Surface deformation extraction from small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) using coherence-optimized baseline combinations
Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR (SBAS-InSAR) boosts the data sampling rate and improves the accuracy of deformation extraction by restricting the temporal and spatial baseline...
Saved in:
Published in | GIScience and remote sensing Vol. 59; no. 1; pp. 295 - 309 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2022
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2022.2026639 |
Cover
Abstract | Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR (SBAS-InSAR) boosts the data sampling rate and improves the accuracy of deformation extraction by restricting the temporal and spatial baselines. However, various factors, such as the types of ground objects and seasons, affect the coherence between SAR images. Traditional SBAS-InSAR employs a fixed temporal baseline, which does not guarantee good coherence and might lead to decorrelation. In this paper, we propose that instead of using a fixed temporal baseline, we directly use the average coherence between SAR images as the baseline constraint index to perform an optimized selection of SBAS-InSAR interferometric pairs, ensuring good coherence of the interferometric pairs and improving the quality of the interferometric fringes. The proposed approach was used to extract surface deformation in two test experiment areas: Houston and Sydney. Compared with the conventional SBAS-InSAR and GPS data, the standard deviation of error of Houston and Sydney dropped from 0.813 to 0.589 and 0.291 to 0.246, respectively; the root mean square error (RMSE) decreased from 1.082 to 1.041 and 0.485 to 0.334, respectively, indicating that the proposed method has better surface deformation extraction accuracy. After demonstrating the accuracy of the proposed method, it was applied to Pingxiang area, a mining city in China, to effectively extract and analyze the surface deformation induced by mining activities, which proves the universality of this method in different scenarios. |
---|---|
AbstractList | Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR (SBAS-InSAR) boosts the data sampling rate and improves the accuracy of deformation extraction by restricting the temporal and spatial baselines. However, various factors, such as the types of ground objects and seasons, affect the coherence between SAR images. Traditional SBAS-InSAR employs a fixed temporal baseline, which does not guarantee good coherence and might lead to decorrelation. In this paper, we propose that instead of using a fixed temporal baseline, we directly use the average coherence between SAR images as the baseline constraint index to perform an optimized selection of SBAS-InSAR interferometric pairs, ensuring good coherence of the interferometric pairs and improving the quality of the interferometric fringes. The proposed approach was used to extract surface deformation in two test experiment areas: Houston and Sydney. Compared with the conventional SBAS-InSAR and GPS data, the standard deviation of error of Houston and Sydney dropped from 0.813 to 0.589 and 0.291 to 0.246, respectively; the root mean square error (RMSE) decreased from 1.082 to 1.041 and 0.485 to 0.334, respectively, indicating that the proposed method has better surface deformation extraction accuracy. After demonstrating the accuracy of the proposed method, it was applied to Pingxiang area, a mining city in China, to effectively extract and analyze the surface deformation induced by mining activities, which proves the universality of this method in different scenarios. |
Author | Wang, Shunyao Chen, Zhenwei Zheng, Yuzhi Cui, Hao Zhang, Guo Li, Qihan Xu, Zixing |
Author_xml | – sequence: 1 givenname: Shunyao surname: Wang fullname: Wang, Shunyao organization: Wuhan University – sequence: 2 givenname: Guo surname: Zhang fullname: Zhang, Guo organization: Wuhan University – sequence: 3 givenname: Zhenwei orcidid: 0000-0002-1865-602X surname: Chen fullname: Chen, Zhenwei email: guanyuechen@whu.edu.cn organization: Wuhan University – sequence: 4 givenname: Hao surname: Cui fullname: Cui, Hao organization: Wuhan University – sequence: 5 givenname: Yuzhi surname: Zheng fullname: Zheng, Yuzhi organization: Wuhan University – sequence: 6 givenname: Zixing surname: Xu fullname: Xu, Zixing organization: Wuhan University – sequence: 7 givenname: Qihan surname: Li fullname: Li, Qihan organization: Wuhan University |
BookMark | eNqFkc1u1DAUhSNUJNrCIyB5WRYp_omdRGwYKn5GqoTEwNpynOvWlWMP147K8DA8K5mZVkgsYGNfWeccn6vvrDqJKUJVvWT0ktGOvmay6Zii4pJTzveHUqJ_Up2yvhF1y7k6WeZFU-9Fz6qznO8oFZIxeVr92szojAUygks4meJTJPCjoLGH0WGaSJ5MCGQwGYKPQPI8ZCgk72K5heItMVvAMiMQNKNB4mMBdLA4oeCOXGzerTb1Om5WX16ROft4Q2y6BYRooU7b4if_E8Y_8TZNg4-HJvl59dSZkOHFw31effvw_uvVp_r688f11eq6to1UpR5Zz61TXcuoGgxtJeO8pU3XSykddW3LDeOdGJRSQFuqeuUsBd653lrTMy7Oq_Uxd0zmTm_RTwZ3OhmvDw8Jb7TBZdUAWjWdVcr20kraiLYfuuVr0wqhOkEH1y5ZF8esLabvM-SiJ58thGAipDnrpUjDuVCULdI3R6nFlDOC09aXw-YLAB80o3pPWD8S1nvC-oHw4pZ_uR-L_8_39ujz8cD8PmEYdTG7kNChidZnLf4d8RvtOcCu |
CitedBy_id | crossref_primary_10_3390_rs16091548 crossref_primary_10_3390_buildings14113582 crossref_primary_10_1016_j_ijdrr_2024_104317 crossref_primary_10_1080_15481603_2022_2143683 crossref_primary_10_1016_j_enggeo_2023_107089 crossref_primary_10_3390_s23249707 crossref_primary_10_3390_math10152664 crossref_primary_10_3390_s24154783 crossref_primary_10_1080_10095020_2024_2328100 crossref_primary_10_1080_15481603_2023_2176275 crossref_primary_10_1080_10106049_2022_2136258 crossref_primary_10_1016_j_catena_2023_107477 crossref_primary_10_1080_15481603_2022_2161200 crossref_primary_10_1016_j_ecolind_2023_111394 crossref_primary_10_1016_j_asr_2023_11_043 crossref_primary_10_1007_s11069_024_06663_5 crossref_primary_10_1080_15481603_2023_2218261 crossref_primary_10_1016_j_pce_2023_103486 crossref_primary_10_3390_s25010066 crossref_primary_10_3390_rs16183515 crossref_primary_10_1080_10106049_2022_2159071 crossref_primary_10_1007_s11356_023_29234_w crossref_primary_10_1016_j_asr_2024_06_037 crossref_primary_10_1016_j_rse_2024_114105 crossref_primary_10_1080_10095020_2022_2124129 crossref_primary_10_1007_s11069_023_06024_8 crossref_primary_10_3390_land12112077 |
Cites_doi | 10.1016/j.jag.2014.08.018 10.1007/s10040-011-0775-5 10.1007/s10346-017-0861-4 10.1016/j.rse.2012.10.015 10.1016/j.rse.2013.08.038 10.1029/97JB02382 10.1080/15481603.2018.1513444 10.3390/app10165514 10.1016/j.rse.2006.11.015 10.1029/96JB03804 10.3390/rs11020107 10.1146/annurev.earth.28.1.169 10.1109/36.175330 10.1016/j.rse.2012.05.025 10.1038/ngeo629 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2 10.3390/su10082698 10.1016/j.asr.2020.11.004 10.1109/36.298013 10.1109/TGRS.2002.803792 10.3390/rs11192246 10.3390/rs12030367 10.1016/j.jag.2018.08.009 10.3390/rs9100982 10.1108/17506141211213988 10.3390/rs8080652 10.1016/j.isprsjprs.2015.03.013 10.1029/2006JB004763 10.1016/j.scitotenv.2021.147415 10.1017/jog.2016.122 10.1016/j.rse.2020.112161 10.1029/97RG03139 10.1080/014311699212939 10.1016/j.rse.2020.111832 10.1007/s12665-013-2990-y 10.5721/EuJRS20144730 10.1109/36.739146 10.1029/2018EO104623 10.1016/j.cities.2016.07.009 10.1016/j.rse.2010.03.017 10.1016/j.rse.2016.07.019 10.3390/rs10121873 10.3390/s18092939 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2022.2026639 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
EndPage | 309 |
ExternalDocumentID | oai_doaj_org_article_648c66c95c504379b82cfa7336830bf7 10_1080_15481603_2022_2026639 2026639 |
Genre | Research Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-d192cf687106ba07512270489555f0f772a1283b666e070696fc0e28f9cca9123 |
IEDL.DBID | 0YH |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:26:06 EDT 2025 Mon May 05 20:42:41 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Thu Apr 24 22:57:08 EDT 2025 Wed Dec 25 09:04:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-d192cf687106ba07512270489555f0f772a1283b666e070696fc0e28f9cca9123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1865-602X |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2026639 |
PQID | 2834223601 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_648c66c95c504379b82cfa7336830bf7 proquest_miscellaneous_2834223601 informaworld_taylorfrancis_310_1080_15481603_2022_2026639 crossref_primary_10_1080_15481603_2022_2026639 crossref_citationtrail_10_1080_15481603_2022_2026639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 Liu C. Y. (cit0026) 2014; 34 Ferretti A. (cit0014) 1999; 3 cit0019 Hong S. (cit0021) 2012; 2012 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0036 cit0022 cit0044 cit0001 cit0023 cit0045 cit0020 cit0042 cit0043 cit0040 cit0041 Li D. (cit0025) 2000; 25 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0048 cit0005 cit0027 cit0002 cit0024 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0003 doi: 10.1016/j.jag.2014.08.018 – ident: cit0017 doi: 10.1007/s10040-011-0775-5 – ident: cit0034 doi: 10.1007/s10346-017-0861-4 – ident: cit0008 doi: 10.1016/j.rse.2012.10.015 – ident: cit0009 doi: 10.1016/j.rse.2013.08.038 – ident: cit0016 doi: 10.1029/97JB02382 – ident: cit0031 doi: 10.1080/15481603.2018.1513444 – ident: cit0024 doi: 10.3390/app10165514 – ident: cit0037 doi: 10.1016/j.rse.2006.11.015 – ident: cit0044 doi: 10.1029/96JB03804 – ident: cit0027 – ident: cit0010 doi: 10.3390/rs11020107 – ident: cit0006 doi: 10.1146/annurev.earth.28.1.169 – ident: cit0045 doi: 10.1109/36.175330 – ident: cit0046 doi: 10.1016/j.rse.2012.05.025 – ident: cit0035 doi: 10.1038/ngeo629 – ident: cit0002 doi: 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2 – volume: 3 start-page: 1528 year: 1999 ident: cit0014 publication-title: IEEE International Geoscience and Remote Sensing Symposium – ident: cit0041 doi: 10.3390/su10082698 – ident: cit0020 doi: 10.1016/j.asr.2020.11.004 – ident: cit0018 doi: 10.1109/36.298013 – ident: cit0004 doi: 10.1109/TGRS.2002.803792 – ident: cit0033 doi: 10.3390/rs11192246 – volume: 34 start-page: 192 issue: 2 year: 2014 ident: cit0026 publication-title: Scientia Geographica Sinica – ident: cit0040 doi: 10.3390/rs12030367 – ident: cit0039 doi: 10.1016/j.jag.2018.08.009 – ident: cit0048 doi: 10.3390/rs9100982 – ident: cit0015 doi: 10.1108/17506141211213988 – ident: cit0043 doi: 10.3390/rs8080652 – ident: cit0023 doi: 10.1016/j.isprsjprs.2015.03.013 – ident: cit0022 doi: 10.1029/2006JB004763 – ident: cit0012 doi: 10.1016/j.scitotenv.2021.147415 – volume: 25 start-page: 10 issue: 1 year: 2000 ident: cit0025 publication-title: Science of Surveying and Mapping – ident: cit0036 doi: 10.1017/jog.2016.122 – ident: cit0011 doi: 10.1016/j.rse.2020.112161 – ident: cit0030 doi: 10.1029/97RG03139 – ident: cit0042 doi: 10.1080/014311699212939 – ident: cit0032 doi: 10.1016/j.rse.2020.111832 – ident: cit0013 doi: 10.1007/s12665-013-2990-y – volume: 2012 start-page: G51B year: 2012 ident: cit0021 publication-title: AGU Fall Meeting Abstracts – ident: cit0029 doi: 10.5721/EuJRS20144730 – ident: cit0038 doi: 10.1109/36.739146 – ident: cit0005 doi: 10.1029/2018EO104623 – ident: cit0019 doi: 10.1016/j.cities.2016.07.009 – ident: cit0001 doi: 10.1016/j.rse.2010.03.017 – ident: cit0047 doi: 10.1016/j.rse.2016.07.019 – ident: cit0007 doi: 10.3390/rs10121873 – ident: cit0028 doi: 10.3390/s18092939 |
SSID | ssj0035115 |
Score | 2.4498508 |
Snippet | Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 295 |
SubjectTerms | China coherence deformation ground deformation interferometry SBAS-InSAR standard deviation synthetic aperture radar Temporal baseline |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQnrggYEFbHqtZCSE4hHXbxImPXbSrBQkOlJX2ZvkJSG2yStJD-TH8VmbspFRw6IVbZMWJ5RnPfGN7vmHslXPcS83LTE-ly3Khi8xMNYYq0saTrrKMtwk_fRbXN_nH2-J2r9QX3QlL9MBp4s5FXlkhrCwscW2V0lQzGzSR-FVzbkLMI-eSj8FUssF0OlZEptQcYyTB52PuTsXPqY2aMDacUSYWeiiqFL7nlSJ5_1_Upf-Y6uh_rh6yBwNwhEUa8CN2z9eP2cmio63sZr2F1xCf005Fd8x-LTdt0NaD87sERUBL3KZMBqC8EujWerUC8mSENqFDK-J76LY1wkL8D-g739IRA7Ta6RaIW6INnhgO-nYLb5YXi2X2oV4uvrwFukD_DWzzPeUPZg3aovWPn979-TwqN8bhaYvwCbu5uvz6_jobijFkFjFWnzmEgjYIjK-4MChcBAqzEpe_LIoi8IAgXaOrmxsMhzyaESFFsNzPqiBRRyT6x6fsqG5qf8IA1zzCRmKiCyZH_GicLa3GODC4qjRVOWH5KAxlB6ZyKpixUtOB0HSUoSIZqkGGE_Zu1-0uUXUc6nBBkt69TEzbsQH1Tw36pw7p34TJfT1RfdxoCakqipofGMDZqFQKVzUd1ejaN5tO4UzmCNwwWn72Pwb5nN2n_yaCyhfsqG83_iWCqd6cxnXzG_aVFcQ priority: 102 providerName: Directory of Open Access Journals |
Title | Surface deformation extraction from small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) using coherence-optimized baseline combinations |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2026639 https://www.proquest.com/docview/2834223601 https://doaj.org/article/648c66c95c504379b82cfa7336830bf7 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZguXBBPLUPdmUkhOAQSNu8fOwiVgUJDpSV4GTZjr0gtcnKSQ_lx_Bb9xs7KS-hPXBrq9iNPJ6Zb8Yznxl7WtepFSotEzURdZIVKk_0RCFUESacdJVlqCZ8_6FYnGfvPudjNWE3lFVSDO0iUUSw1aTcSndjRdwrQtl0OzKiuyn1UsHHzMRNdmsKoEhVfemXxWiM6ZgsD5SpGYIljBmbeP41zW_uKbD4_8Fh-pfNDo7o7C67MyBIPo8iv8du2OY-2593lNNu11v-jIfPMWXRPWA_lhvvlLG8trtORQ6T7GNLA6cGE96t1WrFyaXRevAO5sT2vNs2wIf4H64uraezBu5VrTwnkgnvLFEd9H7Lny9P58vkbbOcf3zBqZL-gpv2a2wkTFoYpfW377b-OT2WGwF5zBU-ZOdnbz69XiTDrQyJAdjqkxqY0LgCgVZaaEgZiGFawg6IPM9d6oDWFXzeTCMusrAnhSicSe20cgKbRcBRPmJ7TdvYfcah_MCPREnndAYgqWtTGoWA0NVVqavygGWjMKQZKMvp5oyVnAzMpqMMJclQDjI8YC93wy4jZ8d1A05J0ruHiXI7_ND6CzlosCyyyhSFEbkh0rdS6ArLoIhNspql2uFlxa_7RPYh4-Li9Shyds0LPBk3lYR605mNamy76SRWMgOCQ9h8-B_zH7Hb9DUSVD5me73f2GOAqV6fBHU5CamIK7O9FHA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFLWgLGCDykstTyMhBIuBSTIvL1NElULbBWmlsrI8fhSkZKbyTBbpx_CtnOuZCQWEumAXJWNn5Gvfe8617zFjr4yJrVBxHqmRMFGSqTQqRwpUReiw05Xn4TTh0XE2O00-naVnV2ph6FglcWjXCUUEX02Lm5LRw5G49wSz6Xpk0LsxFVMhyEzETXYrLcAmMKfjr7PBG9M-WRo0UxOwJbQZqnj-1c1v8SnI-P8hYvqX0w6RaH-b3e0hJJ92Nr_HbtjqPtuZNpTUrpdr_pqHz13OonnAfsxX3iltubGbUkUOn-y7mgZOFSa8WarFglNMowHhDfyJbXmzrgAQ8T9cXVhPmw3cK6M8J5UJ7yxpHbR-zd_M96bz6KCaT7-85XSU_pzr-ltXSRjV8ErL75fW_Ooe4w1G3iULH7LT_Y8nH2ZRfy1DpIG22sgAFGqXgWnFWQkzAzKMczgCkaapix3gukLQm5QgRhYOJROZ07EdF05gtghEykdsq6oru8M4Vj8AJGnSuTIBkiyNzrUCI3SmyMsi32XJYAype81yujpjIUe9tOlgQ0k2lL0Nd9m7TbOLTrTjugZ7ZOnNw6S5Hb6o_bnsl7DMkkJnmRapJtW3XJQFhkGRnGQxiUuHlxVX54lsQ8rFdfejyMk1L_BymFQS65s2bVRl61UjMZIJIBx48-P_6P8Fuz07OTqUhwfHn5-wO_RTp1b5lG21fmWfAVm15fOwdH4CGK0W5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgSIiXMW7axs1ICMFDStokTvzYDaqNS4Uok3izfB3T2qRK0ofux_BbOcdOCgyhPeytauPUjk--8x37nM-EvDQmtlzGeSSH3EQpk1mkhhJCFa79Tlee-2zCz1N2dJJ--J712YRNl1aJMbQLQhEeq_HlXhrXZ8S9RZaNpyNDdDfCWirwMQm_SW4xoCeY1ZfE0x6McZss85KpKQRL0KYv4vnfbf5yT17F_5KG6T-Y7R3R5C5R_RBC_sn5YNWqgb64pO54rTHukO2OptJxsKt75IYt75PdcYML59ViTV9R_zmsizQPyM_ZqnZSW2rsphySAu7XoW6CYhULbRZyPqfoN7FDtAHMsi1t1iWQUPgfKpe2xg0NWksja4pKFrWzqKfQ1mv6enYwnkXH5Wz89Q3FdP1TqqsfoVoxqgD5FmcX1vy-PYwXov6wIPmQnEzefzs8irqjHyINjK6NDBBP7RhEczFTYEpAS0Y5gA3PsszFDkICCY41URB8WQAtxpnTsR0VjoNFcvDGj8hWWZV2l1BAGCCpqHvnVApsVRmdawlRpzNFrop8j6T9jAvd6aLj8RxzMezkU_u5EDgXopuLPTLYNFsGYZCrGhygOW0uRl1v_0VVn4oOJgRLC82Y5plGZbmcqwIeg0TJyiKJlYPO8j-NUbR-WceFM1hEckUHXvSWKwBDcGNIlrZaNQKeZAo0EWLz_Wvc_zm5_eXdRHw6nn58TO7gL0EQ8wnZauuVfQrkrVXP_Ov5CyyoNYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+deformation+extraction+from+small+baseline+subset+synthetic+aperture+radar+interferometry+%28SBAS-InSAR%29+using+coherence-optimized+baseline+combinations&rft.jtitle=GIScience+and+remote+sensing&rft.au=Wang%2C+Shunyao&rft.au=Zhang%2C+Guo&rft.au=Chen%2C+Zhenwei&rft.au=Cui%2C+Hao&rft.date=2022-12-31&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=295&rft.epage=309&rft_id=info:doi/10.1080%2F15481603.2022.2026639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2022_2026639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |