Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans
Abstract cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that p...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 3; no. 2; p. lqab052 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2631-9268 2631-9268 |
DOI | 10.1093/nargab/lqab052 |
Cover
Loading…
Abstract | Abstract
cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought. |
---|---|
AbstractList | cis
-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely
cis
-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the
cis
-regulatory genome appears to be more prevalent than originally thought. Abstract cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought. cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought. cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought. cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought.cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought. |
Author | Su, Zhengchang Ni, Pengyu |
Author_xml | – sequence: 1 givenname: Pengyu surname: Ni fullname: Ni, Pengyu – sequence: 2 givenname: Zhengchang orcidid: 0000-0001-9878-5480 surname: Su fullname: Su, Zhengchang email: zcsu@uncc.edu |
BookMark | eNqFkc1rHSEUxaWkNGmabdcD3bSLSXR0nHFTCKFfEOimXRa5Ove9GBx90fFB_vs6vEdJA6UrBX_neO49r8lJiAEJecvoJaOKXwVIWzBX_gEM7bsX5KyTnLWqk-PJk_spucj5nlLa9aIXlL0ip1ywXnHWn5Ff19aWBAs2u4STs4uLoYmbxrrcJtwWD0tMj80cp-IxNwn3CD43sOJ78BiW5gm2xRBnXPV3ZYaQ35CXm4rjxfE8Jz8_f_px87W9_f7l2831bWtFL5cW-QASgVNjmIHJjoIPwiDAwI2yCpDV-biigwQzUWl7AcB6kFVl1YScn5OPB99dMTNOtsZK4PUuuRnSo47g9N8vwd3pbdzrsWN0HFU1eH80SPGhYF707LJF7yFgLFnX1QkhGaeyou-eofexpFDH05wNVFE18tXw8kDZFHNOuPkThlG9lqcP5eljeVUgngmsW2CtowZ2_t-yDwdZLLv_ffEbzEWzDQ |
CitedBy_id | crossref_primary_10_3389_fcimb_2023_1182567 crossref_primary_10_3389_fdata_2023_1113402 crossref_primary_10_1016_j_compbiomed_2024_108068 crossref_primary_10_1093_nargab_lqad085 crossref_primary_10_1016_j_ymeth_2023_12_002 crossref_primary_10_1186_s12864_022_08933_7 crossref_primary_10_1186_s12915_022_01426_9 crossref_primary_10_1016_j_compbiolchem_2023_107931 crossref_primary_10_1002_ntls_20220058 crossref_primary_10_1038_s41598_021_00583_1 crossref_primary_10_1002_ggn2_202300209 crossref_primary_10_1016_j_angen_2022_200142 |
Cites_doi | 10.1093/nar/gkj115 10.1186/gb-2007-8-2-r24 10.1093/bioinformatics/btw495 10.1371/journal.pgen.1004857 10.1038/nmeth.3065 10.1093/nar/gkt829 10.1016/j.febslet.2015.11.027 10.1016/j.cell.2007.05.009 10.1007/978-1-61779-361-5_15 10.1038/nmeth0410-250 10.1038/nature11247 10.1371/journal.pgen.1004525 10.1093/nar/gkl822 10.1126/science.1098119 10.1126/science.1262110 10.1101/gr.139881.112 10.1101/gr.249326.119 10.1101/gad.310367.117 10.1093/nar/gks1092 10.1016/j.tig.2012.09.007 10.1093/nar/gkx920 10.1101/gr.173518.114 10.1016/j.celrep.2018.03.129 10.1093/nar/gkt1302 10.1016/j.cell.2015.01.006 10.1038/ejhg.2013.96 10.1089/10665270360688219 10.1093/nar/gkw983 10.1038/nrg3458 10.1038/msb.2010.35 10.1093/nar/gks433 10.1038/nmeth.1906 10.1126/science.1242429 10.1126/science.1090005 10.1093/nar/gky338 10.1038/nmeth.2688 10.1038/nsmb.2784 10.3389/fgene.2017.00063 10.1038/ng.2007.55 10.1126/science.1141319 10.1016/j.gde.2016.10.007 10.1038/nature12787 10.1186/s13059-019-1750-z 10.1126/science.1242510 10.1182/blood-2002-04-1104 10.1093/bioinformatics/btz290 10.1093/nar/gkv1002 10.1093/gbe/evt028 10.1371/journal.pgen.1008827 10.1093/nar/29.1.281 10.1158/2159-8290.CD-16-0745 10.1073/pnas.1318948111 10.2217/epi-2017-0157 10.1016/j.gde.2014.08.011 10.1186/s13072-015-0009-5 10.1093/nar/gkw1133 10.1093/nar/gks1284 10.1186/s13059-017-1379-8 10.1101/gr.116814.110 10.1016/j.tig.2014.12.003 10.1038/nrg3891 10.1016/j.molcel.2010.05.004 10.1016/j.cell.2012.01.030 10.1080/21541264.2017.1317694 10.1126/science.1242463 10.1145/2700404 10.1038/onc.2015.352 10.1186/s13059-020-01996-3 10.1093/nar/gky1120 10.1038/nrg.2015.17 10.1016/j.molcel.2014.02.033 10.1038/s41586-020-2449-8 10.1093/bib/bbv101 10.1093/database/bay141 10.1186/1752-0509-7-S2-S14 10.1093/nar/gkt1249 10.1016/j.cell.2014.08.009 10.1016/j.ydbio.2011.03.007 10.1016/j.cell.2013.07.020 10.1186/gb-2009-10-3-r29 10.1093/bioinformatics/btr261 10.1074/jbc.C000773200 10.1038/s41586-020-2493-4 10.1038/nrg2538 10.1016/j.cell.2012.12.009 10.1186/1471-2164-15-1047 10.1002/jcb.20352 10.1093/nar/gkz483 10.1073/pnas.1016071107 10.1371/journal.pcbi.1002968 10.1093/database/bax028 10.1038/nature11232 10.1093/nar/gks1233 10.1038/nature13602 10.1002/pro.3978 10.1534/g3.113.008680 10.1093/nar/gkx1106 10.1093/gbe/evx121 10.1186/s13059-015-0621-5 10.1073/pnas.0903103106 10.1016/j.cell.2018.09.045 10.1073/pnas.1808833115 10.1038/nbt.2422 10.1093/nar/gkx1153 10.1098/rstb.2013.0017 10.1186/1471-2105-9-547 10.1093/database/bav085 10.1016/j.cell.2006.12.048 10.1038/s41576-019-0209-0 10.1101/gr.1562804 10.1038/nmeth.1937 10.1038/nature13182 10.1093/gbe/evaa040 10.1093/nar/gks237 10.1093/nar/gkx1092 10.1371/journal.pbio.0030007 10.1093/bioinformatics/btq248 10.1093/nar/gku1058 10.1038/nature14248 10.1093/bioinformatics/btr189 10.1016/j.cell.2013.09.053 10.1186/1471-2164-14-S5-S2 10.1093/nar/gkr341 10.1093/nar/gkv1176 10.1111/pcmr.12149 10.1126/science.1222794 10.1101/gr.3642605 10.1101/gr.097857.109 10.1038/s41467-018-07746-1 10.1186/gb-2012-13-9-r48 10.1126/science.1142430 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
DBID | TOX AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/nargab/lqab052 |
DatabaseName | Open Access: Oxford University Press Open Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-9268 |
ExternalDocumentID | PMC8210889 10_1093_nargab_lqab052 10.1093/nargab/lqab052 |
GrantInformation_xml | – fundername: ; grantid: DBI-1661332 |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL BBNVY BENPR BHPHI CCPQU EBS EMOBN GROUPED_DOAJ HCIFZ IAO IGS IHR INH ITC KSI M7P M~E PIMPY RPM TOX AAYXX CITATION PHGZM PHGZT 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c456t-e37a6ea30bb1badc84374beaa73b9c9ae1b0539076abd06c54aa15a67a6c9de33 |
IEDL.DBID | BENPR |
ISSN | 2631-9268 |
IngestDate | Thu Aug 21 18:42:53 EDT 2025 Thu Jul 10 19:08:59 EDT 2025 Fri Jul 25 11:47:51 EDT 2025 Tue Jul 01 02:50:15 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Wed Apr 02 07:06:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-e37a6ea30bb1badc84374beaa73b9c9ae1b0539076abd06c54aa15a67a6c9de33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9878-5480 |
OpenAccessLink | https://www.proquest.com/docview/3170909839?pq-origsite=%requestingapplication% |
PMID | 34159315 |
PQID | 3170909839 |
PQPubID | 7097362 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8210889 proquest_miscellaneous_2544461306 proquest_journals_3170909839 crossref_primary_10_1093_nargab_lqab052 crossref_citationtrail_10_1093_nargab_lqab052 oup_primary_10_1093_nargab_lqab052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | NAR genomics and bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Pollard (2021070810414566000_B108) 2010; 20 Zhou (2021070810414566000_B17) 2016; 6 Young (2021070810414566000_B116) 2017; 18 Yanez-Cuna (2021070810414566000_B77) 2013; 29 Khan (2021070810414566000_B120) 2015; 44 Galeota-Sprung (2021070810414566000_B134) 2020; 12 Johnson (2021070810414566000_B25) 2007; 316 Liu (2021070810414566000_B32) 2001; 2001 Chereji (2021070810414566000_B117) 2019; 29 Devailly (2021070810414566000_B103) 2015; 589 Kleftogiannis (2021070810414566000_B53) 2015; 43 Kulakovskiy (2021070810414566000_B93) 2018; 46 Davidson (2021070810414566000_B1) 2006 Hartmann (2021070810414566000_B35) 2013; 23 Whitaker (2021070810414566000_B18) 2015; 12 Heinz (2021070810414566000_B36) 2010; 38 Junion (2021070810414566000_B39) 2012; 148 Aday (2021070810414566000_B65) 2011; 357 Rands (2021070810414566000_B137) 2014; 10 Sánchez-Tilló (2021070810414566000_B100) 2015; 34 Ambrosini (2021070810414566000_B97) 2020; 21 Wilderman (2021070810414566000_B123) 2018; 23 Kellis (2021070810414566000_B127) 2014; 111 Cheneby (2021070810414566000_B62) 2018; 46 Arnosti (2021070810414566000_B76) 2005; 94 Visel (2021070810414566000_B110) 2008; 40 MacArthur (2021070810414566000_B118) 2017; 45 Ashoor (2021070810414566000_B56) 2015; 2015 Stergachis (2021070810414566000_B104) 2013; 154 Pai (2021070810414566000_B21) 2015; 11 Buenrostro (2021070810414566000_B64) 2013; 10 Vockley (2021070810414566000_B78) 2017; 43 Wang (2021070810414566000_B19) 2019; 47 van Dongen (2021070810414566000_B89) 2012; 804 Consortium (2021070810414566000_B28) 2015; 348 Kleftogiannis (2021070810414566000_B30) 2016; 17 Hindorff (2021070810414566000_B6) 2009; 106 Ongen (2021070810414566000_B15) 2014; 512 Gupta (2021070810414566000_B95) 2007; 8 Bailey (2021070810414566000_B31) 1994; 2 Whitington (2021070810414566000_B40) 2011; 39 Graur (2021070810414566000_B138) 2017; 9 Lambert (2021070810414566000_B96) 2018; 175 Dreos (2021070810414566000_B121) 2013; 41 Rubinstein (2021070810414566000_B4) 2013; 368 Visel (2021070810414566000_B79) 2007; 35 Woolfe (2021070810414566000_B114) 2005; 3 Gao (2021070810414566000_B61) 2020; 48 Zhang (2021070810414566000_B60) 2018; 46 Yip (2021070810414566000_B45) 2012; 13 Kundaje (2021070810414566000_B27) 2015; 518 Niu (2021070810414566000_B75) 2014; 15 Snetkova (2021070810414566000_B91) 2018; 10 Chen (2021070810414566000_B58) 2020; 48 Kang (2021070810414566000_B59) 2019; 2019 Vaquerizas (2021070810414566000_B131) 2009; 10 Arbel (2021070810414566000_B71) 2019; 116 Hoffman (2021070810414566000_B124) 2012; 9 Fishilevich (2021070810414566000_B57) 2017; 2017 Landrum (2021070810414566000_B80) 2018; 46 King (2021070810414566000_B3) 1975; 188 Ernst (2021070810414566000_B49) 2012; 9 Buniello (2021070810414566000_B83) 2019; 47 Wang (2021070810414566000_B129) 2018; 9 Kheradpour (2021070810414566000_B46) 2014; 42 Pennacchio (2021070810414566000_B126) 2013; 14 Rajagopal (2021070810414566000_B52) 2013; 9 Firpi (2021070810414566000_B51) 2010; 26 Kwasnieski (2021070810414566000_B68) 2014; 24 Ponting (2021070810414566000_B135) 2011; 21 Smith (2021070810414566000_B12) 2014; 21 Li (2021070810414566000_B73) 2019; 35 Siepel (2021070810414566000_B5) 2014; 29 Catarino (2021070810414566000_B70) 2018; 32 Maurano (2021070810414566000_B8) 2012; 337 Li (2021070810414566000_B92) 2002; 100 Snyder (2021070810414566000_B128) 2020; 583 Machanick (2021070810414566000_B34) 2011; 27 Marinov (2021070810414566000_B102) 2014; 4 Cooper (2021070810414566000_B109) 2010; 7 Niu (2021070810414566000_B48) 2014; 15 Herz (2021070810414566000_B14) 2014; 53 Vlieghe (2021070810414566000_B44) 2006; 34 Soundarajan (2021070810414566000_B86) 2015; 9 Khurana (2021070810414566000_B16) 2016; 17 Zerbino (2021070810414566000_B55) 2015; 16 Mathelier (2021070810414566000_B13) 2015; 31 Bejerano (2021070810414566000_B111) 2004; 304 Graur (2021070810414566000_B133) 2013; 5 Hoffman (2021070810414566000_B50) 2013; 41 Won (2021070810414566000_B54) 2008; 9 Villar (2021070810414566000_B115) 2015; 160 Gao (2021070810414566000_B125) 2016; 32 Barski (2021070810414566000_B24) 2007; 129 Goi (2021070810414566000_B72) 2013; 14 Sinha (2021070810414566000_B37) 2003; 10 Sun (2021070810414566000_B41) 2012; 40 Kim (2021070810414566000_B67) 2007; 128 Gasperini (2021070810414566000_B23) 2020; 21 Oughtred (2021070810414566000_B84) 2021; 30 Hnisz (2021070810414566000_B106) 2013; 155 Huber (2021070810414566000_B139) 2020; 16 Li (2021070810414566000_B113) 2019; 20 Wilczynski (2021070810414566000_B2) 2010; 6 Mei (2021070810414566000_B29) 2017; 45 Fulton (2021070810414566000_B130) 2009; 10 Ward (2021070810414566000_B20) 2012; 30 Kilpinen (2021070810414566000_B10) 2013; 342 Koyabu (2021070810414566000_B99) 2001; 276 Wingender (2021070810414566000_B43) 2001; 29 Dimitrieva (2021070810414566000_B122) 2013; 41 Weirauch (2021070810414566000_B87) 2014; 158 Creyghton (2021070810414566000_B66) 2010; 107 Li (2021070810414566000_B105) 2017; 8 Vockley (2021070810414566000_B90) 2017; 8 Kasowski (2021070810414566000_B9) 2013; 342 Moore (2021070810414566000_B26) 2020; 583 Zhang (2021070810414566000_B88) 2013; 7 Bernstein (2021070810414566000_B119) 2012; 489 Thurman (2021070810414566000_B63) 2012; 489 Bailey (2021070810414566000_B33) 2011; 27 Allen (2021070810414566000_B74) 2004; 14 King (2021070810414566000_B136) 2005; 15 Niu (2021070810414566000_B47) 2018; 46 Andersson (2021070810414566000_B81) 2014; 507 Albert (2021070810414566000_B22) 2015; 16 McVicker (2021070810414566000_B11) 2013; 342 Jiang (2021070810414566000_B42) 2014; 42 Cooper (2021070810414566000_B107) 2010; 7 Katzman (2021070810414566000_B112) 2007; 317 Jassal (2021070810414566000_B85) 2020; 48 Perrot (2021070810414566000_B98) 2013; 26 Bailey (2021070810414566000_B38) 2012; 40 Mendoza-Parra (2021070810414566000_B101) 2013; 41 Mathelier (2021070810414566000_B94) 2016; 44 Ramos (2021070810414566000_B7) 2014; 22 Dogan (2021070810414566000_B69) 2015; 8 Forrest (2021070810414566000_B82) 2014; 507 Jolma (2021070810414566000_B132) 2013; 152 |
References_xml | – volume: 34 start-page: D95 year: 2006 ident: 2021070810414566000_B44 article-title: A new generation of JASPAR, the open-access repository for transcription factor binding site profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj115 – volume: 8 start-page: R24 year: 2007 ident: 2021070810414566000_B95 article-title: Quantifying similarity between motifs publication-title: Genome Biol. doi: 10.1186/gb-2007-8-2-r24 – volume: 32 start-page: 3543 year: 2016 ident: 2021070810414566000_B125 article-title: EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw495 – volume: 11 start-page: e1004857 year: 2015 ident: 2021070810414566000_B21 article-title: The genetic and mechanistic basis for variation in gene regulation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004857 – volume: 12 start-page: 265 year: 2015 ident: 2021070810414566000_B18 article-title: Predicting the human epigenome from DNA motifs publication-title: Nat. Methods doi: 10.1038/nmeth.3065 – volume: 41 start-page: e196 year: 2013 ident: 2021070810414566000_B101 article-title: A quality control system for profiles obtained by ChIP sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt829 – volume: 589 start-page: 3866 year: 2015 ident: 2021070810414566000_B103 article-title: Variable reproducibility in genome-scale public data: a case study using ENCODE ChIP sequencing resource publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.11.027 – volume: 129 start-page: 823 year: 2007 ident: 2021070810414566000_B24 article-title: High-resolution profiling of histone methylations in the human genome publication-title: Cell doi: 10.1016/j.cell.2007.05.009 – volume: 804 start-page: 281 year: 2012 ident: 2021070810414566000_B89 article-title: Using MCL to extract clusters from networks publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-361-5_15 – volume: 7 start-page: 250 year: 2010 ident: 2021070810414566000_B109 article-title: Single-nucleotide evolutionary constraint scores highlight disease-causing mutations publication-title: Nat. Methods doi: 10.1038/nmeth0410-250 – volume: 489 start-page: 57 year: 2012 ident: 2021070810414566000_B119 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 10 start-page: e1004525 year: 2014 ident: 2021070810414566000_B137 article-title: 8.2% of the Human genome is constrained: variation in rates of turnover across functional element classes in the human lineage publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004525 – volume: 35 start-page: D88 year: 2007 ident: 2021070810414566000_B79 article-title: VISTA Enhancer Browser – a database of tissue-specific human enhancers publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl822 – volume: 304 start-page: 1321 year: 2004 ident: 2021070810414566000_B111 article-title: Ultraconserved elements in the human genome publication-title: Science doi: 10.1126/science.1098119 – volume: 348 start-page: 648 year: 2015 ident: 2021070810414566000_B28 article-title: Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans publication-title: Science doi: 10.1126/science.1262110 – volume: 23 start-page: 181 year: 2013 ident: 2021070810414566000_B35 article-title: P-value-based regulatory motif discovery using positional weight matrices publication-title: Genome Res. doi: 10.1101/gr.139881.112 – volume: 29 start-page: 1985 year: 2019 ident: 2021070810414566000_B117 article-title: Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation publication-title: Genome Res. doi: 10.1101/gr.249326.119 – volume: 32 start-page: 202 year: 2018 ident: 2021070810414566000_B70 article-title: Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation publication-title: Genes Dev. doi: 10.1101/gad.310367.117 – volume: 41 start-page: D101 year: 2013 ident: 2021070810414566000_B122 article-title: UCNEbase–a database of ultraconserved non-coding elements and genomic regulatory blocks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1092 – volume: 29 start-page: 11 year: 2013 ident: 2021070810414566000_B77 article-title: Deciphering the transcriptional cis-regulatory code publication-title: Trends Genet. doi: 10.1016/j.tig.2012.09.007 – volume: 46 start-page: D78 year: 2018 ident: 2021070810414566000_B60 article-title: DiseaseEnhancer: a resource of human disease-associated enhancer catalog publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx920 – volume: 24 start-page: 1595 year: 2014 ident: 2021070810414566000_B68 article-title: High-throughput functional testing of ENCODE segmentation predictions publication-title: Genome Res. doi: 10.1101/gr.173518.114 – volume: 23 start-page: 1581 year: 2018 ident: 2021070810414566000_B123 article-title: High-resolution epigenomic atlas of human embryonic craniofacial development publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.129 – volume: 42 start-page: 2833 year: 2014 ident: 2021070810414566000_B42 article-title: CCAT: Combinatorial Code Analysis Tool for transcriptional regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1302 – volume: 160 start-page: 554 year: 2015 ident: 2021070810414566000_B115 article-title: Enhancer evolution across 20 mammalian species publication-title: Cell doi: 10.1016/j.cell.2015.01.006 – volume: 22 start-page: 144 year: 2014 ident: 2021070810414566000_B7 article-title: Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2013.96 – volume: 10 start-page: 599 year: 2003 ident: 2021070810414566000_B37 article-title: Discriminative motifs publication-title: J. Comput. Biol. doi: 10.1089/10665270360688219 – volume: 45 start-page: D658 year: 2017 ident: 2021070810414566000_B29 article-title: Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw983 – volume: 14 start-page: 288 year: 2013 ident: 2021070810414566000_B126 article-title: Enhancers: five essential questions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3458 – volume: 6 start-page: 383 year: 2010 ident: 2021070810414566000_B2 article-title: Dynamic CRM occupancy reflects a temporal map of developmental progression publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.35 – volume: 40 start-page: e128 year: 2012 ident: 2021070810414566000_B38 article-title: Inferring direct DNA binding from ChIP-seq publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks433 – volume: 9 start-page: 215 year: 2012 ident: 2021070810414566000_B49 article-title: ChromHMM: automating chromatin-state discovery and characterization publication-title: Nat. Methods doi: 10.1038/nmeth.1906 – volume: 342 start-page: 747 year: 2013 ident: 2021070810414566000_B11 article-title: Identification of genetic variants that affect histone modifications in human cells publication-title: Science doi: 10.1126/science.1242429 – volume: 188 start-page: 107 year: 1975 ident: 2021070810414566000_B3 article-title: Evolution at two levels in humans and chimpanzees publication-title: Science doi: 10.1126/science.1090005 – volume: 46 start-page: 5395 year: 2018 ident: 2021070810414566000_B47 article-title: Towards a map of cis-regulatory sequences in the human genome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky338 – volume: 10 start-page: 1213 year: 2013 ident: 2021070810414566000_B64 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods doi: 10.1038/nmeth.2688 – volume: 21 start-page: 210 year: 2014 ident: 2021070810414566000_B12 article-title: Enhancer biology and enhanceropathies publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2784 – volume: 8 start-page: 63 year: 2017 ident: 2021070810414566000_B105 article-title: An enhancer's length and composition are shaped by Its regulatory task publication-title: Front Genet doi: 10.3389/fgene.2017.00063 – volume: 40 start-page: 158 year: 2008 ident: 2021070810414566000_B110 article-title: Ultraconservation identifies a small subset of extremely constrained developmental enhancers publication-title: Nat. Genet. doi: 10.1038/ng.2007.55 – volume: 316 start-page: 1497 year: 2007 ident: 2021070810414566000_B25 article-title: Genome-wide mapping of in vivo protein-DNA interactions publication-title: Science doi: 10.1126/science.1141319 – volume: 43 start-page: 38 year: 2017 ident: 2021070810414566000_B78 article-title: Decoding the role of regulatory element polymorphisms in complex disease publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2016.10.007 – volume: 507 start-page: 455 year: 2014 ident: 2021070810414566000_B81 article-title: An atlas of active enhancers across human cell types and tissues publication-title: Nature doi: 10.1038/nature12787 – volume: 20 start-page: 140 year: 2019 ident: 2021070810414566000_B113 article-title: Stable enhancers are active in development, and fragile enhancers are associated with evolutionary adaptation publication-title: Genome Biol. doi: 10.1186/s13059-019-1750-z – volume: 342 start-page: 750 year: 2013 ident: 2021070810414566000_B9 article-title: Extensive variation in chromatin states across humans publication-title: Science doi: 10.1126/science.1242510 – volume: 100 start-page: 3077 year: 2002 ident: 2021070810414566000_B92 article-title: Locus control regions publication-title: Blood doi: 10.1182/blood-2002-04-1104 – volume: 35 start-page: 4632 year: 2019 ident: 2021070810414566000_B73 article-title: ProSampler: an ultra-fast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz290 – volume: 44 start-page: D164 year: 2015 ident: 2021070810414566000_B120 article-title: dbSUPER: a database of super-enhancers in mouse and human genome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1002 – volume: 5 start-page: 578 year: 2013 ident: 2021070810414566000_B133 article-title: On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evt028 – volume: 16 start-page: e1008827 year: 2020 ident: 2021070810414566000_B139 article-title: Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008827 – volume: 29 start-page: 281 year: 2001 ident: 2021070810414566000_B43 article-title: The TRANSFAC system on gene expression regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.1.281 – volume: 6 start-page: 1215 year: 2016 ident: 2021070810414566000_B17 article-title: Emergence of the noncoding cancer genome: a target of genetic and epigenetic alterations publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0745 – volume: 111 start-page: 6131 year: 2014 ident: 2021070810414566000_B127 article-title: Defining functional DNA elements in the human genome publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1318948111 – volume: 48 start-page: D498 year: 2020 ident: 2021070810414566000_B85 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Res. – volume: 10 start-page: 483 year: 2018 ident: 2021070810414566000_B91 article-title: Enhancer talk publication-title: Epigenomics doi: 10.2217/epi-2017-0157 – volume: 29 start-page: 81 year: 2014 ident: 2021070810414566000_B5 article-title: Cis-regulatory elements and human evolution publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2014.08.011 – volume: 8 start-page: 16 year: 2015 ident: 2021070810414566000_B69 article-title: Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility publication-title: Epigenet. Chromatin doi: 10.1186/s13072-015-0009-5 – volume: 45 start-page: D896 year: 2017 ident: 2021070810414566000_B118 article-title: The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1133 – volume: 41 start-page: 827 year: 2013 ident: 2021070810414566000_B50 article-title: Integrative annotation of chromatin elements from ENCODE data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1284 – volume: 18 start-page: 242 year: 2017 ident: 2021070810414566000_B116 article-title: Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers publication-title: Genome Biol. doi: 10.1186/s13059-017-1379-8 – volume: 21 start-page: 1769 year: 2011 ident: 2021070810414566000_B135 article-title: What fraction of the human genome is functional publication-title: Genome Res. doi: 10.1101/gr.116814.110 – volume: 31 start-page: 67 year: 2015 ident: 2021070810414566000_B13 article-title: Identification of altered cis-regulatory elements in human disease publication-title: Trends Genet. doi: 10.1016/j.tig.2014.12.003 – volume: 16 start-page: 197 year: 2015 ident: 2021070810414566000_B22 article-title: The role of regulatory variation in complex traits and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3891 – volume: 38 start-page: 576 year: 2010 ident: 2021070810414566000_B36 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 148 start-page: 473 year: 2012 ident: 2021070810414566000_B39 article-title: A transcription factor collective defines cardiac cell fate and reflects lineage history publication-title: Cell doi: 10.1016/j.cell.2012.01.030 – volume: 8 start-page: 261 year: 2017 ident: 2021070810414566000_B90 article-title: A long-range flexible billboard model of gene activation publication-title: Transcription doi: 10.1080/21541264.2017.1317694 – volume: 342 start-page: 744 year: 2013 ident: 2021070810414566000_B10 article-title: Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription publication-title: Science doi: 10.1126/science.1242463 – volume: 9 start-page: 21 year: 2015 ident: 2021070810414566000_B86 article-title: Use of Local Group Information to Identify Communities in Networks publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2700404 – volume: 34 start-page: 5760 year: 2015 ident: 2021070810414566000_B100 article-title: ZEB1 and TCF4 reciprocally modulate their transcriptional activities to regulate Wnt target gene expression publication-title: Oncogene doi: 10.1038/onc.2015.352 – volume: 21 start-page: 114 year: 2020 ident: 2021070810414566000_B97 article-title: Insights gained from a comprehensive all-against-all transcription factor binding motif benchmarking study publication-title: Genome Biol. doi: 10.1186/s13059-020-01996-3 – volume: 47 start-page: D1005 year: 2019 ident: 2021070810414566000_B83 article-title: The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1120 – volume: 17 start-page: 93 year: 2016 ident: 2021070810414566000_B16 article-title: Role of non-coding sequence variants in cancer publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2015.17 – volume: 53 start-page: 859 year: 2014 ident: 2021070810414566000_B14 article-title: Enhancer malfunction in cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.02.033 – volume: 583 start-page: 693 year: 2020 ident: 2021070810414566000_B128 article-title: Perspectives on ENCODE publication-title: Nature doi: 10.1038/s41586-020-2449-8 – volume: 17 start-page: 967 year: 2016 ident: 2021070810414566000_B30 article-title: Progress and challenges in bioinformatics approaches for enhancer identification publication-title: Brief. Bioinform. doi: 10.1093/bib/bbv101 – volume: 2019 start-page: bay141 year: 2019 ident: 2021070810414566000_B59 article-title: EnhancerDB: a resource of transcriptional regulation in the context of enhancers publication-title: Database (Oxford) doi: 10.1093/database/bay141 – volume: 7 start-page: S14 year: 2013 ident: 2021070810414566000_B88 article-title: SPIC: A novel information contents based similarity metric for comparing transcription factor binding site motifs publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-S2-S14 – volume: 42 start-page: 2976 year: 2014 ident: 2021070810414566000_B46 article-title: Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1249 – volume: 158 start-page: 1431 year: 2014 ident: 2021070810414566000_B87 article-title: Determination and inference of eukaryotic transcription factor sequence specificity publication-title: Cell doi: 10.1016/j.cell.2014.08.009 – volume: 357 start-page: 450 year: 2011 ident: 2021070810414566000_B65 article-title: Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.03.007 – volume: 154 start-page: 888 year: 2013 ident: 2021070810414566000_B104 article-title: Developmental fate and cellular maturity encoded in human regulatory DNA landscapes publication-title: Cell doi: 10.1016/j.cell.2013.07.020 – volume: 10 start-page: R29 year: 2009 ident: 2021070810414566000_B130 article-title: TFCat: the curated catalog of mouse and human transcription factors publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r29 – volume: 27 start-page: 1653 year: 2011 ident: 2021070810414566000_B33 article-title: DREME: motif discovery in transcription factor ChIP-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr261 – volume: 2001 start-page: 127 year: 2001 ident: 2021070810414566000_B32 article-title: BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes publication-title: Pac. Symp. Biocomput. – volume: 276 start-page: 6889 year: 2001 ident: 2021070810414566000_B99 article-title: Physical and functional interactions between Zic and Gli proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000773200 – volume: 583 start-page: 699 year: 2020 ident: 2021070810414566000_B26 article-title: Expanded encyclopaedias of DNA elements in the human and mouse genomes publication-title: Nature doi: 10.1038/s41586-020-2493-4 – volume: 10 start-page: 252 year: 2009 ident: 2021070810414566000_B131 article-title: A census of human transcription factors: function, expression and evolution publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2538 – volume: 48 start-page: D58 year: 2020 ident: 2021070810414566000_B61 article-title: EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species publication-title: Nucleic Acids Res. – volume: 152 start-page: 327 year: 2013 ident: 2021070810414566000_B132 article-title: DNA-binding specificities of human transcription factors publication-title: Cell doi: 10.1016/j.cell.2012.12.009 – volume: 2 start-page: 28 year: 1994 ident: 2021070810414566000_B31 article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers publication-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. – volume: 15 start-page: 1047 year: 2014 ident: 2021070810414566000_B75 article-title: De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1047 – volume: 94 start-page: 890 year: 2005 ident: 2021070810414566000_B76 article-title: Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20352 – volume: 47 start-page: 6753 year: 2019 ident: 2021070810414566000_B19 article-title: Identification of DNA motifs that regulate DNA methylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz483 – volume: 107 start-page: 21931 year: 2010 ident: 2021070810414566000_B66 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1016071107 – volume: 9 start-page: e1002968 year: 2013 ident: 2021070810414566000_B52 article-title: RFECS: a random-forest based algorithm for enhancer identification from chromatin state publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002968 – volume: 2017 start-page: bax028 year: 2017 ident: 2021070810414566000_B57 article-title: GeneHancer: genome-wide integration of enhancers and target genes in GeneCards publication-title: Database (Oxford) doi: 10.1093/database/bax028 – volume: 489 start-page: 75 year: 2012 ident: 2021070810414566000_B63 article-title: The accessible chromatin landscape of the human genome publication-title: Nature doi: 10.1038/nature11232 – volume: 41 start-page: D157 year: 2013 ident: 2021070810414566000_B121 article-title: EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1233 – volume: 512 start-page: 87 year: 2014 ident: 2021070810414566000_B15 article-title: Putative cis-regulatory drivers in colorectal cancer publication-title: Nature doi: 10.1038/nature13602 – volume: 30 start-page: 187 year: 2021 ident: 2021070810414566000_B84 article-title: The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions publication-title: Protein Sci. doi: 10.1002/pro.3978 – volume: 4 start-page: 209 year: 2014 ident: 2021070810414566000_B102 article-title: Large-scale quality analysis of published ChIP-seq data publication-title: G3 (Bethesda) doi: 10.1534/g3.113.008680 – volume: 46 start-page: D252 year: 2018 ident: 2021070810414566000_B93 article-title: HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1106 – volume: 9 start-page: 1880 year: 2017 ident: 2021070810414566000_B138 article-title: An upper limit on the functional fraction of the human genome publication-title: Genome Biol Evol doi: 10.1093/gbe/evx121 – volume: 15 start-page: 1047 year: 2014 ident: 2021070810414566000_B48 article-title: De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1047 – volume: 16 start-page: 56 year: 2015 ident: 2021070810414566000_B55 article-title: The ensembl regulatory build publication-title: Genome Biol. doi: 10.1186/s13059-015-0621-5 – volume: 106 start-page: 9362 year: 2009 ident: 2021070810414566000_B6 article-title: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0903103106 – volume: 175 start-page: 598 year: 2018 ident: 2021070810414566000_B96 article-title: The human transcription factors publication-title: Cell doi: 10.1016/j.cell.2018.09.045 – volume: 116 start-page: 900 year: 2019 ident: 2021070810414566000_B71 article-title: Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1808833115 – volume: 30 start-page: 1095 year: 2012 ident: 2021070810414566000_B20 article-title: Interpreting noncoding genetic variation in complex traits and human disease publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2422 – volume: 46 start-page: D1062 year: 2018 ident: 2021070810414566000_B80 article-title: ClinVar: improving access to variant interpretations and supporting evidence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1153 – volume: 368 start-page: 20130017 year: 2013 ident: 2021070810414566000_B4 article-title: Evolution of transcriptional enhancers and animal diversity publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2013.0017 – volume: 9 start-page: 547 year: 2008 ident: 2021070810414566000_B54 article-title: Prediction of regulatory elements in mammalian genomes using chromatin signatures publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-547 – volume: 2015 start-page: bav085 year: 2015 ident: 2021070810414566000_B56 article-title: DENdb: database of integrated human enhancers publication-title: Database doi: 10.1093/database/bav085 – volume: 128 start-page: 1231 year: 2007 ident: 2021070810414566000_B67 article-title: Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome publication-title: Cell doi: 10.1016/j.cell.2006.12.048 – volume: 21 start-page: 292 year: 2020 ident: 2021070810414566000_B23 article-title: Towards a comprehensive catalogue of validated and target-linked human enhancers publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0209-0 – volume: 14 start-page: 142 year: 2004 ident: 2021070810414566000_B74 article-title: Computational gene prediction using multiple sources of evidence publication-title: Genome Res. doi: 10.1101/gr.1562804 – volume: 9 start-page: 473 year: 2012 ident: 2021070810414566000_B124 article-title: Unsupervised pattern discovery in human chromatin structure through genomic segmentation publication-title: Nat. Methods doi: 10.1038/nmeth.1937 – volume: 507 start-page: 462 year: 2014 ident: 2021070810414566000_B82 article-title: A promoter-level mammalian expression atlas publication-title: Nature doi: 10.1038/nature13182 – volume: 12 start-page: 273 year: 2020 ident: 2021070810414566000_B134 article-title: Mutational load and the functional fraction of the human genome publication-title: Genome Biol Evol doi: 10.1093/gbe/evaa040 – volume: 40 start-page: e90 year: 2012 ident: 2021070810414566000_B41 article-title: Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks237 – volume: 46 start-page: D267 year: 2018 ident: 2021070810414566000_B62 article-title: ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1092 – volume: 3 start-page: e7 year: 2005 ident: 2021070810414566000_B114 article-title: Highly conserved non-coding sequences are associated with vertebrate development publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030007 – volume-title: The Regulatory Genome: Gene Regulatory Networks In Development And Evolution year: 2006 ident: 2021070810414566000_B1 – volume: 26 start-page: 1579 year: 2010 ident: 2021070810414566000_B51 article-title: Discover regulatory DNA elements using chromatin signatures and artificial neural network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq248 – volume: 43 start-page: e6 year: 2015 ident: 2021070810414566000_B53 article-title: DEEP: a general computational framework for predicting enhancers publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1058 – volume: 518 start-page: 317 year: 2015 ident: 2021070810414566000_B27 article-title: Integrative analysis of 111 reference human epigenomes publication-title: Nature doi: 10.1038/nature14248 – volume: 27 start-page: 1696 year: 2011 ident: 2021070810414566000_B34 article-title: MEME-ChIP: motif analysis of large DNA datasets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr189 – volume: 155 start-page: 934 year: 2013 ident: 2021070810414566000_B106 article-title: Super-enhancers in the control of cell identity and disease publication-title: Cell doi: 10.1016/j.cell.2013.09.053 – volume: 48 start-page: D198 year: 2020 ident: 2021070810414566000_B58 article-title: SEA version 3.0: a comprehensive extension and update of the Super-Enhancer archive publication-title: Nucleic Acids Res. – volume: 14 start-page: S2 year: 2013 ident: 2021070810414566000_B72 article-title: Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data publication-title: BMC Genomics doi: 10.1186/1471-2164-14-S5-S2 – volume: 39 start-page: e98 year: 2011 ident: 2021070810414566000_B40 article-title: Inferring transcription factor complexes from ChIP-seq data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr341 – volume: 44 start-page: D110 year: 2016 ident: 2021070810414566000_B94 article-title: JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1176 – volume: 26 start-page: 861 year: 2013 ident: 2021070810414566000_B98 article-title: GLI2 cooperates with ZEB1 for transcriptional repression of CDH1 expression in human melanoma cells publication-title: Pigment Cell Melanoma Res. doi: 10.1111/pcmr.12149 – volume: 337 start-page: 1190 year: 2012 ident: 2021070810414566000_B8 article-title: Systematic localization of common disease-associated variation in regulatory DNA publication-title: Science doi: 10.1126/science.1222794 – volume: 15 start-page: 1051 year: 2005 ident: 2021070810414566000_B136 article-title: Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences publication-title: Genome Res. doi: 10.1101/gr.3642605 – volume: 20 start-page: 110 year: 2010 ident: 2021070810414566000_B108 article-title: Detection of nonneutral substitution rates on mammalian phylogenies publication-title: Genome Res. doi: 10.1101/gr.097857.109 – volume: 7 start-page: 250 year: 2010 ident: 2021070810414566000_B107 article-title: Single-nucleotide evolutionary constraint scores highlight disease-causing mutations publication-title: Nat. Methods doi: 10.1038/nmeth0410-250 – volume: 9 start-page: 5380 year: 2018 ident: 2021070810414566000_B129 article-title: High-resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides in human publication-title: Nat. Commun. doi: 10.1038/s41467-018-07746-1 – volume: 13 start-page: R48 year: 2012 ident: 2021070810414566000_B45 article-title: Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors publication-title: Genome Biol. doi: 10.1186/gb-2012-13-9-r48 – volume: 317 start-page: 915 year: 2007 ident: 2021070810414566000_B112 article-title: Human genome ultraconserved elements are ultraselected publication-title: Science doi: 10.1126/science.1142430 |
SSID | ssj0002545401 |
Score | 2.264921 |
Snippet | Abstract
cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying... cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying... cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying... cis -regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying... |
SourceID | pubmedcentral proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | lqab052 |
SubjectTerms | Enhancers Epigenetics Genomes Phenotypes |
Title | Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans |
URI | https://www.proquest.com/docview/3170909839 https://www.proquest.com/docview/2544461306 https://pubmed.ncbi.nlm.nih.gov/PMC8210889 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA46L15EUXE6RxTBU1nbNG1zkimKeFARhV2kJGmKg9lu63bwv_e9NqvrQb30khdCX368972XfI-QC195vsSnW5kApBMolTkKgIijWRoaxePIzyq2z8fw_i14GPGRDbiV9lrl6kysDuq00BgjH4Cdc4UrwJ5fTWcOVo3C7KotobFJtuAIjgF8bV3fPj6_NFEWgD_gkngNWyMb5Fg_Vg0mM6lc7resUeuFGzqa7WuSa3bnbpfsWIeRDusZ3iMbJt8n70Otl0jyQKdzzLSgdmmRUT0unXldXb6Yf9HPIl1OTEmRpgmWGZUoDksLRqJrYsjT-mmwf1Wxrzwgb3e3rzf3ji2U4GjwfxaOYZEMjWSuUp6SqY4DFgXKSBkxJbSQxoN_ZQCDQ6lSN9Q8kNLjMoReWqSGsUPSyYvcHBEaKTgeXQBFXJpAKC1A61kc8Ax2Os883iXOSmGJtiziWMxiktTZbJbUCk6sgrvkspGf1vwZv0qeg_7_Feqtpiexm61MfpZGl5w1zbBNMPchc1MsywSZ2ALESmGXRK1pbUZEou12Sz7-qAi3Y8DFcSyO_x78hGz7eOGlCtH0SGcxX5pT8FgWqm-XZb9C_PB9fRp9A3Id9Vs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5UAvVVFB3ZZSg0Ccos3DefiAEG1By2tVVSBxQcF2HBVpSZbNrhB_it_YmbwgB-DE2ZNYmhnPzOfHNwBbrnJcSU-3UoFIhyuVWgqBiKW9JDDKj0I3Ldk-R8Hwgh9f-pcL8Ni8haFrlU1MLAN1kmvaIx9gnrOFLTCf703uLOoaRaerTQuNyi1OzMM9QrZi9-g32nfbdQ8Pzn8NrbqrgKWxWJhZxgtlYKRnK-UomeiIeyFXRsrQU0ILaRyFjomYMZAqsQPtcykdXwb4lRaJoQ1QDPmL3EMo04PFnwejP3_bXR2EW1gCOS07pDfIqF-tGozvJP7W7WS_zos6Kmy71zKf5bnDT_CxLlDZfuVRy7Bgss9wta_1nEgl2GRKJztkTZanTN8U1rTqZp9PH9htnszHpmBEC4VuzSSJoyvjTOyZGPHC3hr6vuwQWKzAxbuocBV6WZ6ZL8BCheHYRhDmS8OF0gKtnEbcTzGy-Knj98FqFBbrmrWcmmeM4-r03IsrBce1gvuw08pPKr6OFyU3Uf9vCq015onrxV3ET67Yh412GJclnbXIzOTzIibmN07YLOhD2DFrOyMRe3dHspt_JcF3hDg8isTX1yf_AUvD87PT-PRodPINPrh02abcHlqD3mw6N9-xWpqp9dpFGVy_96r4D6AaMgY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+prediction+of+cis-regulatory+modules+reveals+a+prevalent+regulatory+genome+of+humans&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Ni%2C+Pengyu&rft.au=Su%2C+Zhengchang&rft.date=2021-06-01&rft.issn=2631-9268&rft.eissn=2631-9268&rft.volume=3&rft.issue=2&rft.spage=lqab052&rft_id=info:doi/10.1093%2Fnargab%2Flqab052&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon |