Smoothed particle hydrodynamics continuous boundary force method for Navier–Stokes equations subject to a Robin boundary condition
A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier–Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary...
Saved in:
Published in | Journal of computational physics Vol. 259; pp. 242 - 259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier–Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation.
Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier–Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH–CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH–CBF method accurately describes both the no-slip and slip conditions. |
---|---|
AbstractList | A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier-Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH-CBF method accurately describes both the no-slip and slip conditions. A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force (CBF) method is proposed for solving the Navier–Stokes equations subject to the Robin boundary condition. In the CBF method, the Robin boundary condition is replaced by the homogeneous Neumann boundary condition and a volumetric force term added to the momentum conservation equation. Smoothed particle hydrodynamics (SPH) method is used to solve the resulting Navier–Stokes equations. We present solutions for two- and three-dimensional flows subject to various forms of the Robin boundary condition in domains bounded by flat and curved boundaries. The numerical accuracy and convergence are examined through comparison of the SPH–CBF results with the solutions of finite difference or finite-element method. Considering the no-slip boundary condition as a special case of the slip boundary condition, we demonstrate that the SPH–CBF method accurately describes both the no-slip and slip conditions. |
Author | Tartakovsky, Alexandre M. Bao, Jie Pan, Wenxiao |
Author_xml | – sequence: 1 givenname: Wenxiao surname: Pan fullname: Pan, Wenxiao email: wenxiao.pan@pnnl.gov organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 2 givenname: Jie surname: Bao fullname: Bao, Jie organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 3 givenname: Alexandre M. surname: Tartakovsky fullname: Tartakovsky, Alexandre M. organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA |
BookMark | eNqFkU-L1TAUxYOM4JvRD-AuSzetuemftLiSQR1hUJjRdUiTW15qm7xJUuHtXMw38Bv6SUx9guBiZnU5cH4H7jnn5Mx5h4S8BFYCg_b1VE76UHIGVQm8ZFA_ITtgPSu4gPaM7BjjUPR9D8_IeYwTY6xr6m5H7m8X79MeDT2okKyeke6PJnhzdGqxOlLtXbJu9Wukg1-dUeFIRx800gXT3ptN0E_qu8Xw68fP2-S_YaR4t6pkvYs0rsOEOtHkqaI3frDuX0yONnazPSdPRzVHfPH3XpCv7999ubwqrj9_-Hj59rrQddOmwrQae1413PSM63bohK4rEHoQzGSDgJFjlk3bQYNi5EJ02Nb12De9ED1T1QV5dco9BH-3YkxysVHjPCuH-UEJHbQMoG6ax61NBaxqO7ZZ4WTVwccYcJSHYJf8oAQmt3HkJPM4chtHApd5nMyI_xht05_KUlB2fpB8cyIxF7W1LqO26DQaG3LR0nj7AP0baOGudA |
CitedBy_id | crossref_primary_10_3390_sym13101774 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_054 crossref_primary_10_1017_S1446181123000160 crossref_primary_10_1080_17499518_2023_2283851 crossref_primary_10_1016_j_advwatres_2015_03_007 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119919 crossref_primary_10_1029_2020WR028775 crossref_primary_10_1016_j_cma_2014_12_019 crossref_primary_10_1016_j_conbuildmat_2023_133472 crossref_primary_10_1016_j_cpc_2015_10_025 crossref_primary_10_1016_j_jcp_2016_12_042 crossref_primary_10_1016_j_jcp_2023_112509 crossref_primary_10_1016_j_amc_2015_08_083 crossref_primary_10_1016_j_cma_2019_06_009 crossref_primary_10_1186_s13628_015_0021_y crossref_primary_10_1007_s00366_023_01896_7 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_004 crossref_primary_10_1007_s10596_015_9468_9 crossref_primary_10_1016_j_jcp_2023_112322 crossref_primary_10_1063_5_0161344 crossref_primary_10_1016_j_net_2024_11_003 |
Cites_doi | 10.1016/j.jconhyd.2010.06.008 10.1006/jcph.1997.5776 10.1017/S0962492902000077 10.1016/j.jcp.2006.08.013 10.1016/j.jnnfm.2009.12.004 10.1103/PhysRevLett.94.056102 10.1088/0034-4885/68/8/R01 10.1016/j.ijplas.2013.02.013 10.1016/j.cpc.2009.05.008 10.1146/annurev-fluid-120710-101220 10.1016/0021-9991(92)90240-Y 10.3189/2012JoG11J084 10.1016/j.jcp.2010.03.022 10.1006/jcph.1998.6118 10.1146/annurev.fluid.37.061903.175743 10.1016/S0021-9991(03)00324-3 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7 10.1016/j.cpc.2009.06.002 10.1016/j.cpc.2010.08.022 10.1029/2010JF001839 10.1006/jcph.1994.1034 10.1039/b616490k 10.1007/JHEP11(2012)032 10.1103/PhysRevLett.68.3448 10.1016/j.jpowsour.2010.06.030 10.2136/vzj2004.0178 10.5194/tc-2-95-2008 10.1016/j.jcp.2012.10.027 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. |
DBID | AAYXX CITATION 7SC 7SP 7TB 7U5 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1016/j.jcp.2013.12.014 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
EndPage | 259 |
ExternalDocumentID | 10_1016_j_jcp_2013_12_014 S0021999113008139 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG SSH T9H UQL WUQ ZY4 7SC 7SP 7TB 7U5 8FD EFKBS FR3 H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c456t-d6ce92352d902c6b87c4317cb70d45671f2e17c56815e7f2778e644f9597790a3 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Fri Jul 11 15:17:03 EDT 2025 Mon Jul 21 11:18:34 EDT 2025 Tue Jul 01 04:33:35 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 23 02:18:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Robin boundary condition Smoothed particle hydrodynamics Navier–Stokes equations No-slip boundary condition Slip boundary condition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-d6ce92352d902c6b87c4317cb70d45671f2e17c56815e7f2778e644f9597790a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1531036805 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1816011455 proquest_miscellaneous_1531036805 crossref_primary_10_1016_j_jcp_2013_12_014 crossref_citationtrail_10_1016_j_jcp_2013_12_014 elsevier_sciencedirect_doi_10_1016_j_jcp_2013_12_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-15 |
PublicationDateYYYYMMDD | 2014-02-15 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational physics |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bocquet, Barrat (br0170) 2007; 3 Rogers, Leduc, Marongi, Leboeuf (br0250) 2009 Tartakovsky, Meakin, Scheibe, Eichler West, Wood (br0060) 2007; 222 Cleary, Monaghan (br0310) 1999; 148 Tartakovsky, Meakin (br0070) 2005; 4 Monaghan (br0100) 2012; 44 Cottin-Bizonne, Cross, Steinberger, Charlaix (br0150) 2005; 94 Pan, Tartakovsky, Monaghan (br0030) 2013; 242 Monaghan, Kajtar (br0120) 2009; 180 Tartakovsky, Meakin (br0130) 2005; 4 Lange (br0290) 2012; 2012 Adami, Hu, Adams (br0240) 2010; 229 Monaghan (br0010) 2005; 68 Colagrossi, Landrini (br0050) 2003; 191 Ryan, Tartakovsky, Amon (br0190) 2010; 181 Fan, Tanner, Zheng (br0090) 2010; 165 Mittal, Iaccarino (br0260) 2005; 37 Morris, Fox, Zhu (br0110) 1997; 136 Navier (br0140) 1823; 6 Ryan, Tartakovsky, Recknagle, Khaleel, Amon (br0200) 2011; 196 Sayag, Tziperman (br0280) 2011; 116 Thompson, Grest, Robbins (br0160) 1992; 68 Morris (br0230) 2000; 33 Peskin (br0270) 2002; 11 Monaghan (br0300) 1994; 110 Pan, Li, Tartakovsky, Ahzi, Khraisheh, Khaleel (br0040) 2013; 48 Pan, Tartakovsky, Monaghan (br0020) 2012; 58 Brackbill, Kothe, Zemach (br0220) 1992; 100 Pattyn, Perichon, Aschwanden, Breuer, de Smedt, Gagliardini, Gudmundsson, Hindmarsh, Hubbard, Johnson, Kleiner, Konovalov, Martin, Payne, Pollard, Price, Ruckamp, Saito, Soucek, Sugiyama, Zwinger (br0180) 2008; 2 Ryan, Tartakovsky, Amon (br0210) 2011; 120–121 Tartakovsky, Ferris, Meakin (br0080) 2009; 180 Ryan (10.1016/j.jcp.2013.12.014_br0200) 2011; 196 Brackbill (10.1016/j.jcp.2013.12.014_br0220) 1992; 100 Morris (10.1016/j.jcp.2013.12.014_br0230) 2000; 33 Pan (10.1016/j.jcp.2013.12.014_br0020) 2012; 58 Tartakovsky (10.1016/j.jcp.2013.12.014_br0060) 2007; 222 Monaghan (10.1016/j.jcp.2013.12.014_br0120) 2009; 180 Pattyn (10.1016/j.jcp.2013.12.014_br0180) 2008; 2 Navier (10.1016/j.jcp.2013.12.014_br0140) 1823; 6 Adami (10.1016/j.jcp.2013.12.014_br0240) 2010; 229 Monaghan (10.1016/j.jcp.2013.12.014_br0100) 2012; 44 Rogers (10.1016/j.jcp.2013.12.014_br0250) 2009 Pan (10.1016/j.jcp.2013.12.014_br0030) 2013; 242 Lange (10.1016/j.jcp.2013.12.014_br0290) 2012; 2012 Morris (10.1016/j.jcp.2013.12.014_br0110) 1997; 136 Tartakovsky (10.1016/j.jcp.2013.12.014_br0080) 2009; 180 Ryan (10.1016/j.jcp.2013.12.014_br0210) 2011; 120–121 Tartakovsky (10.1016/j.jcp.2013.12.014_br0130) 2005; 4 Monaghan (10.1016/j.jcp.2013.12.014_br0300) 1994; 110 Cleary (10.1016/j.jcp.2013.12.014_br0310) 1999; 148 Cottin-Bizonne (10.1016/j.jcp.2013.12.014_br0150) 2005; 94 Tartakovsky (10.1016/j.jcp.2013.12.014_br0070) 2005; 4 Ryan (10.1016/j.jcp.2013.12.014_br0190) 2010; 181 Mittal (10.1016/j.jcp.2013.12.014_br0260) 2005; 37 Bocquet (10.1016/j.jcp.2013.12.014_br0170) 2007; 3 Fan (10.1016/j.jcp.2013.12.014_br0090) 2010; 165 Peskin (10.1016/j.jcp.2013.12.014_br0270) 2002; 11 Monaghan (10.1016/j.jcp.2013.12.014_br0010) 2005; 68 Pan (10.1016/j.jcp.2013.12.014_br0040) 2013; 48 Colagrossi (10.1016/j.jcp.2013.12.014_br0050) 2003; 191 Sayag (10.1016/j.jcp.2013.12.014_br0280) 2011; 116 Thompson (10.1016/j.jcp.2013.12.014_br0160) 1992; 68 |
References_xml | – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: br0010 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – volume: 2012 start-page: 1 year: 2012 end-page: 46 ident: br0290 article-title: Potential theory, path integrals and the Laplacian of the indicator publication-title: J. High Energy Phys. – volume: 165 start-page: 219 year: 2010 end-page: 226 ident: br0090 article-title: Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow publication-title: J. Non-Newton. Fluid Mech. – volume: 180 start-page: 1811 year: 2009 end-page: 1820 ident: br0120 article-title: SPH particle boundary forces for arbitrary boundaries publication-title: Comput. Phys. Commun. – volume: 191 start-page: 448 year: 2003 end-page: 475 ident: br0050 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 94 start-page: 056102 year: 2005 ident: br0150 article-title: Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts publication-title: Phys. Rev. Lett. – volume: 120–121 start-page: 56 year: 2011 end-page: 78 ident: br0210 article-title: Pore-scale modeling of competitive adsorption in porous media publication-title: J. Contam. Hydrol. – volume: 148 start-page: 227 year: 1999 end-page: 264 ident: br0310 article-title: Conduction modelling using smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 3 start-page: 685 year: 2007 end-page: 693 ident: br0170 article-title: Flow boundary conditions from nano-to micro-scales publication-title: Soft Matter – volume: 229 start-page: 5011 year: 2010 end-page: 5021 ident: br0240 article-title: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation publication-title: J. Comput. Phys. – volume: 11 start-page: 1 year: 2002 end-page: 39 ident: br0270 article-title: The immersed boundary method publication-title: Acta Numer. – volume: 100 start-page: 335 year: 1992 end-page: 354 ident: br0220 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: br0110 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. – volume: 58 start-page: 216 year: 2012 end-page: 222 ident: br0020 article-title: Smoothed particle hydrodynamics model for ice sheet and ice shelf dynamics publication-title: J. Glaciol. – volume: 33 start-page: 333 year: 2000 end-page: 353 ident: br0230 article-title: Simulating surface tension with smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Fluids – volume: 44 start-page: 323 year: 2012 end-page: 346 ident: br0100 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu. Rev. Fluid Mech. – volume: 4 start-page: 848 year: 2005 end-page: 855 ident: br0130 article-title: Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics publication-title: Vadose Zone J. – volume: 37 start-page: 239 year: 2005 end-page: 261 ident: br0260 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. – volume: 6 start-page: 389 year: 1823 end-page: 440 ident: br0140 article-title: Mémoire sur les lois du mouvement des fluides publication-title: Mém. Acad. R. Sci. – volume: 196 start-page: 287 year: 2011 end-page: 300 ident: br0200 article-title: Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell publication-title: J. Power Sources – volume: 48 start-page: 189 year: 2013 end-page: 204 ident: br0040 article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy publication-title: Int. J. Plast. – volume: 222 start-page: 654 year: 2007 end-page: 672 ident: br0060 article-title: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 4 start-page: 848 year: 2005 end-page: 855 ident: br0070 article-title: Simulation of free-surface flow and injection of fluids into fracture apertures using smoothed particle hydrodynamics publication-title: Vadose Zone J. – volume: 68 start-page: 3448 year: 1992 end-page: 3451 ident: br0160 article-title: Phase transitions and universal dynamics in confined films publication-title: Phys. Rev. Lett. – year: 2009 ident: br0250 article-title: Comparison and evaluation of multi-phase and surface tension models publication-title: 4th SPHERIC Workshop – volume: 180 start-page: 1874 year: 2009 end-page: 1881 ident: br0080 article-title: Multi-scale Lagrangian particle model for multiphase flows publication-title: Comput. Phys. Commun. – volume: 181 start-page: 2008 year: 2010 end-page: 2023 ident: br0190 article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: br0300 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – volume: 242 start-page: 828 year: 2013 end-page: 842 ident: br0030 article-title: Smoothed particle hydrodynamics non-Newtonian model for ice sheet and ice shelf dynamics publication-title: J. Comput. Phys. – volume: 116 start-page: F01009 year: 2011 ident: br0280 article-title: Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology publication-title: J. Geophys. Res. – volume: 2 start-page: 95 year: 2008 end-page: 108 ident: br0180 article-title: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM) publication-title: The Cryosphere – volume: 120–121 start-page: 56 issue: 0 year: 2011 ident: 10.1016/j.jcp.2013.12.014_br0210 article-title: Pore-scale modeling of competitive adsorption in porous media publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2010.06.008 – volume: 136 start-page: 214 issue: 1 year: 1997 ident: 10.1016/j.jcp.2013.12.014_br0110 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 11 start-page: 1 year: 2002 ident: 10.1016/j.jcp.2013.12.014_br0270 article-title: The immersed boundary method publication-title: Acta Numer. doi: 10.1017/S0962492902000077 – volume: 222 start-page: 654 year: 2007 ident: 10.1016/j.jcp.2013.12.014_br0060 article-title: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.08.013 – volume: 6 start-page: 389 year: 1823 ident: 10.1016/j.jcp.2013.12.014_br0140 article-title: Mémoire sur les lois du mouvement des fluides publication-title: Mém. Acad. R. Sci. – volume: 165 start-page: 219 year: 2010 ident: 10.1016/j.jcp.2013.12.014_br0090 article-title: Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/j.jnnfm.2009.12.004 – volume: 94 start-page: 056102 issue: 5 year: 2005 ident: 10.1016/j.jcp.2013.12.014_br0150 article-title: Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artifacts publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.056102 – volume: 68 start-page: 1703 year: 2005 ident: 10.1016/j.jcp.2013.12.014_br0010 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – year: 2009 ident: 10.1016/j.jcp.2013.12.014_br0250 article-title: Comparison and evaluation of multi-phase and surface tension models – volume: 48 start-page: 189 year: 2013 ident: 10.1016/j.jcp.2013.12.014_br0040 article-title: A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.02.013 – volume: 180 start-page: 1811 issue: 10 year: 2009 ident: 10.1016/j.jcp.2013.12.014_br0120 article-title: SPH particle boundary forces for arbitrary boundaries publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.05.008 – volume: 44 start-page: 323 year: 2012 ident: 10.1016/j.jcp.2013.12.014_br0100 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101220 – volume: 100 start-page: 335 year: 1992 ident: 10.1016/j.jcp.2013.12.014_br0220 article-title: A continuum method for modeling surface tension publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90240-Y – volume: 58 start-page: 216 year: 2012 ident: 10.1016/j.jcp.2013.12.014_br0020 article-title: Smoothed particle hydrodynamics model for ice sheet and ice shelf dynamics publication-title: J. Glaciol. doi: 10.3189/2012JoG11J084 – volume: 229 start-page: 5011 year: 2010 ident: 10.1016/j.jcp.2013.12.014_br0240 article-title: A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.03.022 – volume: 148 start-page: 227 year: 1999 ident: 10.1016/j.jcp.2013.12.014_br0310 article-title: Conduction modelling using smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6118 – volume: 37 start-page: 239 year: 2005 ident: 10.1016/j.jcp.2013.12.014_br0260 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175743 – volume: 191 start-page: 448 year: 2003 ident: 10.1016/j.jcp.2013.12.014_br0050 article-title: Numerical simulation of interfacial flows by smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00324-3 – volume: 33 start-page: 333 year: 2000 ident: 10.1016/j.jcp.2013.12.014_br0230 article-title: Simulating surface tension with smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7 – volume: 180 start-page: 1874 year: 2009 ident: 10.1016/j.jcp.2013.12.014_br0080 article-title: Multi-scale Lagrangian particle model for multiphase flows publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.06.002 – volume: 181 start-page: 2008 year: 2010 ident: 10.1016/j.jcp.2013.12.014_br0190 article-title: A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.08.022 – volume: 116 start-page: F01009 year: 2011 ident: 10.1016/j.jcp.2013.12.014_br0280 article-title: Interaction and variability of ice streams under a triple-valued sliding law and non-Newtonian rheology publication-title: J. Geophys. Res. doi: 10.1029/2010JF001839 – volume: 110 start-page: 399 issue: 2 year: 1994 ident: 10.1016/j.jcp.2013.12.014_br0300 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – volume: 3 start-page: 685 issue: 6 year: 2007 ident: 10.1016/j.jcp.2013.12.014_br0170 article-title: Flow boundary conditions from nano-to micro-scales publication-title: Soft Matter doi: 10.1039/b616490k – volume: 2012 start-page: 1 issue: 11 year: 2012 ident: 10.1016/j.jcp.2013.12.014_br0290 article-title: Potential theory, path integrals and the Laplacian of the indicator publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2012)032 – volume: 68 start-page: 3448 year: 1992 ident: 10.1016/j.jcp.2013.12.014_br0160 article-title: Phase transitions and universal dynamics in confined films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.3448 – volume: 196 start-page: 287 issue: 1 year: 2011 ident: 10.1016/j.jcp.2013.12.014_br0200 article-title: Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.030 – volume: 4 start-page: 848 year: 2005 ident: 10.1016/j.jcp.2013.12.014_br0070 article-title: Simulation of free-surface flow and injection of fluids into fracture apertures using smoothed particle hydrodynamics publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0178 – volume: 2 start-page: 95 year: 2008 ident: 10.1016/j.jcp.2013.12.014_br0180 article-title: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM) publication-title: The Cryosphere doi: 10.5194/tc-2-95-2008 – volume: 4 start-page: 848 issue: 3 year: 2005 ident: 10.1016/j.jcp.2013.12.014_br0130 article-title: Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0178 – volume: 242 start-page: 828 year: 2013 ident: 10.1016/j.jcp.2013.12.014_br0030 article-title: Smoothed particle hydrodynamics non-Newtonian model for ice sheet and ice shelf dynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.10.027 |
SSID | ssj0008548 |
Score | 2.234234 |
Snippet | A Robin boundary condition for the Navier–Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force... A Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel continuous boundary force... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 242 |
SubjectTerms | Boundaries Boundary conditions Computational fluid dynamics Fluid flow Mathematical analysis Mathematical models Navier-Stokes equations No-slip boundary condition Robin boundary condition Slip Slip boundary condition Smoothed particle hydrodynamics |
Title | Smoothed particle hydrodynamics continuous boundary force method for Navier–Stokes equations subject to a Robin boundary condition |
URI | https://dx.doi.org/10.1016/j.jcp.2013.12.014 https://www.proquest.com/docview/1531036805 https://www.proquest.com/docview/1816011455 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQXLi0pbQCWpArcUJKib127BwRAm1B7AWQuFnxT8RCyS4ke-CCOPQNeEOehJnEAbUSe-jRke0kHnvms_3NDCHbzOq8tI4l-cDLRJQDlVgBylCmZa4B8ztZ4NHAySgbnoujC3mxQPZ7XxikVUbd3-n0VlvHJ7txNHen4zH6-HL0oWd4IaMByKAHu1A4y38-vNE8tBSdNkYqAtTubzZbjteVw5CVbNCeCDLxnm36R0u3pufwE_kQMSPd6z5rhSyE6jP5GPEjjauzXiV_Tm8m6FDl6TT-Ar2896Ahu6zzNUVe-riawWaf2jad0t09BdDqAu0SSWOBjgr8nOfHp9Nmch1qGm67aOA1rWcWT21oM6EFbR3H3rqBrn3L_vpCzg8PzvaHScyykDgAT03iMxcA5Unu85S7zGrlEFQ4q1IPFRQreYAiBiqTQZVcKR0ARJU5Rq7L02LwlSxWkyqsEWpVoWwGGyjBg9Deay95AICWe868ytg6SfvxNS6GIMdMGL9NzzW7MiASgyIxjBsQyTrZeW0y7eJvzKsseqGZvyaRAfswr9mPXsAGFhfemBRVAFkYMAcMTLxO5Zw6mmW4q5Ry4_9e_40sQ0kgFZzJ72SxuZuFTUA6jd1qp_IWWdr7dTwcvQC6Jf9G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOcCFf0ShgJHgghQae-3YOfSAgGpL2720lXoz8U_ULZAsTVZoLxUH3qCPwhvxJMwkDhVI7AGpxySOY804M5_tb2YIec6szkvrWJKPvExEOVKJFWAMZVrmGjC_kwVuDexNsvGheH8kj1bIjyEWBmmV0fb3Nr2z1vHORpTmxmw6xRhfjjH0DA9kNACZyKzcCYuvsG5rNrffgpJfcL717uDNOImlBRIHiKFNfOYCQBvJfZ5yl1mtHHpSZ1XqoYFiJQ9widm5ZFAlV0oHQA5ljuna8rQYQb9XyFUB5gLLJrw6u-CVaCl684_cBxjecJTakcpOHObIZKNuC5KJfznDv9xC5-u2bpEbEaTS170cbpOVUN0hNyNgpdEcNHfJ9_3PNUZweTqLMqPHCw8muS9z31Akwk-reT1vqO3qN50uKKBkF2hfuRov6KTA4fz8dr7f1h9DQ8OXPv14Q5u5xW0i2ta0oF2k2kU30LXv6Gb3yOGlyP4-Wa3qKjwg1KpC2QxWbIIHob3XXvIAiDD3nHmVsTWSDvI1LuY8x9Ibn8xAbjsxoBKDKjGMG1DJGnn5-5VZn_BjWWMxKM38MWsNOKRlrz0bFGzgb8YjmqIKoAsD_ocBptCpXNJGswyXsVI-_L_PPyXXxgd7u2Z3e7LziFyHJwJ56Eyuk9X2dB4eA8xq7ZNuWlPy4bL_o190KjjP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothed+particle+hydrodynamics+continuous+boundary+force+method+for+Navier-Stokes+equations+subject+to+a+Robin+boundary+condition&rft.jtitle=Journal+of+computational+physics&rft.au=Pan%2C+Wenxiao&rft.au=Bao%2C+Jie&rft.au=Tartakovsky%2C+Alexandre&rft.date=2014-02-15&rft.issn=0021-9991&rft.volume=259&rft.spage=242&rft.epage=259&rft_id=info:doi/10.1016%2Fj.jcp.2013.12.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |