Learning hierarchical sequence representations across human cortex and hippocampus
Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted. Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain’s ability to discover regularities is called stat...
Saved in:
Published in | Science advances Vol. 7; no. 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
19.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-2548 2375-2548 |
DOI | 10.1126/sciadv.abc4530 |
Cover
Loading…
Abstract | Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted.
Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain’s ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits. |
---|---|
AbstractList | Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted.
Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain’s ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits. Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits. Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits. |
Author | Friedman, Daniel Turk-Browne, Nicholas B. Devinsky, Orrin Liu, Anli Dugan, Patricia Henin, Simon Melloni, Lucia Flinker, Adeen Doyle, Werner |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0003-0997-3266 surname: Henin fullname: Henin, Simon organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 2 givenname: Nicholas B. orcidid: 0000-0001-7519-3001 surname: Turk-Browne fullname: Turk-Browne, Nicholas B. organization: Department of Psychology, Yale University, New Haven, CT, USA – sequence: 3 givenname: Daniel orcidid: 0000-0003-1068-1797 surname: Friedman fullname: Friedman, Daniel organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 4 givenname: Anli surname: Liu fullname: Liu, Anli organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 5 givenname: Patricia orcidid: 0000-0001-6199-1870 surname: Dugan fullname: Dugan, Patricia organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 6 givenname: Adeen orcidid: 0000-0003-1247-1283 surname: Flinker fullname: Flinker, Adeen organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 7 givenname: Werner surname: Doyle fullname: Doyle, Werner organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 8 givenname: Orrin surname: Devinsky fullname: Devinsky, Orrin organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA – sequence: 9 givenname: Lucia orcidid: 0000-0001-8743-5071 surname: Melloni fullname: Melloni, Lucia organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA., Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33608265$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctKAzEUDVKxWt26lFm6aU0mj042ghRfUBBE1yGTuWMjM8mYzIj-vdHWooKrBO45957HARo57wChY4JnhOTiLBqrq9eZLg3jFO-g_ZzO-TTnrBj9-I_RUYzPGGPChOBE7qExpQIXueD76H4JOjjrnrKVhaCDWVmjmyzCywDOQBagCxDB9bq33sVMm-BjzFZDq11mfOjhLdOuSuyu80a33RAP0W6tmwhHm3eCHq8uHxY30-Xd9e3iYjlNakU_hVwIWpWS1cawOlkoKo1xzeeiLHidJjWQSmApDRSklJhKXGFRJuM0r01p6ASdr_d2Q9lCZZLIoBvVBdvq8K68tur3xNmVevKval5IznKWFpxuFgSf7MZetTYaaBrtwA9R5UwSySjjMkFPft7aHvkOMgFma8BXPgHqLYRg9VmWWpelNmUlAvtDMHYdctJqm_9oHwbenpg |
CitedBy_id | crossref_primary_10_3389_fnbeh_2023_1285773 crossref_primary_10_1142_S2705078522500047 crossref_primary_10_31470_2309_1797_2023_34_1_50_84 crossref_primary_10_1093_cercor_bhaf042 crossref_primary_10_1038_s44159_023_00157_0 crossref_primary_10_1162_jocn_a_02012 crossref_primary_10_1038_s41598_023_42116_y crossref_primary_10_1016_j_clinph_2024_07_012 crossref_primary_10_1371_journal_pcbi_1010214 crossref_primary_10_1038_s41598_023_45493_6 crossref_primary_10_1162_nol_a_00156 crossref_primary_10_1002_hbm_26719 crossref_primary_10_1038_s41539_023_00194_7 crossref_primary_10_1162_jocn_a_02257 crossref_primary_10_1016_j_pneurobio_2022_102326 crossref_primary_10_1111_desc_13300 crossref_primary_10_1016_j_cortex_2022_01_017 crossref_primary_10_1093_cercor_bhac265 crossref_primary_10_1523_JNEUROSCI_0708_22_2022 crossref_primary_10_1016_j_cognition_2023_105689 crossref_primary_10_1073_pnas_2026011119 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1162_jocn_a_02067 crossref_primary_10_1111_psyp_14575 crossref_primary_10_1227_neu_0000000000003068 crossref_primary_10_1038_s41467_024_54032_4 crossref_primary_10_1177_17456916231179146 crossref_primary_10_1016_j_dcn_2022_101154 crossref_primary_10_1162_jocn_a_01850 crossref_primary_10_1038_s41598_022_08411_w crossref_primary_10_1016_j_neuroimage_2021_118840 crossref_primary_10_1162_nol_a_00089 crossref_primary_10_22141_2224_0551_18_6_2023_1627 crossref_primary_10_1016_j_dcn_2021_101010 crossref_primary_10_1038_s41598_024_67153_z crossref_primary_10_3758_s13414_023_02667_8 crossref_primary_10_3389_fnins_2023_1081295 crossref_primary_10_1016_j_cobeha_2023_101324 crossref_primary_10_1073_pnas_2408134121 crossref_primary_10_1093_cercor_bhac222 crossref_primary_10_1016_j_neuroimage_2022_119150 crossref_primary_10_1038_s41586_024_07973_1 crossref_primary_10_1016_j_cognition_2021_104646 crossref_primary_10_1016_j_neuroimage_2022_119142 crossref_primary_10_1016_j_heliyon_2023_e18693 crossref_primary_10_1371_journal_pbio_3001713 crossref_primary_10_2139_ssrn_4017446 crossref_primary_10_1016_j_cognition_2023_105612 crossref_primary_10_1162_jocn_a_02079 crossref_primary_10_1371_journal_pbio_3001712 crossref_primary_10_3389_fnint_2022_974177 crossref_primary_10_1016_j_cognition_2024_105737 crossref_primary_10_1371_journal_pone_0306797 crossref_primary_10_1016_j_tics_2025_01_014 crossref_primary_10_1016_j_neuroimage_2022_119508 crossref_primary_10_7554_eLife_86430 crossref_primary_10_1016_j_neuropsychologia_2021_108106 crossref_primary_10_1162_jocn_a_01981 crossref_primary_10_1038_s41467_024_51543_y crossref_primary_10_1111_cogs_13427 crossref_primary_10_3389_fnint_2023_935177 crossref_primary_10_3389_fnins_2023_1180066 crossref_primary_10_1016_j_bandl_2022_105221 crossref_primary_10_3758_s13414_023_02654_z crossref_primary_10_1016_j_cub_2022_04_022 crossref_primary_10_1111_desc_13487 crossref_primary_10_1371_journal_pcbi_1011801 crossref_primary_10_1152_physrev_00044_2020 crossref_primary_10_1016_j_celrep_2023_113209 crossref_primary_10_1016_j_jneuroling_2022_101062 crossref_primary_10_1162_nol_a_00061 crossref_primary_10_1523_JNEUROSCI_1107_22_2022 crossref_primary_10_1016_j_cortex_2021_06_008 crossref_primary_10_22141_2224_0551_19_3_2024_1692 crossref_primary_10_1162_jocn_a_02283 crossref_primary_10_1371_journal_pcbi_1010269 crossref_primary_10_3390_biology13070501 crossref_primary_10_1038_s41598_022_19203_7 crossref_primary_10_1038_s41562_024_02047_8 crossref_primary_10_1016_j_neuropsychologia_2021_107889 crossref_primary_10_1523_ENEURO_0562_20_2021 crossref_primary_10_1002_wcs_1648 crossref_primary_10_1162_imag_a_00278 crossref_primary_10_1162_imag_a_00355 crossref_primary_10_1038_s41467_022_31040_w crossref_primary_10_1038_s41583_023_00691_z crossref_primary_10_1016_j_neubiorev_2023_105402 |
Cites_doi | 10.31234/osf.io/r659w 10.1038/nrn1533 10.1016/j.cognition.2018.05.016 10.1162/jocn_a_01228 10.1126/science.274.5294.1926 10.1016/S0010-0277(02)00004-5 10.1016/j.cub.2012.06.056 10.1016/j.tics.2015.04.006 10.1073/pnas.0708424105 10.1016/j.neuroimage.2008.09.015 10.1016/j.neurol.2017.07.004 10.1038/nn.4186 10.1214/aos/1013699998 10.1038/nrn2113 10.1016/j.visres.2019.10.007 10.1007/s10827-012-0424-6 10.1002/wcs.1373 10.1016/j.tics.2014.12.010 10.4103/0972-2327.144003 10.1007/978-1-4614-4794-8_6 10.1016/j.neuron.2015.09.019 10.1016/j.neuron.2012.08.011 10.1371/journal.pcbi.1003553 10.1016/j.tics.2012.05.003 10.18637/jss.v031.i10 10.1037/0096-3445.134.4.552 10.1111/cogs.12740 10.1016/j.cortex.2017.02.004 10.1016/j.jml.2008.10.003 10.1111/j.1467-9280.2007.01885.x 10.1037/0033-2909.127.1.3 10.1098/rstb.2016.0049 10.1006/jmla.1996.0032 10.1002/wcs.1391 10.1038/nn.3331 10.1007/s10548-016-0518-y 10.1016/j.neuroimage.2012.06.039 10.7554/eLife.41541 10.1016/j.neuroimage.2015.12.012 10.1523/JNEUROSCI.5501-05.2006 10.1016/j.jml.2015.02.001 10.1016/j.jml.2012.02.010 10.1016/j.neuroimage.2006.01.021 10.1016/j.cognition.2018.08.019 10.1162/jocn_a_00578 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1126/sciadv.abc4530 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | PMC7895424 33608265 10_1126_sciadv_abc4530 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K23 NS104252 – fundername: NIMH NIH HHS grantid: R01 MH069456 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: ; – fundername: ; grantid: R01MH069456 – fundername: ; grantid: GIF I-99-105.4-2016 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADPDF AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCGUY BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD OVEED RHI RPM TEORI ADRAZ CGR CUY CVF ECM EIF EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c456t-e2663db94fcc4fbc48da00f576b85f3dbfe1d6099ce81b90390d06b11232fcbc3 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 13:25:51 EDT 2025 Fri Jul 11 04:18:38 EDT 2025 Mon Jul 21 06:07:01 EDT 2025 Tue Jul 01 03:53:00 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-e2663db94fcc4fbc48da00f576b85f3dbfe1d6099ce81b90390d06b11232fcbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1068-1797 0000-0003-0997-3266 0000-0001-7519-3001 0000-0001-8743-5071 0000-0001-6199-1870 0000-0003-1247-1283 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abc4530 |
PMID | 33608265 |
PQID | 2491943459 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895424 proquest_miscellaneous_2491943459 pubmed_primary_33608265 crossref_primary_10_1126_sciadv_abc4530 crossref_citationtrail_10_1126_sciadv_abc4530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-19 |
PublicationDateYYYYMMDD | 2021-02-19 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2021 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_36_2 doi: 10.31234/osf.io/r659w – ident: e_1_3_2_40_2 – ident: e_1_3_2_2_2 doi: 10.1038/nrn1533 – ident: e_1_3_2_32_2 doi: 10.1016/j.cognition.2018.05.016 – ident: e_1_3_2_24_2 doi: 10.1162/jocn_a_01228 – ident: e_1_3_2_3_2 doi: 10.1126/science.274.5294.1926 – ident: e_1_3_2_4_2 doi: 10.1016/S0010-0277(02)00004-5 – ident: e_1_3_2_10_2 doi: 10.1016/j.cub.2012.06.056 – ident: e_1_3_2_27_2 doi: 10.1016/j.tics.2015.04.006 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.0708424105 – ident: e_1_3_2_15_2 doi: 10.1016/j.neuroimage.2008.09.015 – ident: e_1_3_2_35_2 doi: 10.1016/j.neurol.2017.07.004 – ident: e_1_3_2_16_2 doi: 10.1038/nn.4186 – ident: e_1_3_2_44_2 doi: 10.1214/aos/1013699998 – ident: e_1_3_2_21_2 doi: 10.1038/nrn2113 – ident: e_1_3_2_34_2 doi: 10.1016/j.visres.2019.10.007 – ident: e_1_3_2_43_2 doi: 10.1007/s10827-012-0424-6 – ident: e_1_3_2_6_2 doi: 10.1002/wcs.1373 – ident: e_1_3_2_14_2 doi: 10.1016/j.tics.2014.12.010 – ident: e_1_3_2_38_2 doi: 10.4103/0972-2327.144003 – ident: e_1_3_2_5_2 doi: 10.1007/978-1-4614-4794-8_6 – ident: e_1_3_2_13_2 doi: 10.1016/j.neuron.2015.09.019 – ident: e_1_3_2_28_2 doi: 10.1016/j.neuron.2012.08.011 – ident: e_1_3_2_25_2 doi: 10.1371/journal.pcbi.1003553 – ident: e_1_3_2_29_2 doi: 10.1016/j.tics.2012.05.003 – ident: e_1_3_2_46_2 doi: 10.18637/jss.v031.i10 – ident: e_1_3_2_17_2 doi: 10.1037/0096-3445.134.4.552 – ident: e_1_3_2_33_2 doi: 10.1111/cogs.12740 – ident: e_1_3_2_18_2 doi: 10.1016/j.cortex.2017.02.004 – ident: e_1_3_2_22_2 doi: 10.1016/j.jml.2008.10.003 – ident: e_1_3_2_23_2 doi: 10.1111/j.1467-9280.2007.01885.x – ident: e_1_3_2_26_2 doi: 10.1037/0033-2909.127.1.3 – ident: e_1_3_2_37_2 doi: 10.1098/rstb.2016.0049 – ident: e_1_3_2_20_2 doi: 10.1006/jmla.1996.0032 – ident: e_1_3_2_30_2 doi: 10.1002/wcs.1391 – ident: e_1_3_2_8_2 doi: 10.1038/nn.3331 – ident: e_1_3_2_42_2 doi: 10.1007/s10548-016-0518-y – ident: e_1_3_2_41_2 doi: 10.1016/j.neuroimage.2012.06.039 – ident: e_1_3_2_9_2 doi: 10.7554/eLife.41541 – ident: e_1_3_2_47_2 doi: 10.1016/j.neuroimage.2015.12.012 – ident: e_1_3_2_12_2 doi: 10.1523/JNEUROSCI.5501-05.2006 – ident: e_1_3_2_39_2 doi: 10.1016/j.jml.2015.02.001 – ident: e_1_3_2_31_2 doi: 10.1016/j.jml.2012.02.010 – ident: e_1_3_2_45_2 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_3_2_19_2 doi: 10.1016/j.cognition.2018.08.019 – ident: e_1_3_2_11_2 doi: 10.1162/jocn_a_00578 |
SSID | ssj0001466519 |
Score | 2.460162 |
Snippet | Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted.
Sensory input arrives in... Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Brain Hippocampus Humans Learning Life Sciences Neuroscience SciAdv r-articles |
Title | Learning hierarchical sequence representations across human cortex and hippocampus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33608265 https://www.proquest.com/docview/2491943459 https://pubmed.ncbi.nlm.nih.gov/PMC7895424 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF7Et-uLCIJ6qPSRpslBRMQHgh7Ehb2VPFVY62p3Rf-9k2y6rq-Ll16SlHamw_dNM_kGoZ3CUkWUTiImmIwIM2nErc0jppmhUglSeC29q2t60SaXnbzzWf8UDFj_mtq5flLtl-7B2_P7EQT84dgBGKFfD4RUJM8gfZ8CVCpckF4Fqu__txBKga0E3cafy2bQdJZRAEQHM-MQ9YN3fi-fHMOjszk0G4gkPh56fh5NmGoBzYdQrfFe0JPeX0Q3QUP1Dru-137nAByDmyJq7HUtmzNIVY2Ffyzsu_dh5Ypx37CoNKzu9QD5HnuDegm1z05vTy6i0Eohgpej_cgADmdacmKVIhbemGkRxxaSDclyCyPWJJoCW1QGeCyPMx7rmMrEES6rpMqW0WT1VJlVhC1P48wyzXPh2lULnoncipjyVPFEEtpCUWO9UgWdcdfuolv6fCOl5dDwZTB8C-2O5veGCht_ztxunFFCELidDVGZp0FdQg6ZOKG7nLfQytA5o3s1Xm2h4ovbRhOcwPbXkerh3gttF4znJCVr_165jmZSVwPjGsjwDTTZfxmYTSAxfbnlk3-4nneSLf-lfgA7n_rC |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+hierarchical+sequence+representations+across+human+cortex+and+hippocampus&rft.jtitle=Science+advances&rft.au=Henin%2C+Simon&rft.au=Turk-Browne%2C+Nicholas+B.&rft.au=Friedman%2C+Daniel&rft.au=Liu%2C+Anli&rft.date=2021-02-19&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1126%2Fsciadv.abc4530&rft_id=info%3Apmid%2F33608265&rft.externalDocID=PMC7895424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |