Smoothed particle hydrodynamics continuous boundary force method for Navier–Stokes equations subject to a Robin boundary condition

A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier–Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 259; pp. 242 - 259
Main Authors Pan, Wenxiao, Bao, Jie, Tartakovsky, Alexandre M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier–Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier–Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH–CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH–CBF method accurately describes both the no-slip and slip conditions.
AbstractList A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation.
A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH-CBF method accurately describes both the no-slip and slip conditions.
A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier–Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier–Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH–CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH–CBF method accurately describes both the no-slip and slip conditions.
Author Tartakovsky, Alexandre M.
Bao, Jie
Pan, Wenxiao
Author_xml – sequence: 1
  givenname: Wenxiao
  surname: Pan
  fullname: Pan, Wenxiao
  email: wenxiao.pan@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 2
  givenname: Jie
  surname: Bao
  fullname: Bao, Jie
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 3
  givenname: Alexandre M.
  surname: Tartakovsky
  fullname: Tartakovsky, Alexandre M.
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
BookMark eNqFkU-L1TAUxYOM4JvRD-AuSzetuemftLiSQR1hUJjRdUiTW15qm7xJUuHtXMw38Bv6SUx9guBiZnU5cH4H7jnn5Mx5h4S8BFYCg_b1VE76UHIGVQm8ZFA_ITtgPSu4gPaM7BjjUPR9D8_IeYwTY6xr6m5H7m8X79MeDT2okKyeke6PJnhzdGqxOlLtXbJu9Wukg1-dUeFIRx800gXT3ptN0E_qu8Xw68fP2-S_YaR4t6pkvYs0rsOEOtHkqaI3frDuX0yONnazPSdPRzVHfPH3XpCv7999ubwqrj9_-Hj59rrQddOmwrQae1413PSM63bohK4rEHoQzGSDgJFjlk3bQYNi5EJ02Nb12De9ED1T1QV5dco9BH-3YkxysVHjPCuH-UEJHbQMoG6ax61NBaxqO7ZZ4WTVwccYcJSHYJf8oAQmt3HkJPM4chtHApd5nMyI_xht05_KUlB2fpB8cyIxF7W1LqO26DQaG3LR0nj7AP0baOGudA
CitedBy_id crossref_primary_10_3390_sym13101774
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_054
crossref_primary_10_1017_S1446181123000160
crossref_primary_10_1080_17499518_2023_2283851
crossref_primary_10_1016_j_advwatres_2015_03_007
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119919
crossref_primary_10_1029_2020WR028775
crossref_primary_10_1016_j_cma_2014_12_019
crossref_primary_10_1016_j_conbuildmat_2023_133472
crossref_primary_10_1016_j_cpc_2015_10_025
crossref_primary_10_1016_j_jcp_2016_12_042
crossref_primary_10_1016_j_jcp_2023_112509
crossref_primary_10_1016_j_amc_2015_08_083
crossref_primary_10_1016_j_cma_2019_06_009
crossref_primary_10_1186_s13628_015_0021_y
crossref_primary_10_1007_s00366_023_01896_7
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_004
crossref_primary_10_1007_s10596_015_9468_9
crossref_primary_10_1016_j_jcp_2023_112322
crossref_primary_10_1063_5_0161344
crossref_primary_10_1016_j_net_2024_11_003
Cites_doi 10.1016/j.jconhyd.2010.06.008
10.1006/jcph.1997.5776
10.1017/S0962492902000077
10.1016/j.jcp.2006.08.013
10.1016/j.jnnfm.2009.12.004
10.1103/PhysRevLett.94.056102
10.1088/0034-4885/68/8/R01
10.1016/j.ijplas.2013.02.013
10.1016/j.cpc.2009.05.008
10.1146/annurev-fluid-120710-101220
10.1016/0021-9991(92)90240-Y
10.3189/2012JoG11J084
10.1016/j.jcp.2010.03.022
10.1006/jcph.1998.6118
10.1146/annurev.fluid.37.061903.175743
10.1016/S0021-9991(03)00324-3
10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
10.1016/j.cpc.2009.06.002
10.1016/j.cpc.2010.08.022
10.1029/2010JF001839
10.1006/jcph.1994.1034
10.1039/b616490k
10.1007/JHEP11(2012)032
10.1103/PhysRevLett.68.3448
10.1016/j.jpowsour.2010.06.030
10.2136/vzj2004.0178
10.5194/tc-2-95-2008
10.1016/j.jcp.2012.10.027
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7SP
7TB
7U5
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2013.12.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 259
ExternalDocumentID 10_1016_j_jcp_2013_12_014
S0021999113008139
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7TB
7U5
8FD
EFKBS
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c456t-d6ce92352d902c6b87c4317cb70d45671f2e17c56815e7f2778e644f9597790a3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri Jul 11 15:17:03 EDT 2025
Mon Jul 21 11:18:34 EDT 2025
Tue Jul 01 04:33:35 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 23 02:18:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robin boundary condition
Smoothed particle hydrodynamics
Navier–Stokes equations
No-slip boundary condition
Slip boundary condition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-d6ce92352d902c6b87c4317cb70d45671f2e17c56815e7f2778e644f9597790a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1531036805
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1816011455
proquest_miscellaneous_1531036805
crossref_primary_10_1016_j_jcp_2013_12_014
crossref_citationtrail_10_1016_j_jcp_2013_12_014
elsevier_sciencedirect_doi_10_1016_j_jcp_2013_12_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-15
PublicationDateYYYYMMDD 2014-02-15
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of computational physics
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bocquet, Barrat (br0170) 2007; 3
Rogers, Leduc, Marongi, Leboeuf (br0250) 2009
Tartakovsky, Meakin, Scheibe, Eichler West, Wood (br0060) 2007; 222
Cleary, Monaghan (br0310) 1999; 148
Tartakovsky, Meakin (br0070) 2005; 4
Monaghan (br0100) 2012; 44
Cottin-Bizonne, Cross, Steinberger, Charlaix (br0150) 2005; 94
Pan, Tartakovsky, Monaghan (br0030) 2013; 242
Monaghan, Kajtar (br0120) 2009; 180
Tartakovsky, Meakin (br0130) 2005; 4
Lange (br0290) 2012; 2012
Adami, Hu, Adams (br0240) 2010; 229
Monaghan (br0010) 2005; 68
Colagrossi, Landrini (br0050) 2003; 191
Ryan, Tartakovsky, Amon (br0190) 2010; 181
Fan, Tanner, Zheng (br0090) 2010; 165
Mittal, Iaccarino (br0260) 2005; 37
Morris, Fox, Zhu (br0110) 1997; 136
Navier (br0140) 1823; 6
Ryan, Tartakovsky, Recknagle, Khaleel, Amon (br0200) 2011; 196
Sayag, Tziperman (br0280) 2011; 116
Thompson, Grest, Robbins (br0160) 1992; 68
Morris (br0230) 2000; 33
Peskin (br0270) 2002; 11
Monaghan (br0300) 1994; 110
Pan, Li, Tartakovsky, Ahzi, Khraisheh, Khaleel (br0040) 2013; 48
Pan, Tartakovsky, Monaghan (br0020) 2012; 58
Brackbill, Kothe, Zemach (br0220) 1992; 100
Pattyn, Perichon, Aschwanden, Breuer, de Smedt, Gagliardini, Gudmundsson, Hindmarsh, Hubbard, Johnson, Kleiner, Konovalov, Martin, Payne, Pollard, Price, Ruckamp, Saito, Soucek, Sugiyama, Zwinger (br0180) 2008; 2
Ryan, Tartakovsky, Amon (br0210) 2011; 120–121
Tartakovsky, Ferris, Meakin (br0080) 2009; 180
Ryan (10.1016/j.jcp.2013.12.014_br0200) 2011; 196
Brackbill (10.1016/j.jcp.2013.12.014_br0220) 1992; 100
Morris (10.1016/j.jcp.2013.12.014_br0230) 2000; 33
Pan (10.1016/j.jcp.2013.12.014_br0020) 2012; 58
Tartakovsky (10.1016/j.jcp.2013.12.014_br0060) 2007; 222
Monaghan (10.1016/j.jcp.2013.12.014_br0120) 2009; 180
Pattyn (10.1016/j.jcp.2013.12.014_br0180) 2008; 2
Navier (10.1016/j.jcp.2013.12.014_br0140) 1823; 6
Adami (10.1016/j.jcp.2013.12.014_br0240) 2010; 229
Monaghan (10.1016/j.jcp.2013.12.014_br0100) 2012; 44
Rogers (10.1016/j.jcp.2013.12.014_br0250) 2009
Pan (10.1016/j.jcp.2013.12.014_br0030) 2013; 242
Lange (10.1016/j.jcp.2013.12.014_br0290) 2012; 2012
Morris (10.1016/j.jcp.2013.12.014_br0110) 1997; 136
Tartakovsky (10.1016/j.jcp.2013.12.014_br0080) 2009; 180
Ryan (10.1016/j.jcp.2013.12.014_br0210) 2011; 120–121
Tartakovsky (10.1016/j.jcp.2013.12.014_br0130) 2005; 4
Monaghan (10.1016/j.jcp.2013.12.014_br0300) 1994; 110
Cleary (10.1016/j.jcp.2013.12.014_br0310) 1999; 148
Cottin-Bizonne (10.1016/j.jcp.2013.12.014_br0150) 2005; 94
Tartakovsky (10.1016/j.jcp.2013.12.014_br0070) 2005; 4
Ryan (10.1016/j.jcp.2013.12.014_br0190) 2010; 181
Mittal (10.1016/j.jcp.2013.12.014_br0260) 2005; 37
Bocquet (10.1016/j.jcp.2013.12.014_br0170) 2007; 3
Fan (10.1016/j.jcp.2013.12.014_br0090) 2010; 165
Peskin (10.1016/j.jcp.2013.12.014_br0270) 2002; 11
Monaghan (10.1016/j.jcp.2013.12.014_br0010) 2005; 68
Pan (10.1016/j.jcp.2013.12.014_br0040) 2013; 48
Colagrossi (10.1016/j.jcp.2013.12.014_br0050) 2003; 191
Sayag (10.1016/j.jcp.2013.12.014_br0280) 2011; 116
Thompson (10.1016/j.jcp.2013.12.014_br0160) 1992; 68
References_xml – volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: br0010
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 46
  ident: br0290
  article-title: Potential theory, path integrals and the Laplacian of the indicator
  publication-title: J. High Energy Phys.
– volume: 165
  start-page: 219
  year: 2010
  end-page: 226
  ident: br0090
  article-title: Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 180
  start-page: 1811
  year: 2009
  end-page: 1820
  ident: br0120
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Commun.
– volume: 191
  start-page: 448
  year: 2003
  end-page: 475
  ident: br0050
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 94
  start-page: 056102
  year: 2005
  ident: br0150
  article-title: Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts
  publication-title: Phys. Rev. Lett.
– volume: 120–121
  start-page: 56
  year: 2011
  end-page: 78
  ident: br0210
  article-title: Pore-scale modeling of competitive adsorption in porous media
  publication-title: J. Contam. Hydrol.
– volume: 148
  start-page: 227
  year: 1999
  end-page: 264
  ident: br0310
  article-title: Conduction modelling using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 685
  year: 2007
  end-page: 693
  ident: br0170
  article-title: Flow boundary conditions from nano-to micro-scales
  publication-title: Soft Matter
– volume: 229
  start-page: 5011
  year: 2010
  end-page: 5021
  ident: br0240
  article-title: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 1
  year: 2002
  end-page: 39
  ident: br0270
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– volume: 100
  start-page: 335
  year: 1992
  end-page: 354
  ident: br0220
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: br0110
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 58
  start-page: 216
  year: 2012
  end-page: 222
  ident: br0020
  article-title: Smoothed particle hydrodynamics model for ice sheet and ice shelf dynamics
  publication-title: J. Glaciol.
– volume: 33
  start-page: 333
  year: 2000
  end-page: 353
  ident: br0230
  article-title: Simulating surface tension with smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Fluids
– volume: 44
  start-page: 323
  year: 2012
  end-page: 346
  ident: br0100
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu. Rev. Fluid Mech.
– volume: 4
  start-page: 848
  year: 2005
  end-page: 855
  ident: br0130
  article-title: Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics
  publication-title: Vadose Zone J.
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: br0260
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 6
  start-page: 389
  year: 1823
  end-page: 440
  ident: br0140
  article-title: Mémoire sur les lois du mouvement des fluides
  publication-title: Mém. Acad. R. Sci.
– volume: 196
  start-page: 287
  year: 2011
  end-page: 300
  ident: br0200
  article-title: Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell
  publication-title: J. Power Sources
– volume: 48
  start-page: 189
  year: 2013
  end-page: 204
  ident: br0040
  article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy
  publication-title: Int. J. Plast.
– volume: 222
  start-page: 654
  year: 2007
  end-page: 672
  ident: br0060
  article-title: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 848
  year: 2005
  end-page: 855
  ident: br0070
  article-title: Simulation of free-surface flow and injection of fluids into fracture apertures using smoothed particle hydrodynamics
  publication-title: Vadose Zone J.
– volume: 68
  start-page: 3448
  year: 1992
  end-page: 3451
  ident: br0160
  article-title: Phase transitions and universal dynamics in confined films
  publication-title: Phys. Rev. Lett.
– year: 2009
  ident: br0250
  article-title: Comparison and evaluation of multi-phase and surface tension models
  publication-title: 4th SPHERIC Workshop
– volume: 180
  start-page: 1874
  year: 2009
  end-page: 1881
  ident: br0080
  article-title: Multi-scale Lagrangian particle model for multiphase flows
  publication-title: Comput. Phys. Commun.
– volume: 181
  start-page: 2008
  year: 2010
  end-page: 2023
  ident: br0190
  article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: br0300
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– volume: 242
  start-page: 828
  year: 2013
  end-page: 842
  ident: br0030
  article-title: Smoothed particle hydrodynamics non-Newtonian model for ice sheet and ice shelf dynamics
  publication-title: J. Comput. Phys.
– volume: 116
  start-page: F01009
  year: 2011
  ident: br0280
  article-title: Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 95
  year: 2008
  end-page: 108
  ident: br0180
  article-title: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM)
  publication-title: The Cryosphere
– volume: 120–121
  start-page: 56
  issue: 0
  year: 2011
  ident: 10.1016/j.jcp.2013.12.014_br0210
  article-title: Pore-scale modeling of competitive adsorption in porous media
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2010.06.008
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.jcp.2013.12.014_br0110
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 11
  start-page: 1
  year: 2002
  ident: 10.1016/j.jcp.2013.12.014_br0270
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 222
  start-page: 654
  year: 2007
  ident: 10.1016/j.jcp.2013.12.014_br0060
  article-title: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.08.013
– volume: 6
  start-page: 389
  year: 1823
  ident: 10.1016/j.jcp.2013.12.014_br0140
  article-title: Mémoire sur les lois du mouvement des fluides
  publication-title: Mém. Acad. R. Sci.
– volume: 165
  start-page: 219
  year: 2010
  ident: 10.1016/j.jcp.2013.12.014_br0090
  article-title: Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2009.12.004
– volume: 94
  start-page: 056102
  issue: 5
  year: 2005
  ident: 10.1016/j.jcp.2013.12.014_br0150
  article-title: Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.056102
– volume: 68
  start-page: 1703
  year: 2005
  ident: 10.1016/j.jcp.2013.12.014_br0010
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– year: 2009
  ident: 10.1016/j.jcp.2013.12.014_br0250
  article-title: Comparison and evaluation of multi-phase and surface tension models
– volume: 48
  start-page: 189
  year: 2013
  ident: 10.1016/j.jcp.2013.12.014_br0040
  article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.02.013
– volume: 180
  start-page: 1811
  issue: 10
  year: 2009
  ident: 10.1016/j.jcp.2013.12.014_br0120
  article-title: SPH particle boundary forces for arbitrary boundaries
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.05.008
– volume: 44
  start-page: 323
  year: 2012
  ident: 10.1016/j.jcp.2013.12.014_br0100
  article-title: Smoothed particle hydrodynamics and its diverse applications
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101220
– volume: 100
  start-page: 335
  year: 1992
  ident: 10.1016/j.jcp.2013.12.014_br0220
  article-title: A continuum method for modeling surface tension
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90240-Y
– volume: 58
  start-page: 216
  year: 2012
  ident: 10.1016/j.jcp.2013.12.014_br0020
  article-title: Smoothed particle hydrodynamics model for ice sheet and ice shelf dynamics
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J084
– volume: 229
  start-page: 5011
  year: 2010
  ident: 10.1016/j.jcp.2013.12.014_br0240
  article-title: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.03.022
– volume: 148
  start-page: 227
  year: 1999
  ident: 10.1016/j.jcp.2013.12.014_br0310
  article-title: Conduction modelling using smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.6118
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.jcp.2013.12.014_br0260
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175743
– volume: 191
  start-page: 448
  year: 2003
  ident: 10.1016/j.jcp.2013.12.014_br0050
  article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00324-3
– volume: 33
  start-page: 333
  year: 2000
  ident: 10.1016/j.jcp.2013.12.014_br0230
  article-title: Simulating surface tension with smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
– volume: 180
  start-page: 1874
  year: 2009
  ident: 10.1016/j.jcp.2013.12.014_br0080
  article-title: Multi-scale Lagrangian particle model for multiphase flows
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.06.002
– volume: 181
  start-page: 2008
  year: 2010
  ident: 10.1016/j.jcp.2013.12.014_br0190
  article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.08.022
– volume: 116
  start-page: F01009
  year: 2011
  ident: 10.1016/j.jcp.2013.12.014_br0280
  article-title: Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JF001839
– volume: 110
  start-page: 399
  issue: 2
  year: 1994
  ident: 10.1016/j.jcp.2013.12.014_br0300
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– volume: 3
  start-page: 685
  issue: 6
  year: 2007
  ident: 10.1016/j.jcp.2013.12.014_br0170
  article-title: Flow boundary conditions from nano-to micro-scales
  publication-title: Soft Matter
  doi: 10.1039/b616490k
– volume: 2012
  start-page: 1
  issue: 11
  year: 2012
  ident: 10.1016/j.jcp.2013.12.014_br0290
  article-title: Potential theory, path integrals and the Laplacian of the indicator
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2012)032
– volume: 68
  start-page: 3448
  year: 1992
  ident: 10.1016/j.jcp.2013.12.014_br0160
  article-title: Phase transitions and universal dynamics in confined films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.3448
– volume: 196
  start-page: 287
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2013.12.014_br0200
  article-title: Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.030
– volume: 4
  start-page: 848
  year: 2005
  ident: 10.1016/j.jcp.2013.12.014_br0070
  article-title: Simulation of free-surface flow and injection of fluids into fracture apertures using smoothed particle hydrodynamics
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.0178
– volume: 2
  start-page: 95
  year: 2008
  ident: 10.1016/j.jcp.2013.12.014_br0180
  article-title: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM)
  publication-title: The Cryosphere
  doi: 10.5194/tc-2-95-2008
– volume: 4
  start-page: 848
  issue: 3
  year: 2005
  ident: 10.1016/j.jcp.2013.12.014_br0130
  article-title: Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.0178
– volume: 242
  start-page: 828
  year: 2013
  ident: 10.1016/j.jcp.2013.12.014_br0030
  article-title: Smoothed particle hydrodynamics non-Newtonian model for ice sheet and ice shelf dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.10.027
SSID ssj0008548
Score 2.234234
Snippet A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force...
A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Boundaries
Boundary conditions
Computational fluid dynamics
Fluid flow
Mathematical analysis
Mathematical models
Navier-Stokes equations
No-slip boundary condition
Robin boundary condition
Slip
Slip boundary condition
Smoothed particle hydrodynamics
Title Smoothed particle hydrodynamics continuous boundary force method for Navier–Stokes equations subject to a Robin boundary condition
URI https://dx.doi.org/10.1016/j.jcp.2013.12.014
https://www.proquest.com/docview/1531036805
https://www.proquest.com/docview/1816011455
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQXLi0pbQCWpArcUJKib127BwRAm1B7AWQuFnxT8RCyS4ke-CCOPQNeEOehJnEAbUSe-jRke0kHnvms_3NDCHbzOq8tI4l-cDLRJQDlVgBylCmZa4B8ztZ4NHAySgbnoujC3mxQPZ7XxikVUbd3-n0VlvHJ7txNHen4zH6-HL0oWd4IaMByKAHu1A4y38-vNE8tBSdNkYqAtTubzZbjteVw5CVbNCeCDLxnm36R0u3pufwE_kQMSPd6z5rhSyE6jP5GPEjjauzXiV_Tm8m6FDl6TT-Ar2896Ahu6zzNUVe-riawWaf2jad0t09BdDqAu0SSWOBjgr8nOfHp9Nmch1qGm67aOA1rWcWT21oM6EFbR3H3rqBrn3L_vpCzg8PzvaHScyykDgAT03iMxcA5Unu85S7zGrlEFQ4q1IPFRQreYAiBiqTQZVcKR0ARJU5Rq7L02LwlSxWkyqsEWpVoWwGGyjBg9Deay95AICWe868ytg6SfvxNS6GIMdMGL9NzzW7MiASgyIxjBsQyTrZeW0y7eJvzKsseqGZvyaRAfswr9mPXsAGFhfemBRVAFkYMAcMTLxO5Zw6mmW4q5Ry4_9e_40sQ0kgFZzJ72SxuZuFTUA6jd1qp_IWWdr7dTwcvQC6Jf9G
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOcCFf0ShgJHgghQae-3YOfSAgGpL2720lXoz8U_ULZAsTVZoLxUH3qCPwhvxJMwkDhVI7AGpxySOY804M5_tb2YIec6szkvrWJKPvExEOVKJFWAMZVrmGjC_kwVuDexNsvGheH8kj1bIjyEWBmmV0fb3Nr2z1vHORpTmxmw6xRhfjjH0DA9kNACZyKzcCYuvsG5rNrffgpJfcL717uDNOImlBRIHiKFNfOYCQBvJfZ5yl1mtHHpSZ1XqoYFiJQ9widm5ZFAlV0oHQA5ljuna8rQYQb9XyFUB5gLLJrw6u-CVaCl684_cBxjecJTakcpOHObIZKNuC5KJfznDv9xC5-u2bpEbEaTS170cbpOVUN0hNyNgpdEcNHfJ9_3PNUZweTqLMqPHCw8muS9z31Akwk-reT1vqO3qN50uKKBkF2hfuRov6KTA4fz8dr7f1h9DQ8OXPv14Q5u5xW0i2ta0oF2k2kU30LXv6Gb3yOGlyP4-Wa3qKjwg1KpC2QxWbIIHob3XXvIAiDD3nHmVsTWSDvI1LuY8x9Ibn8xAbjsxoBKDKjGMG1DJGnn5-5VZn_BjWWMxKM38MWsNOKRlrz0bFGzgb8YjmqIKoAsD_ocBptCpXNJGswyXsVI-_L_PPyXXxgd7u2Z3e7LziFyHJwJ56Eyuk9X2dB4eA8xq7ZNuWlPy4bL_o190KjjP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothed+particle+hydrodynamics+continuous+boundary+force+method+for+Navier-Stokes+equations+subject+to+a+Robin+boundary+condition&rft.jtitle=Journal+of+computational+physics&rft.au=Pan%2C+Wenxiao&rft.au=Bao%2C+Jie&rft.au=Tartakovsky%2C+Alexandre&rft.date=2014-02-15&rft.issn=0021-9991&rft.volume=259&rft.spage=242&rft.epage=259&rft_id=info:doi/10.1016%2Fj.jcp.2013.12.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon