Surface deformation extraction from small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) using coherence-optimized baseline combinations

Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR (SBAS-InSAR) boosts the data sampling rate and improves the accuracy of deformation extraction by restricting the temporal and spatial baseline...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 59; no. 1; pp. 295 - 309
Main Authors Wang, Shunyao, Zhang, Guo, Chen, Zhenwei, Cui, Hao, Zheng, Yuzhi, Xu, Zixing, Li, Qihan
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2022
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2022.2026639

Cover

Abstract Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR (SBAS-InSAR) boosts the data sampling rate and improves the accuracy of deformation extraction by restricting the temporal and spatial baselines. However, various factors, such as the types of ground objects and seasons, affect the coherence between SAR images. Traditional SBAS-InSAR employs a fixed temporal baseline, which does not guarantee good coherence and might lead to decorrelation. In this paper, we propose that instead of using a fixed temporal baseline, we directly use the average coherence between SAR images as the baseline constraint index to perform an optimized selection of SBAS-InSAR interferometric pairs, ensuring good coherence of the interferometric pairs and improving the quality of the interferometric fringes. The proposed approach was used to extract surface deformation in two test experiment areas: Houston and Sydney. Compared with the conventional SBAS-InSAR and GPS data, the standard deviation of error of Houston and Sydney dropped from 0.813 to 0.589 and 0.291 to 0.246, respectively; the root mean square error (RMSE) decreased from 1.082 to 1.041 and 0.485 to 0.334, respectively, indicating that the proposed method has better surface deformation extraction accuracy. After demonstrating the accuracy of the proposed method, it was applied to Pingxiang area, a mining city in China, to effectively extract and analyze the surface deformation induced by mining activities, which proves the universality of this method in different scenarios.
AbstractList Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR (SBAS-InSAR) boosts the data sampling rate and improves the accuracy of deformation extraction by restricting the temporal and spatial baselines. However, various factors, such as the types of ground objects and seasons, affect the coherence between SAR images. Traditional SBAS-InSAR employs a fixed temporal baseline, which does not guarantee good coherence and might lead to decorrelation. In this paper, we propose that instead of using a fixed temporal baseline, we directly use the average coherence between SAR images as the baseline constraint index to perform an optimized selection of SBAS-InSAR interferometric pairs, ensuring good coherence of the interferometric pairs and improving the quality of the interferometric fringes. The proposed approach was used to extract surface deformation in two test experiment areas: Houston and Sydney. Compared with the conventional SBAS-InSAR and GPS data, the standard deviation of error of Houston and Sydney dropped from 0.813 to 0.589 and 0.291 to 0.246, respectively; the root mean square error (RMSE) decreased from 1.082 to 1.041 and 0.485 to 0.334, respectively, indicating that the proposed method has better surface deformation extraction accuracy. After demonstrating the accuracy of the proposed method, it was applied to Pingxiang area, a mining city in China, to effectively extract and analyze the surface deformation induced by mining activities, which proves the universality of this method in different scenarios.
Author Wang, Shunyao
Chen, Zhenwei
Zheng, Yuzhi
Cui, Hao
Zhang, Guo
Li, Qihan
Xu, Zixing
Author_xml – sequence: 1
  givenname: Shunyao
  surname: Wang
  fullname: Wang, Shunyao
  organization: Wuhan University
– sequence: 2
  givenname: Guo
  surname: Zhang
  fullname: Zhang, Guo
  organization: Wuhan University
– sequence: 3
  givenname: Zhenwei
  orcidid: 0000-0002-1865-602X
  surname: Chen
  fullname: Chen, Zhenwei
  email: guanyuechen@whu.edu.cn
  organization: Wuhan University
– sequence: 4
  givenname: Hao
  surname: Cui
  fullname: Cui, Hao
  organization: Wuhan University
– sequence: 5
  givenname: Yuzhi
  surname: Zheng
  fullname: Zheng, Yuzhi
  organization: Wuhan University
– sequence: 6
  givenname: Zixing
  surname: Xu
  fullname: Xu, Zixing
  organization: Wuhan University
– sequence: 7
  givenname: Qihan
  surname: Li
  fullname: Li, Qihan
  organization: Wuhan University
BookMark eNqFkc1u1DAUhSNUJNrCIyB5WRYp_omdRGwYKn5GqoTEwNpynOvWlWMP147K8DA8K5mZVkgsYGNfWeccn6vvrDqJKUJVvWT0ktGOvmay6Zii4pJTzveHUqJ_Up2yvhF1y7k6WeZFU-9Fz6qznO8oFZIxeVr92szojAUygks4meJTJPCjoLGH0WGaSJ5MCGQwGYKPQPI8ZCgk72K5heItMVvAMiMQNKNB4mMBdLA4oeCOXGzerTb1Om5WX16ROft4Q2y6BYRooU7b4if_E8Y_8TZNg4-HJvl59dSZkOHFw31effvw_uvVp_r688f11eq6to1UpR5Zz61TXcuoGgxtJeO8pU3XSykddW3LDeOdGJRSQFuqeuUsBd653lrTMy7Oq_Uxd0zmTm_RTwZ3OhmvDw8Jb7TBZdUAWjWdVcr20kraiLYfuuVr0wqhOkEH1y5ZF8esLabvM-SiJ58thGAipDnrpUjDuVCULdI3R6nFlDOC09aXw-YLAB80o3pPWD8S1nvC-oHw4pZ_uR-L_8_39ujz8cD8PmEYdTG7kNChidZnLf4d8RvtOcCu
CitedBy_id crossref_primary_10_3390_rs16091548
crossref_primary_10_3390_buildings14113582
crossref_primary_10_1016_j_ijdrr_2024_104317
crossref_primary_10_1080_15481603_2022_2143683
crossref_primary_10_1016_j_enggeo_2023_107089
crossref_primary_10_3390_s23249707
crossref_primary_10_3390_math10152664
crossref_primary_10_3390_s24154783
crossref_primary_10_1080_10095020_2024_2328100
crossref_primary_10_1080_15481603_2023_2176275
crossref_primary_10_1080_10106049_2022_2136258
crossref_primary_10_1016_j_catena_2023_107477
crossref_primary_10_1080_15481603_2022_2161200
crossref_primary_10_1016_j_ecolind_2023_111394
crossref_primary_10_1016_j_asr_2023_11_043
crossref_primary_10_1007_s11069_024_06663_5
crossref_primary_10_1080_15481603_2023_2218261
crossref_primary_10_1016_j_pce_2023_103486
crossref_primary_10_3390_s25010066
crossref_primary_10_3390_rs16183515
crossref_primary_10_1080_10106049_2022_2159071
crossref_primary_10_1007_s11356_023_29234_w
crossref_primary_10_1016_j_asr_2024_06_037
crossref_primary_10_1016_j_rse_2024_114105
crossref_primary_10_1080_10095020_2022_2124129
crossref_primary_10_1007_s11069_023_06024_8
crossref_primary_10_3390_land12112077
Cites_doi 10.1016/j.jag.2014.08.018
10.1007/s10040-011-0775-5
10.1007/s10346-017-0861-4
10.1016/j.rse.2012.10.015
10.1016/j.rse.2013.08.038
10.1029/97JB02382
10.1080/15481603.2018.1513444
10.3390/app10165514
10.1016/j.rse.2006.11.015
10.1029/96JB03804
10.3390/rs11020107
10.1146/annurev.earth.28.1.169
10.1109/36.175330
10.1016/j.rse.2012.05.025
10.1038/ngeo629
10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
10.3390/su10082698
10.1016/j.asr.2020.11.004
10.1109/36.298013
10.1109/TGRS.2002.803792
10.3390/rs11192246
10.3390/rs12030367
10.1016/j.jag.2018.08.009
10.3390/rs9100982
10.1108/17506141211213988
10.3390/rs8080652
10.1016/j.isprsjprs.2015.03.013
10.1029/2006JB004763
10.1016/j.scitotenv.2021.147415
10.1017/jog.2016.122
10.1016/j.rse.2020.112161
10.1029/97RG03139
10.1080/014311699212939
10.1016/j.rse.2020.111832
10.1007/s12665-013-2990-y
10.5721/EuJRS20144730
10.1109/36.739146
10.1029/2018EO104623
10.1016/j.cities.2016.07.009
10.1016/j.rse.2010.03.017
10.1016/j.rse.2016.07.019
10.3390/rs10121873
10.3390/s18092939
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2022.2026639
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
EndPage 309
ExternalDocumentID oai_doaj_org_article_648c66c95c504379b82cfa7336830bf7
10_1080_15481603_2022_2026639
2026639
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ID FETCH-LOGICAL-c456t-d192cf687106ba07512270489555f0f772a1283b666e070696fc0e28f9cca9123
IEDL.DBID 0YH
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:26:06 EDT 2025
Mon May 05 20:42:41 EDT 2025
Tue Jul 01 02:27:28 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
Wed Dec 25 09:04:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-d192cf687106ba07512270489555f0f772a1283b666e070696fc0e28f9cca9123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1865-602X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2026639
PQID 2834223601
PQPubID 24069
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_648c66c95c504379b82cfa7336830bf7
proquest_miscellaneous_2834223601
informaworld_taylorfrancis_310_1080_15481603_2022_2026639
crossref_primary_10_1080_15481603_2022_2026639
crossref_citationtrail_10_1080_15481603_2022_2026639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Liu C. Y. (cit0026) 2014; 34
Ferretti A. (cit0014) 1999; 3
cit0019
Hong S. (cit0021) 2012; 2012
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0036
cit0022
cit0044
cit0001
cit0023
cit0045
cit0020
cit0042
cit0043
cit0040
cit0041
Li D. (cit0025) 2000; 25
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0048
cit0005
cit0027
cit0002
cit0024
cit0046
cit0003
cit0047
References_xml – ident: cit0003
  doi: 10.1016/j.jag.2014.08.018
– ident: cit0017
  doi: 10.1007/s10040-011-0775-5
– ident: cit0034
  doi: 10.1007/s10346-017-0861-4
– ident: cit0008
  doi: 10.1016/j.rse.2012.10.015
– ident: cit0009
  doi: 10.1016/j.rse.2013.08.038
– ident: cit0016
  doi: 10.1029/97JB02382
– ident: cit0031
  doi: 10.1080/15481603.2018.1513444
– ident: cit0024
  doi: 10.3390/app10165514
– ident: cit0037
  doi: 10.1016/j.rse.2006.11.015
– ident: cit0044
  doi: 10.1029/96JB03804
– ident: cit0027
– ident: cit0010
  doi: 10.3390/rs11020107
– ident: cit0006
  doi: 10.1146/annurev.earth.28.1.169
– ident: cit0045
  doi: 10.1109/36.175330
– ident: cit0046
  doi: 10.1016/j.rse.2012.05.025
– ident: cit0035
  doi: 10.1038/ngeo629
– ident: cit0002
  doi: 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
– volume: 3
  start-page: 1528
  year: 1999
  ident: cit0014
  publication-title: IEEE International Geoscience and Remote Sensing Symposium
– ident: cit0041
  doi: 10.3390/su10082698
– ident: cit0020
  doi: 10.1016/j.asr.2020.11.004
– ident: cit0018
  doi: 10.1109/36.298013
– ident: cit0004
  doi: 10.1109/TGRS.2002.803792
– ident: cit0033
  doi: 10.3390/rs11192246
– volume: 34
  start-page: 192
  issue: 2
  year: 2014
  ident: cit0026
  publication-title: Scientia Geographica Sinica
– ident: cit0040
  doi: 10.3390/rs12030367
– ident: cit0039
  doi: 10.1016/j.jag.2018.08.009
– ident: cit0048
  doi: 10.3390/rs9100982
– ident: cit0015
  doi: 10.1108/17506141211213988
– ident: cit0043
  doi: 10.3390/rs8080652
– ident: cit0023
  doi: 10.1016/j.isprsjprs.2015.03.013
– ident: cit0022
  doi: 10.1029/2006JB004763
– ident: cit0012
  doi: 10.1016/j.scitotenv.2021.147415
– volume: 25
  start-page: 10
  issue: 1
  year: 2000
  ident: cit0025
  publication-title: Science of Surveying and Mapping
– ident: cit0036
  doi: 10.1017/jog.2016.122
– ident: cit0011
  doi: 10.1016/j.rse.2020.112161
– ident: cit0030
  doi: 10.1029/97RG03139
– ident: cit0042
  doi: 10.1080/014311699212939
– ident: cit0032
  doi: 10.1016/j.rse.2020.111832
– ident: cit0013
  doi: 10.1007/s12665-013-2990-y
– volume: 2012
  start-page: G51B
  year: 2012
  ident: cit0021
  publication-title: AGU Fall Meeting Abstracts
– ident: cit0029
  doi: 10.5721/EuJRS20144730
– ident: cit0038
  doi: 10.1109/36.739146
– ident: cit0005
  doi: 10.1029/2018EO104623
– ident: cit0019
  doi: 10.1016/j.cities.2016.07.009
– ident: cit0001
  doi: 10.1016/j.rse.2010.03.017
– ident: cit0047
  doi: 10.1016/j.rse.2016.07.019
– ident: cit0007
  doi: 10.3390/rs10121873
– ident: cit0028
  doi: 10.3390/s18092939
SSID ssj0035115
Score 2.4498508
Snippet Surface deformation data can be used to provide early warnings of geohazards and are useful in a variety of research fields. The Small BAseline Subset InSAR...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 295
SubjectTerms China
coherence
deformation
ground deformation
interferometry
SBAS-InSAR
standard deviation
synthetic aperture radar
Temporal baseline
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQnrggYEFbHqtZCSE4hHXbxImPXbSrBQkOlJX2ZvkJSG2yStJD-TH8VmbspFRw6IVbZMWJ5RnPfGN7vmHslXPcS83LTE-ly3Khi8xMNYYq0saTrrKMtwk_fRbXN_nH2-J2r9QX3QlL9MBp4s5FXlkhrCwscW2V0lQzGzSR-FVzbkLMI-eSj8FUssF0OlZEptQcYyTB52PuTsXPqY2aMDacUSYWeiiqFL7nlSJ5_1_Upf-Y6uh_rh6yBwNwhEUa8CN2z9eP2cmio63sZr2F1xCf005Fd8x-LTdt0NaD87sERUBL3KZMBqC8EujWerUC8mSENqFDK-J76LY1wkL8D-g739IRA7Ta6RaIW6INnhgO-nYLb5YXi2X2oV4uvrwFukD_DWzzPeUPZg3aovWPn979-TwqN8bhaYvwCbu5uvz6_jobijFkFjFWnzmEgjYIjK-4MChcBAqzEpe_LIoi8IAgXaOrmxsMhzyaESFFsNzPqiBRRyT6x6fsqG5qf8IA1zzCRmKiCyZH_GicLa3GODC4qjRVOWH5KAxlB6ZyKpixUtOB0HSUoSIZqkGGE_Zu1-0uUXUc6nBBkt69TEzbsQH1Tw36pw7p34TJfT1RfdxoCakqipofGMDZqFQKVzUd1ejaN5tO4UzmCNwwWn72Pwb5nN2n_yaCyhfsqG83_iWCqd6cxnXzG_aVFcQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Surface deformation extraction from small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) using coherence-optimized baseline combinations
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2026639
https://www.proquest.com/docview/2834223601
https://doaj.org/article/648c66c95c504379b82cfa7336830bf7
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZguXBBPLUPdmUkhOAQSNu8fOwiVgUJDpSV4GTZjr0gtcnKSQ_lx_Bb9xs7KS-hPXBrq9iNPJ6Zb8Yznxl7WtepFSotEzURdZIVKk_0RCFUESacdJVlqCZ8_6FYnGfvPudjNWE3lFVSDO0iUUSw1aTcSndjRdwrQtl0OzKiuyn1UsHHzMRNdmsKoEhVfemXxWiM6ZgsD5SpGYIljBmbeP41zW_uKbD4_8Fh-pfNDo7o7C67MyBIPo8iv8du2OY-2593lNNu11v-jIfPMWXRPWA_lhvvlLG8trtORQ6T7GNLA6cGE96t1WrFyaXRevAO5sT2vNs2wIf4H64uraezBu5VrTwnkgnvLFEd9H7Lny9P58vkbbOcf3zBqZL-gpv2a2wkTFoYpfW377b-OT2WGwF5zBU-ZOdnbz69XiTDrQyJAdjqkxqY0LgCgVZaaEgZiGFawg6IPM9d6oDWFXzeTCMusrAnhSicSe20cgKbRcBRPmJ7TdvYfcah_MCPREnndAYgqWtTGoWA0NVVqavygGWjMKQZKMvp5oyVnAzMpqMMJclQDjI8YC93wy4jZ8d1A05J0ruHiXI7_ND6CzlosCyyyhSFEbkh0rdS6ArLoIhNspql2uFlxa_7RPYh4-Li9Shyds0LPBk3lYR605mNamy76SRWMgOCQ9h8-B_zH7Hb9DUSVD5me73f2GOAqV6fBHU5CamIK7O9FHA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFLWgLGCDykstTyMhBIuBSTIvL1NElULbBWmlsrI8fhSkZKbyTBbpx_CtnOuZCQWEumAXJWNn5Gvfe8617zFjr4yJrVBxHqmRMFGSqTQqRwpUReiw05Xn4TTh0XE2O00-naVnV2ph6FglcWjXCUUEX02Lm5LRw5G49wSz6Xpk0LsxFVMhyEzETXYrLcAmMKfjr7PBG9M-WRo0UxOwJbQZqnj-1c1v8SnI-P8hYvqX0w6RaH-b3e0hJJ92Nr_HbtjqPtuZNpTUrpdr_pqHz13OonnAfsxX3iltubGbUkUOn-y7mgZOFSa8WarFglNMowHhDfyJbXmzrgAQ8T9cXVhPmw3cK6M8J5UJ7yxpHbR-zd_M96bz6KCaT7-85XSU_pzr-ltXSRjV8ErL75fW_Ooe4w1G3iULH7LT_Y8nH2ZRfy1DpIG22sgAFGqXgWnFWQkzAzKMczgCkaapix3gukLQm5QgRhYOJROZ07EdF05gtghEykdsq6oru8M4Vj8AJGnSuTIBkiyNzrUCI3SmyMsi32XJYAype81yujpjIUe9tOlgQ0k2lL0Nd9m7TbOLTrTjugZ7ZOnNw6S5Hb6o_bnsl7DMkkJnmRapJtW3XJQFhkGRnGQxiUuHlxVX54lsQ8rFdfejyMk1L_BymFQS65s2bVRl61UjMZIJIBx48-P_6P8Fuz07OTqUhwfHn5-wO_RTp1b5lG21fmWfAVm15fOwdH4CGK0W5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgSIiXMW7axs1ICMFDStokTvzYDaqNS4Uok3izfB3T2qRK0ofux_BbOcdOCgyhPeytauPUjk--8x37nM-EvDQmtlzGeSSH3EQpk1mkhhJCFa79Tlee-2zCz1N2dJJ--J712YRNl1aJMbQLQhEeq_HlXhrXZ8S9RZaNpyNDdDfCWirwMQm_SW4xoCeY1ZfE0x6McZss85KpKQRL0KYv4vnfbf5yT17F_5KG6T-Y7R3R5C5R_RBC_sn5YNWqgb64pO54rTHukO2OptJxsKt75IYt75PdcYML59ViTV9R_zmsizQPyM_ZqnZSW2rsphySAu7XoW6CYhULbRZyPqfoN7FDtAHMsi1t1iWQUPgfKpe2xg0NWksja4pKFrWzqKfQ1mv6enYwnkXH5Wz89Q3FdP1TqqsfoVoxqgD5FmcX1vy-PYwXov6wIPmQnEzefzs8irqjHyINjK6NDBBP7RhEczFTYEpAS0Y5gA3PsszFDkICCY41URB8WQAtxpnTsR0VjoNFcvDGj8hWWZV2l1BAGCCpqHvnVApsVRmdawlRpzNFrop8j6T9jAvd6aLj8RxzMezkU_u5EDgXopuLPTLYNFsGYZCrGhygOW0uRl1v_0VVn4oOJgRLC82Y5plGZbmcqwIeg0TJyiKJlYPO8j-NUbR-WceFM1hEckUHXvSWKwBDcGNIlrZaNQKeZAo0EWLz_Wvc_zm5_eXdRHw6nn58TO7gL0EQ8wnZauuVfQrkrVXP_Ov5CyyoNYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+deformation+extraction+from+small+baseline+subset+synthetic+aperture+radar+interferometry+%28SBAS-InSAR%29+using+coherence-optimized+baseline+combinations&rft.jtitle=GIScience+and+remote+sensing&rft.au=Wang%2C+Shunyao&rft.au=Zhang%2C+Guo&rft.au=Chen%2C+Zhenwei&rft.au=Cui%2C+Hao&rft.date=2022-12-31&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=295&rft.epage=309&rft_id=info:doi/10.1080%2F15481603.2022.2026639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2022_2026639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon