Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells
Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tu...
Saved in:
Published in | Journal of the American Society of Nephrology Vol. 29; no. 4; pp. 1238 - 1256 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Nephrology
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tubular cells of normal subjects, tubular cells of humans with a variety of nephropathies and those of several mouse models of CKD expressed high levels of Wnt9a that colocalized with the senescence-related protein p16
INK4A
. Wnt9a expression level correlated with the extent of renal fibrosis, decline of eGFR, and expression of p16
INK4A
. Furthermore, ectopic expression of Wnt9a after ischemia-reperfusion injury (IRI) induced activation of
β
-catenin and exacerbated renal fibrosis. Overexpression of Wnt9a exacerbated tubular senescence, evidenced by increased detection of p16
INK4A
expression and senescence-associated
β
-galactosidase activity. Conversely, shRNA-mediated knockdown of Wnt9a repressed IRI-induced renal fibrosis
in vivo
and impeded the growth of senescent tubular epithelial cells in culture. Notably, Wnt9a-induced renal fibrosis was inhibited by shRNA-mediated silencing of p16
INK4A
in the IRI mouse model. In a human proximal tubular epithelial cell line and primary renal tubular cells, Wnt9a remarkably upregulated levels of senescence-related p16
INK4A
, p19
ARF
, p53, and p21 and decreased the phosphorylation of retinoblastoma protein. Wnt9a also induced senescent tubular cells to produce TGF-
β
1, which promoted proliferation and activation in normal rat kidney fibroblasts. Thus, Wnt9a drives tubular senescence and fibroblast activation. Furthermore, the Wnt9a–TGF-
β
pathway appears to create a reciprocal activation loop between senescent tubular cells and activated fibroblasts that promotes and accelerates the pathogenesis of renal fibrosis. |
---|---|
AbstractList | Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tubular cells of normal subjects, tubular cells of humans with a variety of nephropathies and those of several mouse models of CKD expressed high levels of Wnt9a that colocalized with the senescence-related protein p16INK4A Wnt9a expression level correlated with the extent of renal fibrosis, decline of eGFR, and expression of p16INK4A Furthermore, ectopic expression of Wnt9a after ischemia-reperfusion injury (IRI) induced activation of β-catenin and exacerbated renal fibrosis. Overexpression of Wnt9a exacerbated tubular senescence, evidenced by increased detection of p16INK4A expression and senescence-associated β-galactosidase activity. Conversely, shRNA-mediated knockdown of Wnt9a repressed IRI-induced renal fibrosis in vivo and impeded the growth of senescent tubular epithelial cells in culture. Notably, Wnt9a-induced renal fibrosis was inhibited by shRNA-mediated silencing of p16INK4A in the IRI mouse model. In a human proximal tubular epithelial cell line and primary renal tubular cells, Wnt9a remarkably upregulated levels of senescence-related p16INK4A, p19ARF, p53, and p21 and decreased the phosphorylation of retinoblastoma protein. Wnt9a also induced senescent tubular cells to produce TGF-β1, which promoted proliferation and activation in normal rat kidney fibroblasts. Thus, Wnt9a drives tubular senescence and fibroblast activation. Furthermore, the Wnt9a-TGF-β pathway appears to create a reciprocal activation loop between senescent tubular cells and activated fibroblasts that promotes and accelerates the pathogenesis of renal fibrosis.Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tubular cells of normal subjects, tubular cells of humans with a variety of nephropathies and those of several mouse models of CKD expressed high levels of Wnt9a that colocalized with the senescence-related protein p16INK4A Wnt9a expression level correlated with the extent of renal fibrosis, decline of eGFR, and expression of p16INK4A Furthermore, ectopic expression of Wnt9a after ischemia-reperfusion injury (IRI) induced activation of β-catenin and exacerbated renal fibrosis. Overexpression of Wnt9a exacerbated tubular senescence, evidenced by increased detection of p16INK4A expression and senescence-associated β-galactosidase activity. Conversely, shRNA-mediated knockdown of Wnt9a repressed IRI-induced renal fibrosis in vivo and impeded the growth of senescent tubular epithelial cells in culture. Notably, Wnt9a-induced renal fibrosis was inhibited by shRNA-mediated silencing of p16INK4A in the IRI mouse model. In a human proximal tubular epithelial cell line and primary renal tubular cells, Wnt9a remarkably upregulated levels of senescence-related p16INK4A, p19ARF, p53, and p21 and decreased the phosphorylation of retinoblastoma protein. Wnt9a also induced senescent tubular cells to produce TGF-β1, which promoted proliferation and activation in normal rat kidney fibroblasts. Thus, Wnt9a drives tubular senescence and fibroblast activation. Furthermore, the Wnt9a-TGF-β pathway appears to create a reciprocal activation loop between senescent tubular cells and activated fibroblasts that promotes and accelerates the pathogenesis of renal fibrosis. Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tubular cells of normal subjects, tubular cells of humans with a variety of nephropathies and those of several mouse models of CKD expressed high levels of Wnt9a that colocalized with the senescence-related protein p16 INK4A . Wnt9a expression level correlated with the extent of renal fibrosis, decline of eGFR, and expression of p16 INK4A . Furthermore, ectopic expression of Wnt9a after ischemia-reperfusion injury (IRI) induced activation of β -catenin and exacerbated renal fibrosis. Overexpression of Wnt9a exacerbated tubular senescence, evidenced by increased detection of p16 INK4A expression and senescence-associated β -galactosidase activity. Conversely, shRNA-mediated knockdown of Wnt9a repressed IRI-induced renal fibrosis in vivo and impeded the growth of senescent tubular epithelial cells in culture. Notably, Wnt9a-induced renal fibrosis was inhibited by shRNA-mediated silencing of p16 INK4A in the IRI mouse model. In a human proximal tubular epithelial cell line and primary renal tubular cells, Wnt9a remarkably upregulated levels of senescence-related p16 INK4A , p19 ARF , p53, and p21 and decreased the phosphorylation of retinoblastoma protein. Wnt9a also induced senescent tubular cells to produce TGF- β 1, which promoted proliferation and activation in normal rat kidney fibroblasts. Thus, Wnt9a drives tubular senescence and fibroblast activation. Furthermore, the Wnt9a–TGF- β pathway appears to create a reciprocal activation loop between senescent tubular cells and activated fibroblasts that promotes and accelerates the pathogenesis of renal fibrosis. Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tubular cells of normal subjects, tubular cells of humans with a variety of nephropathies and those of several mouse models of CKD expressed high levels of Wnt9a that colocalized with the senescence-related protein p16 Wnt9a expression level correlated with the extent of renal fibrosis, decline of eGFR, and expression of p16 Furthermore, ectopic expression of Wnt9a after ischemia-reperfusion injury (IRI) induced activation of -catenin and exacerbated renal fibrosis. Overexpression of Wnt9a exacerbated tubular senescence, evidenced by increased detection of p16 expression and senescence-associated -galactosidase activity. Conversely, shRNA-mediated knockdown of Wnt9a repressed IRI-induced renal fibrosis and impeded the growth of senescent tubular epithelial cells in culture. Notably, Wnt9a-induced renal fibrosis was inhibited by shRNA-mediated silencing of p16 in the IRI mouse model. In a human proximal tubular epithelial cell line and primary renal tubular cells, Wnt9a remarkably upregulated levels of senescence-related p16 , p19 , p53, and p21 and decreased the phosphorylation of retinoblastoma protein. Wnt9a also induced senescent tubular cells to produce TGF- 1, which promoted proliferation and activation in normal rat kidney fibroblasts. Thus, Wnt9a drives tubular senescence and fibroblast activation. Furthermore, the Wnt9a-TGF- pathway appears to create a reciprocal activation loop between senescent tubular cells and activated fibroblasts that promotes and accelerates the pathogenesis of renal fibrosis. |
Author | Luo, Congwei Zhou, Shan Li, Hongyan Zhou, Lili Hou, Fan Fan Yang, Li Liu, Yahong Liu, Youhua Liu, Jiafeng Zhang, Yunfang Zhou, Zhanmei |
Author_xml | – sequence: 1 givenname: Congwei surname: Luo fullname: Luo, Congwei organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 2 givenname: Shan surname: Zhou fullname: Zhou, Shan organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 3 givenname: Zhanmei surname: Zhou fullname: Zhou, Zhanmei organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 4 givenname: Yahong surname: Liu fullname: Liu, Yahong organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 5 givenname: Li surname: Yang fullname: Yang, Li organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 6 givenname: Jiafeng surname: Liu fullname: Liu, Jiafeng organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 7 givenname: Yunfang surname: Zhang fullname: Zhang, Yunfang organization: Department of Nephrology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China; and – sequence: 8 givenname: Hongyan surname: Li fullname: Li, Hongyan organization: Department of Nephrology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China; and – sequence: 9 givenname: Youhua orcidid: 0000-0002-4740-805X surname: Liu fullname: Liu, Youhua organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania – sequence: 10 givenname: Fan Fan surname: Hou fullname: Hou, Fan Fan organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and – sequence: 11 givenname: Lili surname: Zhou fullname: Zhou, Lili organization: State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29440280$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1v1DAQtVAR_YArR-QjlyxjJ3aSC9Jq1dJKFVS0iBOyHHfSGnntxU4q9d8z25a2IOHLWDNv3rx5s892YorI2FsBC6E78WF5_nkhQbSgQLXNC7YnVF1XdaNgh_7Q6Errtt5l-6X8BBBKtu0rtiv7pgHZwR778T1OveVnOa3ThIV_xWgDP_JDTsUXPtzypXMYMNvJxyu-whDmYDM_x4jFYXTIfeQX83CXPdz46RqDJ4otsrxmL0cbCr55iAfs29Hhxeq4Ov3y6WS1PK1co_RUXQ5gQaKQ9JQDQNnVlBJyqHU7Ote7zvWWtnGArqeq0lJ3qldSjb0YdX3APt7zbuZhjZeka8o2mE32a5tvTbLe_F2J_tpcpRujulaRF0Tw_oEgp18zlsmsPa0Xgo2Y5mIkAGkDrQRB3z2f9Tjkj6cEWNwDHHlYMo6PEAFmezRDRzNPR6OG5p8G5yfyO221-vC_tt-y8Jo5 |
CitedBy_id | crossref_primary_10_18632_aging_102390 crossref_primary_10_1038_s41580_024_00738_8 crossref_primary_10_1042_CS20210447 crossref_primary_10_1016_j_intimp_2024_112882 crossref_primary_10_1016_j_kint_2020_09_025 crossref_primary_10_1038_s41581_022_00601_z crossref_primary_10_1002_advs_202402066 crossref_primary_10_1002_cbin_11736 crossref_primary_10_1016_j_freeradbiomed_2022_07_004 crossref_primary_10_1016_j_mad_2024_111932 crossref_primary_10_3389_fphar_2023_1333389 crossref_primary_10_1016_j_bbadis_2023_166807 crossref_primary_10_3389_fphar_2020_00755 crossref_primary_10_1042_CS20201213 crossref_primary_10_1016_j_fmre_2022_02_010 crossref_primary_10_1016_j_metabol_2020_154435 crossref_primary_10_1172_jci_insight_161487 crossref_primary_10_1021_acs_orglett_8b02490 crossref_primary_10_1016_j_hnm_2022_200149 crossref_primary_10_3390_ijms24076139 crossref_primary_10_1016_j_intimp_2022_109583 crossref_primary_10_1016_S1875_5364_23_60398_X crossref_primary_10_1080_15384101_2023_2287929 crossref_primary_10_1111_jcmm_16857 crossref_primary_10_1016_j_biopha_2023_116039 crossref_primary_10_1177_2040622320964125 crossref_primary_10_1111_jcmm_14952 crossref_primary_10_3390_ijms25052658 crossref_primary_10_1172_jci_insight_162060 crossref_primary_10_3389_fphar_2022_974361 crossref_primary_10_1007_s13577_023_00859_w crossref_primary_10_3390_antiox12020239 crossref_primary_10_1016_j_trsl_2023_09_005 crossref_primary_10_1111_cpr_13299 crossref_primary_10_1016_j_bbrc_2023_149402 crossref_primary_10_3389_fendo_2023_1256375 crossref_primary_10_1016_j_arr_2020_101151 crossref_primary_10_1111_febs_17057 crossref_primary_10_1177_0963689720908198 crossref_primary_10_18632_aging_203749 crossref_primary_10_3389_fphar_2022_836496 crossref_primary_10_3389_fendo_2022_924299 crossref_primary_10_18632_aging_102059 crossref_primary_10_3389_fimmu_2019_01469 crossref_primary_10_1038_s41420_022_01205_z crossref_primary_10_1007_s00428_020_02917_2 crossref_primary_10_1042_CS20210858 crossref_primary_10_1016_j_lfs_2020_118116 crossref_primary_10_1016_j_xcrm_2023_100945 crossref_primary_10_1097_MNH_0000000000000504 crossref_primary_10_3390_bioengineering11010028 crossref_primary_10_1111_acel_14468 crossref_primary_10_1111_acel_14501 crossref_primary_10_1016_j_arr_2020_101063 crossref_primary_10_1016_j_trsl_2022_03_002 crossref_primary_10_1007_s11274_018_2565_x crossref_primary_10_2139_ssrn_4148154 crossref_primary_10_3389_fimmu_2020_00734 crossref_primary_10_1016_j_isci_2023_108681 crossref_primary_10_1038_s41401_023_01140_4 crossref_primary_10_1681_ASN_0000000000000446 crossref_primary_10_3390_cells12152008 crossref_primary_10_1016_j_lfs_2022_120914 crossref_primary_10_1186_s12964_023_01245_7 crossref_primary_10_1038_s41392_023_01688_x crossref_primary_10_3390_ani13061012 crossref_primary_10_3389_fphar_2020_01273 crossref_primary_10_3389_fphar_2019_00770 crossref_primary_10_1016_j_cellsig_2024_111531 crossref_primary_10_1080_14737159_2024_2379355 crossref_primary_10_1016_j_diff_2024_100820 crossref_primary_10_1016_j_semnephrol_2020_01_004 crossref_primary_10_1159_000530344 crossref_primary_10_3389_fcell_2021_701547 crossref_primary_10_1016_j_taap_2021_115530 crossref_primary_10_3390_ijms241411329 crossref_primary_10_1007_s11033_020_05749_0 crossref_primary_10_3389_fendo_2023_1085605 crossref_primary_10_1038_s41401_024_01298_5 crossref_primary_10_1152_ajpcell_00382_2021 crossref_primary_10_3389_fimmu_2022_960601 crossref_primary_10_1111_nep_13472 crossref_primary_10_1007_s13659_020_00262_0 crossref_primary_10_1038_s41401_020_0463_x crossref_primary_10_1038_s41401_021_00617_4 crossref_primary_10_14814_phy2_14696 crossref_primary_10_1038_s41392_023_01379_7 crossref_primary_10_1007_s00467_023_06264_7 crossref_primary_10_1016_j_biopha_2020_111191 crossref_primary_10_2174_0929867330666230621112215 crossref_primary_10_1097_MNH_0000000000000605 crossref_primary_10_1016_j_ecoenv_2022_114098 crossref_primary_10_3390_biomedicines11092408 crossref_primary_10_1038_s41419_024_06702_w crossref_primary_10_3390_ijms23136995 crossref_primary_10_1016_j_isci_2023_107332 crossref_primary_10_1042_CS20230140 crossref_primary_10_1111_acel_14184 crossref_primary_10_1262_jrd_2023_021 crossref_primary_10_1007_s00535_023_02020_8 crossref_primary_10_1007_s11926_019_0800_6 crossref_primary_10_1007_s11684_024_1117_z crossref_primary_10_1007_s13577_021_00611_2 crossref_primary_10_1186_s12964_024_01968_1 crossref_primary_10_3390_ijms22062809 crossref_primary_10_1038_s41419_020_03322_y crossref_primary_10_3389_fphar_2023_1134408 crossref_primary_10_3390_cells10123437 crossref_primary_10_1016_j_kint_2021_08_031 crossref_primary_10_1038_s41419_022_04972_w crossref_primary_10_1007_s00109_020_01978_9 crossref_primary_10_1042_CS20190893 crossref_primary_10_1007_s00418_022_02178_x crossref_primary_10_1111_acel_13407 crossref_primary_10_1016_j_vesic_2024_100045 crossref_primary_10_14336_AD_2021_1027 crossref_primary_10_3389_fphar_2020_601325 crossref_primary_10_1016_j_jid_2024_02_007 crossref_primary_10_1152_ajprenal_00119_2021 crossref_primary_10_1111_acel_13004 crossref_primary_10_1126_scitranslmed_abb0203 crossref_primary_10_1016_j_bcp_2024_116615 crossref_primary_10_1002_jgm_3617 crossref_primary_10_1038_s41392_022_01036_5 crossref_primary_10_1096_fj_202101332R crossref_primary_10_1111_acel_14275 crossref_primary_10_1042_CS20240717 crossref_primary_10_1016_j_freeradbiomed_2023_09_037 crossref_primary_10_1172_jci_insight_135454 crossref_primary_10_3390_ijms24010137 crossref_primary_10_1038_s41419_023_05854_5 crossref_primary_10_1097_MNH_0000000000000782 crossref_primary_10_1186_s13293_023_00519_6 crossref_primary_10_3389_fmed_2024_1478697 crossref_primary_10_1038_s41467_023_37450_8 crossref_primary_10_3389_fmed_2022_1018298 crossref_primary_10_1016_j_tips_2018_09_002 crossref_primary_10_3390_pharmaceutics16060695 crossref_primary_10_1038_s41401_022_00977_5 crossref_primary_10_1111_acel_13574 crossref_primary_10_1186_s12951_021_01122_w crossref_primary_10_3390_cells9112420 crossref_primary_10_1080_0886022X_2024_2338933 crossref_primary_10_1186_s12964_020_00624_8 crossref_primary_10_1093_ckj_sfae133 crossref_primary_10_1016_j_fct_2024_114888 crossref_primary_10_1038_s41581_020_00343_w crossref_primary_10_1016_j_jbc_2024_107598 crossref_primary_10_1155_2019_7495629 crossref_primary_10_1016_j_kint_2020_03_026 crossref_primary_10_1177_0300985820943841 crossref_primary_10_1111_jcmm_14973 crossref_primary_10_1111_dme_15408 crossref_primary_10_1111_jcmm_17447 crossref_primary_10_1172_JCI188358 crossref_primary_10_3389_fimmu_2020_01346 crossref_primary_10_1097_MOT_0000000000000839 crossref_primary_10_1016_j_ajpath_2020_01_016 crossref_primary_10_1016_j_kint_2020_01_026 crossref_primary_10_1186_s12951_021_00900_w crossref_primary_10_1038_s41419_022_05395_3 |
Cites_doi | 10.1111/j.1523-1755.2004.00438.x 10.1152/ajpcell.00096.2010 10.1038/cdd.2015.6 10.1038/nm.3218 10.1371/journal.pone.0070464 10.1053/j.ajkd.2015.05.004 10.1007/s00125-011-2314-2 10.1681/ASN.2011100967 10.1681/ASN.2014010085 10.1073/pnas.1516131112 10.1111/j.1600-6143.2009.02762.x 10.1126/science.1143578 10.1681/ASN.2011050490 10.1172/JCI90828 10.1681/ASN.2013101067 10.1038/labinvest.2014.90 10.1038/labinvest.2015.153 10.1007/s11010-013-1866-5 10.1038/nature16932 10.1038/nrc2440 10.1006/exmp.2000.2346 10.1016/j.kint.2017.03.035 10.1038/nrm2233 10.1152/ajprenal.00378.2010 10.1038/sj.ki.5002039 10.1038/ncb2784 10.1152/ajprenal.90302.2008 10.1097/01.ASN.0000106015.29070.E7 10.1172/JCI26958 10.3389/fphys.2015.00082 10.1681/ASN.2008060566 10.1053/j.ajkd.2012.11.051 10.1038/ki.2012.184 10.1681/ASN.2012080865 10.1016/j.freeradbiomed.2015.02.009 10.2215/CJN.04980515 10.1089/ars.2016.6758 10.1016/j.trsl.2011.11.008 10.1016/j.cell.2013.10.019 10.1159/000446336 10.1681/ASN.2016030354 10.1093/cvr/cvs352 10.1074/jbc.M109.091256 10.1038/nrneph.2016.183 10.1681/ASN.2015040449 |
ContentType | Journal Article |
Copyright | Copyright © 2018 by the American Society of Nephrology. Copyright © 2018 by the American Society of Nephrology 2018 |
Copyright_xml | – notice: Copyright © 2018 by the American Society of Nephrology. – notice: Copyright © 2018 by the American Society of Nephrology 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1681/ASN.2017050574 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1533-3450 |
EndPage | 1256 |
ExternalDocumentID | PMC5875944 29440280 10_1681_ASN_2017050574 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK106049 |
GroupedDBID | --- .55 .GJ 0R~ 18M 29L 2WC 34G 39C 53G 5GY 5RE 5VS 6PF AAQQT AAUIN AAWTL AAYXX ABBLC ABJNI ABOCM ABXYN ACGFO ACLDA ACZKN ADBBV AENEX AFEXH AFFNX AFNMH AHOMT AHQVU ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW BYPQX CITATION CS3 DIK DU5 E3Z EBS EJD ERAAH F5P GX1 H13 HYE HZ~ K-O KQ8 O9- OK1 OVD P0W P2P RHI RPM TEORI TNP TR2 W8F X7M XVB YFH ZGI NPM 7X8 5PM ADSXY |
ID | FETCH-LOGICAL-c456t-db0a02e122225c00e283b0a12b367fcc9c8c9a104c0ec9e285626859525f91f63 |
ISSN | 1046-6673 1533-3450 |
IngestDate | Thu Aug 21 14:10:29 EDT 2025 Fri Jul 11 07:32:19 EDT 2025 Mon Jul 21 05:59:15 EDT 2025 Tue Jul 01 04:34:49 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Wnt9a fibroblasts tubular cells renal fibrosis cell senescence |
Language | English |
License | Copyright © 2018 by the American Society of Nephrology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-db0a02e122225c00e283b0a12b367fcc9c8c9a104c0ec9e285626859525f91f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4740-805X |
OpenAccessLink | https://jasn.asnjournals.org/content/jnephrol/29/4/1238.full.pdf |
PMID | 29440280 |
PQID | 2002220651 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5875944 proquest_miscellaneous_2002220651 pubmed_primary_29440280 crossref_primary_10_1681_ASN_2017050574 crossref_citationtrail_10_1681_ASN_2017050574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Society of Nephrology |
PublicationTitleAlternate | J Am Soc Nephrol |
PublicationYear | 2018 |
Publisher | American Society of Nephrology |
Publisher_xml | – name: American Society of Nephrology |
References | Clements (B2-20231016) 2013; 8 Sis (B11-20231016) 2007; 71 Liu (B42-20231016) 2007; 317 Romero (B28-20231016) Braun (B14-20231016) 2012; 23 He (B23-20231016) 2009; 20 Zhou (B3-20231016) 2017; 28 Acosta (B18-20231016) 2013; 15 Liu (B35-20231016) 2004; 15 Zhou (B22-20231016) 2013; 24 Ding (B37-20231016) 2001; 70 Zhou (B41-20231016) 2012; 55 Baker (B13-20231016) 2016; 530 Li (B20-20231016) 2016; 126 Xiao (B24-20231016) 2016; 27 Bernhardt (B46-20231016) 2017; 92 Zhu (B10-20231016) 2015; 83 Mise (B30-20231016) 2016; 11 Mo (B19-20231016) 2017; 27 Liu (B12-20231016) 2012; 159 Campisi (B16-20231016) 2007; 8 Meng (B44-20231016) 2015; 6 Zhou (B6-20231016) 2016; 96 He (B33-20231016) 2010; 285 Muñoz-Espín (B29-20231016) 2013; 155 Zhou (B39-20231016) 2012; 82 Minutolo (B1-20231016) 2015; 66 Satriano (B21-20231016) 2010; 299 Tan (B45-20231016) 2016; 2 Verzola (B4-20231016) 2008; 295 Gu (B43-20231016) 2014; 387 Wang (B47-20231016) 2014; 94 Melk (B17-20231016) 2004; 65 Wolstein (B27-20231016) 2010; 299 Stenvinkel (B9-20231016) 2013; 62 He (B32-20231016) 2012; 23 von Toerne (B40-20231016) 2009; 9 Cardus (B25-20231016) 2013; 97 LeBleu (B38-20231016) 2013; 19 Simon-Tillaux (B34-20231016) 2017; 32 Zhao (B36-20231016) 2015; 22 Zhou (B5-20231016) 2015; 26 Bobkova (B8-20231016) 2015; 112 Zhou (B31-20231016) 2015; 26 Sturmlechner (B15-20231016) 2017; 13 Kakoki (B7-20231016) 2006; 116 d’Adda di Fagagna (B26-20231016) 2008; 8 |
References_xml | – volume: 65 start-page: 510 year: 2004 ident: B17-20231016 article-title: Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. publication-title: Kidney Int doi: 10.1111/j.1523-1755.2004.00438.x – volume: 299 start-page: C374 year: 2010 ident: B21-20231016 article-title: Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00096.2010 – volume: 22 start-page: 1630 year: 2015 ident: B36-20231016 article-title: JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein. publication-title: Cell Death Differ doi: 10.1038/cdd.2015.6 – volume: 19 start-page: 1047 year: 2013 ident: B38-20231016 article-title: Origin and function of myofibroblasts in kidney fibrosis. publication-title: Nat Med doi: 10.1038/nm.3218 – volume: 8 start-page: e70464 year: 2013 ident: B2-20231016 article-title: Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. publication-title: PLoS One doi: 10.1371/journal.pone.0070464 – volume: 32 start-page: 224 year: 2017 ident: B34-20231016 article-title: Snail and kidney fibrosis. publication-title: Nephrol Dial Transplant – volume: 66 start-page: 184 year: 2015 ident: B1-20231016 article-title: CKD in the elderly: Kidney senescence or blood pressure-related nephropathy? publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2015.05.004 – volume: 55 start-page: 255 year: 2012 ident: B41-20231016 article-title: Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. publication-title: Diabetologia doi: 10.1007/s00125-011-2314-2 – volume: 23 start-page: 1467 year: 2012 ident: B14-20231016 article-title: Cellular senescence limits regenerative capacity and allograft survival. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2011100967 – volume: 26 start-page: 107 year: 2015 ident: B5-20231016 article-title: Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2014010085 – volume: 112 start-page: 16006 year: 2015 ident: B8-20231016 article-title: Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1516131112 – volume: 9 start-page: 2223 year: 2009 ident: B40-20231016 article-title: Wnt pathway regulation in chronic renal allograft damage. publication-title: Am J Transplant doi: 10.1111/j.1600-6143.2009.02762.x – volume: 317 start-page: 803 year: 2007 ident: B42-20231016 article-title: Augmented Wnt signaling in a mammalian model of accelerated aging. publication-title: Science doi: 10.1126/science.1143578 – volume: 23 start-page: 294 year: 2012 ident: B32-20231016 article-title: Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2011050490 – volume: 126 start-page: 4072 year: 2016 ident: B20-20231016 article-title: The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes. publication-title: J Clin Invest doi: 10.1172/JCI90828 – volume: 26 start-page: 677 year: 2015 ident: B31-20231016 article-title: Mutual antagonism of Wilms’ tumor 1 and β-catenin dictates podocyte health and disease. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2013101067 – volume: 94 start-page: 966 year: 2014 ident: B47-20231016 article-title: Renal expression of advanced oxidative protein products predicts progression of renal fibrosis in patients with IgA nephropathy. publication-title: Lab Invest doi: 10.1038/labinvest.2014.90 – volume: 96 start-page: 156 year: 2016 ident: B6-20231016 article-title: Wnt/β-catenin signaling in kidney injury and repair: A double-edged sword. publication-title: Lab Invest doi: 10.1038/labinvest.2015.153 – volume: 387 start-page: 27 year: 2014 ident: B43-20231016 article-title: Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway. publication-title: Mol Cell Biochem doi: 10.1007/s11010-013-1866-5 – volume: 530 start-page: 184 year: 2016 ident: B13-20231016 article-title: Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. publication-title: Nature doi: 10.1038/nature16932 – ident: B28-20231016 article-title: mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts [published online ahead of print August 26, 2016]. publication-title: Aging Cell – volume: 8 start-page: 512 year: 2008 ident: B26-20231016 article-title: Living on a break: Cellular senescence as a DNA-damage response. publication-title: Nat Rev Cancer doi: 10.1038/nrc2440 – volume: 70 start-page: 43 year: 2001 ident: B37-20231016 article-title: Tubular cell senescence and expression of TGF-beta1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. publication-title: Exp Mol Pathol doi: 10.1006/exmp.2000.2346 – volume: 92 start-page: 1157 year: 2017 ident: B46-20231016 article-title: Inflammatory cell infiltration and resolution of kidney inflammation is orchestrated by the cold-shock protein Y-box binding protein-1. publication-title: Kidney Int doi: 10.1016/j.kint.2017.03.035 – volume: 8 start-page: 729 year: 2007 ident: B16-20231016 article-title: Cellular senescence: When bad things happen to good cells. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2233 – volume: 299 start-page: F1486 year: 2010 ident: B27-20231016 article-title: INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00378.2010 – volume: 71 start-page: 218 year: 2007 ident: B11-20231016 article-title: Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. publication-title: Kidney Int doi: 10.1038/sj.ki.5002039 – volume: 15 start-page: 978 year: 2013 ident: B18-20231016 article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence. publication-title: Nat Cell Biol doi: 10.1038/ncb2784 – volume: 295 start-page: F1563 year: 2008 ident: B4-20231016 article-title: Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. publication-title: Am J Physiol Renal Physiol doi: 10.1152/ajprenal.90302.2008 – volume: 15 start-page: 1 year: 2004 ident: B35-20231016 article-title: Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. publication-title: J Am Soc Nephrol doi: 10.1097/01.ASN.0000106015.29070.E7 – volume: 116 start-page: 1302 year: 2006 ident: B7-20231016 article-title: Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. publication-title: J Clin Invest doi: 10.1172/JCI26958 – volume: 6 start-page: 82 year: 2015 ident: B44-20231016 article-title: TGF-β/Smad signaling in renal fibrosis. publication-title: Front Physiol doi: 10.3389/fphys.2015.00082 – volume: 20 start-page: 765 year: 2009 ident: B23-20231016 article-title: Wnt/beta-catenin signaling promotes renal interstitial fibrosis. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2008060566 – volume: 62 start-page: 339 year: 2013 ident: B9-20231016 article-title: Chronic kidney disease: A clinical model of premature aging. publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2012.11.051 – volume: 82 start-page: 759 year: 2012 ident: B39-20231016 article-title: The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. publication-title: Kidney Int doi: 10.1038/ki.2012.184 – volume: 24 start-page: 771 year: 2013 ident: B22-20231016 article-title: Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2012080865 – volume: 83 start-page: 21 year: 2015 ident: B10-20231016 article-title: NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2015.02.009 – volume: 11 start-page: 593 year: 2016 ident: B30-20231016 article-title: Prognostic value of tubulointerstitial lesions, urinary N-acetyl-β-d-glucosaminidase, and urinary β2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.04980515 – volume: 27 start-page: 345 year: 2017 ident: B19-20231016 article-title: C-X-C chemokine receptor type 4 plays a crucial role in mediating oxidative stress-induced podocyte injury. publication-title: Antioxid Redox Signal doi: 10.1089/ars.2016.6758 – volume: 159 start-page: 454 year: 2012 ident: B12-20231016 article-title: Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. publication-title: Transl Res doi: 10.1016/j.trsl.2011.11.008 – volume: 155 start-page: 1104 year: 2013 ident: B29-20231016 article-title: Programmed cell senescence during mammalian embryonic development. publication-title: Cell doi: 10.1016/j.cell.2013.10.019 – volume: 2 start-page: 136 year: 2016 ident: B45-20231016 article-title: Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. publication-title: Kidney Dis (Basel) doi: 10.1159/000446336 – volume: 28 start-page: 598 year: 2017 ident: B3-20231016 article-title: Matrix Metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2016030354 – volume: 97 start-page: 571 year: 2013 ident: B25-20231016 article-title: SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. publication-title: Cardiovasc Res doi: 10.1093/cvr/cvs352 – volume: 285 start-page: 24665 year: 2010 ident: B33-20231016 article-title: Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. publication-title: J Biol Chem doi: 10.1074/jbc.M109.091256 – volume: 13 start-page: 77 year: 2017 ident: B15-20231016 article-title: Cellular senescence in renal ageing and disease. publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2016.183 – volume: 27 start-page: 1727 year: 2016 ident: B24-20231016 article-title: Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2015040449 |
SSID | ssj0015277 |
Score | 2.6223993 |
Snippet | Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1238 |
SubjectTerms | Basic Research |
Title | Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29440280 https://www.proquest.com/docview/2002220651 https://pubmed.ncbi.nlm.nih.gov/PMC5875944 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDdbHjISEgcUSLJ2HscValWh0ku3YjmgyPY63UiLU7GJKvgj_F1m7DzLVipcosgZZzeeL_PKeIaQNyJQTOci9dJYaY_xFffAsw3hLOAi1QGWRMdsi5Po6Ix9WvLlZPJ7kLVUV_K9-rVzX8n_cBXGgK-4S_YfONvdFAbgHPgLR-AwHG_E4y-mSgXm-sN6a9zwgablITjAJZYZAcNyrhSoFWQyft3Xm41NOj1F-absK12Yd4ta2tGDC9yescEIOlJurzFbB1tRTJfziWEHDbAYxeiPaxeGLc35pS76CHVZ25DrusdlO4bR6-896XFhR7-Kddno1yY8ESSDrBYnUcEB97C3qFM4rZSdeTPmKs62YrgJfBTDGIOVqaBbk4F-Boss2in7owRl__z0BBP2YuzQ5_r_jItsX1F-XUoiOkNwhwzmZ_38W-R2CP6H3UW-7HKHsBVw7MpcuGdrqoHC_A_j3x9bO3-5MFczcQemzeI-udcwl84dwB6QiTYPyZ3PTdbFI_LN4oy2OKMWZ7TFGZU_6RBntMUZ7XFGC0MbnNEeZ5Zy-5icHR4sPh55TVsOT4G1XXkr6Qs_1EGIoQLl-xosVBgKQjmL4lypVCUqFbA2ytcqhatgYkdYRi_keRrk0ewJ2TOl0c8IjZiQLJdC8hgcex5KFoBGiBUTsRB8pafEa5cvU03Nemydssl2s2tK3nb0F65ay7WUr1tuZCBQ8SuZMLqst9iXFR4MLPNgSp467nT3ClPGMBdhSuIR3zoCLNY-vmKKtS3azpOYw-z9G__D5-Ru_z69IHvVj1q_BAO4kq8sGP8Af0muOg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wnt9a+Promotes+Renal+Fibrosis+by+Accelerating+Cellular+Senescence+in+Tubular+Epithelial+Cells&rft.jtitle=Journal+of+the+American+Society+of+Nephrology&rft.au=Luo%2C+Congwei&rft.au=Zhou%2C+Shan&rft.au=Zhou%2C+Zhanmei&rft.au=Liu%2C+Yahong&rft.date=2018-04-01&rft.issn=1046-6673&rft.eissn=1533-3450&rft.volume=29&rft.issue=4&rft.spage=1238&rft.epage=1256&rft_id=info:doi/10.1681%2FASN.2017050574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1681_ASN_2017050574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-6673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-6673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-6673&client=summon |