Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies
Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact v...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 2; pp. 6929 - 6948 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
26.05.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.
Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. |
---|---|
AbstractList | Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations. Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations. Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200 000 genome isolates. It is imperative to understand how mutations will impact vaccines and antibodies in development. In this work, we first study the mechanism, frequency, and ratio of mutations on the S protein which is the common target of most COVID-19 vaccines and antibody therapies. Additionally, we build a library of 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of the 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 antibody disrupting mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% of the existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, will strengthen the binding between the S protein and human angiotensin-converting enzyme 2 (ACE2), resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and angiotensin-converting enzyme 2 (ACE2), suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery, unfortunately, implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations. |
Author | Chen, Jiahui Gao, Kaifu Wei, Guo-Wei Wang, Rui |
AuthorAffiliation | Department of Electrical and Computer Engineering Department of Biochemistry and Molecular Biology Department of Mathematics Michigan State University |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering – name: Michigan State University – name: Department of Mathematics – name: Department of Biochemistry and Molecular Biology |
Author_xml | – sequence: 1 givenname: Jiahui surname: Chen fullname: Chen, Jiahui – sequence: 2 givenname: Kaifu surname: Gao fullname: Gao, Kaifu – sequence: 3 givenname: Rui surname: Wang fullname: Wang, Rui – sequence: 4 givenname: Guo-Wei surname: Wei fullname: Wei, Guo-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34123321$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttrFDEUxoNU7MW--K4M-CLCaE4y2c28CLLVWihU8AI-hUxyZpsyk2yTTKH_fdOdumoxBHJCft_HueSQ7PngkZAXQN8B5e17C8lQYJSvn5ADRhuoF4K3e7uY0X1ynNIVLYtzEGz5jOzzBhjnDA7Ir68RrTPZBV9pb6vRZbfW22voq3HKc5wvI-qcqhyq1cXPs5Ma2upGG-M8pq1O--y6YG8LiVFvHKbn5Gmvh4THD-cR-fH50_fVl_r84vRs9fG8No1Y5Nr2EngHDfAF60GLjoPRS-wpbW1bCsSFXPZSQkslx4YKK6VgVpfdYdMX2RH5MPtupm5Ea9DnqAe1iW7U8VYF7dS_L95dqnW4URJEaQEvBm8eDGK4njBlNbpkcBi0xzAlxURDlwxY2xb09SP0KkzRl_IKVcwoSHFPvfo7o10qv7tegLczYGJIKWK_Q4Cq-6mqE_i22k71tMD0EWzcPJVSjRv-L3k5S2IyO-s_H4XfARRmrIc |
CitedBy_id | crossref_primary_10_1007_s11033_021_06819_7 crossref_primary_10_1371_journal_pone_0289432 crossref_primary_10_1016_j_jemep_2022_100761 crossref_primary_10_1016_j_ijbiomac_2022_12_112 crossref_primary_10_3390_biom12121742 crossref_primary_10_1108_AJEMS_07_2022_0264 crossref_primary_10_3390_genes13020170 crossref_primary_10_3390_v15071556 crossref_primary_10_1186_s12859_022_04679_x crossref_primary_10_1038_s41598_021_88696_5 crossref_primary_10_1021_acs_jpclett_2c02428 crossref_primary_10_1038_s41598_022_14877_5 crossref_primary_10_3389_fpsyg_2023_1230892 crossref_primary_10_1021_acsinfecdis_1c00557 crossref_primary_10_5799_jmid_1175386 crossref_primary_10_3389_fpubh_2024_1327093 crossref_primary_10_3390_biologics3020008 crossref_primary_10_1016_j_seppur_2022_120454 crossref_primary_10_1111_sji_13269 crossref_primary_10_1142_S2737416523500278 crossref_primary_10_1080_22243534_2022_2080948 crossref_primary_10_3390_v13112114 crossref_primary_10_1109_ACCESS_2022_3181605 crossref_primary_10_1016_j_compbiomed_2023_107258 crossref_primary_10_1016_j_compbiomed_2022_106262 crossref_primary_10_1016_j_bbrc_2022_09_010 crossref_primary_10_2217_fvl_2021_0267 crossref_primary_10_3389_fmed_2024_1414331 crossref_primary_10_3390_v15071565 crossref_primary_10_3390_v15030692 crossref_primary_10_1016_j_ijregi_2024_100484 crossref_primary_10_1111_sji_13111 crossref_primary_10_1371_journal_pone_0277505 crossref_primary_10_1002_cnm_3513 crossref_primary_10_1021_acssensors_3c01019 crossref_primary_10_1111_jeb_13964 crossref_primary_10_2174_2211550111666220613143422 crossref_primary_10_1371_journal_pone_0278243 crossref_primary_10_1214_22_STS859 crossref_primary_10_1002_jmv_27555 crossref_primary_10_1021_acs_jpclett_2c00469 crossref_primary_10_4103_jgid_jgid_97_21 crossref_primary_10_31665_JFB_2022_17298 crossref_primary_10_3390_v15051158 crossref_primary_10_1002_pep2_24267 crossref_primary_10_1021_acs_jpclett_1c03380 crossref_primary_10_3390_microbiolres15030090 crossref_primary_10_2174_1574893618666230605120640 crossref_primary_10_1016_j_compbiomed_2024_109101 crossref_primary_10_4103_jfmpc_jfmpc_2372_21 crossref_primary_10_1002_jmv_27516 crossref_primary_10_31466_kfbd_939421 crossref_primary_10_1093_bib_bbac036 crossref_primary_10_1016_j_jmb_2021_167155 crossref_primary_10_1515_znc_2021_0248 crossref_primary_10_1002_cbdv_202100843 crossref_primary_10_1016_j_bios_2021_113736 crossref_primary_10_2147_IDR_S443574 crossref_primary_10_1016_j_micres_2022_127204 crossref_primary_10_1021_acs_jcim_1c01451 crossref_primary_10_31083_j_fbl2702065 crossref_primary_10_3390_ijerph19116824 crossref_primary_10_1371_journal_pone_0272130 crossref_primary_10_1021_acs_chemrev_1c00965 |
Cites_doi | 10.1016/S0092-8674(02)00696-7 10.1146/annurev.immunol.24.021605.090542 10.1016/S0167-4838(99)00030-8 10.1016/j.cell.2020.05.025 10.1016/j.cell.2020.09.049 10.1126/science.abd2321 10.3389/fimmu.2020.01022 10.1126/science.abe0075 10.3390/vaccines8020153 10.3390/v12101095 10.1146/annurev.immunol.16.1.111 10.1038/s41422-020-00446-w 10.1016/j.virusres.2014.10.008 10.1146/annurev.immunol.18.1.275 10.1128/JVI.01379-08 10.1126/science.abc5881 10.1002/jmv.26232 10.1126/science.abe3354 10.1093/bioinformatics/btq003 10.1080/22221751.2020.1729069 10.1042/BJ20090272 10.1007/s00018-016-2299-6 10.1016/j.cell.2010.01.022 10.1172/JCI138745 10.3906/sag-2004-168 10.1016/j.sbi.2015.01.003 10.1016/j.cell.2020.09.037 10.1038/s42256-020-0149-6 10.1002/cnm.2655 10.3892/etm.2013.1142 10.1038/s41392-020-0191-1 10.1126/science.abc6952 10.2807/1560-7917.ES.2017.22.13.30494 10.1016/j.immuni.2020.10.023 10.1093/nar/gkw306 10.1046/j.1365-2567.2003.01738.x 10.1016/j.cell.2020.02.052 10.1038/d41586-020-01221-y 10.1038/363446a0 10.1038/s41467-020-19204-y 10.1016/j.virusres.2020.198074 10.1090/S0273-0979-09-01249-X 10.1016/j.molimm.2012.06.001 10.1001/jama.2020.4783 10.1038/s41422-020-00444-y 10.1016/S0021-9258(17)30153-9 10.3109/08830185.2010.529976 10.1016/j.jmb.2005.08.020 10.1038/s41591-020-0965-6 10.1126/science.abb5793 10.1038/s41577-020-0308-3 10.1016/S1473-3099(20)30141-9 10.1016/j.cell.2020.06.040 10.1016/j.jmb.2020.07.009 10.1073/pnas.1718806115 10.1038/s41589-020-00679-1 10.1038/s41586-020-2571-7 10.1016/S0140-6736(20)30251-8 10.1126/science.abc2241 10.1016/j.cell.2020.09.035 10.1002/jps.20727 10.1038/s41586-020-2008-3 10.1177/135965350701200702 10.1016/j.jaci.2009.12.980 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1sc01203g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 6948 |
ExternalDocumentID | PMC8153213 34123321 10_1039_D1SC01203G d1sc01203g |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM126189 – fundername: NIAID NIH HHS grantid: R01 AI164266 – fundername: ; grantid: PD45722 – fundername: ; grantid: GM126189 – fundername: ; grantid: DMS-2052983; DMS-1761320; IIS-1900473 – fundername: ; grantid: Unassigned – fundername: ; grantid: 80NSSC21M0023 – fundername: ; grantid: 65109 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAJAE AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION HZ~ PGMZT RAOCF RNS NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c456t-df813b141362f1a5b31ca7ef009d9039e687f8819083e405d8852da2dabe4f413 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 14:37:17 EDT 2025 Mon Jul 21 11:39:48 EDT 2025 Fri Jul 25 03:16:24 EDT 2025 Mon Jul 21 06:07:02 EDT 2025 Tue Jul 01 03:46:50 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Mon Apr 25 05:27:42 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-df813b141362f1a5b31ca7ef009d9039e687f8819083e405d8852da2dabe4f413 |
Notes | Electronic supplementary information (ESI) available: (S1) Methods; (S2) multiple sequence alignments of antibodies and pairwise identity scores; (S3) random coil percentages of antibody paratopes; and (S4) additional analysis of antibody-S protein complexes. See DOI 10.1039/d1sc01203g ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The first three authors contributed equally. |
ORCID | 0000-0002-7402-6372 0000-0001-8132-5998 |
OpenAccessLink | http://dx.doi.org/10.1039/d1sc01203g |
PMID | 34123321 |
PQID | 2532101859 |
PQPubID | 2047492 |
PageCount | 2 |
ParticipantIDs | crossref_citationtrail_10_1039_D1SC01203G proquest_miscellaneous_2540721299 crossref_primary_10_1039_D1SC01203G rsc_primary_d1sc01203g pubmed_primary_34123321 proquest_journals_2532101859 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8153213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210526 |
PublicationDateYYYYMMDD | 2021-05-26 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210526 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Ferron (D1SC01203G-(cit39)/*[position()=1]) 2018; 115 Kissler (D1SC01203G-(cit5)/*[position()=1]) 2020; 368 Harty (D1SC01203G-(cit20)/*[position()=1]) 2000; 18 Chen (D1SC01203G-(cit33)/*[position()=1]) 2020; 20 Hu (D1SC01203G-(cit23)/*[position()=1]) 2021; 93 Du (D1SC01203G-(cit68)/*[position()=1]) 2020; 183 Hamers-Casterman (D1SC01203G-(cit28)/*[position()=1]) 1993; 363 Rujas (D1SC01203G-(cit62)/*[position()=1]) 2020 Bertoglio (D1SC01203G-(cit77)/*[position()=1]) 2020 Prompetchara (D1SC01203G-(cit8)/*[position()=1]) 2020; 38 Putnam (D1SC01203G-(cit26)/*[position()=1]) 1979; 254 Hoffmann (D1SC01203G-(cit31)/*[position()=1]) 2020; 181 Kucukkal (D1SC01203G-(cit47)/*[position()=1]) 2015; 32 Huang (D1SC01203G-(cit82)/*[position()=1]) 2010; 26 Sanjuán (D1SC01203G-(cit49)/*[position()=1]) 2016; 73 Zhou (D1SC01203G-(cit67)/*[position()=1]) 2020 Lan (D1SC01203G-(cit57)/*[position()=1]) 2020 Clark (D1SC01203G-(cit76)/*[position()=1]) 2020 Pinto (D1SC01203G-(cit66)/*[position()=1]) 2020 Bracken (D1SC01203G-(cit74)/*[position()=1]) 2021; 17 Liang (D1SC01203G-(cit12)/*[position()=1]) 2020; 11 Chaplin (D1SC01203G-(cit14)/*[position()=1]) 2010; 125 Ting (D1SC01203G-(cit21)/*[position()=1]) 2002; 109 Linsky (D1SC01203G-(cit89)/*[position()=1]) 2020; 370 Catanzaro (D1SC01203G-(cit13)/*[position()=1]) 2020; 5 Wang (D1SC01203G-(cit53)/*[position()=1]) 2016; 44 Yao (D1SC01203G-(cit79)/*[position()=1]) 2021; 31 Huo (D1SC01203G-(cit63)/*[position()=1]) 2020 Zhang (D1SC01203G-(cit35)/*[position()=1]) 2020; 8 Pancer (D1SC01203G-(cit18)/*[position()=1]) 2006; 24 Hewitt (D1SC01203G-(cit19)/*[position()=1]) 2003; 110 Kreye (D1SC01203G-(cit72)/*[position()=1]) 2020; 183 Piccoli (D1SC01203G-(cit60)/*[position()=1]) 2020; 183 Grewal (D1SC01203G-(cit24)/*[position()=1]) 1998; 16 Edelsbrunner (D1SC01203G-(cit45)/*[position()=1]) 2000 Bloch (D1SC01203G-(cit7)/*[position()=1]) 2020; 130 Chen (D1SC01203G-(cit85)/*[position()=1]) 2020 Kumar (D1SC01203G-(cit15)/*[position()=1]) 2011; 30 Liu (D1SC01203G-(cit75)/*[position()=1]) 2020; 53 Shu (D1SC01203G-(cit51)/*[position()=1]) 2017; 22 D1SC01203G-(cit6)/*[position()=1] Callaway (D1SC01203G-(cit36)/*[position()=1]) 2020; 580 Van der Linden (D1SC01203G-(cit29)/*[position()=1]) 1999; 1431 Tian (D1SC01203G-(cit80)/*[position()=1]) 2020; 9 Sevajol (D1SC01203G-(cit38)/*[position()=1]) 2014; 194 Carlsson (D1SC01203G-(cit44)/*[position()=1]) 2009; 46 Wu (D1SC01203G-(cit37)/*[position()=1]) 2020; 579 Cao (D1SC01203G-(cit65)/*[position()=1]) 2020; 182 Meulen (D1SC01203G-(cit81)/*[position()=1]) 2006; 3 Li (D1SC01203G-(cit10)/*[position()=1]) 2020; 286 Tufan (D1SC01203G-(cit11)/*[position()=1]) 2020; 50 Chi (D1SC01203G-(cit52)/*[position()=1]) 2020; 369 Acharya (D1SC01203G-(cit55)/*[position()=1]) 2020 Wang (D1SC01203G-(cit42)/*[position()=1]) 2020; 12 Wang (D1SC01203G-(cit41)/*[position()=1]) 2020 Wang (D1SC01203G-(cit54)/*[position()=1]) 2021; 31 Yuan (D1SC01203G-(cit58)/*[position()=1]) 2020; 369 Forsman (D1SC01203G-(cit30)/*[position()=1]) 2008; 82 Long (D1SC01203G-(cit4)/*[position()=1]) 2020; 26 Takeuchi (D1SC01203G-(cit16)/*[position()=1]) 2010; 140 Kringelum (D1SC01203G-(cit88)/*[position()=1]) 2013; 53 Crotty (D1SC01203G-(cit25)/*[position()=1]) 2004; vol. 16 Wang (D1SC01203G-(cit27)/*[position()=1]) 2007; 96 Day (D1SC01203G-(cit3)/*[position()=1]) 2020 Ju (D1SC01203G-(cit71)/*[position()=1]) 2020 Lu (D1SC01203G-(cit1)/*[position()=1]) 2020; 395 Wang (D1SC01203G-(cit43)/*[position()=1]) 2020; 2 Xia (D1SC01203G-(cit46)/*[position()=1]) 2014; 30 Custódio (D1SC01203G-(cit78)/*[position()=1]) 2020; 11 Lin (D1SC01203G-(cit86)/*[position()=1]) 2007; 12 Chen (D1SC01203G-(cit84)/*[position()=1]) 2020; 432 Hurlburt (D1SC01203G-(cit64)/*[position()=1]) 2020 Alberts (D1SC01203G-(cit22)/*[position()=1]) 2015 Wang (D1SC01203G-(cit40)/*[position()=1]) 2020 Lv (D1SC01203G-(cit69)/*[position()=1]) 2020; 369 Liu (D1SC01203G-(cit83)/*[position()=1]) 2020; 584 Shen (D1SC01203G-(cit34)/*[position()=1]) 2020; 323 Wu (D1SC01203G-(cit70)/*[position()=1]) 2020 Kumar (D1SC01203G-(cit17)/*[position()=1]) 2009; 420 Wu (D1SC01203G-(cit59)/*[position()=1]) 2020; 368 Li (D1SC01203G-(cit87)/*[position()=1]) 2013; 6 Yue (D1SC01203G-(cit48)/*[position()=1]) 2005; 353 Tortorici (D1SC01203G-(cit73)/*[position()=1]) 2020; 370 Li (D1SC01203G-(cit56)/*[position()=1]) 2020 Shi (D1SC01203G-(cit61)/*[position()=1]) 2020 Shin (D1SC01203G-(cit2)/*[position()=1]) 2020 Wu (D1SC01203G-(cit9)/*[position()=1]) 2020 Cao (D1SC01203G-(cit32)/*[position()=1]) 2020; 20 Grubaugh (D1SC01203G-(cit50)/*[position()=1]) 2020; 182 33083498 - ArXiv. 2021 Mar 9 |
References_xml | – issn: 2000 volume-title: Topological persistence and simplification end-page: p 454-463 publication-title: Proceedings 41st annual symposium on foundations of computer science doi: Edelsbrunner Letscher Zomorodian – issn: 2020 publication-title: Potent synthetic nanobodies against SARS-CoV-2 and molecular basis for neutralization doi: Li Li Cai Yao Zhou Zhao Qin Hutter Lai Bao – issn: 2004 issue: vol. 16 volume-title: Immunological memory in humans end-page: p 197-203 publication-title: Seminars in immunology doi: Crotty Ahmed – issn: 2020 publication-title: Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine doi: Wang Hozumi Yin Wei – issn: 2020 publication-title: Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers doi: Rujas Kucharska Tan Benlekbir Cui Zhao Wasney Budylowski Guvenc Newton – issn: 2020 publication-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation doi: Hurlburt Wan Stuart Feng McGuire Stamatatos Pancera – issn: 2020 publication-title: A glycan cluster on the SARS-CoV-2 spike ectodomain is recognized by Fab-dimerized glycan-reactive antibodies doi: Acharya Williams Henderson Janowska Manne Parks Deyton Sprenz Stalls Kopp – issn: 2020 publication-title: A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations doi: Bertoglio Fühner Ruschig Alexander Heine Rand Klünemann Meier Langreder Steinke Ballmann – issn: 2020 publication-title: Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications doi: Wu Wang Liu Wang Chen Xia Ling Zhang Xun Lu – issn: 2020 publication-title: Structural characterisation of a nanobody derived from a naïve library that neutralises SARS-CoV-2 doi: Huo Le Bas Ruza Duyvesteyn Mikolajek Malinauskas Tan Rijal Dumoux Ward – issn: 2020 publication-title: Structural and functional analysis of a potent sarbecovirus neutralizing antibody doi: Pinto Park Beltramello Walls Tortorici Bianchi Jaconi Culap Zatta De Marco – issn: 2020 publication-title: Covid-19: four fifths of cases are asymptomatic, China figures indicate doi: Day – issn: 2020 publication-title: An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain doi: Wu Yuan Liu Lee Zhu Bangaru Torres Caniels Brouwer Van Gils – issn: 2020 publication-title: Molecular basis for a germline-biased neutralizing antibody response to SARS-CoV-2 doi: Clark Clark Pan Coscia McKay Shankar Johnson Griffiths Abraham – volume: 109 start-page: S21 issue: 2 year: 2002 ident: D1SC01203G-(cit21)/*[position()=1] publication-title: Cell doi: 10.1016/S0092-8674(02)00696-7 – start-page: 1 year: 2020 ident: D1SC01203G-(cit2)/*[position()=1] publication-title: Nat. Nanotechnol. – volume: 24 start-page: 497 year: 2006 ident: D1SC01203G-(cit18)/*[position()=1] publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.24.021605.090542 – volume: 1431 start-page: 37 issue: 1 year: 1999 ident: D1SC01203G-(cit29)/*[position()=1] publication-title: Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(99)00030-8 – start-page: 1 year: 2020 ident: D1SC01203G-(cit71)/*[position()=1] publication-title: Nature – volume: 182 start-page: 73 issue: 1 year: 2020 ident: D1SC01203G-(cit65)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: vol. 16 volume-title: Seminars in immunology year: 2004 ident: D1SC01203G-(cit25)/*[position()=1] – volume: 183 start-page: 1058 issue: 4 year: 2020 ident: D1SC01203G-(cit72)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2020.09.049 – volume-title: A glycan cluster on the SARS-CoV-2 spike ectodomain is recognized by Fab-dimerized glycan-reactive antibodies year: 2020 ident: D1SC01203G-(cit55)/*[position()=1] – volume: 369 start-page: 1119 issue: 6507 year: 2020 ident: D1SC01203G-(cit58)/*[position()=1] publication-title: Science doi: 10.1126/science.abd2321 – volume: 11 start-page: 1022 year: 2020 ident: D1SC01203G-(cit12)/*[position()=1] publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01022 – volume: 370 start-page: 1208 issue: 6521 year: 2020 ident: D1SC01203G-(cit89)/*[position()=1] publication-title: Science doi: 10.1126/science.abe0075 – volume: 8 start-page: 153 issue: 2 year: 2020 ident: D1SC01203G-(cit35)/*[position()=1] publication-title: Vaccines doi: 10.3390/vaccines8020153 – volume-title: An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain year: 2020 ident: D1SC01203G-(cit70)/*[position()=1] – volume: 12 start-page: 1095 issue: 10 year: 2020 ident: D1SC01203G-(cit42)/*[position()=1] publication-title: Viruses doi: 10.3390/v12101095 – volume: 16 start-page: 111 issue: 1 year: 1998 ident: D1SC01203G-(cit24)/*[position()=1] publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.16.1.111 – volume-title: Covid-19: four fifths of cases are asymptomatic, China figures indicate year: 2020 ident: D1SC01203G-(cit3)/*[position()=1] – volume: 31 start-page: 101 issue: 1 year: 2021 ident: D1SC01203G-(cit54)/*[position()=1] publication-title: Cell Res. doi: 10.1038/s41422-020-00446-w – start-page: 32530284 year: 2020 ident: D1SC01203G-(cit41)/*[position()=1] publication-title: J. Chem. Inf. Model. – volume: 194 start-page: 90 year: 2014 ident: D1SC01203G-(cit38)/*[position()=1] publication-title: Virus Res. doi: 10.1016/j.virusres.2014.10.008 – volume: 18 start-page: 275 issue: 1 year: 2000 ident: D1SC01203G-(cit20)/*[position()=1] publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.18.1.275 – volume: 82 start-page: 12069 issue: 24 year: 2008 ident: D1SC01203G-(cit30)/*[position()=1] publication-title: J. Virol. doi: 10.1128/JVI.01379-08 – volume: 369 start-page: 1505 issue: 6510 year: 2020 ident: D1SC01203G-(cit69)/*[position()=1] publication-title: Science doi: 10.1126/science.abc5881 – volume: 93 start-page: 250 issue: 1 year: 2021 ident: D1SC01203G-(cit23)/*[position()=1] publication-title: J. Med. Virol. doi: 10.1002/jmv.26232 – volume: 370 start-page: 950 issue: 6519 year: 2020 ident: D1SC01203G-(cit73)/*[position()=1] publication-title: Science doi: 10.1126/science.abe3354 – volume: 26 start-page: 680 issue: 5 year: 2010 ident: D1SC01203G-(cit82)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – start-page: 1 year: 2020 ident: D1SC01203G-(cit57)/*[position()=1] publication-title: Nature – volume: 3 issue: 7 year: 2006 ident: D1SC01203G-(cit81)/*[position()=1] publication-title: PLoS Med. – volume: 9 start-page: 382 issue: 1 year: 2020 ident: D1SC01203G-(cit80)/*[position()=1] publication-title: Emerging Microbes Infect. doi: 10.1080/22221751.2020.1729069 – volume-title: Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications year: 2020 ident: D1SC01203G-(cit9)/*[position()=1] – volume: 420 start-page: 1 issue: 1 year: 2009 ident: D1SC01203G-(cit17)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/BJ20090272 – year: 2015 ident: D1SC01203G-(cit22)/*[position()=1] publication-title: Molecular Biology of the Cell – volume: 73 start-page: 4433 issue: 23 year: 2016 ident: D1SC01203G-(cit49)/*[position()=1] publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2299-6 – volume-title: Structural and functional analysis of a potent sarbecovirus neutralizing antibody year: 2020 ident: D1SC01203G-(cit66)/*[position()=1] – volume-title: Structural characterisation of a nanobody derived from a naïve library that neutralises SARS-CoV-2 year: 2020 ident: D1SC01203G-(cit63)/*[position()=1] – volume: 140 start-page: 805 issue: 6 year: 2010 ident: D1SC01203G-(cit16)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 130 start-page: 2757 issue: 6 year: 2020 ident: D1SC01203G-(cit7)/*[position()=1] publication-title: J. Clin. Invest. doi: 10.1172/JCI138745 – volume: 50 start-page: 620 issue: SI-1 year: 2020 ident: D1SC01203G-(cit11)/*[position()=1] publication-title: Turk. J. Med. Sci. doi: 10.3906/sag-2004-168 – volume: 32 start-page: 18 year: 2015 ident: D1SC01203G-(cit47)/*[position()=1] publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2015.01.003 – volume: 183 start-page: 1024 issue: 4 year: 2020 ident: D1SC01203G-(cit60)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2020.09.037 – volume: 2 start-page: 116 issue: 2 year: 2020 ident: D1SC01203G-(cit43)/*[position()=1] publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-0149-6 – volume: 38 start-page: 1 issue: 1 year: 2020 ident: D1SC01203G-(cit8)/*[position()=1] publication-title: Asian Pac. J. Allergy Immunol. – volume: 30 start-page: 814 issue: 8 year: 2014 ident: D1SC01203G-(cit46)/*[position()=1] publication-title: International journal for numerical methods in biomedical engineering doi: 10.1002/cnm.2655 – volume: 6 start-page: 335 issue: 2 year: 2013 ident: D1SC01203G-(cit87)/*[position()=1] publication-title: Exp. Ther. Med. doi: 10.3892/etm.2013.1142 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: D1SC01203G-(cit13)/*[position()=1] publication-title: Signal Transduction Targeted Ther. doi: 10.1038/s41392-020-0191-1 – volume-title: Potent synthetic nanobodies against SARS-CoV-2 and molecular basis for neutralization year: 2020 ident: D1SC01203G-(cit56)/*[position()=1] – volume: 369 start-page: 650 issue: 6504 year: 2020 ident: D1SC01203G-(cit52)/*[position()=1] publication-title: Science doi: 10.1126/science.abc6952 – volume-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation year: 2020 ident: D1SC01203G-(cit64)/*[position()=1] – volume-title: Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine year: 2020 ident: D1SC01203G-(cit40)/*[position()=1] – volume: 22 start-page: 30494 issue: 13 year: 2017 ident: D1SC01203G-(cit51)/*[position()=1] publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2017.22.13.30494 – volume: 53 start-page: 1272 issue: 6 year: 2020 ident: D1SC01203G-(cit75)/*[position()=1] publication-title: Immunity doi: 10.1016/j.immuni.2020.10.023 – start-page: 1 year: 2020 ident: D1SC01203G-(cit61)/*[position()=1] publication-title: Nature – volume: 44 start-page: W430 issue: W1 year: 2016 ident: D1SC01203G-(cit53)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw306 – volume: 110 start-page: 163 issue: 2 year: 2003 ident: D1SC01203G-(cit19)/*[position()=1] publication-title: Immunology doi: 10.1046/j.1365-2567.2003.01738.x – volume: 181 start-page: 271 issue: 2 year: 2020 ident: D1SC01203G-(cit31)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 580 start-page: 576 issue: 7805 year: 2020 ident: D1SC01203G-(cit36)/*[position()=1] publication-title: Nature doi: 10.1038/d41586-020-01221-y – volume: 363 start-page: 446 issue: 6428 year: 1993 ident: D1SC01203G-(cit28)/*[position()=1] publication-title: Nature doi: 10.1038/363446a0 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: D1SC01203G-(cit78)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-19204-y – volume: 286 start-page: 198074 year: 2020 ident: D1SC01203G-(cit10)/*[position()=1] publication-title: Virus Res. doi: 10.1016/j.virusres.2020.198074 – volume: 46 start-page: 255 issue: 2 year: 2009 ident: D1SC01203G-(cit44)/*[position()=1] publication-title: Bulletin of the American Mathematical Society doi: 10.1090/S0273-0979-09-01249-X – volume: 53 start-page: 24 issue: 1–2 year: 2013 ident: D1SC01203G-(cit88)/*[position()=1] publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2012.06.001 – volume: 323 start-page: 1582 issue: 16 year: 2020 ident: D1SC01203G-(cit34)/*[position()=1] publication-title: Jama doi: 10.1001/jama.2020.4783 – volume: 31 start-page: 25 issue: 1 year: 2021 ident: D1SC01203G-(cit79)/*[position()=1] publication-title: Cell Res. doi: 10.1038/s41422-020-00444-y – volume: 254 start-page: 2865 issue: 8 year: 1979 ident: D1SC01203G-(cit26)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)30153-9 – start-page: 1 year: 2020 ident: D1SC01203G-(cit85)/*[position()=1] publication-title: Current tropical medicine reports – volume: 30 start-page: 16 issue: 1 year: 2011 ident: D1SC01203G-(cit15)/*[position()=1] publication-title: Int. Rev. Immunol. doi: 10.3109/08830185.2010.529976 – volume: 353 start-page: 459 issue: 2 year: 2005 ident: D1SC01203G-(cit48)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.08.020 – volume: 26 start-page: 1200 issue: 8 year: 2020 ident: D1SC01203G-(cit4)/*[position()=1] publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 368 start-page: 860 issue: 6493 year: 2020 ident: D1SC01203G-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.abb5793 – volume: 20 start-page: 269 issue: 5 year: 2020 ident: D1SC01203G-(cit32)/*[position()=1] publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0308-3 – ident: D1SC01203G-(cit6)/*[position()=1] – volume: 20 start-page: 398 issue: 4 year: 2020 ident: D1SC01203G-(cit33)/*[position()=1] publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30141-9 – volume: 182 start-page: 794 issue: 4 year: 2020 ident: D1SC01203G-(cit50)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2020.06.040 – volume: 432 start-page: 5212 issue: 19 year: 2020 ident: D1SC01203G-(cit84)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.07.009 – volume: 115 start-page: E162 issue: 2 year: 2018 ident: D1SC01203G-(cit39)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1718806115 – start-page: 1 year: 2020 ident: D1SC01203G-(cit67)/*[position()=1] publication-title: Nat. Struct. Mol. Biol. – volume-title: Multivalency transforms SARS-CoV-2 antibodies into broad and ultrapotent neutralizers year: 2020 ident: D1SC01203G-(cit62)/*[position()=1] – volume: 17 start-page: 113 issue: 1 year: 2021 ident: D1SC01203G-(cit74)/*[position()=1] publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-00679-1 – volume: 584 start-page: 450 issue: 7821 year: 2020 ident: D1SC01203G-(cit83)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 395 start-page: 565 issue: 10224 year: 2020 ident: D1SC01203G-(cit1)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 368 start-page: 1274 issue: 6496 year: 2020 ident: D1SC01203G-(cit59)/*[position()=1] publication-title: Science doi: 10.1126/science.abc2241 – volume: 183 start-page: 1013 issue: 4 year: 2020 ident: D1SC01203G-(cit68)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2020.09.035 – volume: 96 start-page: 1 issue: 1 year: 2007 ident: D1SC01203G-(cit27)/*[position()=1] publication-title: J. Pharm. Sci. doi: 10.1002/jps.20727 – volume-title: Proceedings 41st annual symposium on foundations of computer science year: 2000 ident: D1SC01203G-(cit45)/*[position()=1] – volume-title: A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations year: 2020 ident: D1SC01203G-(cit77)/*[position()=1] – volume: 579 start-page: 265 issue: 7798 year: 2020 ident: D1SC01203G-(cit37)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 12 start-page: 1107 issue: 7 year: 2007 ident: D1SC01203G-(cit86)/*[position()=1] publication-title: Antiviral Ther. doi: 10.1177/135965350701200702 – volume-title: Molecular basis for a germline-biased neutralizing antibody response to SARS-CoV-2 year: 2020 ident: D1SC01203G-(cit76)/*[position()=1] – volume: 125 start-page: S3 issue: 2 year: 2010 ident: D1SC01203G-(cit14)/*[position()=1] publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2009.12.980 – reference: 33083498 - ArXiv. 2021 Mar 9;: |
SSID | ssj0000331527 |
Score | 2.5867991 |
Snippet | Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5000 mutations on the spike... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6929 |
SubjectTerms | Antibodies Binding Biophysics Chemistry Coils Conversion Coronaviruses COVID-19 vaccines Enzymes Extreme values Free energy Immune system Mutation Proteins Severe acute respiratory syndrome coronavirus 2 Topology Two dimensional analysis Vaccines Viral diseases |
Title | Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34123321 https://www.proquest.com/docview/2532101859 https://www.proquest.com/docview/2540721299 https://pubmed.ncbi.nlm.nih.gov/PMC8153213 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4AL4lVIKZURXFAVWNt5HlEKLUg8VLple4rsxGEj0aTaTZDg1zOOH9nVFgmQoiiJHSfyTCafPTOfEXouSsZkzIivxtN-EDLhC_gx-xJOI85kFJUqd_jDx-hkGryfhbMxTnfILunEy-LXtXkl_yNVuAZyVVmy_yBZ1yhcgGOQL-xBwrD_Kxl_Xig3S2cjii9rTZihIeBlbwIJu7kChgOTQ_bp_N2RT9LDH7xQHvWl4WrtatGWPw91MpYNK7T8BZZSwGYAKb-vzfRamUjIbJ5Hzed97eJ6eKuDNuqqHyfvtYE5Hat9lUNUwXHf-nC4OhVBifKi63x3bbHoJCB-FFLtaJGr1zRjkTO5dEW16Ir9jFLz2tKcahrODTs_YYomtSTLQiX_sm_j38zFGI6FW2iHwiACrODO6fl0duHm4CaMmVV93ZtbBluWvhobWMcsGwORzXjarYVdPmaAKWd30G0zvsCvtbLcRTdkcw_dzOyyfvfRxag0GISPR6XBbYWt0mCjNLhrsVUabJVmuM8qDXZK8wBN3745y058s76GXwBs7vyySggTBGBMRCvCQ8FIwWNZAewuU-gBGSVxlSjImDAJwL5MkpCWHDYhgwpu20XbTdvIRwiHsYgZ5SmPqzIICRdETKQsSBIXMSk58dAL24N5Ycjn1Roo3_MhCIKl-RH5kg29feyhZ67ulaZcubbWvhVEbj7JZU5DlZIGEDT10FNXDB2svGC8kW2v6gycgADDPPRQy809BiAdZdCEh-I1iboKiox9vaSp5wMpe0LUs5mHdkH2rv6oQ3t_KniMbo3f0j7a7ha9fAJAtxMHwwTRgdHa375VqP8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+mitigation+of+mutation+threats+to+COVID-19+vaccines+and+antibody+therapies&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Jiahui&rft.au=Gao%2C+Kaifu&rft.au=Wang%2C+Rui&rft.au=Wei%2C+Guo-Wei&rft.date=2021-05-26&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=2&rft.spage=6929&rft.epage=6948&rft_id=info:doi/10.1039%2Fd1sc01203g&rft.externalDocID=d1sc01203g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |