Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies

Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact v...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 2; pp. 6929 - 6948
Main Authors Chen, Jiahui, Gao, Kaifu, Wang, Rui, Wei, Guo-Wei
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 26.05.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations. Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic.
AbstractList Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.
Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations. Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic.
Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.
Author Chen, Jiahui
Gao, Kaifu
Wei, Guo-Wei
Wang, Rui
AuthorAffiliation Department of Electrical and Computer Engineering
Department of Biochemistry and Molecular Biology
Department of Mathematics
Michigan State University
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering
– name: Michigan State University
– name: Department of Mathematics
– name: Department of Biochemistry and Molecular Biology
Author_xml – sequence: 1
  givenname: Jiahui
  surname: Chen
  fullname: Chen, Jiahui
– sequence: 2
  givenname: Kaifu
  surname: Gao
  fullname: Gao, Kaifu
– sequence: 3
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
– sequence: 4
  givenname: Guo-Wei
  surname: Wei
  fullname: Wei, Guo-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34123321$$D View this record in MEDLINE/PubMed
BookMark eNptkttrFDEUxoNU7MW--K4M-CLCaE4y2c28CLLVWihU8AI-hUxyZpsyk2yTTKH_fdOdumoxBHJCft_HueSQ7PngkZAXQN8B5e17C8lQYJSvn5ADRhuoF4K3e7uY0X1ynNIVLYtzEGz5jOzzBhjnDA7Ir68RrTPZBV9pb6vRZbfW22voq3HKc5wvI-qcqhyq1cXPs5Ma2upGG-M8pq1O--y6YG8LiVFvHKbn5Gmvh4THD-cR-fH50_fVl_r84vRs9fG8No1Y5Nr2EngHDfAF60GLjoPRS-wpbW1bCsSFXPZSQkslx4YKK6VgVpfdYdMX2RH5MPtupm5Ea9DnqAe1iW7U8VYF7dS_L95dqnW4URJEaQEvBm8eDGK4njBlNbpkcBi0xzAlxURDlwxY2xb09SP0KkzRl_IKVcwoSHFPvfo7o10qv7tegLczYGJIKWK_Q4Cq-6mqE_i22k71tMD0EWzcPJVSjRv-L3k5S2IyO-s_H4XfARRmrIc
CitedBy_id crossref_primary_10_1007_s11033_021_06819_7
crossref_primary_10_1371_journal_pone_0289432
crossref_primary_10_1016_j_jemep_2022_100761
crossref_primary_10_1016_j_ijbiomac_2022_12_112
crossref_primary_10_3390_biom12121742
crossref_primary_10_1108_AJEMS_07_2022_0264
crossref_primary_10_3390_genes13020170
crossref_primary_10_3390_v15071556
crossref_primary_10_1186_s12859_022_04679_x
crossref_primary_10_1038_s41598_021_88696_5
crossref_primary_10_1021_acs_jpclett_2c02428
crossref_primary_10_1038_s41598_022_14877_5
crossref_primary_10_3389_fpsyg_2023_1230892
crossref_primary_10_1021_acsinfecdis_1c00557
crossref_primary_10_5799_jmid_1175386
crossref_primary_10_3389_fpubh_2024_1327093
crossref_primary_10_3390_biologics3020008
crossref_primary_10_1016_j_seppur_2022_120454
crossref_primary_10_1111_sji_13269
crossref_primary_10_1142_S2737416523500278
crossref_primary_10_1080_22243534_2022_2080948
crossref_primary_10_3390_v13112114
crossref_primary_10_1109_ACCESS_2022_3181605
crossref_primary_10_1016_j_compbiomed_2023_107258
crossref_primary_10_1016_j_compbiomed_2022_106262
crossref_primary_10_1016_j_bbrc_2022_09_010
crossref_primary_10_2217_fvl_2021_0267
crossref_primary_10_3389_fmed_2024_1414331
crossref_primary_10_3390_v15071565
crossref_primary_10_3390_v15030692
crossref_primary_10_1016_j_ijregi_2024_100484
crossref_primary_10_1111_sji_13111
crossref_primary_10_1371_journal_pone_0277505
crossref_primary_10_1002_cnm_3513
crossref_primary_10_1021_acssensors_3c01019
crossref_primary_10_1111_jeb_13964
crossref_primary_10_2174_2211550111666220613143422
crossref_primary_10_1371_journal_pone_0278243
crossref_primary_10_1214_22_STS859
crossref_primary_10_1002_jmv_27555
crossref_primary_10_1021_acs_jpclett_2c00469
crossref_primary_10_4103_jgid_jgid_97_21
crossref_primary_10_31665_JFB_2022_17298
crossref_primary_10_3390_v15051158
crossref_primary_10_1002_pep2_24267
crossref_primary_10_1021_acs_jpclett_1c03380
crossref_primary_10_3390_microbiolres15030090
crossref_primary_10_2174_1574893618666230605120640
crossref_primary_10_1016_j_compbiomed_2024_109101
crossref_primary_10_4103_jfmpc_jfmpc_2372_21
crossref_primary_10_1002_jmv_27516
crossref_primary_10_31466_kfbd_939421
crossref_primary_10_1093_bib_bbac036
crossref_primary_10_1016_j_jmb_2021_167155
crossref_primary_10_1515_znc_2021_0248
crossref_primary_10_1002_cbdv_202100843
crossref_primary_10_1016_j_bios_2021_113736
crossref_primary_10_2147_IDR_S443574
crossref_primary_10_1016_j_micres_2022_127204
crossref_primary_10_1021_acs_jcim_1c01451
crossref_primary_10_31083_j_fbl2702065
crossref_primary_10_3390_ijerph19116824
crossref_primary_10_1371_journal_pone_0272130
crossref_primary_10_1021_acs_chemrev_1c00965
Cites_doi 10.1016/S0092-8674(02)00696-7
10.1146/annurev.immunol.24.021605.090542
10.1016/S0167-4838(99)00030-8
10.1016/j.cell.2020.05.025
10.1016/j.cell.2020.09.049
10.1126/science.abd2321
10.3389/fimmu.2020.01022
10.1126/science.abe0075
10.3390/vaccines8020153
10.3390/v12101095
10.1146/annurev.immunol.16.1.111
10.1038/s41422-020-00446-w
10.1016/j.virusres.2014.10.008
10.1146/annurev.immunol.18.1.275
10.1128/JVI.01379-08
10.1126/science.abc5881
10.1002/jmv.26232
10.1126/science.abe3354
10.1093/bioinformatics/btq003
10.1080/22221751.2020.1729069
10.1042/BJ20090272
10.1007/s00018-016-2299-6
10.1016/j.cell.2010.01.022
10.1172/JCI138745
10.3906/sag-2004-168
10.1016/j.sbi.2015.01.003
10.1016/j.cell.2020.09.037
10.1038/s42256-020-0149-6
10.1002/cnm.2655
10.3892/etm.2013.1142
10.1038/s41392-020-0191-1
10.1126/science.abc6952
10.2807/1560-7917.ES.2017.22.13.30494
10.1016/j.immuni.2020.10.023
10.1093/nar/gkw306
10.1046/j.1365-2567.2003.01738.x
10.1016/j.cell.2020.02.052
10.1038/d41586-020-01221-y
10.1038/363446a0
10.1038/s41467-020-19204-y
10.1016/j.virusres.2020.198074
10.1090/S0273-0979-09-01249-X
10.1016/j.molimm.2012.06.001
10.1001/jama.2020.4783
10.1038/s41422-020-00444-y
10.1016/S0021-9258(17)30153-9
10.3109/08830185.2010.529976
10.1016/j.jmb.2005.08.020
10.1038/s41591-020-0965-6
10.1126/science.abb5793
10.1038/s41577-020-0308-3
10.1016/S1473-3099(20)30141-9
10.1016/j.cell.2020.06.040
10.1016/j.jmb.2020.07.009
10.1073/pnas.1718806115
10.1038/s41589-020-00679-1
10.1038/s41586-020-2571-7
10.1016/S0140-6736(20)30251-8
10.1126/science.abc2241
10.1016/j.cell.2020.09.035
10.1002/jps.20727
10.1038/s41586-020-2008-3
10.1177/135965350701200702
10.1016/j.jaci.2009.12.980
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d1sc01203g
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 6948
ExternalDocumentID PMC8153213
34123321
10_1039_D1SC01203G
d1sc01203g
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM126189
– fundername: NIAID NIH HHS
  grantid: R01 AI164266
– fundername: ;
  grantid: PD45722
– fundername: ;
  grantid: GM126189
– fundername: ;
  grantid: DMS-2052983; DMS-1761320; IIS-1900473
– fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: 80NSSC21M0023
– fundername: ;
  grantid: 65109
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAJAE
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
HZ~
PGMZT
RAOCF
RNS
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c456t-df813b141362f1a5b31ca7ef009d9039e687f8819083e405d8852da2dabe4f413
ISSN 2041-6520
IngestDate Thu Aug 21 14:37:17 EDT 2025
Mon Jul 21 11:39:48 EDT 2025
Fri Jul 25 03:16:24 EDT 2025
Mon Jul 21 06:07:02 EDT 2025
Tue Jul 01 03:46:50 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Mon Apr 25 05:27:42 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-df813b141362f1a5b31ca7ef009d9039e687f8819083e405d8852da2dabe4f413
Notes Electronic supplementary information (ESI) available: (S1) Methods; (S2) multiple sequence alignments of antibodies and pairwise identity scores; (S3) random coil percentages of antibody paratopes; and (S4) additional analysis of antibody-S protein complexes. See DOI
10.1039/d1sc01203g
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The first three authors contributed equally.
ORCID 0000-0002-7402-6372
0000-0001-8132-5998
OpenAccessLink http://dx.doi.org/10.1039/d1sc01203g
PMID 34123321
PQID 2532101859
PQPubID 2047492
PageCount 2
ParticipantIDs crossref_citationtrail_10_1039_D1SC01203G
proquest_miscellaneous_2540721299
crossref_primary_10_1039_D1SC01203G
rsc_primary_d1sc01203g
pubmed_primary_34123321
proquest_journals_2532101859
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8153213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210526
PublicationDateYYYYMMDD 2021-05-26
PublicationDate_xml – month: 5
  year: 2021
  text: 20210526
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Ferron (D1SC01203G-(cit39)/*[position()=1]) 2018; 115
Kissler (D1SC01203G-(cit5)/*[position()=1]) 2020; 368
Harty (D1SC01203G-(cit20)/*[position()=1]) 2000; 18
Chen (D1SC01203G-(cit33)/*[position()=1]) 2020; 20
Hu (D1SC01203G-(cit23)/*[position()=1]) 2021; 93
Du (D1SC01203G-(cit68)/*[position()=1]) 2020; 183
Hamers-Casterman (D1SC01203G-(cit28)/*[position()=1]) 1993; 363
Rujas (D1SC01203G-(cit62)/*[position()=1]) 2020
Bertoglio (D1SC01203G-(cit77)/*[position()=1]) 2020
Prompetchara (D1SC01203G-(cit8)/*[position()=1]) 2020; 38
Putnam (D1SC01203G-(cit26)/*[position()=1]) 1979; 254
Hoffmann (D1SC01203G-(cit31)/*[position()=1]) 2020; 181
Kucukkal (D1SC01203G-(cit47)/*[position()=1]) 2015; 32
Huang (D1SC01203G-(cit82)/*[position()=1]) 2010; 26
Sanjuán (D1SC01203G-(cit49)/*[position()=1]) 2016; 73
Zhou (D1SC01203G-(cit67)/*[position()=1]) 2020
Lan (D1SC01203G-(cit57)/*[position()=1]) 2020
Clark (D1SC01203G-(cit76)/*[position()=1]) 2020
Pinto (D1SC01203G-(cit66)/*[position()=1]) 2020
Bracken (D1SC01203G-(cit74)/*[position()=1]) 2021; 17
Liang (D1SC01203G-(cit12)/*[position()=1]) 2020; 11
Chaplin (D1SC01203G-(cit14)/*[position()=1]) 2010; 125
Ting (D1SC01203G-(cit21)/*[position()=1]) 2002; 109
Linsky (D1SC01203G-(cit89)/*[position()=1]) 2020; 370
Catanzaro (D1SC01203G-(cit13)/*[position()=1]) 2020; 5
Wang (D1SC01203G-(cit53)/*[position()=1]) 2016; 44
Yao (D1SC01203G-(cit79)/*[position()=1]) 2021; 31
Huo (D1SC01203G-(cit63)/*[position()=1]) 2020
Zhang (D1SC01203G-(cit35)/*[position()=1]) 2020; 8
Pancer (D1SC01203G-(cit18)/*[position()=1]) 2006; 24
Hewitt (D1SC01203G-(cit19)/*[position()=1]) 2003; 110
Kreye (D1SC01203G-(cit72)/*[position()=1]) 2020; 183
Piccoli (D1SC01203G-(cit60)/*[position()=1]) 2020; 183
Grewal (D1SC01203G-(cit24)/*[position()=1]) 1998; 16
Edelsbrunner (D1SC01203G-(cit45)/*[position()=1]) 2000
Bloch (D1SC01203G-(cit7)/*[position()=1]) 2020; 130
Chen (D1SC01203G-(cit85)/*[position()=1]) 2020
Kumar (D1SC01203G-(cit15)/*[position()=1]) 2011; 30
Liu (D1SC01203G-(cit75)/*[position()=1]) 2020; 53
Shu (D1SC01203G-(cit51)/*[position()=1]) 2017; 22
D1SC01203G-(cit6)/*[position()=1]
Callaway (D1SC01203G-(cit36)/*[position()=1]) 2020; 580
Van der Linden (D1SC01203G-(cit29)/*[position()=1]) 1999; 1431
Tian (D1SC01203G-(cit80)/*[position()=1]) 2020; 9
Sevajol (D1SC01203G-(cit38)/*[position()=1]) 2014; 194
Carlsson (D1SC01203G-(cit44)/*[position()=1]) 2009; 46
Wu (D1SC01203G-(cit37)/*[position()=1]) 2020; 579
Cao (D1SC01203G-(cit65)/*[position()=1]) 2020; 182
Meulen (D1SC01203G-(cit81)/*[position()=1]) 2006; 3
Li (D1SC01203G-(cit10)/*[position()=1]) 2020; 286
Tufan (D1SC01203G-(cit11)/*[position()=1]) 2020; 50
Chi (D1SC01203G-(cit52)/*[position()=1]) 2020; 369
Acharya (D1SC01203G-(cit55)/*[position()=1]) 2020
Wang (D1SC01203G-(cit42)/*[position()=1]) 2020; 12
Wang (D1SC01203G-(cit41)/*[position()=1]) 2020
Wang (D1SC01203G-(cit54)/*[position()=1]) 2021; 31
Yuan (D1SC01203G-(cit58)/*[position()=1]) 2020; 369
Forsman (D1SC01203G-(cit30)/*[position()=1]) 2008; 82
Long (D1SC01203G-(cit4)/*[position()=1]) 2020; 26
Takeuchi (D1SC01203G-(cit16)/*[position()=1]) 2010; 140
Kringelum (D1SC01203G-(cit88)/*[position()=1]) 2013; 53
Crotty (D1SC01203G-(cit25)/*[position()=1]) 2004; vol. 16
Wang (D1SC01203G-(cit27)/*[position()=1]) 2007; 96
Day (D1SC01203G-(cit3)/*[position()=1]) 2020
Ju (D1SC01203G-(cit71)/*[position()=1]) 2020
Lu (D1SC01203G-(cit1)/*[position()=1]) 2020; 395
Wang (D1SC01203G-(cit43)/*[position()=1]) 2020; 2
Xia (D1SC01203G-(cit46)/*[position()=1]) 2014; 30
Custódio (D1SC01203G-(cit78)/*[position()=1]) 2020; 11
Lin (D1SC01203G-(cit86)/*[position()=1]) 2007; 12
Chen (D1SC01203G-(cit84)/*[position()=1]) 2020; 432
Hurlburt (D1SC01203G-(cit64)/*[position()=1]) 2020
Alberts (D1SC01203G-(cit22)/*[position()=1]) 2015
Wang (D1SC01203G-(cit40)/*[position()=1]) 2020
Lv (D1SC01203G-(cit69)/*[position()=1]) 2020; 369
Liu (D1SC01203G-(cit83)/*[position()=1]) 2020; 584
Shen (D1SC01203G-(cit34)/*[position()=1]) 2020; 323
Wu (D1SC01203G-(cit70)/*[position()=1]) 2020
Kumar (D1SC01203G-(cit17)/*[position()=1]) 2009; 420
Wu (D1SC01203G-(cit59)/*[position()=1]) 2020; 368
Li (D1SC01203G-(cit87)/*[position()=1]) 2013; 6
Yue (D1SC01203G-(cit48)/*[position()=1]) 2005; 353
Tortorici (D1SC01203G-(cit73)/*[position()=1]) 2020; 370
Li (D1SC01203G-(cit56)/*[position()=1]) 2020
Shi (D1SC01203G-(cit61)/*[position()=1]) 2020
Shin (D1SC01203G-(cit2)/*[position()=1]) 2020
Wu (D1SC01203G-(cit9)/*[position()=1]) 2020
Cao (D1SC01203G-(cit32)/*[position()=1]) 2020; 20
Grubaugh (D1SC01203G-(cit50)/*[position()=1]) 2020; 182
33083498 - ArXiv. 2021 Mar 9
References_xml – issn: 2000
  volume-title: Topological persistence and simplification
  end-page: p 454-463
  publication-title: Proceedings 41st annual symposium on foundations of computer science
  doi: Edelsbrunner Letscher Zomorodian
– issn: 2020
  publication-title: Potent synthetic nanobodies against SARS-CoV-2 and molecular basis for neutralization
  doi: Li Li Cai Yao Zhou Zhao Qin Hutter Lai Bao
– issn: 2004
  issue: vol. 16
  volume-title: Immunological memory in humans
  end-page: p 197-203
  publication-title: Seminars in immunology
  doi: Crotty Ahmed
– issn: 2020
  publication-title: Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine
  doi: Wang Hozumi Yin Wei
– issn: 2020
  publication-title: Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers
  doi: Rujas Kucharska Tan Benlekbir Cui Zhao Wasney Budylowski Guvenc Newton
– issn: 2020
  publication-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation
  doi: Hurlburt Wan Stuart Feng McGuire Stamatatos Pancera
– issn: 2020
  publication-title: A glycan cluster on the SARS-CoV-2 spike ectodomain is recognized by Fab-dimerized glycan-reactive antibodies
  doi: Acharya Williams Henderson Janowska Manne Parks Deyton Sprenz Stalls Kopp
– issn: 2020
  publication-title: A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations
  doi: Bertoglio Fühner Ruschig Alexander Heine Rand Klünemann Meier Langreder Steinke Ballmann
– issn: 2020
  publication-title: Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications
  doi: Wu Wang Liu Wang Chen Xia Ling Zhang Xun Lu
– issn: 2020
  publication-title: Structural characterisation of a nanobody derived from a naïve library that neutralises SARS-CoV-2
  doi: Huo Le Bas Ruza Duyvesteyn Mikolajek Malinauskas Tan Rijal Dumoux Ward
– issn: 2020
  publication-title: Structural and functional analysis of a potent sarbecovirus neutralizing antibody
  doi: Pinto Park Beltramello Walls Tortorici Bianchi Jaconi Culap Zatta De Marco
– issn: 2020
  publication-title: Covid-19: four fifths of cases are asymptomatic, China figures indicate
  doi: Day
– issn: 2020
  publication-title: An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain
  doi: Wu Yuan Liu Lee Zhu Bangaru Torres Caniels Brouwer Van Gils
– issn: 2020
  publication-title: Molecular basis for a germline-biased neutralizing antibody response to SARS-CoV-2
  doi: Clark Clark Pan Coscia McKay Shankar Johnson Griffiths Abraham
– volume: 109
  start-page: S21
  issue: 2
  year: 2002
  ident: D1SC01203G-(cit21)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00696-7
– start-page: 1
  year: 2020
  ident: D1SC01203G-(cit2)/*[position()=1]
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 497
  year: 2006
  ident: D1SC01203G-(cit18)/*[position()=1]
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.24.021605.090542
– volume: 1431
  start-page: 37
  issue: 1
  year: 1999
  ident: D1SC01203G-(cit29)/*[position()=1]
  publication-title: Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(99)00030-8
– start-page: 1
  year: 2020
  ident: D1SC01203G-(cit71)/*[position()=1]
  publication-title: Nature
– volume: 182
  start-page: 73
  issue: 1
  year: 2020
  ident: D1SC01203G-(cit65)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.025
– volume: vol. 16
  volume-title: Seminars in immunology
  year: 2004
  ident: D1SC01203G-(cit25)/*[position()=1]
– volume: 183
  start-page: 1058
  issue: 4
  year: 2020
  ident: D1SC01203G-(cit72)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.049
– volume-title: A glycan cluster on the SARS-CoV-2 spike ectodomain is recognized by Fab-dimerized glycan-reactive antibodies
  year: 2020
  ident: D1SC01203G-(cit55)/*[position()=1]
– volume: 369
  start-page: 1119
  issue: 6507
  year: 2020
  ident: D1SC01203G-(cit58)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abd2321
– volume: 11
  start-page: 1022
  year: 2020
  ident: D1SC01203G-(cit12)/*[position()=1]
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01022
– volume: 370
  start-page: 1208
  issue: 6521
  year: 2020
  ident: D1SC01203G-(cit89)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abe0075
– volume: 8
  start-page: 153
  issue: 2
  year: 2020
  ident: D1SC01203G-(cit35)/*[position()=1]
  publication-title: Vaccines
  doi: 10.3390/vaccines8020153
– volume-title: An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain
  year: 2020
  ident: D1SC01203G-(cit70)/*[position()=1]
– volume: 12
  start-page: 1095
  issue: 10
  year: 2020
  ident: D1SC01203G-(cit42)/*[position()=1]
  publication-title: Viruses
  doi: 10.3390/v12101095
– volume: 16
  start-page: 111
  issue: 1
  year: 1998
  ident: D1SC01203G-(cit24)/*[position()=1]
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.16.1.111
– volume-title: Covid-19: four fifths of cases are asymptomatic, China figures indicate
  year: 2020
  ident: D1SC01203G-(cit3)/*[position()=1]
– volume: 31
  start-page: 101
  issue: 1
  year: 2021
  ident: D1SC01203G-(cit54)/*[position()=1]
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00446-w
– start-page: 32530284
  year: 2020
  ident: D1SC01203G-(cit41)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
– volume: 194
  start-page: 90
  year: 2014
  ident: D1SC01203G-(cit38)/*[position()=1]
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.10.008
– volume: 18
  start-page: 275
  issue: 1
  year: 2000
  ident: D1SC01203G-(cit20)/*[position()=1]
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.275
– volume: 82
  start-page: 12069
  issue: 24
  year: 2008
  ident: D1SC01203G-(cit30)/*[position()=1]
  publication-title: J. Virol.
  doi: 10.1128/JVI.01379-08
– volume: 369
  start-page: 1505
  issue: 6510
  year: 2020
  ident: D1SC01203G-(cit69)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abc5881
– volume: 93
  start-page: 250
  issue: 1
  year: 2021
  ident: D1SC01203G-(cit23)/*[position()=1]
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26232
– volume: 370
  start-page: 950
  issue: 6519
  year: 2020
  ident: D1SC01203G-(cit73)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abe3354
– volume: 26
  start-page: 680
  issue: 5
  year: 2010
  ident: D1SC01203G-(cit82)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq003
– start-page: 1
  year: 2020
  ident: D1SC01203G-(cit57)/*[position()=1]
  publication-title: Nature
– volume: 3
  issue: 7
  year: 2006
  ident: D1SC01203G-(cit81)/*[position()=1]
  publication-title: PLoS Med.
– volume: 9
  start-page: 382
  issue: 1
  year: 2020
  ident: D1SC01203G-(cit80)/*[position()=1]
  publication-title: Emerging Microbes Infect.
  doi: 10.1080/22221751.2020.1729069
– volume-title: Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications
  year: 2020
  ident: D1SC01203G-(cit9)/*[position()=1]
– volume: 420
  start-page: 1
  issue: 1
  year: 2009
  ident: D1SC01203G-(cit17)/*[position()=1]
  publication-title: Biochem. J.
  doi: 10.1042/BJ20090272
– year: 2015
  ident: D1SC01203G-(cit22)/*[position()=1]
  publication-title: Molecular Biology of the Cell
– volume: 73
  start-page: 4433
  issue: 23
  year: 2016
  ident: D1SC01203G-(cit49)/*[position()=1]
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2299-6
– volume-title: Structural and functional analysis of a potent sarbecovirus neutralizing antibody
  year: 2020
  ident: D1SC01203G-(cit66)/*[position()=1]
– volume-title: Structural characterisation of a nanobody derived from a naïve library that neutralises SARS-CoV-2
  year: 2020
  ident: D1SC01203G-(cit63)/*[position()=1]
– volume: 140
  start-page: 805
  issue: 6
  year: 2010
  ident: D1SC01203G-(cit16)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 130
  start-page: 2757
  issue: 6
  year: 2020
  ident: D1SC01203G-(cit7)/*[position()=1]
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI138745
– volume: 50
  start-page: 620
  issue: SI-1
  year: 2020
  ident: D1SC01203G-(cit11)/*[position()=1]
  publication-title: Turk. J. Med. Sci.
  doi: 10.3906/sag-2004-168
– volume: 32
  start-page: 18
  year: 2015
  ident: D1SC01203G-(cit47)/*[position()=1]
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2015.01.003
– volume: 183
  start-page: 1024
  issue: 4
  year: 2020
  ident: D1SC01203G-(cit60)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.037
– volume: 2
  start-page: 116
  issue: 2
  year: 2020
  ident: D1SC01203G-(cit43)/*[position()=1]
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-020-0149-6
– volume: 38
  start-page: 1
  issue: 1
  year: 2020
  ident: D1SC01203G-(cit8)/*[position()=1]
  publication-title: Asian Pac. J. Allergy Immunol.
– volume: 30
  start-page: 814
  issue: 8
  year: 2014
  ident: D1SC01203G-(cit46)/*[position()=1]
  publication-title: International journal for numerical methods in biomedical engineering
  doi: 10.1002/cnm.2655
– volume: 6
  start-page: 335
  issue: 2
  year: 2013
  ident: D1SC01203G-(cit87)/*[position()=1]
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2013.1142
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: D1SC01203G-(cit13)/*[position()=1]
  publication-title: Signal Transduction Targeted Ther.
  doi: 10.1038/s41392-020-0191-1
– volume-title: Potent synthetic nanobodies against SARS-CoV-2 and molecular basis for neutralization
  year: 2020
  ident: D1SC01203G-(cit56)/*[position()=1]
– volume: 369
  start-page: 650
  issue: 6504
  year: 2020
  ident: D1SC01203G-(cit52)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation
  year: 2020
  ident: D1SC01203G-(cit64)/*[position()=1]
– volume-title: Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine
  year: 2020
  ident: D1SC01203G-(cit40)/*[position()=1]
– volume: 22
  start-page: 30494
  issue: 13
  year: 2017
  ident: D1SC01203G-(cit51)/*[position()=1]
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2017.22.13.30494
– volume: 53
  start-page: 1272
  issue: 6
  year: 2020
  ident: D1SC01203G-(cit75)/*[position()=1]
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.10.023
– start-page: 1
  year: 2020
  ident: D1SC01203G-(cit61)/*[position()=1]
  publication-title: Nature
– volume: 44
  start-page: W430
  issue: W1
  year: 2016
  ident: D1SC01203G-(cit53)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw306
– volume: 110
  start-page: 163
  issue: 2
  year: 2003
  ident: D1SC01203G-(cit19)/*[position()=1]
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.2003.01738.x
– volume: 181
  start-page: 271
  issue: 2
  year: 2020
  ident: D1SC01203G-(cit31)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 580
  start-page: 576
  issue: 7805
  year: 2020
  ident: D1SC01203G-(cit36)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/d41586-020-01221-y
– volume: 363
  start-page: 446
  issue: 6428
  year: 1993
  ident: D1SC01203G-(cit28)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/363446a0
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: D1SC01203G-(cit78)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19204-y
– volume: 286
  start-page: 198074
  year: 2020
  ident: D1SC01203G-(cit10)/*[position()=1]
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2020.198074
– volume: 46
  start-page: 255
  issue: 2
  year: 2009
  ident: D1SC01203G-(cit44)/*[position()=1]
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0273-0979-09-01249-X
– volume: 53
  start-page: 24
  issue: 1–2
  year: 2013
  ident: D1SC01203G-(cit88)/*[position()=1]
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2012.06.001
– volume: 323
  start-page: 1582
  issue: 16
  year: 2020
  ident: D1SC01203G-(cit34)/*[position()=1]
  publication-title: Jama
  doi: 10.1001/jama.2020.4783
– volume: 31
  start-page: 25
  issue: 1
  year: 2021
  ident: D1SC01203G-(cit79)/*[position()=1]
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00444-y
– volume: 254
  start-page: 2865
  issue: 8
  year: 1979
  ident: D1SC01203G-(cit26)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)30153-9
– start-page: 1
  year: 2020
  ident: D1SC01203G-(cit85)/*[position()=1]
  publication-title: Current tropical medicine reports
– volume: 30
  start-page: 16
  issue: 1
  year: 2011
  ident: D1SC01203G-(cit15)/*[position()=1]
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830185.2010.529976
– volume: 353
  start-page: 459
  issue: 2
  year: 2005
  ident: D1SC01203G-(cit48)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.08.020
– volume: 26
  start-page: 1200
  issue: 8
  year: 2020
  ident: D1SC01203G-(cit4)/*[position()=1]
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0965-6
– volume: 368
  start-page: 860
  issue: 6493
  year: 2020
  ident: D1SC01203G-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abb5793
– volume: 20
  start-page: 269
  issue: 5
  year: 2020
  ident: D1SC01203G-(cit32)/*[position()=1]
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0308-3
– ident: D1SC01203G-(cit6)/*[position()=1]
– volume: 20
  start-page: 398
  issue: 4
  year: 2020
  ident: D1SC01203G-(cit33)/*[position()=1]
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30141-9
– volume: 182
  start-page: 794
  issue: 4
  year: 2020
  ident: D1SC01203G-(cit50)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.040
– volume: 432
  start-page: 5212
  issue: 19
  year: 2020
  ident: D1SC01203G-(cit84)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.07.009
– volume: 115
  start-page: E162
  issue: 2
  year: 2018
  ident: D1SC01203G-(cit39)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1718806115
– start-page: 1
  year: 2020
  ident: D1SC01203G-(cit67)/*[position()=1]
  publication-title: Nat. Struct. Mol. Biol.
– volume-title: Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers
  year: 2020
  ident: D1SC01203G-(cit62)/*[position()=1]
– volume: 17
  start-page: 113
  issue: 1
  year: 2021
  ident: D1SC01203G-(cit74)/*[position()=1]
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-00679-1
– volume: 584
  start-page: 450
  issue: 7821
  year: 2020
  ident: D1SC01203G-(cit83)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 395
  start-page: 565
  issue: 10224
  year: 2020
  ident: D1SC01203G-(cit1)/*[position()=1]
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 368
  start-page: 1274
  issue: 6496
  year: 2020
  ident: D1SC01203G-(cit59)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abc2241
– volume: 183
  start-page: 1013
  issue: 4
  year: 2020
  ident: D1SC01203G-(cit68)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.035
– volume: 96
  start-page: 1
  issue: 1
  year: 2007
  ident: D1SC01203G-(cit27)/*[position()=1]
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20727
– volume-title: Proceedings 41st annual symposium on foundations of computer science
  year: 2000
  ident: D1SC01203G-(cit45)/*[position()=1]
– volume-title: A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations
  year: 2020
  ident: D1SC01203G-(cit77)/*[position()=1]
– volume: 579
  start-page: 265
  issue: 7798
  year: 2020
  ident: D1SC01203G-(cit37)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 12
  start-page: 1107
  issue: 7
  year: 2007
  ident: D1SC01203G-(cit86)/*[position()=1]
  publication-title: Antiviral Ther.
  doi: 10.1177/135965350701200702
– volume-title: Molecular basis for a germline-biased neutralizing antibody response to SARS-CoV-2
  year: 2020
  ident: D1SC01203G-(cit76)/*[position()=1]
– volume: 125
  start-page: S3
  issue: 2
  year: 2010
  ident: D1SC01203G-(cit14)/*[position()=1]
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.12.980
– reference: 33083498 - ArXiv. 2021 Mar 9;:
SSID ssj0000331527
Score 2.5867991
Snippet Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6929
SubjectTerms Antibodies
Binding
Biophysics
Chemistry
Coils
Conversion
Coronaviruses
COVID-19 vaccines
Enzymes
Extreme values
Free energy
Immune system
Mutation
Proteins
Severe acute respiratory syndrome coronavirus 2
Topology
Two dimensional analysis
Vaccines
Viral diseases
Title Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies
URI https://www.ncbi.nlm.nih.gov/pubmed/34123321
https://www.proquest.com/docview/2532101859
https://www.proquest.com/docview/2540721299
https://pubmed.ncbi.nlm.nih.gov/PMC8153213
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4AL4lVIKZURXFAVWNt5HlEKLUg8VLple4rsxGEj0aTaTZDg1zOOH9nVFgmQoiiJHSfyTCafPTOfEXouSsZkzIivxtN-EDLhC_gx-xJOI85kFJUqd_jDx-hkGryfhbMxTnfILunEy-LXtXkl_yNVuAZyVVmy_yBZ1yhcgGOQL-xBwrD_Kxl_Xig3S2cjii9rTZihIeBlbwIJu7kChgOTQ_bp_N2RT9LDH7xQHvWl4WrtatGWPw91MpYNK7T8BZZSwGYAKb-vzfRamUjIbJ5Hzed97eJ6eKuDNuqqHyfvtYE5Hat9lUNUwXHf-nC4OhVBifKi63x3bbHoJCB-FFLtaJGr1zRjkTO5dEW16Ir9jFLz2tKcahrODTs_YYomtSTLQiX_sm_j38zFGI6FW2iHwiACrODO6fl0duHm4CaMmVV93ZtbBluWvhobWMcsGwORzXjarYVdPmaAKWd30G0zvsCvtbLcRTdkcw_dzOyyfvfRxag0GISPR6XBbYWt0mCjNLhrsVUabJVmuM8qDXZK8wBN3745y058s76GXwBs7vyySggTBGBMRCvCQ8FIwWNZAewuU-gBGSVxlSjImDAJwL5MkpCWHDYhgwpu20XbTdvIRwiHsYgZ5SmPqzIICRdETKQsSBIXMSk58dAL24N5Ycjn1Roo3_MhCIKl-RH5kg29feyhZ67ulaZcubbWvhVEbj7JZU5DlZIGEDT10FNXDB2svGC8kW2v6gycgADDPPRQy809BiAdZdCEh-I1iboKiox9vaSp5wMpe0LUs5mHdkH2rv6oQ3t_KniMbo3f0j7a7ha9fAJAtxMHwwTRgdHa375VqP8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+mitigation+of+mutation+threats+to+COVID-19+vaccines+and+antibody+therapies&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Jiahui&rft.au=Gao%2C+Kaifu&rft.au=Wang%2C+Rui&rft.au=Wei%2C+Guo-Wei&rft.date=2021-05-26&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=2&rft.spage=6929&rft.epage=6948&rft_id=info:doi/10.1039%2Fd1sc01203g&rft.externalDocID=d1sc01203g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon