Learning hierarchical sequence representations across human cortex and hippocampus

Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted. Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain’s ability to discover regularities is called stat...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 7; no. 8
Main Authors Henin, Simon, Turk-Browne, Nicholas B., Friedman, Daniel, Liu, Anli, Dugan, Patricia, Flinker, Adeen, Doyle, Werner, Devinsky, Orrin, Melloni, Lucia
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 19.02.2021
Subjects
Online AccessGet full text
ISSN2375-2548
2375-2548
DOI10.1126/sciadv.abc4530

Cover

Loading…
Abstract Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted. Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain’s ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.
AbstractList Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted. Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain’s ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.
Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.
Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities is called statistical learning. Structure can be represented at multiple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., syllables) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neural representations, with a gradient of complexity from early brain areas encoding transitional probability, to associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico-hippocampal circuits.
Author Friedman, Daniel
Turk-Browne, Nicholas B.
Devinsky, Orrin
Liu, Anli
Dugan, Patricia
Henin, Simon
Melloni, Lucia
Flinker, Adeen
Doyle, Werner
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0003-0997-3266
  surname: Henin
  fullname: Henin, Simon
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 2
  givenname: Nicholas B.
  orcidid: 0000-0001-7519-3001
  surname: Turk-Browne
  fullname: Turk-Browne, Nicholas B.
  organization: Department of Psychology, Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0003-1068-1797
  surname: Friedman
  fullname: Friedman, Daniel
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 4
  givenname: Anli
  surname: Liu
  fullname: Liu, Anli
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 5
  givenname: Patricia
  orcidid: 0000-0001-6199-1870
  surname: Dugan
  fullname: Dugan, Patricia
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 6
  givenname: Adeen
  orcidid: 0000-0003-1247-1283
  surname: Flinker
  fullname: Flinker, Adeen
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 7
  givenname: Werner
  surname: Doyle
  fullname: Doyle, Werner
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 8
  givenname: Orrin
  surname: Devinsky
  fullname: Devinsky, Orrin
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA
– sequence: 9
  givenname: Lucia
  orcidid: 0000-0001-8743-5071
  surname: Melloni
  fullname: Melloni, Lucia
  organization: New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA., Department of Neurology, New York University School of Medicine, 240 East 38th Street, 20th Floor, New York, NY 10016, USA., Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33608265$$D View this record in MEDLINE/PubMed
BookMark eNp1UctKAzEUDVKxWt26lFm6aU0mj042ghRfUBBE1yGTuWMjM8mYzIj-vdHWooKrBO45957HARo57wChY4JnhOTiLBqrq9eZLg3jFO-g_ZzO-TTnrBj9-I_RUYzPGGPChOBE7qExpQIXueD76H4JOjjrnrKVhaCDWVmjmyzCywDOQBagCxDB9bq33sVMm-BjzFZDq11mfOjhLdOuSuyu80a33RAP0W6tmwhHm3eCHq8uHxY30-Xd9e3iYjlNakU_hVwIWpWS1cawOlkoKo1xzeeiLHidJjWQSmApDRSklJhKXGFRJuM0r01p6ASdr_d2Q9lCZZLIoBvVBdvq8K68tur3xNmVevKval5IznKWFpxuFgSf7MZetTYaaBrtwA9R5UwSySjjMkFPft7aHvkOMgFma8BXPgHqLYRg9VmWWpelNmUlAvtDMHYdctJqm_9oHwbenpg
CitedBy_id crossref_primary_10_3389_fnbeh_2023_1285773
crossref_primary_10_1142_S2705078522500047
crossref_primary_10_31470_2309_1797_2023_34_1_50_84
crossref_primary_10_1093_cercor_bhaf042
crossref_primary_10_1038_s44159_023_00157_0
crossref_primary_10_1162_jocn_a_02012
crossref_primary_10_1038_s41598_023_42116_y
crossref_primary_10_1016_j_clinph_2024_07_012
crossref_primary_10_1371_journal_pcbi_1010214
crossref_primary_10_1038_s41598_023_45493_6
crossref_primary_10_1162_nol_a_00156
crossref_primary_10_1002_hbm_26719
crossref_primary_10_1038_s41539_023_00194_7
crossref_primary_10_1162_jocn_a_02257
crossref_primary_10_1016_j_pneurobio_2022_102326
crossref_primary_10_1111_desc_13300
crossref_primary_10_1016_j_cortex_2022_01_017
crossref_primary_10_1093_cercor_bhac265
crossref_primary_10_1523_JNEUROSCI_0708_22_2022
crossref_primary_10_1016_j_cognition_2023_105689
crossref_primary_10_1073_pnas_2026011119
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1162_jocn_a_02067
crossref_primary_10_1111_psyp_14575
crossref_primary_10_1227_neu_0000000000003068
crossref_primary_10_1038_s41467_024_54032_4
crossref_primary_10_1177_17456916231179146
crossref_primary_10_1016_j_dcn_2022_101154
crossref_primary_10_1162_jocn_a_01850
crossref_primary_10_1038_s41598_022_08411_w
crossref_primary_10_1016_j_neuroimage_2021_118840
crossref_primary_10_1162_nol_a_00089
crossref_primary_10_22141_2224_0551_18_6_2023_1627
crossref_primary_10_1016_j_dcn_2021_101010
crossref_primary_10_1038_s41598_024_67153_z
crossref_primary_10_3758_s13414_023_02667_8
crossref_primary_10_3389_fnins_2023_1081295
crossref_primary_10_1016_j_cobeha_2023_101324
crossref_primary_10_1073_pnas_2408134121
crossref_primary_10_1093_cercor_bhac222
crossref_primary_10_1016_j_neuroimage_2022_119150
crossref_primary_10_1038_s41586_024_07973_1
crossref_primary_10_1016_j_cognition_2021_104646
crossref_primary_10_1016_j_neuroimage_2022_119142
crossref_primary_10_1016_j_heliyon_2023_e18693
crossref_primary_10_1371_journal_pbio_3001713
crossref_primary_10_2139_ssrn_4017446
crossref_primary_10_1016_j_cognition_2023_105612
crossref_primary_10_1162_jocn_a_02079
crossref_primary_10_1371_journal_pbio_3001712
crossref_primary_10_3389_fnint_2022_974177
crossref_primary_10_1016_j_cognition_2024_105737
crossref_primary_10_1371_journal_pone_0306797
crossref_primary_10_1016_j_tics_2025_01_014
crossref_primary_10_1016_j_neuroimage_2022_119508
crossref_primary_10_7554_eLife_86430
crossref_primary_10_1016_j_neuropsychologia_2021_108106
crossref_primary_10_1162_jocn_a_01981
crossref_primary_10_1038_s41467_024_51543_y
crossref_primary_10_1111_cogs_13427
crossref_primary_10_3389_fnint_2023_935177
crossref_primary_10_3389_fnins_2023_1180066
crossref_primary_10_1016_j_bandl_2022_105221
crossref_primary_10_3758_s13414_023_02654_z
crossref_primary_10_1016_j_cub_2022_04_022
crossref_primary_10_1111_desc_13487
crossref_primary_10_1371_journal_pcbi_1011801
crossref_primary_10_1152_physrev_00044_2020
crossref_primary_10_1016_j_celrep_2023_113209
crossref_primary_10_1016_j_jneuroling_2022_101062
crossref_primary_10_1162_nol_a_00061
crossref_primary_10_1523_JNEUROSCI_1107_22_2022
crossref_primary_10_1016_j_cortex_2021_06_008
crossref_primary_10_22141_2224_0551_19_3_2024_1692
crossref_primary_10_1162_jocn_a_02283
crossref_primary_10_1371_journal_pcbi_1010269
crossref_primary_10_3390_biology13070501
crossref_primary_10_1038_s41598_022_19203_7
crossref_primary_10_1038_s41562_024_02047_8
crossref_primary_10_1016_j_neuropsychologia_2021_107889
crossref_primary_10_1523_ENEURO_0562_20_2021
crossref_primary_10_1002_wcs_1648
crossref_primary_10_1162_imag_a_00278
crossref_primary_10_1162_imag_a_00355
crossref_primary_10_1038_s41467_022_31040_w
crossref_primary_10_1038_s41583_023_00691_z
crossref_primary_10_1016_j_neubiorev_2023_105402
Cites_doi 10.31234/osf.io/r659w
10.1038/nrn1533
10.1016/j.cognition.2018.05.016
10.1162/jocn_a_01228
10.1126/science.274.5294.1926
10.1016/S0010-0277(02)00004-5
10.1016/j.cub.2012.06.056
10.1016/j.tics.2015.04.006
10.1073/pnas.0708424105
10.1016/j.neuroimage.2008.09.015
10.1016/j.neurol.2017.07.004
10.1038/nn.4186
10.1214/aos/1013699998
10.1038/nrn2113
10.1016/j.visres.2019.10.007
10.1007/s10827-012-0424-6
10.1002/wcs.1373
10.1016/j.tics.2014.12.010
10.4103/0972-2327.144003
10.1007/978-1-4614-4794-8_6
10.1016/j.neuron.2015.09.019
10.1016/j.neuron.2012.08.011
10.1371/journal.pcbi.1003553
10.1016/j.tics.2012.05.003
10.18637/jss.v031.i10
10.1037/0096-3445.134.4.552
10.1111/cogs.12740
10.1016/j.cortex.2017.02.004
10.1016/j.jml.2008.10.003
10.1111/j.1467-9280.2007.01885.x
10.1037/0033-2909.127.1.3
10.1098/rstb.2016.0049
10.1006/jmla.1996.0032
10.1002/wcs.1391
10.1038/nn.3331
10.1007/s10548-016-0518-y
10.1016/j.neuroimage.2012.06.039
10.7554/eLife.41541
10.1016/j.neuroimage.2015.12.012
10.1523/JNEUROSCI.5501-05.2006
10.1016/j.jml.2015.02.001
10.1016/j.jml.2012.02.010
10.1016/j.neuroimage.2006.01.021
10.1016/j.cognition.2018.08.019
10.1162/jocn_a_00578
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1126/sciadv.abc4530
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC7895424
33608265
10_1126_sciadv_abc4530
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23 NS104252
– fundername: NIMH NIH HHS
  grantid: R01 MH069456
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: ;
– fundername: ;
  grantid: R01MH069456
– fundername: ;
  grantid: GIF I-99-105.4-2016
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADPDF
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCGUY
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
OVEED
RHI
RPM
TEORI
ADRAZ
CGR
CUY
CVF
ECM
EIF
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-e2663db94fcc4fbc48da00f576b85f3dbfe1d6099ce81b90390d06b11232fcbc3
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 13:25:51 EDT 2025
Fri Jul 11 04:18:38 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
Tue Jul 01 03:53:00 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-e2663db94fcc4fbc48da00f576b85f3dbfe1d6099ce81b90390d06b11232fcbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1068-1797
0000-0003-0997-3266
0000-0001-7519-3001
0000-0001-8743-5071
0000-0001-6199-1870
0000-0003-1247-1283
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.abc4530
PMID 33608265
PQID 2491943459
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7895424
proquest_miscellaneous_2491943459
pubmed_primary_33608265
crossref_primary_10_1126_sciadv_abc4530
crossref_citationtrail_10_1126_sciadv_abc4530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-19
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2021
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_36_2
  doi: 10.31234/osf.io/r659w
– ident: e_1_3_2_40_2
– ident: e_1_3_2_2_2
  doi: 10.1038/nrn1533
– ident: e_1_3_2_32_2
  doi: 10.1016/j.cognition.2018.05.016
– ident: e_1_3_2_24_2
  doi: 10.1162/jocn_a_01228
– ident: e_1_3_2_3_2
  doi: 10.1126/science.274.5294.1926
– ident: e_1_3_2_4_2
  doi: 10.1016/S0010-0277(02)00004-5
– ident: e_1_3_2_10_2
  doi: 10.1016/j.cub.2012.06.056
– ident: e_1_3_2_27_2
  doi: 10.1016/j.tics.2015.04.006
– ident: e_1_3_2_7_2
  doi: 10.1073/pnas.0708424105
– ident: e_1_3_2_15_2
  doi: 10.1016/j.neuroimage.2008.09.015
– ident: e_1_3_2_35_2
  doi: 10.1016/j.neurol.2017.07.004
– ident: e_1_3_2_16_2
  doi: 10.1038/nn.4186
– ident: e_1_3_2_44_2
  doi: 10.1214/aos/1013699998
– ident: e_1_3_2_21_2
  doi: 10.1038/nrn2113
– ident: e_1_3_2_34_2
  doi: 10.1016/j.visres.2019.10.007
– ident: e_1_3_2_43_2
  doi: 10.1007/s10827-012-0424-6
– ident: e_1_3_2_6_2
  doi: 10.1002/wcs.1373
– ident: e_1_3_2_14_2
  doi: 10.1016/j.tics.2014.12.010
– ident: e_1_3_2_38_2
  doi: 10.4103/0972-2327.144003
– ident: e_1_3_2_5_2
  doi: 10.1007/978-1-4614-4794-8_6
– ident: e_1_3_2_13_2
  doi: 10.1016/j.neuron.2015.09.019
– ident: e_1_3_2_28_2
  doi: 10.1016/j.neuron.2012.08.011
– ident: e_1_3_2_25_2
  doi: 10.1371/journal.pcbi.1003553
– ident: e_1_3_2_29_2
  doi: 10.1016/j.tics.2012.05.003
– ident: e_1_3_2_46_2
  doi: 10.18637/jss.v031.i10
– ident: e_1_3_2_17_2
  doi: 10.1037/0096-3445.134.4.552
– ident: e_1_3_2_33_2
  doi: 10.1111/cogs.12740
– ident: e_1_3_2_18_2
  doi: 10.1016/j.cortex.2017.02.004
– ident: e_1_3_2_22_2
  doi: 10.1016/j.jml.2008.10.003
– ident: e_1_3_2_23_2
  doi: 10.1111/j.1467-9280.2007.01885.x
– ident: e_1_3_2_26_2
  doi: 10.1037/0033-2909.127.1.3
– ident: e_1_3_2_37_2
  doi: 10.1098/rstb.2016.0049
– ident: e_1_3_2_20_2
  doi: 10.1006/jmla.1996.0032
– ident: e_1_3_2_30_2
  doi: 10.1002/wcs.1391
– ident: e_1_3_2_8_2
  doi: 10.1038/nn.3331
– ident: e_1_3_2_42_2
  doi: 10.1007/s10548-016-0518-y
– ident: e_1_3_2_41_2
  doi: 10.1016/j.neuroimage.2012.06.039
– ident: e_1_3_2_9_2
  doi: 10.7554/eLife.41541
– ident: e_1_3_2_47_2
  doi: 10.1016/j.neuroimage.2015.12.012
– ident: e_1_3_2_12_2
  doi: 10.1523/JNEUROSCI.5501-05.2006
– ident: e_1_3_2_39_2
  doi: 10.1016/j.jml.2015.02.001
– ident: e_1_3_2_31_2
  doi: 10.1016/j.jml.2012.02.010
– ident: e_1_3_2_45_2
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_3_2_19_2
  doi: 10.1016/j.cognition.2018.08.019
– ident: e_1_3_2_11_2
  doi: 10.1162/jocn_a_00578
SSID ssj0001466519
Score 2.460162
Snippet Sequence learning is tracked across the human brain, and the computational systems used to parse the sequences are highlighted. Sensory input arrives in...
Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and events. The brain's ability to discover regularities...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Brain
Hippocampus
Humans
Learning
Life Sciences
Neuroscience
SciAdv r-articles
Title Learning hierarchical sequence representations across human cortex and hippocampus
URI https://www.ncbi.nlm.nih.gov/pubmed/33608265
https://www.proquest.com/docview/2491943459
https://pubmed.ncbi.nlm.nih.gov/PMC7895424
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF7Et-uLCIJ6qPSRpslBRMQHgh7Ehb2VPFVY62p3Rf-9k2y6rq-Ll16SlHamw_dNM_kGoZ3CUkWUTiImmIwIM2nErc0jppmhUglSeC29q2t60SaXnbzzWf8UDFj_mtq5flLtl-7B2_P7EQT84dgBGKFfD4RUJM8gfZ8CVCpckF4Fqu__txBKga0E3cafy2bQdJZRAEQHM-MQ9YN3fi-fHMOjszk0G4gkPh56fh5NmGoBzYdQrfFe0JPeX0Q3QUP1Dru-137nAByDmyJq7HUtmzNIVY2Ffyzsu_dh5Ypx37CoNKzu9QD5HnuDegm1z05vTy6i0Eohgpej_cgADmdacmKVIhbemGkRxxaSDclyCyPWJJoCW1QGeCyPMx7rmMrEES6rpMqW0WT1VJlVhC1P48wyzXPh2lULnoncipjyVPFEEtpCUWO9UgWdcdfuolv6fCOl5dDwZTB8C-2O5veGCht_ztxunFFCELidDVGZp0FdQg6ZOKG7nLfQytA5o3s1Xm2h4ovbRhOcwPbXkerh3gttF4znJCVr_165jmZSVwPjGsjwDTTZfxmYTSAxfbnlk3-4nneSLf-lfgA7n_rC
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+hierarchical+sequence+representations+across+human+cortex+and+hippocampus&rft.jtitle=Science+advances&rft.au=Henin%2C+Simon&rft.au=Turk-Browne%2C+Nicholas+B.&rft.au=Friedman%2C+Daniel&rft.au=Liu%2C+Anli&rft.date=2021-02-19&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1126%2Fsciadv.abc4530&rft_id=info%3Apmid%2F33608265&rft.externalDocID=PMC7895424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon