DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates
Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altere...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 187; no. 1; pp. 103 - 115 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
04.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates. |
---|---|
AbstractList | Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates.Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates. Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates. Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N -(2-oxindole-3-acetyl)- l -aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco ( Nicotiana tabacum ) homologs of Arabidopsis ( Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates. |
Author | Harant, Karel Novák, Ondřej Moravec, Tomáš Petrášek, Jan Dobrev, Petre Ivanov Hoyerová, Klára Filepová, Roberta Helusová, Lenka Vondráková, Zuzana Brunoni, Federica Hošek, Petr Retzer, Katarzyna Müller, Karel Pěnčík, Aleš Malínská, Kateřina |
AuthorAffiliation | 3 Department of Experimental Plant Biology, Faculty of Science, Charles University , Viničná 5, 128 44 Prague 2 , Czech Republic 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences , Rozvojová 263 , 165 02 Praha 6, Czech Republic 4 Laboratory of Virology, Institute of Experimental Botany of the Czech Academy of Sciences , Rozvojová 263 , 165 02 Praha 6, Czech Republic 2 Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic 5 Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV , Průmyslová 595 , Vestec 252 42, Czech Republic |
AuthorAffiliation_xml | – name: 3 Department of Experimental Plant Biology, Faculty of Science, Charles University , Viničná 5, 128 44 Prague 2 , Czech Republic – name: 2 Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic – name: 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences , Rozvojová 263 , 165 02 Praha 6, Czech Republic – name: 4 Laboratory of Virology, Institute of Experimental Botany of the Czech Academy of Sciences , Rozvojová 263 , 165 02 Praha 6, Czech Republic – name: 5 Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV , Průmyslová 595 , Vestec 252 42, Czech Republic |
Author_xml | – sequence: 1 givenname: Karel orcidid: 0000-0002-0817-8810 surname: Müller fullname: Müller, Karel organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 2 givenname: Petre Ivanov orcidid: 0000-0001-7412-6982 surname: Dobrev fullname: Dobrev, Petre Ivanov organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 3 givenname: Aleš orcidid: 0000-0002-1314-2249 surname: Pěnčík fullname: Pěnčík, Aleš organization: Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic – sequence: 4 givenname: Petr orcidid: 0000-0002-9359-4770 surname: Hošek fullname: Hošek, Petr organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 5 givenname: Zuzana orcidid: 0000-0001-6280-2381 surname: Vondráková fullname: Vondráková, Zuzana organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 6 givenname: Roberta surname: Filepová fullname: Filepová, Roberta organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 7 givenname: Kateřina orcidid: 0000-0002-7928-9825 surname: Malínská fullname: Malínská, Kateřina organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 8 givenname: Federica orcidid: 0000-0003-1497-9419 surname: Brunoni fullname: Brunoni, Federica organization: Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic – sequence: 9 givenname: Lenka surname: Helusová fullname: Helusová, Lenka organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic – sequence: 10 givenname: Tomáš surname: Moravec fullname: Moravec, Tomáš organization: Laboratory of Virology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 11 givenname: Katarzyna orcidid: 0000-0001-6074-7999 surname: Retzer fullname: Retzer, Katarzyna organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 12 givenname: Karel surname: Harant fullname: Harant, Karel organization: Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 42, Czech Republic – sequence: 13 givenname: Ondřej surname: Novák fullname: Novák, Ondřej organization: Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic – sequence: 14 givenname: Klára orcidid: 0000-0002-6335-6683 surname: Hoyerová fullname: Hoyerová, Klára organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic – sequence: 15 givenname: Jan orcidid: 0000-0002-6719-2735 surname: Petrášek fullname: Petrášek, Jan organization: Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34618129$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UcFKAzEQDaJorV49So5eqskmqdmLsNiqC9IFbaWewjSb2Oh2UzdbsX69q62igqcZmPfezLy3izZLXxqEDig5piRmJ_NiPl2GkycHk4hHG6hFBYs6keByE7UIaXoiZbyDdkN4JIRQRvk22mG8SyWN4ha666XZ-P6yP0hu-_giu8HJaJwOcDZOe8kwzQaYYg01FMs3E3A9Ndi_uhxq50vsLU6TBMPMlR6DdjnWvnxcPEBtwh7aslAEs7-ubTS66A_PrzrX2WV6nlx3NBfdumMoFxKYIYJZzZsX4okUUpt4kp92qebaRkxaYSTwPLdW5hFA17DTGJjlkANro7OV7nwxmZlcm7KuoFDzys2gWioPTv2elG6qHvyLkpxK3tjRRkdrgco_L0yo1cwFbYoCSuMXQUVCNq5JEbMGevhz1_eSLzMbwPEKoCsfQmXsN4QS9ZGWWqWl1mk1BP6HoF39aW5zqyv-o70D6AKcJw |
CitedBy_id | crossref_primary_10_1360_SSV_2023_0069 crossref_primary_10_1007_s00344_024_11300_3 crossref_primary_10_1111_nph_18887 crossref_primary_10_1111_nph_18114 crossref_primary_10_1111_tpj_16456 crossref_primary_10_29328_journal_jpsp_1001139 crossref_primary_10_1093_treephys_tpad039 crossref_primary_10_3390_plants12020266 crossref_primary_10_3390_ijms25031832 crossref_primary_10_3390_plants13030421 crossref_primary_10_3389_fpls_2022_932008 crossref_primary_10_1093_plcell_koae054 crossref_primary_10_1111_nph_19284 crossref_primary_10_1093_bbb_zbae124 crossref_primary_10_1111_ppl_13546 crossref_primary_10_1111_ppl_14612 crossref_primary_10_1186_s13007_022_00954_3 crossref_primary_10_1111_pce_15111 crossref_primary_10_1073_pnas_2206869119 crossref_primary_10_1093_plphys_kiab287 crossref_primary_10_1038_s41467_021_27020_1 crossref_primary_10_1111_pce_14491 crossref_primary_10_1038_s41477_021_01036_3 |
Cites_doi | 10.1073/pnas.1604458113 10.1093/jxb/erx221 10.1038/nature08066 10.1016/j.jprot.2018.12.022 10.1186/s13007-019-0509-6 10.1038/nmeth.3901 10.1074/jbc.M111955200 10.1016/j.scienta.2018.07.013 10.1073/pnas.1108434108 10.1111/nph.14019 10.1007/978-3-7091-1526-8_18 10.1093/jxb/erq412 10.1105/tpc.112.097766 10.1104/pp.113.217661 10.1186/s12915-016-0291-0 10.1073/pnas.1612635113 10.1126/science.1123542 10.1007/s002990050627 10.1093/jxb/ery084 10.1093/pcp/pcz223 10.1073/pnas.1604375113 10.1007/978-1-4939-6831-2_2 10.1105/tpc.104.026690 10.1093/pcp/pct173 10.1038/nmeth.4197 10.1016/j.tplants.2019.05.006 10.18637/jss.v025.i01 10.1038/srep24212 10.1016/S0021-9673(02)00024-9 10.1093/nar/gky1038 10.1104/pp.117.2.501 10.1046/j.1365-313x.2000.00868.x 10.1002/j.1460-2075.1985.tb03626.x 10.1186/s12864-017-3791-6 10.1074/jbc.M006185200 10.1038/ncomms4833 10.1105/tpc.114.134874 10.1074/mcp.M113.031591 10.1093/jxb/ers074 10.1104/pp.118.1.285 10.1186/s13059-014-0550-8 10.1007/978-3-7091-1526-8_5 10.1126/science.8085154 10.1111/tpj.14474 10.1038/s41467-020-16068-0 10.1073/pnas.1604769113 10.1038/nature11001 10.1038/nmeth.4324 |
ContentType | Journal Article |
Copyright | American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com. American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021 |
Copyright_xml | – notice: American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com. – notice: American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/plphys/kiab242 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 115 |
ExternalDocumentID | PMC8418401 34618129 10_1093_plphys_kiab242 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: LM2015042 – fundername: ; grantid: LM2018129 – fundername: ; grantid: CZ.02.1.01/0.0/0.0/16_019/0000738 – fundername: ; grantid: LM2015085 – fundername: ; grantid: LTC18047 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2WC 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN AAYXX ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXVV ABXZS ACBTR ACGOD ACNCT ACPRK ACUFI ACUTJ ADBBV ADGKP ADIPN ADIYS ADQBN ADVEK AEEJZ AENEX AFAZZ AFFZL AFGWE AFRAH AGORE AHGBF AHMBA AICQM AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CITATION CS3 DATOO DIK DU5 E3Z EBS ECGQY F5P FLUFQ FOEOM H13 JBS JLS JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 2AX 5PM JAAYA JBMMH JHFFW JKQEH JLXEF |
ID | FETCH-LOGICAL-c456t-e1458a3e053fc4ab29b858ce9bd761c4cf238f5e8a4ddff8d2aa6e379a3f4ada3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:18:50 EDT 2025 Fri Jul 11 16:19:04 EDT 2025 Mon Jul 21 06:02:26 EDT 2025 Tue Jul 01 02:23:32 EDT 2025 Thu Apr 24 23:06:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-e1458a3e053fc4ab29b858ce9bd761c4cf238f5e8a4ddff8d2aa6e379a3f4ada3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. Senior author. |
ORCID | 0000-0002-7928-9825 0000-0002-6335-6683 0000-0002-9359-4770 0000-0001-6074-7999 0000-0002-0817-8810 0000-0002-1314-2249 0000-0003-1497-9419 0000-0002-6719-2735 0000-0001-7412-6982 0000-0001-6280-2381 |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/187/1/103/40517095/kiab242.pdf |
PMID | 34618129 |
PQID | 2580018593 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8418401 proquest_miscellaneous_2580018593 pubmed_primary_34618129 crossref_primary_10_1093_plphys_kiab242 crossref_citationtrail_10_1093_plphys_kiab242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-04 |
PublicationDateYYYYMMDD | 2021-09-04 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Petrášek (2021100712335037500_kiab242-B30) 2006; 312 Lê (2021100712335037500_kiab242-B14) 2008; 25 Ludwig-Müller (2021100712335037500_kiab242-B17) 2014 Adamowski (2021100712335037500_kiab242-B1) 2015; 27 An (2021100712335037500_kiab242-B2) 1985; 4 Hošek (2021100712335037500_kiab242-B11) 2012; 63 Jackson (2021100712335037500_kiab242-B13) 2001; 276 Ludwig-Müller (2021100712335037500_kiab242-B18) 2011; 62 Zhang (2021100712335037500_kiab242-B48) 2017; 68 Porco (2021100712335037500_kiab242-B32) 2016; 113 Love (2021100712335037500_kiab242-B16) 2014; 15 Zhang (2021100712335037500_kiab242-B47) 2016; 113 Mashiguchi (2021100712335037500_kiab242-B19) 2011; 108 Mellor (2021100712335037500_kiab242-B21) 2016; 113 Sierro (2021100712335037500_kiab242-B38) 2014; 5 Ivanov Dobrev (2021100712335037500_kiab242-B12) 2002 Staswick (2021100712335037500_kiab242-B40) 2005; 17 Sanchez Carranza (2021100712335037500_kiab242-B35) 2016; 6 Mravec (2021100712335037500_kiab242-B23) 2009; 459 Müller (2021100712335037500_kiab242-B24) 2019; 100 Winicur (2021100712335037500_kiab242-B46) 1998; 117 Patro (2021100712335037500_kiab242-B27) 2017; 14 Mi (2021100712335037500_kiab242-B22) 2019; 47 Zuo (2021100712335037500_kiab242-B49) 2000; 24 Takehara (2021100712335037500_kiab242-B42) 2020; 11 Aoi (2021100712335037500_kiab242-B3) 2020; 61 Östin (2021100712335037500_kiab242-B25) 1998; 118 Paque (2021100712335037500_kiab242-B26) 2016; 14 Simon (2021100712335037500_kiab242-B39) 2016; 211 Sakai (2021100712335037500_kiab242-B34) 1999; 18 Sauer (2021100712335037500_kiab242-B37) 2019 Erban (2021100712335037500_kiab242-B10) 2019; 196 Edwards (2021100712335037500_kiab242-B9) 2017; 18 Brunoni (2021100712335037500_kiab242-B5) 2019; 15 Peret (2021100712335037500_kiab242-B29) 2012; 24 Reemmer (2021100712335037500_kiab242-B33) 2014 Westfall (2021100712335037500_kiab242-B45) 2016; 113 Tanaka (2021100712335037500_kiab242-B43) 2014; 55 Dobrev (2021100712335037500_kiab242-B8) 2017 Pimentel (2021100712335037500_kiab242-B31) 2017; 14 Barbez (2021100712335037500_kiab242-B4) 2012; 485 LeClere (2021100712335037500_kiab242-B15) 2002; 277 Szerszen (2021100712335037500_kiab242-B41) 1994; 265 Cox (2021100712335037500_kiab242-B7) 2014; 13 Matsuo (2021100712335037500_kiab242-B20) 2018; 241 Casanova-Sáez (2021100712335037500_kiab242-B6) 2019; 24 Pěnčík (2021100712335037500_kiab242-B28) 2018; 69 Sarrion-Perdigones (2021100712335037500_kiab242-B36) 2013; 162 Tyanova (2021100712335037500_kiab242-B44) 2016; 13 |
References_xml | – volume: 113 start-page: 11022 year: 2016 ident: 2021100712335037500_kiab242-B21 article-title: Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1604458113 – volume: 68 start-page: 3145 year: 2017 ident: 2021100712335037500_kiab242-B48 article-title: Auxin homeostasis: the DAO of catabolism publication-title: J Exp Bot doi: 10.1093/jxb/erx221 – volume: 459 start-page: 1136 year: 2009 ident: 2021100712335037500_kiab242-B23 article-title: Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter publication-title: Nature doi: 10.1038/nature08066 – volume: 196 start-page: 69 year: 2019 ident: 2021100712335037500_kiab242-B10 article-title: Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis publication-title: J Proteomics doi: 10.1016/j.jprot.2018.12.022 – volume: 15 start-page: 1 year: 2019 ident: 2021100712335037500_kiab242-B5 article-title: A bacterial assay for rapid screening of IAA catabolic enzymes publication-title: Plant Methods doi: 10.1186/s13007-019-0509-6 – volume: 13 start-page: 731 year: 2016 ident: 2021100712335037500_kiab242-B44 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods doi: 10.1038/nmeth.3901 – volume: 277 start-page: 20446 year: 2002 ident: 2021100712335037500_kiab242-B15 article-title: Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis publication-title: J Biol Chem doi: 10.1074/jbc.M111955200 – volume: 241 start-page: 329 year: 2018 ident: 2021100712335037500_kiab242-B20 article-title: Transcriptional regulation of auxin metabolic-enzyme genes during tomato fruit development publication-title: Sci Hortic (Amsterdam) doi: 10.1016/j.scienta.2018.07.013 – volume: 108 start-page: 18512 year: 2011 ident: 2021100712335037500_kiab242-B19 article-title: The main auxin biosynthesis pathway in Arabidopsis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1108434108 – volume: 211 start-page: 65 year: 2016 ident: 2021100712335037500_kiab242-B39 article-title: PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis publication-title: New Phytol doi: 10.1111/nph.14019 – start-page: 413 volume-title: Auxin Its Role Plant Dev year: 2014 ident: 2021100712335037500_kiab242-B17 doi: 10.1007/978-3-7091-1526-8_18 – volume: 62 start-page: 1757 year: 2011 ident: 2021100712335037500_kiab242-B18 article-title: Auxin conjugates: their role for plant development and in the evolution of land plants publication-title: J Exp Bot doi: 10.1093/jxb/erq412 – volume: 24 start-page: 2874 year: 2012 ident: 2021100712335037500_kiab242-B29 article-title: AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development publication-title: Plant Cell doi: 10.1105/tpc.112.097766 – volume: 162 start-page: 1618 year: 2013 ident: 2021100712335037500_kiab242-B36 article-title: Goldenbraid 2.0: A comprehensive DNA assembly framework for plant synthetic biology publication-title: Plant Physiol doi: 10.1104/pp.113.217661 – volume: 14 start-page: 67 year: 2016 ident: 2021100712335037500_kiab242-B26 article-title: Q&A: Auxin: The plant molecule that influences almost anything publication-title: BMC Biol doi: 10.1186/s12915-016-0291-0 – volume: 113 start-page: 13917 year: 2016 ident: 2021100712335037500_kiab242-B45 article-title: Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1612635113 – volume: 312 start-page: 914 year: 2006 ident: 2021100712335037500_kiab242-B30 article-title: PIN proteins perform a rate-limiting function in cellular auxin efflux publication-title: Science (80-) doi: 10.1126/science.1123542 – volume: 18 start-page: 589 year: 1999 ident: 2021100712335037500_kiab242-B34 article-title: Amyloplast formation in cultured tobacco cells. III Determination of the timing of gene expression necessary for starch accumulation publication-title: Plant Cell Rep doi: 10.1007/s002990050627 – volume: 69 start-page: 2569 year: 2018 ident: 2021100712335037500_kiab242-B28 article-title: Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis publication-title: J Exp Bot doi: 10.1093/jxb/ery084 – volume: 61 start-page: 596 year: 2020 ident: 2021100712335037500_kiab242-B3 article-title: GH3 auxin-amido synthetases alter the ratio of indole-3-acetic acid and phenylacetic acid in Arabidopsis publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcz223 – volume: 113 start-page: 11016 year: 2016 ident: 2021100712335037500_kiab242-B32 article-title: Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1604375113 – start-page: 31 year: 2017 ident: 2021100712335037500_kiab242-B8 article-title: Analytical determination of auxins and cytokinins publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6831-2_2 – volume: 17 start-page: 616 year: 2005 ident: 2021100712335037500_kiab242-B40 article-title: Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid publication-title: Plant Cell Online doi: 10.1105/tpc.104.026690 – volume: 55 start-page: 218 year: 2014 ident: 2021100712335037500_kiab242-B43 article-title: UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in arabidopsis publication-title: Plant Cell Physiol doi: 10.1093/pcp/pct173 – volume: 14 start-page: 417 year: 2017 ident: 2021100712335037500_kiab242-B27 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nat Methods doi: 10.1038/nmeth.4197 – year: 2019 ident: 2021100712335037500_kiab242-B37 – volume: 24 start-page: 741 year: 2019 ident: 2021100712335037500_kiab242-B6 article-title: Auxin metabolism controls developmental decisions in land plants publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2019.05.006 – volume: 25 start-page: 1 year: 2008 ident: 2021100712335037500_kiab242-B14 article-title: FactoMineR: An R package for multivariate analysis publication-title: J Stat Softw doi: 10.18637/jss.v025.i01 – volume: 6 start-page: 1 year: 2016 ident: 2021100712335037500_kiab242-B35 article-title: Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum publication-title: Sci Rep doi: 10.1038/srep24212 – start-page: 21 year: 2002 ident: 2021100712335037500_kiab242-B12 article-title: Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction publication-title: J Chromatogr A doi: 10.1016/S0021-9673(02)00024-9 – volume: 47 start-page: D419 year: 2019 ident: 2021100712335037500_kiab242-B22 article-title: PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1038 – volume: 117 start-page: 501 year: 1998 ident: 2021100712335037500_kiab242-B46 article-title: Auxin deprivation induces synchronous Golgi differentiation in suspension-cultured tobacco BY-2 cells publication-title: Plant Physiol doi: 10.1104/pp.117.2.501 – volume: 24 start-page: 265 year: 2000 ident: 2021100712335037500_kiab242-B49 article-title: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00868.x – volume: 4 start-page: 277 year: 1985 ident: 2021100712335037500_kiab242-B2 article-title: New cloning vehicles for transformation of higher plants publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb03626.x – volume: 18 start-page: 448 year: 2017 ident: 2021100712335037500_kiab242-B9 article-title: A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency publication-title: BMC Genomics doi: 10.1186/s12864-017-3791-6 – volume: 276 start-page: 4350 year: 2001 ident: 2021100712335037500_kiab242-B13 article-title: Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase publication-title: J Biol Chem doi: 10.1074/jbc.M006185200 – volume: 5 start-page: 1 year: 2014 ident: 2021100712335037500_kiab242-B38 article-title: The tobacco genome sequence and its comparison with those of tomato and potato publication-title: Nat Commun doi: 10.1038/ncomms4833 – volume: 27 start-page: 20 year: 2015 ident: 2021100712335037500_kiab242-B1 article-title: PIN-dependent auxin transport: Action, regulation, and evolution publication-title: Plant Cell doi: 10.1105/tpc.114.134874 – volume: 13 start-page: 2513 year: 2014 ident: 2021100712335037500_kiab242-B7 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M113.031591 – volume: 63 start-page: 3815 year: 2012 ident: 2021100712335037500_kiab242-B11 article-title: Auxin transport at cellular level: New insights supported by mathematical modelling publication-title: J Exp Bot doi: 10.1093/jxb/ers074 – volume: 118 start-page: 285 year: 1998 ident: 2021100712335037500_kiab242-B25 article-title: Metabolism of indole-3-acetic acid in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.118.1.285 – volume: 15 start-page: 550 year: 2014 ident: 2021100712335037500_kiab242-B16 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – start-page: 75 volume-title: Auxin Its Role Plant Dev year: 2014 ident: 2021100712335037500_kiab242-B33 doi: 10.1007/978-3-7091-1526-8_5 – volume: 265 start-page: 1699 year: 1994 ident: 2021100712335037500_kiab242-B41 article-title: iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid publication-title: Science doi: 10.1126/science.8085154 – volume: 100 start-page: 627 year: 2019 ident: 2021100712335037500_kiab242-B24 article-title: Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells publication-title: Plant J doi: 10.1111/tpj.14474 – volume: 11 start-page: 1 year: 2020 ident: 2021100712335037500_kiab242-B42 article-title: A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin publication-title: Nat Commun doi: 10.1038/s41467-020-16068-0 – volume: 113 start-page: 11010 year: 2016 ident: 2021100712335037500_kiab242-B47 article-title: DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1604769113 – volume: 485 start-page: 119 year: 2012 ident: 2021100712335037500_kiab242-B4 article-title: A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants publication-title: Nature doi: 10.1038/nature11001 – volume: 14 start-page: 687 year: 2017 ident: 2021100712335037500_kiab242-B31 article-title: Differential analysis of RNA-seq incorporating quantification uncertainty publication-title: Nat Methods doi: 10.1038/nmeth.4324 |
SSID | ssj0001314 |
Score | 2.4919493 |
Snippet | Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 103 |
SubjectTerms | Amino Acids - metabolism Dioxygenases - metabolism Nicotiana - enzymology Oxidation-Reduction Plant Proteins - metabolism |
Title | DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34618129 https://www.proquest.com/docview/2580018593 https://pubmed.ncbi.nlm.nih.gov/PMC8418401 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK4IEXxDflS0Zi4iEKW2KnTR7TprCA1j2wovIUOY4tSkcyrenE9i_xT3KOEzdZhzR4idLEtpLcr3e_s-_OCL2lQApSLlJbVYOyqZtJOwgEsTPqC3XP01GVh9PBwYx-mnvzXu93K2ppXabv-eW1eSX_I1W4BnJVWbL_IFkzKFyAc5AvHEHCcLyRjKP4aP7t42QafplY4M1Z4WweT62jeRzpzXQcq5qdubhUdRwAD8WvRWYoYhyGFvu5yAuL8YXKbct_rNWc2qrNV9WeRqWe_tDFmoCQjlSO8CpjrUmEQ7XePho3aYUqw8xEbkQFeN3ndSzwmbBi4O7FuVHJis0Go7witVG1bB8t68yb3bG3G250ZKF_i2UzVnvGwnWqkCza1sLEtVV4lbZBjeJ1bXBW_a5mHm5BUOtZZ5-0TLajM0K3rIGulHV6or4SnCwXLHV1La9u4e0rBtGEKeoFepLoEZK6_y102wWfpPLf48_G7DtEF5JvXs5UCCV7uv9e3b_LgLbcmqvRuS26c3wf3av9FBxq0D1APZE_RHdGBfgSF4_Q1xbyMCAPV8jDBnnYwQZ5GNCCDfJwITEgD1fIwwp5eIO8x2j2YXI8PrDrHTpsDsS7tIVDPZ8Rtb2I5BTeLkh9z-ciSLPhwOGUS2CE0hM-o1kmpZ-5jA0EGQaMSMoyRp6gnbzIxTOEZSr9fSIY2BdGHQ5thRhwSYZp5oHVoX1kN18t4XX5erWLyklyvZT66J1pf6oLt_y15ZtGCAnoVrVgxnJRrFeJ6_lq00ovIH30VAvFjEXoQJHjoI-GHXGZBqpue_dOvvhe1W_3qZpWcZ7f-AlfoLub_9FLtFOercUr4MJl-rrC4B8wqrKB |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DIOXYGENASE+FOR+AUXIN+OXIDATION+1+catalyzes+the+oxidation+of+IAA+amino+acid+conjugates&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=M%C3%BCller%2C+Karel&rft.au=Dobrev%2C+Petre+Ivanov&rft.au=P%C4%9Bn%C4%8D%C3%ADk%2C+Ale%C5%A1&rft.au=Ho%C5%A1ek%2C+Petr&rft.date=2021-09-04&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=187&rft.issue=1&rft.spage=103&rft.epage=115&rft_id=info:doi/10.1093%2Fplphys%2Fkiab242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_plphys_kiab242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |