2790 ident: bib44 article-title: Diffusion of cobalt, chromium, and titanium in Ni3Al publication-title: Metallurgical Transactions A – volume: 90 start-page: 611 year: 2010 end-page: 620 ident: bib46 article-title: Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions publication-title: Phil. Mag. Lett. – volume: 11 start-page: 1333 year: 1992 end-page: 1337 ident: bib45 article-title: Interdiffusion and its size effect in nickel solid solutions of Ni-Co, Ni-Cr and Ni-Ti systems publication-title: J. Mater. Sci. Lett. – volume: 349 start-page: 1080 year: 2015 end-page: 1083 ident: bib48 article-title: Linear complexions: confined chemical and structural states at dislocations publication-title: Science – volume: 49 start-page: 4246 year: 2018 end-page: 4261 ident: bib49 article-title: Consequences of a room-temperature plastic deformation during processing on creep durability of a Ni-based SX superalloy publication-title: Metall. Mater. Trans. A: Physical Metallurgy and Materials Science – volume: vol. 4 start-page: 455 year: 1952 end-page: 463 ident: bib55 publication-title: Chemical Interaction of Solute Atoms with Dislocations, Science Reports of the Research Institutes – volume: 63 start-page: 167 year: 2014 end-page: 178 ident: bib15 article-title: Continuum dislocation dynamics: towards a physical theory of crystal plasticity publication-title: J. Mech. Phys. Solids – volume: 158 start-page: 420 year: 2019 end-page: 478 ident: bib53 article-title: DAMASK–The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale publication-title: Comput. Mater. Sci. – volume: 56 start-page: 1447 year: 2008 end-page: 1460 ident: bib42 article-title: A generalized Peierls-Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu publication-title: Acta Mater. – volume: 115 start-page: 123 year: 2018 end-page: 141 ident: bib19 article-title: Diffusive molecular dynamics simulations of lithiation of silicon nanopillars publication-title: J. Mech. Phys. Solids – volume: 62 start-page: 49 year: 1949 ident: bib4 article-title: Dislocation theory of yielding and strain ageing of iron publication-title: Proc. Phys. Soc. – volume: 154 start-page: 25 year: 2018 end-page: 29 ident: bib17 article-title: Dislocation-assisted linear complexion formation driven by segregation publication-title: Scripta Mater. – volume: 60 start-page: 1287 year: 2012 end-page: 1292 ident: bib12 article-title: Core structure of a screw dislocation in Ti from density functional theory and classical potentials publication-title: Acta Mater. – volume: 84 start-page: 1 year: 2011 end-page: 8 ident: bib18 article-title: Diffusive molecular dynamics and its application to nanoindentation and sintering publication-title: Phys. Rev. B – volume: 60 start-page: 3758 year: 2012 end-page: 3772 ident: bib32 article-title: Phase-field modeling of the publication-title: Acta Mater. – year: 2006 ident: bib36 article-title: Computer Simulations of Dislocations – volume: 9 start-page: 427 year: 2008 end-page: 436 ident: bib13 article-title: Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour publication-title: Compt. Rendus Phys. – year: 1995 ident: bib8 article-title: Physics of Creep and Creep-Resistant Alloys – volume: 131 start-page: 296 year: 2017 end-page: 304 ident: bib41 article-title: The effect of Ni:Co ratio on the elemental phase partitioning in publication-title: Acta Mater. – volume: 60 start-page: 2901 year: 2012 end-page: 2915 ident: bib9 article-title: Suzuki segregation in Co-Ni-based superalloy at 973 K: an experimental and computational study by phase-field simulation publication-title: Acta Mater. – volume: 58 start-page: 1212 year: 2010 end-page: 1235 ident: bib23 article-title: Phase field modeling of defects and deformation publication-title: Acta Mater. – volume: 148 start-page: 173 year: 2018 end-page: 184 ident: bib11 article-title: Segregation of alloying elements to planar faults in publication-title: Acta Mater. – volume: 21 start-page: 25015 year: 2013 ident: bib25 article-title: Dependence of equilibrium stacking fault width in fcc metals on the publication-title: Model. Simul. Mater. Sci. Eng. – volume: 94 start-page: 5 year: 2015 end-page: 8 ident: bib10 article-title: Segregation at stacking faults within the publication-title: Scripta Mater. – volume: 55 start-page: 6250 year: 2007 end-page: 6259 ident: bib47 article-title: Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy MC2 publication-title: Acta Mater. – volume: 84 start-page: 144108 year: 2011 ident: bib24 article-title: Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three dimensional phase field dynamics model publication-title: Phys. Rev. B – volume: 61 start-page: 8714 year: 2000 end-page: 8725 ident: bib16 article-title: Dislocation pinning by glissile interstitial loops in a nickel crystal: a molecular-dynamics study publication-title: Phys. Rev. B Condens. Matter – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib37 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 50 start-page: 775 year: 2002 end-page: 792 ident: bib43 article-title: Development of a diffusion mobility database for Ni-base superalloys publication-title: Acta Mater. – volume: 18 year: 2010 ident: bib40 article-title: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool publication-title: Model. Simul. Mater. Sci. Eng. – volume: 23 start-page: 2783 issue: 10 year: 1992 ident: 10.1016/j.actamat.2019.06.008_bib44 article-title: Diffusion of cobalt, chromium, and titanium in Ni3Al publication-title: Metallurgical Transactions A doi: 10.1007/BF02651757 – volume: 18 issue: 1 year: 2010 ident: 10.1016/j.actamat.2019.06.008_bib40 article-title: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 157 start-page: 62 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib52 article-title: Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2018.07.042 – volume: 112 start-page: 619 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib2 article-title: Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.10.005 – volume: 26 issue: 3 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib20 article-title: A unified framework for heat and mass transport at the atomic scale publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/aaaf94 – volume: 52 start-page: 683 year: 2004 ident: 10.1016/j.actamat.2019.06.008_bib22 article-title: Incorporation of gamma-surface to phase field model of dislocations: simulation dislocation dissociation in fcc crystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.10.014 – volume: 52 start-page: 7182 issue: 12 year: 1981 ident: 10.1016/j.actamat.2019.06.008_bib38 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 61 start-page: 8714 issue: 13 year: 2000 ident: 10.1016/j.actamat.2019.06.008_bib16 article-title: Dislocation pinning by glissile interstitial loops in a nickel crystal: a molecular-dynamics study publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.61.8714 – volume: 349 start-page: 1080 issue: 6252 year: 2015 ident: 10.1016/j.actamat.2019.06.008_bib48 article-title: Linear complexions: confined chemical and structural states at dislocations publication-title: Science doi: 10.1126/science.aab2633 – volume: 94 start-page: 5 year: 2015 ident: 10.1016/j.actamat.2019.06.008_bib10 article-title: Segregation at stacking faults within the γ' phase of two Ni-base superalloys following intermediate temperature creep publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2014.06.032 – volume: 95 start-page: 1 issue: 17 year: 2017 ident: 10.1016/j.actamat.2019.06.008_bib30 article-title: Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.174101 – volume: 145 start-page: 76 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib1 article-title: The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.10.005 – volume: 55 start-page: 6250 issue: 18 year: 2007 ident: 10.1016/j.actamat.2019.06.008_bib47 article-title: Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy MC2 publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.048 – volume: 154 start-page: 25 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib17 article-title: Dislocation-assisted linear complexion formation driven by segregation publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2018.05.014 – volume: 60 start-page: 1287 issue: 3 year: 2012 ident: 10.1016/j.actamat.2019.06.008_bib12 article-title: Core structure of a screw dislocation in Ti from density functional theory and classical potentials publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.11.024 – volume: 99 start-page: 813 issue: 11 year: 1996 ident: 10.1016/j.actamat.2019.06.008_bib34 article-title: Calculated site substitution in γ'-Ni3Al publication-title: Solid State Commun. doi: 10.1016/0038-1098(96)00279-7 – volume: 58 start-page: 4110 issue: 12 year: 2010 ident: 10.1016/j.actamat.2019.06.008_bib28 article-title: Shearing of γ' precipitates by a <112> dislocation ribbons in Ni-base superalloys: a phase field approach publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.03.041 – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.actamat.2019.06.008_bib37 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 92 start-page: 608 issue: 5 year: 2012 ident: 10.1016/j.actamat.2019.06.008_bib29 article-title: Shearing of γ' precipitates in Ni-base superalloys: a phase field study incorporating the effective γ-surface publication-title: Phil. Mag. doi: 10.1080/14786435.2011.630691 – volume: 90 start-page: 611 issue: 8 year: 2010 ident: 10.1016/j.actamat.2019.06.008_bib46 article-title: Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions publication-title: Phil. Mag. Lett. doi: 10.1080/09500839.2010.489887 – volume: 58 start-page: 1212 year: 2010 ident: 10.1016/j.actamat.2019.06.008_bib23 article-title: Phase field modeling of defects and deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.10.041 – volume: 60 start-page: 2901 issue: 6–7 year: 2012 ident: 10.1016/j.actamat.2019.06.008_bib9 article-title: Suzuki segregation in Co-Ni-based superalloy at 973 K: an experimental and computational study by phase-field simulation publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.01.054 – volume: 130 start-page: 292 year: 2017 ident: 10.1016/j.actamat.2019.06.008_bib31 article-title: Inverse ripening and rearrangement of precipitates under chemomechanical coupling publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.01.024 – volume: 155 start-page: 362 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib51 article-title: On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.05.074 – year: 1997 ident: 10.1016/j.actamat.2019.06.008_bib35 – volume: 63 start-page: 167 year: 2014 ident: 10.1016/j.actamat.2019.06.008_bib15 article-title: Continuum dislocation dynamics: towards a physical theory of crystal plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2013.09.012 – volume: 96 start-page: 1171 issue: 12 year: 2016 ident: 10.1016/j.actamat.2019.06.008_bib14 article-title: Strongly non-local modelling of dislocation transport and pile-up publication-title: Phil. Mag. doi: 10.1080/14786435.2016.1157270 – year: 1995 ident: 10.1016/j.actamat.2019.06.008_bib8 – volume: 84 start-page: 144108 year: 2011 ident: 10.1016/j.actamat.2019.06.008_bib24 article-title: Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three dimensional phase field dynamics model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.144108 – volume: 69 start-page: 134103 issue: 13 year: 2004 ident: 10.1016/j.actamat.2019.06.008_bib39 article-title: Rapid estimation of elastic constants by molecular dynamics simulation under constant stress publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.134103 – volume: 9 start-page: 427 issue: 3–4 year: 2008 ident: 10.1016/j.actamat.2019.06.008_bib13 article-title: Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour publication-title: Compt. Rendus Phys. doi: 10.1016/j.crhy.2007.11.005 – volume: 60 start-page: 3758 issue: 9 year: 2012 ident: 10.1016/j.actamat.2019.06.008_bib32 article-title: Phase-field modeling of the γ'-coarsening behavior in Ni-based superalloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.03.023 – volume: 49 start-page: 4246 issue: 9 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib49 article-title: Consequences of a room-temperature plastic deformation during processing on creep durability of a Ni-based SX superalloy publication-title: Metall. Mater. Trans. A: Physical Metallurgy and Materials Science doi: 10.1007/s11661-018-4748-3 – volume: 21 start-page: 25015 year: 2013 ident: 10.1016/j.actamat.2019.06.008_bib25 article-title: Dependence of equilibrium stacking fault width in fcc metals on the γ-surface publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/21/2/025015 – volume: 115 start-page: 123 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib19 article-title: Diffusive molecular dynamics simulations of lithiation of silicon nanopillars publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.03.008 – volume: 84 start-page: 1 issue: 5 year: 2011 ident: 10.1016/j.actamat.2019.06.008_bib18 article-title: Diffusive molecular dynamics and its application to nanoindentation and sintering publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.054103 – year: 2006 ident: 10.1016/j.actamat.2019.06.008_bib36 – volume: 62 start-page: 49 issue: 1 year: 1949 ident: 10.1016/j.actamat.2019.06.008_bib4 article-title: Dislocation theory of yielding and strain ageing of iron publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1298/62/1/308 – volume: 4 start-page: 109 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib7 article-title: On the segregation of Re at dislocations in the γ’ phase of Ni-based single crystal superalloys publication-title: Materialia doi: 10.1016/j.mtla.2018.09.018 – volume: 11 start-page: 1333 issue: 20 year: 1992 ident: 10.1016/j.actamat.2019.06.008_bib45 article-title: Interdiffusion and its size effect in nickel solid solutions of Ni-Co, Ni-Cr and Ni-Ti systems publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF00729354 – volume: 131 start-page: 296 year: 2017 ident: 10.1016/j.actamat.2019.06.008_bib41 article-title: The effect of Ni:Co ratio on the elemental phase partitioning in γ-γ’ Ni-Co-Al-Ti-Cr alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.067 – volume: 158 start-page: 420 year: 2019 ident: 10.1016/j.actamat.2019.06.008_bib53 article-title: DAMASK–The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.030 – volume: 148 start-page: 173 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib11 article-title: Segregation of alloying elements to planar faults in γ’-Ni3Al publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.01.055 – volume: 49 start-page: 1847 year: 2001 ident: 10.1016/j.actamat.2019.06.008_bib21 article-title: Nanoscale phase field microelasticity theory of dislocations: model and 3d simulations publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00075-1 – volume: 95 start-page: 719 year: 2016 ident: 10.1016/j.actamat.2019.06.008_bib27 article-title: Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2016.04.029 – year: 2006 ident: 10.1016/j.actamat.2019.06.008_bib5 – volume: 56 start-page: 1447 year: 2008 ident: 10.1016/j.actamat.2019.06.008_bib42 article-title: A generalized Peierls-Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.11.033 – volume: 70 start-page: 1736 issue: 9 year: 2018 ident: 10.1016/j.actamat.2019.06.008_bib50 article-title: Correlative microscopy—novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: a case study in superalloys publication-title: JOM doi: 10.1007/s11837-018-2802-7 – volume: 23 start-page: 65006 issue: 6 year: 2015 ident: 10.1016/j.actamat.2019.06.008_bib3 article-title: Interatomic potential for the ternary Ni-Al-Co system and application to atomistic modeling of the B2-L10 martensitic transformation publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/23/6/065006 – volume: vol. 4 start-page: 455 year: 1952 ident: 10.1016/j.actamat.2019.06.008_bib55 – year: 1982 ident: 10.1016/j.actamat.2019.06.008_bib54 – volume: 50 start-page: 775 issue: 4 year: 2002 ident: 10.1016/j.actamat.2019.06.008_bib43 article-title: Development of a diffusion mobility database for Ni-base superalloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00383-4 – volume: 168 start-page: 343 year: 2019 ident: 10.1016/j.actamat.2019.06.008_bib6 article-title: Stress-induced formation of TCP phases during high temperature low cycle fatigue loading of the single-crystal Ni-base superalloy ERBO/1 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.02.022 – volume: 59 start-page: 3484 issue: 9 year: 2011 ident: 10.1016/j.actamat.2019.06.008_bib33 article-title: Modeling displacive-diffusional coupled dislocation shearing of γ' precipitates in Ni-base superalloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.02.022 – volume: 77 start-page: 109 year: 2015 ident: 10.1016/j.actamat.2019.06.008_bib26 article-title: Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.01.007 |
SSID | ssj0012740 |
Score | 2.5424032 |
Snippet | Dislocation-precipitate interaction and solute segregation play important roles in controlling the mechanical behavior of Ni-based superalloys at high... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 250 |
SubjectTerms | Acoustics Atomistic phase field chemomechanics Automatic Biomechanics Chemical Sciences Dislocation glide Dislocation-solute interaction Electric power Electromagnetism Engineering Sciences Fluid mechanics Material chemistry Materials and structures in mechanics Mathematical Physics Mechanics Ni-based superalloys Physics Polymers Quantum Physics Reactive fluid environment Solute segregation Thermics Vibrations |
Title | Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co |
URI | https://dx.doi.org/10.1016/j.actamat.2019.06.008 https://hal.science/hal-02285951 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELZguZRD1QJVt5SVhbiajRM7To7RCrT9YS-wErcojm0RtLtZLWmPVd-BN-yTdMZJFpAqIfUSJVacWDOT-SbWzDeEnBVlInRgY8ZtWjAROvjmBE-YjbkpQ-kAFHC_42oWT-fi66283SGTvhYG0yo739_6dO-tu5FxJ83xuqrG1zySKfJRQQgCblihHxZCoZWf_9qmeXD462orhWXK8O6nKp7xPSy5KSAwxAyv1NN4YpfJf-PT7l2_0-qR5_IdeduFjDRrV_We7NjVAdl_RiR4SBZZUy895TJd3wEuUZ-YRkEhy3ppsbgXdUF92xuYQGtHTfWAOIZ6Yd7-LFsj0wV2EWksRRqJTVv0AOd0Vv35_Zgt4DCpj8j88uJmMmVdHwVWQnjUMMeVTQPtjFFKulAHOhaF8TWpaZIUhZaAWEUsCw6AJi3EAJgPo4xTpgwiY6MPZLCqV_YjoToUUWhcokrlRKlKbSMjtAqFtKEJnRsS0UsvLzuScex1scj7bLL7vBN6jkLPfVZdMiTn22nrlmXjtQlJr5r8hbnkgASvTT0FVW5fg_Ta0-x7jmPIBSQh5PzJP_3_84_JG7zCfWcuP5NBs_lhTyBwafTIW-aI7GVfvk1nfwFhPvCy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELZg9wA9oPKnbinFqria3SR2nByjVVGAZS-AxM2KY1ss2t2saNpz36FvyJMw4yRbkCoh9RJFjiaxZpz5Js7MN4ScFmXC9cjGLLBpwXjo4J3jQcJsHJgyFA5AAfc7rqdxfscv78X9Bhl3tTCYVtn6_sane2_djgxbbQ5Xs9nwJohEinxUEIKAG5bgh_vITiV6pJ9dXOXT9c8E-PBqioVFylDgbyHP8BFmXRcQG2KSV-qZPLHR5L8havOh22z14HP-key0USPNmontkg273CMfXnEJ7pN5VlcLz7pMVw8ATdTnplGwyaJaWKzvRXNQ3_kGBGjlqJn9QChD0zC_BC1bIdkFNhKpLUUmiaem7gHO6XT2_PtPNofDuDogd-ffb8c5a1spsBIipJq5QNp0pJ0xUgoX6pGOeWF8WWqaJEWhBYBWEYsiAEwTFsIATImRxklTjiJjo0PSW1ZL-4lQHfIoNC6RpXS8lKW2keFahlzY0ITODQjvtKfKlmcc213MVZdQ9qhapStUuvKJdcmAnK3FVg3RxnsCSWca9WbFKACD90S_gSnXj0GG7TybKBxDOiABUeev4PP_3_-EbOW31xM1uZheHZFtvILb0IH4Qnr10097DHFMrb-26_QFmYTzYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomistic+phase+field+chemomechanical+modeling+of+dislocation-solute-precipitate+interaction+in+Ni%E2%80%93Al%E2%80%93Co&rft.jtitle=Acta+materialia&rft.au=Mianroodi%2C+Jaber+Rezaei&rft.au=Shanthraj%2C+Pratheek&rft.au=Kontis%2C+Paraskevas&rft.au=Cormier%2C+Jonathan&rft.date=2019-08-15&rft.pub=Elsevier&rft.issn=1359-6454&rft.volume=175&rft.spage=250&rft.epage=261&rft_id=info:doi/10.1016%2Fj.actamat.2019.06.008&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02285951v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |