A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair
PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellul...
Saved in:
Published in | RNA (Cambridge) Vol. 18; no. 9; pp. 1716 - 1724 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PaOrf2 and γ-toxin subunits of
Pichia acaciae
toxin (PaT) and
Kluyveromyces lactis
zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by
Saccharomyces cerevisiae,
wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in
S. cerevisiae
. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm
5
s
2
U wobble nucleoside and depends on mcm
5
. A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in
elp3
cells that lack the mcm
5
wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in
elp3
cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in
trans
by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. |
---|---|
AbstractList | PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. The PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases encoded by cytoplasmic DNA plasmids. Toxicity can be recapitulated conveniently by induced intracellular expression of PaOrf2 or γ-toxin in Saccharomyces cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, the authors report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity in vivo. The results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on the mcm 5 modification. A second incision of the phosphodiester two nucleotides upstream results in the net excision of a di-nucleotide. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on mcm 5 . A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm 5 wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on mcm 5 . A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm 5 wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. |
Author | Kast, Alene Meinhardt, Friedhelm Schwer, Beate Meineke, Birthe Klassen, Roland Shuman, Stewart |
AuthorAffiliation | 3 Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA 1 Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA 2 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany |
AuthorAffiliation_xml | – name: 1 Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA – name: 2 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany – name: 3 Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA |
Author_xml | – sequence: 1 givenname: Birthe surname: Meineke fullname: Meineke, Birthe – sequence: 2 givenname: Alene surname: Kast fullname: Kast, Alene – sequence: 3 givenname: Beate surname: Schwer fullname: Schwer, Beate – sequence: 4 givenname: Friedhelm surname: Meinhardt fullname: Meinhardt, Friedhelm – sequence: 5 givenname: Stewart surname: Shuman fullname: Shuman, Stewart – sequence: 6 givenname: Roland surname: Klassen fullname: Klassen, Roland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22836353$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUuLFDEQDrLiPvTqUXL00mNSeUznIgzL-oBlhWU9Ssikq8dITzIm6WH992aYXVFhT1VUfY-kvnNyElNEQl5ztuCg-bsc3YIJyQUsOIdn5IxLbTrDGD9pvVCq60UPp-S8lB9tKNr6BTkF6IUWSpyRbys6znHjJupiDT4NKdI4-wldQZrDOtV0HyLF-92UQi3U0YI-xcHlX_SA2rsN0hIq0poo7t3QmtubFc24cyG_JM9HNxV89VAvyNcPV3eXn7rrLx8_X66uOy-Vrh2uuR6EQbVGoUelNPSmZzAOvWPQ_mYMWyqjmdewBOmVQwNSgJbQj4w10gV5f9TdzestDh5jzW6yuxy27aE2uWD_3cTw3W7S3goJatmrJvD2QSCnnzOWareheJwmFzHNxfJ2Y2BgmGzQN397_TF5vGkDyCPA51RKxtH6UF0N6WAdpqZlD9HZFp09RmdbdI22-I_2qPwE4TeY6ps- |
CitedBy_id | crossref_primary_10_1016_j_fgb_2024_103957 crossref_primary_10_1080_15476286_2017_1295204 crossref_primary_10_1080_09168451_2016_1148579 crossref_primary_10_1111_mmi_12481 crossref_primary_10_1016_j_celrep_2014_03_034 crossref_primary_10_1016_j_febslet_2014_09_038 crossref_primary_10_1080_15476286_2020_1838782 crossref_primary_10_1111_cmi_12496 crossref_primary_10_1007_s00018_016_2217_y crossref_primary_10_1371_journal_pgen_1005005 crossref_primary_10_1007_s00253_012_4349_9 crossref_primary_10_3389_fmicb_2019_02366 crossref_primary_10_1007_s00294_014_0426_1 crossref_primary_10_1371_journal_pone_0075512 |
Cites_doi | 10.1371/journal.pone.0020783 10.1042/BST0351533 10.1074/jbc.C111.274597 10.1007/978-3-642-00286-1_6 10.1111/j.1365-2958.2009.06811.x 10.1128/MCB.23.24.9283-9292.2003 10.1007/s00438-003-0920-5 10.1261/rna.7247705 10.1261/rna.2722711 10.1002/j.1460-2075.1986.tb04455.x 10.1016/S0141-0229(00)00162-9 10.1093/emboj/20.8.1993 10.1002/yea.776 10.1074/jbc.M110.113100 10.1111/j.1365-2958.2008.06387.x 10.1091/mbc.E03-10-0750 10.1093/nar/gkj441 10.1099/13500872-140-2-425 10.1126/science.1179480 10.1016/j.molcel.2008.05.019 10.1002/j.1460-2075.1987.tb02532.x 10.1111/j.1365-2958.2005.04972.x 10.1074/jbc.M313386200 10.1261/rna.2690505 10.1002/yea.320070610 10.1111/j.1365-2958.2008.06319.x 10.1261/rna.1184108 10.1111/j.1365-2958.2008.06358.x 10.1261/rna.2172105 10.1016/S0021-9258(20)89467-8 10.1074/jbc.M307839200 10.1261/rna.030171.111 10.1074/jbc.273.21.12685 10.1111/j.1365-2958.2004.04119.x 10.1007/BF00340712 10.1073/pnas.0305859101 10.1261/rna.1637809 10.1007/s10529-008-9648-y |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1261/rna.034132.112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Meineke et al |
EISSN | 1469-9001 |
EndPage | 1724 |
ExternalDocumentID | PMC3425785 22836353 10_1261_rna_034132_112 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM42498 – fundername: NIGMS NIH HHS grantid: R01 GM042498 |
GroupedDBID | --- .GJ 0VX 123 18M 29P 2WC 34G 39C 4.4 53G 5RE 5VS 8R4 8R5 AAYXX ABDIX ABDNZ ABGDZ ABVKB ACGFO ACLKE ACNCT ACQPF ACYGS ADBBV AEILP AENEX AFFNX AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CAG CITATION COF CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE KQ8 MV1 OK1 P2P RCA RCX RHI RIG ROL RPM SJN TR2 W8F WOQ YKV ZGI ZWS CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c456t-eb16d39e5be36f556289802fd8a0241399075960c62724c5ae924326428f00be3 |
ISSN | 1355-8382 1469-9001 |
IngestDate | Thu Aug 21 18:41:39 EDT 2025 Fri Jul 11 04:08:34 EDT 2025 Mon Jul 21 05:52:45 EDT 2025 Tue Jul 01 01:14:33 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-eb16d39e5be36f556289802fd8a0241399075960c62724c5ae924326428f00be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA These authors contributed equally to this work. |
OpenAccessLink | http://rnajournal.cshlp.org/content/18/9/1716.full.pdf |
PMID | 22836353 |
PQID | 1034202904 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3425785 proquest_miscellaneous_1034202904 pubmed_primary_22836353 crossref_citationtrail_10_1261_rna_034132_112 crossref_primary_10_1261_rna_034132_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | RNA (Cambridge) |
PublicationTitleAlternate | RNA |
PublicationYear | 2012 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021112105523805000_18.9.1716.17 2021112105523805000_18.9.1716.39 2021112105523805000_18.9.1716.18 2021112105523805000_18.9.1716.19 2021112105523805000_18.9.1716.13 2021112105523805000_18.9.1716.14 2021112105523805000_18.9.1716.36 2021112105523805000_18.9.1716.15 2021112105523805000_18.9.1716.37 2021112105523805000_18.9.1716.16 2021112105523805000_18.9.1716.38 2021112105523805000_18.9.1716.20 2021112105523805000_18.9.1716.21 2021112105523805000_18.9.1716.22 2021112105523805000_18.9.1716.23 2021112105523805000_18.9.1716.8 2021112105523805000_18.9.1716.9 2021112105523805000_18.9.1716.6 2021112105523805000_18.9.1716.7 2021112105523805000_18.9.1716.4 2021112105523805000_18.9.1716.5 (2021112105523805000_18.9.1716.35) 1986; 5 (2021112105523805000_18.9.1716.3) 1991; 266 2021112105523805000_18.9.1716.1 (2021112105523805000_18.9.1716.34) 1997; 3 2021112105523805000_18.9.1716.28 2021112105523805000_18.9.1716.29 (2021112105523805000_18.9.1716.2) 1987; 6 2021112105523805000_18.9.1716.24 2021112105523805000_18.9.1716.25 2021112105523805000_18.9.1716.26 2021112105523805000_18.9.1716.27 2021112105523805000_18.9.1716.31 2021112105523805000_18.9.1716.10 2021112105523805000_18.9.1716.32 2021112105523805000_18.9.1716.11 2021112105523805000_18.9.1716.33 2021112105523805000_18.9.1716.12 2021112105523805000_18.9.1716.30 12933796 - J Biol Chem. 2003 Nov 7;278(45):43928-38 14718557 - Mol Biol Cell. 2004 Mar;15(3):1459-69 19383764 - RNA. 2009 Jun;15(6):1036-44 18657261 - Mol Microbiol. 2008 Sep;69(5):1266-77 1850408 - J Biol Chem. 1991 Apr 25;266(12):7445-55 18755837 - RNA. 2008 Oct;14(10):2183-94 8180706 - Microbiology. 1994 Feb;140 ( Pt 2):425-31 10862876 - Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714 9582290 - J Biol Chem. 1998 May 22;273(21):12685-8 14747466 - J Biol Chem. 2004 Apr 30;279(18):18220-31 2444436 - EMBO J. 1987 Aug;6(8):2499-503 13680368 - Mol Genet Genomics. 2003 Nov;270(2):190-9 19815768 - Science. 2009 Oct 9;326(5950):247 15769872 - RNA. 2005 Apr;11(4):424-36 16244131 - RNA. 2005 Nov;11(11):1648-54 9404890 - RNA. 1997 Dec;3(12):1388-400 18532979 - Mol Microbiol. 2008 Aug;69(3):681-97 21757685 - J Biol Chem. 2011 Sep 2;286(35):30253-7 16390459 - Mol Microbiol. 2006 Jan;59(2):677-88 22101242 - RNA. 2012 Jan;18(1):145-54 3758030 - EMBO J. 1986 Aug;5(8):1995-2002 21610213 - RNA. 2011 Jul;17(7):1336-43 21687733 - PLoS One. 2011;6(6):e20783 18246302 - Biotechnol Lett. 2008 Jun;30(6):1041-4 20400505 - J Biol Chem. 2010 Jun 11;285(24):18505-15 14973195 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2788-93 14645538 - Mol Cell Biol. 2003 Dec;23(24):9283-92 2692852 - Curr Genet. 1989 Dec;16(5-6):339-46 18657509 - Mol Cell. 2008 Jul 25;31(2):278-86 1767590 - Yeast. 1991 Aug-Sep;7(6):617-25 15987807 - RNA. 2005 Aug;11(8):1271-80 15225320 - Mol Microbiol. 2004 Jul;53(1):263-73 18031261 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1533-7 18681940 - Mol Microbiol. 2008 Sep;69(6):1560-74 11571753 - Yeast. 2001 Oct;18(14):1285-99 11296232 - EMBO J. 2001 Apr 17;20(8):1993-2003 19656297 - Mol Microbiol. 2009 Sep;73(5):869-81 16428247 - Nucleic Acids Res. 2006;34(2):517-27 |
References_xml | – ident: 2021112105523805000_18.9.1716.6 doi: 10.1371/journal.pone.0020783 – ident: 2021112105523805000_18.9.1716.11 doi: 10.1042/BST0351533 – ident: 2021112105523805000_18.9.1716.37 doi: 10.1074/jbc.C111.274597 – ident: 2021112105523805000_18.9.1716.29 doi: 10.1007/978-3-642-00286-1_6 – ident: 2021112105523805000_18.9.1716.27 doi: 10.1111/j.1365-2958.2009.06811.x – ident: 2021112105523805000_18.9.1716.16 doi: 10.1128/MCB.23.24.9283-9292.2003 – ident: 2021112105523805000_18.9.1716.18 doi: 10.1007/s00438-003-0920-5 – ident: 2021112105523805000_18.9.1716.9 doi: 10.1261/rna.7247705 – ident: 2021112105523805000_18.9.1716.15 doi: 10.1261/rna.2722711 – volume: 5 start-page: 1995 year: 1986 ident: 2021112105523805000_18.9.1716.35 article-title: The killer toxin of Kluyveromyces lactis: Characterization of the toxin subunits and identification of the genes which encode them publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04455.x – ident: 2021112105523805000_18.9.1716.38 doi: 10.1016/S0141-0229(00)00162-9 – ident: 2021112105523805000_18.9.1716.8 doi: 10.1093/emboj/20.8.1993 – ident: 2021112105523805000_18.9.1716.12 doi: 10.1002/yea.776 – volume: 3 start-page: 1388 year: 1997 ident: 2021112105523805000_18.9.1716.34 article-title: A conditional lethal yeast phosphotransferase (tpt1) mutant accumulates tRNAs with a 2′-phosphate and an undermodified base at the splice junction publication-title: RNA – ident: 2021112105523805000_18.9.1716.25 doi: 10.1074/jbc.M110.113100 – ident: 2021112105523805000_18.9.1716.7 doi: 10.1111/j.1365-2958.2008.06387.x – ident: 2021112105523805000_18.9.1716.13 doi: 10.1091/mbc.E03-10-0750 – ident: 2021112105523805000_18.9.1716.39 doi: 10.1093/nar/gkj441 – ident: 2021112105523805000_18.9.1716.26 doi: 10.1099/13500872-140-2-425 – ident: 2021112105523805000_18.9.1716.5 doi: 10.1126/science.1179480 – ident: 2021112105523805000_18.9.1716.30 doi: 10.1016/j.molcel.2008.05.019 – volume: 6 start-page: 2499 year: 1987 ident: 2021112105523805000_18.9.1716.2 article-title: Bacteriophage T4 anticodon nuclease, polynucleotide kinase, and RNA ligase reprocess the host lysine tRNA publication-title: EMBO J doi: 10.1002/j.1460-2075.1987.tb02532.x – ident: 2021112105523805000_18.9.1716.14 doi: 10.1111/j.1365-2958.2005.04972.x – ident: 2021112105523805000_18.9.1716.23 doi: 10.1074/jbc.M313386200 – ident: 2021112105523805000_18.9.1716.24 doi: 10.1261/rna.2690505 – ident: 2021112105523805000_18.9.1716.4 doi: 10.1002/yea.320070610 – ident: 2021112105523805000_18.9.1716.20 doi: 10.1111/j.1365-2958.2008.06319.x – ident: 2021112105523805000_18.9.1716.10 doi: 10.1261/rna.1184108 – ident: 2021112105523805000_18.9.1716.36 doi: 10.1111/j.1365-2958.2008.06358.x – ident: 2021112105523805000_18.9.1716.22 doi: 10.1261/rna.2172105 – volume: 266 start-page: 7445 year: 1991 ident: 2021112105523805000_18.9.1716.3 article-title: Deletion analysis of a multifunctional yeast tRNA ligase polypeptide: Identification of essential and dispensable functional domains publication-title: J Biol Chem doi: 10.1016/S0021-9258(20)89467-8 – ident: 2021112105523805000_18.9.1716.31 doi: 10.1074/jbc.M307839200 – ident: 2021112105523805000_18.9.1716.28 doi: 10.1261/rna.030171.111 – ident: 2021112105523805000_18.9.1716.1 doi: 10.1074/jbc.273.21.12685 – ident: 2021112105523805000_18.9.1716.19 doi: 10.1111/j.1365-2958.2004.04119.x – ident: 2021112105523805000_18.9.1716.32 doi: 10.1007/BF00340712 – ident: 2021112105523805000_18.9.1716.33 doi: 10.1073/pnas.0305859101 – ident: 2021112105523805000_18.9.1716.17 doi: 10.1261/rna.1637809 – ident: 2021112105523805000_18.9.1716.21 doi: 10.1007/s10529-008-9648-y – reference: 16428247 - Nucleic Acids Res. 2006;34(2):517-27 – reference: 20400505 - J Biol Chem. 2010 Jun 11;285(24):18505-15 – reference: 15225320 - Mol Microbiol. 2004 Jul;53(1):263-73 – reference: 11296232 - EMBO J. 2001 Apr 17;20(8):1993-2003 – reference: 14747466 - J Biol Chem. 2004 Apr 30;279(18):18220-31 – reference: 21610213 - RNA. 2011 Jul;17(7):1336-43 – reference: 18246302 - Biotechnol Lett. 2008 Jun;30(6):1041-4 – reference: 14645538 - Mol Cell Biol. 2003 Dec;23(24):9283-92 – reference: 19383764 - RNA. 2009 Jun;15(6):1036-44 – reference: 11571753 - Yeast. 2001 Oct;18(14):1285-99 – reference: 19815768 - Science. 2009 Oct 9;326(5950):247 – reference: 18657509 - Mol Cell. 2008 Jul 25;31(2):278-86 – reference: 15987807 - RNA. 2005 Aug;11(8):1271-80 – reference: 18755837 - RNA. 2008 Oct;14(10):2183-94 – reference: 16244131 - RNA. 2005 Nov;11(11):1648-54 – reference: 18657261 - Mol Microbiol. 2008 Sep;69(5):1266-77 – reference: 21687733 - PLoS One. 2011;6(6):e20783 – reference: 14973195 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2788-93 – reference: 8180706 - Microbiology. 1994 Feb;140 ( Pt 2):425-31 – reference: 18031261 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1533-7 – reference: 14718557 - Mol Biol Cell. 2004 Mar;15(3):1459-69 – reference: 12933796 - J Biol Chem. 2003 Nov 7;278(45):43928-38 – reference: 2692852 - Curr Genet. 1989 Dec;16(5-6):339-46 – reference: 13680368 - Mol Genet Genomics. 2003 Nov;270(2):190-9 – reference: 3758030 - EMBO J. 1986 Aug;5(8):1995-2002 – reference: 9404890 - RNA. 1997 Dec;3(12):1388-400 – reference: 18532979 - Mol Microbiol. 2008 Aug;69(3):681-97 – reference: 1767590 - Yeast. 1991 Aug-Sep;7(6):617-25 – reference: 18681940 - Mol Microbiol. 2008 Sep;69(6):1560-74 – reference: 22101242 - RNA. 2012 Jan;18(1):145-54 – reference: 15769872 - RNA. 2005 Apr;11(4):424-36 – reference: 2444436 - EMBO J. 1987 Aug;6(8):2499-503 – reference: 9582290 - J Biol Chem. 1998 May 22;273(21):12685-8 – reference: 21757685 - J Biol Chem. 2011 Sep 2;286(35):30253-7 – reference: 10862876 - Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714 – reference: 16390459 - Mol Microbiol. 2006 Jan;59(2):677-88 – reference: 19656297 - Mol Microbiol. 2009 Sep;73(5):869-81 – reference: 1850408 - J Biol Chem. 1991 Apr 25;266(12):7445-55 |
SSID | ssj0013146 |
Score | 2.1324131 |
Snippet | PaOrf2 and γ-toxin subunits of
Pichia acaciae
toxin (PaT) and
Kluyveromyces lactis
zymocin are tRNA anticodon nucleases. These secreted ribotoxins are... PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are... The PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases encoded by cytoplasmic DNA... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1716 |
SubjectTerms | Amino Acid Sequence Histone Acetyltransferases - genetics Histone Acetyltransferases - metabolism Killer Factors, Yeast - chemistry Killer Factors, Yeast - genetics Killer Factors, Yeast - metabolism Models, Biological Molecular Sequence Data Mutation Phylogeny Ribonucleases - chemistry Ribonucleases - genetics Ribonucleases - metabolism RNA, Transfer - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Sequence Alignment |
Title | A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22836353 https://www.proquest.com/docview/1034202904 https://pubmed.ncbi.nlm.nih.gov/PMC3425785 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXBBuXcpOREDxU6TInbpPHtAJNQCcum7QXVDmOQyu1ydSl4_Kv-Id8J06ylA0J9hJFjuOoPl99vuNzMWMvdBpI7Yba0amQjp94qaNgFjhKyqESSiRCU-7w5GCwf-S_PZbHnc6vVtTSuoj7-ueleSVXkSraIFfKkv0PyTaDogH3kC-ukDCu_yTjqAe19LXM9sczGJhZL6P6xNBMvdU8zov8-7ws4r_IyT-geqdk_iYUKEe9ziheh7zHREDNmUpw8-kgIj-Cmq_atJVayd1bJ3i19g8mBjzVRviM5ivQyWYJVzadJIJeaxo_69k3C5IRlIBpD0LpX4Xl0qDFM7NYtnckKLQjbO9IjPMFqHK5LUmZSIBy770FNEUNtCNLaMEF33ECzx5A1De2DSa7E7rVkBdW6XUdh26XXKr301LfIGT-paoBpiLkCdH1XdLcgpKn2h0h2pNlCRSqCAQe5p2ryCZw8cNk7JWrnLzGrgtYJrS0vvvYclxVCW31z6rqhOLju5ufpirU1Xc2KdEFO-fPcN0W_zm8w25XhguPLArvso7JttlOlGG-lz_4S16GEpc-mm12Y1Tf3RzXBwrusC8Rt3DlDVx5DVfewJXXcOWKN3DlNVw5wZUXOS_hygmu3ML1Hjt68_pwvO9Up3s4GqS9cEASBokXGhkbb5BK8PAgDFyRJoFyydkLmjSUsK_1QECkWioTCh_GBuzl1HXx0n22leWZech44OnUF8O9VIEQhyoITJx43t7AlwaM1rhd5tQTPNVV6Xs6gWUxJRMYspliBqdWNjCJRZe9avqf2KIvf-35vJbXFLNJzjaVmXx9iv4AiitC1--yB1Z-zVi14LtsuCHZpgPVfN98ks1nZe33Cn2PrvzmY3br_D_7hG0Vq7V5Cl5dxM9KJP8GQH3Omg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fungal+anticodon+nuclease+ribotoxin+exploits+a+secondary+cleavage+site+to+evade+tRNA+repair&rft.jtitle=RNA+%28Cambridge%29&rft.au=Meineke%2C+Birthe&rft.au=Kast%2C+Alene&rft.au=Schwer%2C+Beate&rft.au=Meinhardt%2C+Friedhelm&rft.date=2012-09-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=18&rft.issue=9&rft.spage=1716&rft.epage=1724&rft_id=info:doi/10.1261%2Frna.034132.112&rft_id=info%3Apmid%2F22836353&rft.externalDocID=PMC3425785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon |