A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair

PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellul...

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 18; no. 9; pp. 1716 - 1724
Main Authors Meineke, Birthe, Kast, Alene, Schwer, Beate, Meinhardt, Friedhelm, Shuman, Stewart, Klassen, Roland
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on mcm 5 . A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm 5 wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.
AbstractList PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.
PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.
The PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases encoded by cytoplasmic DNA plasmids. Toxicity can be recapitulated conveniently by induced intracellular expression of PaOrf2 or γ-toxin in Saccharomyces cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, the authors report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity in vivo. The results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on the mcm 5 modification. A second incision of the phosphodiester two nucleotides upstream results in the net excision of a di-nucleotide. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on mcm 5 . A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm 5 wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.
PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae . Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3′ from the mcm 5 s 2 U wobble nucleoside and depends on mcm 5 . A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm 5 wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.
Author Kast, Alene
Meinhardt, Friedhelm
Schwer, Beate
Meineke, Birthe
Klassen, Roland
Shuman, Stewart
AuthorAffiliation 3 Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
1 Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
2 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
AuthorAffiliation_xml – name: 1 Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
– name: 2 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
– name: 3 Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
Author_xml – sequence: 1
  givenname: Birthe
  surname: Meineke
  fullname: Meineke, Birthe
– sequence: 2
  givenname: Alene
  surname: Kast
  fullname: Kast, Alene
– sequence: 3
  givenname: Beate
  surname: Schwer
  fullname: Schwer, Beate
– sequence: 4
  givenname: Friedhelm
  surname: Meinhardt
  fullname: Meinhardt, Friedhelm
– sequence: 5
  givenname: Stewart
  surname: Shuman
  fullname: Shuman, Stewart
– sequence: 6
  givenname: Roland
  surname: Klassen
  fullname: Klassen, Roland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22836353$$D View this record in MEDLINE/PubMed
BookMark eNp1UUuLFDEQDrLiPvTqUXL00mNSeUznIgzL-oBlhWU9Ssikq8dITzIm6WH992aYXVFhT1VUfY-kvnNyElNEQl5ztuCg-bsc3YIJyQUsOIdn5IxLbTrDGD9pvVCq60UPp-S8lB9tKNr6BTkF6IUWSpyRbys6znHjJupiDT4NKdI4-wldQZrDOtV0HyLF-92UQi3U0YI-xcHlX_SA2rsN0hIq0poo7t3QmtubFc24cyG_JM9HNxV89VAvyNcPV3eXn7rrLx8_X66uOy-Vrh2uuR6EQbVGoUelNPSmZzAOvWPQ_mYMWyqjmdewBOmVQwNSgJbQj4w10gV5f9TdzestDh5jzW6yuxy27aE2uWD_3cTw3W7S3goJatmrJvD2QSCnnzOWareheJwmFzHNxfJ2Y2BgmGzQN397_TF5vGkDyCPA51RKxtH6UF0N6WAdpqZlD9HZFp09RmdbdI22-I_2qPwE4TeY6ps-
CitedBy_id crossref_primary_10_1016_j_fgb_2024_103957
crossref_primary_10_1080_15476286_2017_1295204
crossref_primary_10_1080_09168451_2016_1148579
crossref_primary_10_1111_mmi_12481
crossref_primary_10_1016_j_celrep_2014_03_034
crossref_primary_10_1016_j_febslet_2014_09_038
crossref_primary_10_1080_15476286_2020_1838782
crossref_primary_10_1111_cmi_12496
crossref_primary_10_1007_s00018_016_2217_y
crossref_primary_10_1371_journal_pgen_1005005
crossref_primary_10_1007_s00253_012_4349_9
crossref_primary_10_3389_fmicb_2019_02366
crossref_primary_10_1007_s00294_014_0426_1
crossref_primary_10_1371_journal_pone_0075512
Cites_doi 10.1371/journal.pone.0020783
10.1042/BST0351533
10.1074/jbc.C111.274597
10.1007/978-3-642-00286-1_6
10.1111/j.1365-2958.2009.06811.x
10.1128/MCB.23.24.9283-9292.2003
10.1007/s00438-003-0920-5
10.1261/rna.7247705
10.1261/rna.2722711
10.1002/j.1460-2075.1986.tb04455.x
10.1016/S0141-0229(00)00162-9
10.1093/emboj/20.8.1993
10.1002/yea.776
10.1074/jbc.M110.113100
10.1111/j.1365-2958.2008.06387.x
10.1091/mbc.E03-10-0750
10.1093/nar/gkj441
10.1099/13500872-140-2-425
10.1126/science.1179480
10.1016/j.molcel.2008.05.019
10.1002/j.1460-2075.1987.tb02532.x
10.1111/j.1365-2958.2005.04972.x
10.1074/jbc.M313386200
10.1261/rna.2690505
10.1002/yea.320070610
10.1111/j.1365-2958.2008.06319.x
10.1261/rna.1184108
10.1111/j.1365-2958.2008.06358.x
10.1261/rna.2172105
10.1016/S0021-9258(20)89467-8
10.1074/jbc.M307839200
10.1261/rna.030171.111
10.1074/jbc.273.21.12685
10.1111/j.1365-2958.2004.04119.x
10.1007/BF00340712
10.1073/pnas.0305859101
10.1261/rna.1637809
10.1007/s10529-008-9648-y
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1261/rna.034132.112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Meineke et al
EISSN 1469-9001
EndPage 1724
ExternalDocumentID PMC3425785
22836353
10_1261_rna_034132_112
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM42498
– fundername: NIGMS NIH HHS
  grantid: R01 GM042498
GroupedDBID ---
.GJ
0VX
123
18M
29P
2WC
34G
39C
4.4
53G
5RE
5VS
8R4
8R5
AAYXX
ABDIX
ABDNZ
ABGDZ
ABVKB
ACGFO
ACLKE
ACNCT
ACQPF
ACYGS
ADBBV
AEILP
AENEX
AFFNX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CAG
CITATION
COF
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
KQ8
MV1
OK1
P2P
RCA
RCX
RHI
RIG
ROL
RPM
SJN
TR2
W8F
WOQ
YKV
ZGI
ZWS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-eb16d39e5be36f556289802fd8a0241399075960c62724c5ae924326428f00be3
ISSN 1355-8382
1469-9001
IngestDate Thu Aug 21 18:41:39 EDT 2025
Fri Jul 11 04:08:34 EDT 2025
Mon Jul 21 05:52:45 EDT 2025
Tue Jul 01 01:14:33 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-eb16d39e5be36f556289802fd8a0241399075960c62724c5ae924326428f00be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
These authors contributed equally to this work.
OpenAccessLink http://rnajournal.cshlp.org/content/18/9/1716.full.pdf
PMID 22836353
PQID 1034202904
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3425785
proquest_miscellaneous_1034202904
pubmed_primary_22836353
crossref_citationtrail_10_1261_rna_034132_112
crossref_primary_10_1261_rna_034132_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle RNA (Cambridge)
PublicationTitleAlternate RNA
PublicationYear 2012
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021112105523805000_18.9.1716.17
2021112105523805000_18.9.1716.39
2021112105523805000_18.9.1716.18
2021112105523805000_18.9.1716.19
2021112105523805000_18.9.1716.13
2021112105523805000_18.9.1716.14
2021112105523805000_18.9.1716.36
2021112105523805000_18.9.1716.15
2021112105523805000_18.9.1716.37
2021112105523805000_18.9.1716.16
2021112105523805000_18.9.1716.38
2021112105523805000_18.9.1716.20
2021112105523805000_18.9.1716.21
2021112105523805000_18.9.1716.22
2021112105523805000_18.9.1716.23
2021112105523805000_18.9.1716.8
2021112105523805000_18.9.1716.9
2021112105523805000_18.9.1716.6
2021112105523805000_18.9.1716.7
2021112105523805000_18.9.1716.4
2021112105523805000_18.9.1716.5
(2021112105523805000_18.9.1716.35) 1986; 5
(2021112105523805000_18.9.1716.3) 1991; 266
2021112105523805000_18.9.1716.1
(2021112105523805000_18.9.1716.34) 1997; 3
2021112105523805000_18.9.1716.28
2021112105523805000_18.9.1716.29
(2021112105523805000_18.9.1716.2) 1987; 6
2021112105523805000_18.9.1716.24
2021112105523805000_18.9.1716.25
2021112105523805000_18.9.1716.26
2021112105523805000_18.9.1716.27
2021112105523805000_18.9.1716.31
2021112105523805000_18.9.1716.10
2021112105523805000_18.9.1716.32
2021112105523805000_18.9.1716.11
2021112105523805000_18.9.1716.33
2021112105523805000_18.9.1716.12
2021112105523805000_18.9.1716.30
12933796 - J Biol Chem. 2003 Nov 7;278(45):43928-38
14718557 - Mol Biol Cell. 2004 Mar;15(3):1459-69
19383764 - RNA. 2009 Jun;15(6):1036-44
18657261 - Mol Microbiol. 2008 Sep;69(5):1266-77
1850408 - J Biol Chem. 1991 Apr 25;266(12):7445-55
18755837 - RNA. 2008 Oct;14(10):2183-94
8180706 - Microbiology. 1994 Feb;140 ( Pt 2):425-31
10862876 - Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714
9582290 - J Biol Chem. 1998 May 22;273(21):12685-8
14747466 - J Biol Chem. 2004 Apr 30;279(18):18220-31
2444436 - EMBO J. 1987 Aug;6(8):2499-503
13680368 - Mol Genet Genomics. 2003 Nov;270(2):190-9
19815768 - Science. 2009 Oct 9;326(5950):247
15769872 - RNA. 2005 Apr;11(4):424-36
16244131 - RNA. 2005 Nov;11(11):1648-54
9404890 - RNA. 1997 Dec;3(12):1388-400
18532979 - Mol Microbiol. 2008 Aug;69(3):681-97
21757685 - J Biol Chem. 2011 Sep 2;286(35):30253-7
16390459 - Mol Microbiol. 2006 Jan;59(2):677-88
22101242 - RNA. 2012 Jan;18(1):145-54
3758030 - EMBO J. 1986 Aug;5(8):1995-2002
21610213 - RNA. 2011 Jul;17(7):1336-43
21687733 - PLoS One. 2011;6(6):e20783
18246302 - Biotechnol Lett. 2008 Jun;30(6):1041-4
20400505 - J Biol Chem. 2010 Jun 11;285(24):18505-15
14973195 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2788-93
14645538 - Mol Cell Biol. 2003 Dec;23(24):9283-92
2692852 - Curr Genet. 1989 Dec;16(5-6):339-46
18657509 - Mol Cell. 2008 Jul 25;31(2):278-86
1767590 - Yeast. 1991 Aug-Sep;7(6):617-25
15987807 - RNA. 2005 Aug;11(8):1271-80
15225320 - Mol Microbiol. 2004 Jul;53(1):263-73
18031261 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1533-7
18681940 - Mol Microbiol. 2008 Sep;69(6):1560-74
11571753 - Yeast. 2001 Oct;18(14):1285-99
11296232 - EMBO J. 2001 Apr 17;20(8):1993-2003
19656297 - Mol Microbiol. 2009 Sep;73(5):869-81
16428247 - Nucleic Acids Res. 2006;34(2):517-27
References_xml – ident: 2021112105523805000_18.9.1716.6
  doi: 10.1371/journal.pone.0020783
– ident: 2021112105523805000_18.9.1716.11
  doi: 10.1042/BST0351533
– ident: 2021112105523805000_18.9.1716.37
  doi: 10.1074/jbc.C111.274597
– ident: 2021112105523805000_18.9.1716.29
  doi: 10.1007/978-3-642-00286-1_6
– ident: 2021112105523805000_18.9.1716.27
  doi: 10.1111/j.1365-2958.2009.06811.x
– ident: 2021112105523805000_18.9.1716.16
  doi: 10.1128/MCB.23.24.9283-9292.2003
– ident: 2021112105523805000_18.9.1716.18
  doi: 10.1007/s00438-003-0920-5
– ident: 2021112105523805000_18.9.1716.9
  doi: 10.1261/rna.7247705
– ident: 2021112105523805000_18.9.1716.15
  doi: 10.1261/rna.2722711
– volume: 5
  start-page: 1995
  year: 1986
  ident: 2021112105523805000_18.9.1716.35
  article-title: The killer toxin of Kluyveromyces lactis: Characterization of the toxin subunits and identification of the genes which encode them
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04455.x
– ident: 2021112105523805000_18.9.1716.38
  doi: 10.1016/S0141-0229(00)00162-9
– ident: 2021112105523805000_18.9.1716.8
  doi: 10.1093/emboj/20.8.1993
– ident: 2021112105523805000_18.9.1716.12
  doi: 10.1002/yea.776
– volume: 3
  start-page: 1388
  year: 1997
  ident: 2021112105523805000_18.9.1716.34
  article-title: A conditional lethal yeast phosphotransferase (tpt1) mutant accumulates tRNAs with a 2′-phosphate and an undermodified base at the splice junction
  publication-title: RNA
– ident: 2021112105523805000_18.9.1716.25
  doi: 10.1074/jbc.M110.113100
– ident: 2021112105523805000_18.9.1716.7
  doi: 10.1111/j.1365-2958.2008.06387.x
– ident: 2021112105523805000_18.9.1716.13
  doi: 10.1091/mbc.E03-10-0750
– ident: 2021112105523805000_18.9.1716.39
  doi: 10.1093/nar/gkj441
– ident: 2021112105523805000_18.9.1716.26
  doi: 10.1099/13500872-140-2-425
– ident: 2021112105523805000_18.9.1716.5
  doi: 10.1126/science.1179480
– ident: 2021112105523805000_18.9.1716.30
  doi: 10.1016/j.molcel.2008.05.019
– volume: 6
  start-page: 2499
  year: 1987
  ident: 2021112105523805000_18.9.1716.2
  article-title: Bacteriophage T4 anticodon nuclease, polynucleotide kinase, and RNA ligase reprocess the host lysine tRNA
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1987.tb02532.x
– ident: 2021112105523805000_18.9.1716.14
  doi: 10.1111/j.1365-2958.2005.04972.x
– ident: 2021112105523805000_18.9.1716.23
  doi: 10.1074/jbc.M313386200
– ident: 2021112105523805000_18.9.1716.24
  doi: 10.1261/rna.2690505
– ident: 2021112105523805000_18.9.1716.4
  doi: 10.1002/yea.320070610
– ident: 2021112105523805000_18.9.1716.20
  doi: 10.1111/j.1365-2958.2008.06319.x
– ident: 2021112105523805000_18.9.1716.10
  doi: 10.1261/rna.1184108
– ident: 2021112105523805000_18.9.1716.36
  doi: 10.1111/j.1365-2958.2008.06358.x
– ident: 2021112105523805000_18.9.1716.22
  doi: 10.1261/rna.2172105
– volume: 266
  start-page: 7445
  year: 1991
  ident: 2021112105523805000_18.9.1716.3
  article-title: Deletion analysis of a multifunctional yeast tRNA ligase polypeptide: Identification of essential and dispensable functional domains
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(20)89467-8
– ident: 2021112105523805000_18.9.1716.31
  doi: 10.1074/jbc.M307839200
– ident: 2021112105523805000_18.9.1716.28
  doi: 10.1261/rna.030171.111
– ident: 2021112105523805000_18.9.1716.1
  doi: 10.1074/jbc.273.21.12685
– ident: 2021112105523805000_18.9.1716.19
  doi: 10.1111/j.1365-2958.2004.04119.x
– ident: 2021112105523805000_18.9.1716.32
  doi: 10.1007/BF00340712
– ident: 2021112105523805000_18.9.1716.33
  doi: 10.1073/pnas.0305859101
– ident: 2021112105523805000_18.9.1716.17
  doi: 10.1261/rna.1637809
– ident: 2021112105523805000_18.9.1716.21
  doi: 10.1007/s10529-008-9648-y
– reference: 16428247 - Nucleic Acids Res. 2006;34(2):517-27
– reference: 20400505 - J Biol Chem. 2010 Jun 11;285(24):18505-15
– reference: 15225320 - Mol Microbiol. 2004 Jul;53(1):263-73
– reference: 11296232 - EMBO J. 2001 Apr 17;20(8):1993-2003
– reference: 14747466 - J Biol Chem. 2004 Apr 30;279(18):18220-31
– reference: 21610213 - RNA. 2011 Jul;17(7):1336-43
– reference: 18246302 - Biotechnol Lett. 2008 Jun;30(6):1041-4
– reference: 14645538 - Mol Cell Biol. 2003 Dec;23(24):9283-92
– reference: 19383764 - RNA. 2009 Jun;15(6):1036-44
– reference: 11571753 - Yeast. 2001 Oct;18(14):1285-99
– reference: 19815768 - Science. 2009 Oct 9;326(5950):247
– reference: 18657509 - Mol Cell. 2008 Jul 25;31(2):278-86
– reference: 15987807 - RNA. 2005 Aug;11(8):1271-80
– reference: 18755837 - RNA. 2008 Oct;14(10):2183-94
– reference: 16244131 - RNA. 2005 Nov;11(11):1648-54
– reference: 18657261 - Mol Microbiol. 2008 Sep;69(5):1266-77
– reference: 21687733 - PLoS One. 2011;6(6):e20783
– reference: 14973195 - Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2788-93
– reference: 8180706 - Microbiology. 1994 Feb;140 ( Pt 2):425-31
– reference: 18031261 - Biochem Soc Trans. 2007 Dec;35(Pt 6):1533-7
– reference: 14718557 - Mol Biol Cell. 2004 Mar;15(3):1459-69
– reference: 12933796 - J Biol Chem. 2003 Nov 7;278(45):43928-38
– reference: 2692852 - Curr Genet. 1989 Dec;16(5-6):339-46
– reference: 13680368 - Mol Genet Genomics. 2003 Nov;270(2):190-9
– reference: 3758030 - EMBO J. 1986 Aug;5(8):1995-2002
– reference: 9404890 - RNA. 1997 Dec;3(12):1388-400
– reference: 18532979 - Mol Microbiol. 2008 Aug;69(3):681-97
– reference: 1767590 - Yeast. 1991 Aug-Sep;7(6):617-25
– reference: 18681940 - Mol Microbiol. 2008 Sep;69(6):1560-74
– reference: 22101242 - RNA. 2012 Jan;18(1):145-54
– reference: 15769872 - RNA. 2005 Apr;11(4):424-36
– reference: 2444436 - EMBO J. 1987 Aug;6(8):2499-503
– reference: 9582290 - J Biol Chem. 1998 May 22;273(21):12685-8
– reference: 21757685 - J Biol Chem. 2011 Sep 2;286(35):30253-7
– reference: 10862876 - Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714
– reference: 16390459 - Mol Microbiol. 2006 Jan;59(2):677-88
– reference: 19656297 - Mol Microbiol. 2009 Sep;73(5):869-81
– reference: 1850408 - J Biol Chem. 1991 Apr 25;266(12):7445-55
SSID ssj0013146
Score 2.1324131
Snippet PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are...
PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are...
The PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases encoded by cytoplasmic DNA...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1716
SubjectTerms Amino Acid Sequence
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Killer Factors, Yeast - chemistry
Killer Factors, Yeast - genetics
Killer Factors, Yeast - metabolism
Models, Biological
Molecular Sequence Data
Mutation
Phylogeny
Ribonucleases - chemistry
Ribonucleases - genetics
Ribonucleases - metabolism
RNA, Transfer - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Sequence Alignment
Title A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair
URI https://www.ncbi.nlm.nih.gov/pubmed/22836353
https://www.proquest.com/docview/1034202904
https://pubmed.ncbi.nlm.nih.gov/PMC3425785
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXBBuXcpOREDxU6TInbpPHtAJNQCcum7QXVDmOQyu1ydSl4_Kv-Id8J06ylA0J9hJFjuOoPl99vuNzMWMvdBpI7Yba0amQjp94qaNgFjhKyqESSiRCU-7w5GCwf-S_PZbHnc6vVtTSuoj7-ueleSVXkSraIFfKkv0PyTaDogH3kC-ukDCu_yTjqAe19LXM9sczGJhZL6P6xNBMvdU8zov8-7ws4r_IyT-geqdk_iYUKEe9ziheh7zHREDNmUpw8-kgIj-Cmq_atJVayd1bJ3i19g8mBjzVRviM5ivQyWYJVzadJIJeaxo_69k3C5IRlIBpD0LpX4Xl0qDFM7NYtnckKLQjbO9IjPMFqHK5LUmZSIBy770FNEUNtCNLaMEF33ECzx5A1De2DSa7E7rVkBdW6XUdh26XXKr301LfIGT-paoBpiLkCdH1XdLcgpKn2h0h2pNlCRSqCAQe5p2ryCZw8cNk7JWrnLzGrgtYJrS0vvvYclxVCW31z6rqhOLju5ufpirU1Xc2KdEFO-fPcN0W_zm8w25XhguPLArvso7JttlOlGG-lz_4S16GEpc-mm12Y1Tf3RzXBwrusC8Rt3DlDVx5DVfewJXXcOWKN3DlNVw5wZUXOS_hygmu3ML1Hjt68_pwvO9Up3s4GqS9cEASBokXGhkbb5BK8PAgDFyRJoFyydkLmjSUsK_1QECkWioTCh_GBuzl1HXx0n22leWZech44OnUF8O9VIEQhyoITJx43t7AlwaM1rhd5tQTPNVV6Xs6gWUxJRMYspliBqdWNjCJRZe9avqf2KIvf-35vJbXFLNJzjaVmXx9iv4AiitC1--yB1Z-zVi14LtsuCHZpgPVfN98ks1nZe33Cn2PrvzmY3br_D_7hG0Vq7V5Cl5dxM9KJP8GQH3Omg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fungal+anticodon+nuclease+ribotoxin+exploits+a+secondary+cleavage+site+to+evade+tRNA+repair&rft.jtitle=RNA+%28Cambridge%29&rft.au=Meineke%2C+Birthe&rft.au=Kast%2C+Alene&rft.au=Schwer%2C+Beate&rft.au=Meinhardt%2C+Friedhelm&rft.date=2012-09-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=18&rft.issue=9&rft.spage=1716&rft.epage=1724&rft_id=info:doi/10.1261%2Frna.034132.112&rft_id=info%3Apmid%2F22836353&rft.externalDocID=PMC3425785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon