A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability
All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kun...
Saved in:
Published in | RNA (Cambridge) Vol. 18; no. 11; pp. 2029 - 2040 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation. |
---|---|
AbstractList | All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation. Cells infected with arthropod-borne flaviviruses (e.g., Dengue or Kunjin viruses) accumulate uncapped mRNAs or viral genomes, decay intermediates normally targeted by cellular 5′-to-3′ exonuclease XRN1. These viruses also generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection, due to the stalling of the XRN1. This paper shows that XRN1 can be found associated with sfRNA during infection and that this results in the repression of its activity. Cellular mRNAs are also stabilized by sfRNA, likely as a result of the shutdown of the 5′-to-3′ mRNA decay pathway. All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection due to stalling of the cellular 5′-to-3′ exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation. |
Author | Moon, Stephanie L Kumagai, Yutaro Wilusz, Carol J Anderson, John R Khromykh, Alexander A Wilusz, Jeffrey Akira, Shizuo |
AuthorAffiliation | 1 Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA 2 Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan 3 Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia |
AuthorAffiliation_xml | – name: 3 Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia – name: 1 Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA – name: 2 Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan |
Author_xml | – sequence: 1 givenname: Stephanie L surname: Moon fullname: Moon, Stephanie L organization: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA – sequence: 2 givenname: John R surname: Anderson fullname: Anderson, John R – sequence: 3 givenname: Yutaro surname: Kumagai fullname: Kumagai, Yutaro – sequence: 4 givenname: Carol J surname: Wilusz fullname: Wilusz, Carol J – sequence: 5 givenname: Shizuo surname: Akira fullname: Akira, Shizuo – sequence: 6 givenname: Alexander A surname: Khromykh fullname: Khromykh, Alexander A – sequence: 7 givenname: Jeffrey surname: Wilusz fullname: Wilusz, Jeffrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23006624$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUUuLFDEQDrLiPvTqUXL00mNene6-CMOyPmBZYVHwFqqT6p1ITzIm6cG5-svNMOuip3p99X1VfJfkLMSAhLzmbMWF5u9SgBWTSspac_GMXHClh2ZgjJ_VXLZt08tenJPLnH_UpqzjF-RcSMa0FuqC_F7Tymij8-GB3t-t6S5Ft1h0dDxQSGWT4i66ZowpIJ1m2Pu9T0vGTH3Y-NGXTMsGqcV5XmZIFH_F5McYFjsjZKTf7-84heAozAVTppuYC90ehXKB0c--HF6S5xPMGV89xivy7cPN1-tPze2Xj5-v17eNVa0ujWM4qVF0irUjGxWgawft0HbcdtpJ7cB1qu-7AeykhBV9z4W1DCy3HDRM8oq8P_HulnGLzmIoCWazS34L6WAiePP_JPiNeYh7I1U3yEFWgrePBCn-XDAXs_X5-DkEjEs2nHMpuG4Vr9DVCWpTzDnh9CTDmTkaZ6px5mRc3RN14c2_xz3B_zol_wDGrJnf |
CitedBy_id | crossref_primary_10_1080_15476286_2021_1907044 crossref_primary_10_1016_j_virusres_2015_10_002 crossref_primary_10_1016_j_virol_2018_12_019 crossref_primary_10_3390_vaccines7040145 crossref_primary_10_1172_JCI144227 crossref_primary_10_1016_j_tim_2016_01_002 crossref_primary_10_1007_s12250_016_3855_9 crossref_primary_10_1038_s41467_017_02604_y crossref_primary_10_3389_fvets_2021_703147 crossref_primary_10_1080_15476286_2019_1592070 crossref_primary_10_7554_eLife_39023 crossref_primary_10_1093_nar_gkz576 crossref_primary_10_1101_cshperspect_a032839 crossref_primary_10_1016_j_antiviral_2018_09_006 crossref_primary_10_1261_rna_074963_120 crossref_primary_10_3390_v8070180 crossref_primary_10_1002_wrna_1162 crossref_primary_10_3390_v16020242 crossref_primary_10_1371_journal_ppat_1007166 crossref_primary_10_1016_j_virusres_2015_09_009 crossref_primary_10_1038_s41598_019_43390_5 crossref_primary_10_3390_ncrna5010007 crossref_primary_10_1128_mBio_02352_20 crossref_primary_10_1371_journal_ppat_1006879 crossref_primary_10_1016_j_virol_2021_11_002 crossref_primary_10_1073_pnas_1905617116 crossref_primary_10_1371_journal_ppat_1003762 crossref_primary_10_3390_v10030118 crossref_primary_10_3390_ijms22073738 crossref_primary_10_3389_fimmu_2017_01663 crossref_primary_10_1083_jcb_202004120 crossref_primary_10_3390_v5123142 crossref_primary_10_1038_ncomms13691 crossref_primary_10_1111_nph_19346 crossref_primary_10_1128_AAC_01795_13 crossref_primary_10_1038_icb_2015_2 crossref_primary_10_3390_v8120340 crossref_primary_10_1016_j_jmb_2012_11_024 crossref_primary_10_1111_imr_13019 crossref_primary_10_1016_j_ncrna_2017_03_002 crossref_primary_10_1080_15476286_2015_1094599 crossref_primary_10_1128_mSphere_00375_16 crossref_primary_10_1016_j_biochi_2015_03_001 crossref_primary_10_1016_j_virusres_2017_08_015 crossref_primary_10_1016_j_virol_2015_08_009 crossref_primary_10_1371_journal_ppat_1003591 crossref_primary_10_1016_j_coviro_2014_04_002 crossref_primary_10_1038_ni_2887 crossref_primary_10_1016_j_molcel_2017_09_030 crossref_primary_10_1126_science_aah3963 crossref_primary_10_1134_S0026893324020146 crossref_primary_10_3390_bioengineering11010022 crossref_primary_10_3390_v6020683 crossref_primary_10_1371_journal_ppat_1004708 crossref_primary_10_3389_fcimb_2020_00453 crossref_primary_10_1016_j_vetmic_2013_04_026 crossref_primary_10_1016_j_virusres_2015_09_023 crossref_primary_10_1038_s41467_024_45948_y crossref_primary_10_1261_rna_078872_121 crossref_primary_10_3389_fimmu_2018_02046 crossref_primary_10_1016_j_coviro_2014_09_011 crossref_primary_10_3390_v12101193 crossref_primary_10_1016_j_bbagrm_2012_12_003 crossref_primary_10_1016_j_coviro_2015_10_001 crossref_primary_10_1146_annurev_virology_092818_015811 crossref_primary_10_1186_s12985_016_0541_3 crossref_primary_10_3390_v10030137 crossref_primary_10_3390_v7020820 crossref_primary_10_1002_wrna_1191 crossref_primary_10_1371_journal_pone_0092056 crossref_primary_10_3389_fmicb_2017_00546 crossref_primary_10_1016_j_cois_2014_07_005 crossref_primary_10_1126_science_1250897 crossref_primary_10_7554_eLife_01892 crossref_primary_10_1128_mBio_01865_15 crossref_primary_10_1128_JVI_00838_20 crossref_primary_10_1080_15476286_2020_1830238 crossref_primary_10_3390_v12101177 crossref_primary_10_1128_JVI_00343_20 crossref_primary_10_1094_MPMI_10_15_0226_FI crossref_primary_10_1080_15476286_2021_1875680 crossref_primary_10_1007_s11033_022_07268_6 crossref_primary_10_1042_BST20231296 crossref_primary_10_1371_journal_pbio_3000130 crossref_primary_10_1016_j_ymeth_2018_11_019 crossref_primary_10_3389_fmicb_2021_730045 crossref_primary_10_1016_j_pharmthera_2016_03_004 crossref_primary_10_1371_journal_ppat_1010930 crossref_primary_10_3390_ijms140714744 crossref_primary_10_1016_j_virol_2012_11_017 crossref_primary_10_3389_fmicb_2020_00473 crossref_primary_10_3390_vaccines9030294 crossref_primary_10_1016_j_virol_2015_03_001 crossref_primary_10_1146_annurev_virology_031413_085505 crossref_primary_10_1002_wrna_1536 crossref_primary_10_1099_vir_0_064501_0 crossref_primary_10_3390_pathogens7030068 crossref_primary_10_1038_s41467_020_16086_y crossref_primary_10_1073_pnas_1802429115 crossref_primary_10_1093_nar_gkz668 crossref_primary_10_1371_journal_pone_0201250 crossref_primary_10_1016_j_sbi_2015_12_006 crossref_primary_10_1074_jbc_RA119_009129 crossref_primary_10_3389_fcimb_2019_00336 crossref_primary_10_1016_j_virol_2018_06_004 crossref_primary_10_1007_s00284_020_02284_w crossref_primary_10_1073_pnas_1919287117 crossref_primary_10_1093_nar_gkae507 crossref_primary_10_1371_journal_pone_0158105 crossref_primary_10_1128_jvi_01815_21 crossref_primary_10_1128_mBio_02461_18 crossref_primary_10_1128_jvi_00100_23 crossref_primary_10_3390_pathogens9110876 crossref_primary_10_1002_rmv_2360 crossref_primary_10_1016_j_bbrc_2020_05_008 crossref_primary_10_1016_j_jmb_2013_11_023 crossref_primary_10_7554_eLife_37663 crossref_primary_10_3390_v11030298 crossref_primary_10_3390_v15071419 crossref_primary_10_1016_j_virusres_2015_01_026 crossref_primary_10_3390_v9060137 crossref_primary_10_1016_j_semcdb_2020_08_006 crossref_primary_10_1016_j_vaccine_2018_04_087 crossref_primary_10_1371_journal_ppat_1006265 crossref_primary_10_1080_15476286_2020_1868754 crossref_primary_10_1261_rna_077065_120 crossref_primary_10_1007_s12275_017_7063_6 crossref_primary_10_1074_jbc_M117_805796 crossref_primary_10_1038_nrm3679 crossref_primary_10_1042_BJ20140456 crossref_primary_10_1038_nrmicro3506 crossref_primary_10_3390_cells10030642 crossref_primary_10_1089_dna_2013_2054 crossref_primary_10_3390_v6020404 crossref_primary_10_2217_fvl_2017_0106 crossref_primary_10_1038_s41589_021_00829_z crossref_primary_10_4269_ajtmh_15_0727 crossref_primary_10_1016_j_virol_2014_10_037 crossref_primary_10_1101_gad_259077_115 crossref_primary_10_1371_journal_ppat_1006535 crossref_primary_10_3390_v9010002 crossref_primary_10_3390_v8060154 crossref_primary_10_1021_acs_jproteome_0c00068 crossref_primary_10_3389_fgene_2018_00595 crossref_primary_10_1038_s41467_022_30525_y crossref_primary_10_1042_BST20160107 crossref_primary_10_1093_nar_gkv1336 crossref_primary_10_1128_JVI_01606_16 |
Cites_doi | 10.1093/emboj/21.1.165 10.1101/gad.8.7.855 10.1261/rna.2439811 10.1371/journal.pgen.1002273 10.1073/pnas.0703348104 10.1261/rna.291506 10.1016/j.cell.2011.12.005 10.1038/nsmb.1984 10.1016/S0076-6879(08)02608-6 10.1016/j.cell.2011.11.051 10.1261/rna.2816711 10.1128/JVI.72.9.7270-7279.1998 10.1128/JVI.01027-08 10.1099/vir.0.039685-0 10.1186/1471-2164-11-259 10.1016/j.chom.2008.03.004 10.1016/j.tig.2011.11.001 10.1016/j.chom.2008.10.007 10.1002/wrna.78 10.1128/JVI.79.7.4519-4526.2005 10.1371/journal.pone.0033561 10.1002/wrna.13 10.1073/pnas.1112263109 10.1038/nature04735 10.1016/j.tig.2011.04.003 10.1042/BST0380242 10.4049/jimmunol.0803883 10.1128/JVI.00207-12 10.1186/1471-2164-6-75 10.1038/sj.embor.7400572 10.1101/gad.13.2.188 10.1128/JVI.01159-10 10.1093/nar/gkr686 10.1261/rna.958908 10.1016/j.molcel.2011.02.004 10.1016/j.chom.2010.07.003 10.1128/MCB.01445-06 10.1002/wrna.40 10.1038/nrm2104 10.4161/rna.8.1.14237 10.1038/ng.1071 10.1128/JVI.01513-07 10.1038/nature10098 10.1128/JVI.01047-10 10.1128/JVI.01657-10 10.1128/JVI.01514-07 |
ContentType | Journal Article |
Copyright | Copyright © 2012 RNA Society 2012 |
Copyright_xml | – notice: Copyright © 2012 RNA Society 2012 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1261/rna.034330.112 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Moon et al |
EISSN | 1469-9001 |
EndPage | 2040 |
ExternalDocumentID | 10_1261_rna_034330_112 23006624 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI063434 – fundername: NIAID NIH HHS grantid: U54 AI-065357 – fundername: NIAID NIH HHS grantid: U54 AI065357 – fundername: NIAID NIH HHS grantid: R01 AI063434 |
GroupedDBID | --- .GJ 0VX 123 18M 29P 2WC 34G 39C 4.4 53G 5RE 5VS 8R4 8R5 ABDIX ABDNZ ABGDZ ACGFO ACNCT ACQPF ACYGS ADBBV AEILP AENEX AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CAG CGR COF CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HH5 HYE KQ8 MV1 NPM OK1 P2P RCA RCX RHF RHI RIG ROL RPM SJN TR2 VWN W8F WOQ YKV ZGI ZWS AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c456t-d0ef4b27405b0b4aed596dec71c76d36dad748879acf42c28812cc0ac1c1a6af3 |
IEDL.DBID | RPM |
ISSN | 1355-8382 |
IngestDate | Tue Sep 17 21:20:15 EDT 2024 Fri Oct 25 01:27:01 EDT 2024 Fri Nov 22 01:17:20 EST 2024 Sat Sep 28 08:05:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-d0ef4b27405b0b4aed596dec71c76d36dad748879acf42c28812cc0ac1c1a6af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://rnajournal.cshlp.org/content/18/11/2029.full.pdf |
PMID | 23006624 |
PQID | 1113216541 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3479393 proquest_miscellaneous_1113216541 crossref_primary_10_1261_rna_034330_112 pubmed_primary_23006624 |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | RNA (Cambridge) |
PublicationTitleAlternate | RNA |
PublicationYear | 2012 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 15767453 - J Virol. 2005 Apr;79(7):4519-26 17502609 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9041-6 20739539 - J Virol. 2010 Nov;84(21):11395-406 22215596 - Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):941-6 21957046 - Wiley Interdiscip Rev RNA. 2011 Jul-Aug;2(4):582-600 20962086 - J Virol. 2011 Jan;85(1):64-75 21224379 - RNA. 2011 Mar;17(3):419-28 20409322 - BMC Genomics. 2010;11:259 20719943 - J Virol. 2010 Nov;84(21):11407-17 21956941 - Wiley Interdiscip Rev RNA. 2010 Nov-Dec;1(3):432-56 22438951 - PLoS One. 2012;7(3):e33561 18400852 - J Virol. 2008 Jun;82(12):5847-59 21289487 - RNA Biol. 2011 Jan-Feb;8(1):61-6 20709296 - Cell Host Microbe. 2010 Aug 19;8(2):196-207 17296726 - Mol Cell Biol. 2007 Apr;27(8):2791-9 21593866 - Nature. 2011 May 19;473(7347):337-42 16688178 - Nature. 2006 May 11;441(7090):244-7 9696822 - J Virol. 1998 Sep;72(9):7270-9 17245413 - Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26 19111175 - Methods Enzymol. 2008;448:139-63 19542371 - J Immunol. 2009 Jul 15;183(2):1197-206 7926773 - Genes Dev. 1994 Apr 1;8(7):855-66 18400854 - J Virol. 2008 Jun;82(12):5835-46 16299471 - EMBO Rep. 2006 Jan;7(1):72-7 18407064 - Cell Host Microbe. 2008 Apr 17;3(4):206-12 22196726 - Cell. 2011 Dec 23;147(7):1484-97 19064258 - Cell Host Microbe. 2008 Dec 11;4(6):579-91 15907206 - BMC Genomics. 2005;6:75 21362555 - Mol Cell. 2011 Mar 4;41(5):600-8 21908395 - Nucleic Acids Res. 2012 Jan;40(1):303-13 11782436 - EMBO J. 2002 Jan 15;21(1-2):165-74 20074068 - Biochem Soc Trans. 2010 Feb;38(Pt 1):242-51 22379089 - J Virol. 2012 May;86(10):5708-18 18701589 - J Virol. 2008 Oct;82(20):10162-74 21640425 - Trends Genet. 2011 Jul;27(7):286-93 22154474 - Trends Genet. 2012 Feb;28(2):70-7 22306653 - Nat Genet. 2012 Mar;44(3):277-84 21297639 - Nat Struct Mol Biol. 2011 Mar;18(3):270-6 21957004 - Wiley Interdiscip Rev RNA. 2011 Mar-Apr;2(2):167-83 22196725 - Cell. 2011 Dec 23;147(7):1473-83 9925643 - Genes Dev. 1999 Jan 15;13(2):188-201 21931566 - PLoS Genet. 2011 Sep;7(9):e1002273 22258860 - J Gen Virol. 2012 May;93(Pt 5):1093-102 11497431 - RNA. 2001 Aug;7(8):1126-41 17077271 - RNA. 2006 Dec;12(12):2171-86 18426919 - RNA. 2008 Jun;14(6):1026-36 21799029 - RNA. 2011 Sep;17(9):1747-59 2021112105524946000_18.11.2029.29 2021112105524946000_18.11.2029.28 2021112105524946000_18.11.2029.25 2021112105524946000_18.11.2029.47 2021112105524946000_18.11.2029.24 2021112105524946000_18.11.2029.46 2021112105524946000_18.11.2029.26 2021112105524946000_18.11.2029.21 2021112105524946000_18.11.2029.43 2021112105524946000_18.11.2029.20 2021112105524946000_18.11.2029.42 2021112105524946000_18.11.2029.23 2021112105524946000_18.11.2029.45 2021112105524946000_18.11.2029.22 2021112105524946000_18.11.2029.44 2021112105524946000_18.11.2029.41 2021112105524946000_18.11.2029.40 2021112105524946000_18.11.2029.17 2021112105524946000_18.11.2029.39 2021112105524946000_18.11.2029.19 2021112105524946000_18.11.2029.14 2021112105524946000_18.11.2029.36 2021112105524946000_18.11.2029.13 2021112105524946000_18.11.2029.35 2021112105524946000_18.11.2029.16 2021112105524946000_18.11.2029.38 2021112105524946000_18.11.2029.15 2021112105524946000_18.11.2029.37 (2021112105524946000_18.11.2029.27) 2001; 8 (2021112105524946000_18.11.2029.18) 1998; 72 2021112105524946000_18.11.2029.9 2021112105524946000_18.11.2029.8 2021112105524946000_18.11.2029.7 2021112105524946000_18.11.2029.6 2021112105524946000_18.11.2029.5 2021112105524946000_18.11.2029.10 2021112105524946000_18.11.2029.32 2021112105524946000_18.11.2029.4 2021112105524946000_18.11.2029.31 2021112105524946000_18.11.2029.3 2021112105524946000_18.11.2029.12 2021112105524946000_18.11.2029.34 2021112105524946000_18.11.2029.2 2021112105524946000_18.11.2029.11 2021112105524946000_18.11.2029.33 2021112105524946000_18.11.2029.1 2021112105524946000_18.11.2029.30 |
References_xml | – ident: 2021112105524946000_18.11.2029.25 doi: 10.1093/emboj/21.1.165 – ident: 2021112105524946000_18.11.2029.24 doi: 10.1101/gad.8.7.855 – ident: 2021112105524946000_18.11.2029.21 doi: 10.1261/rna.2439811 – ident: 2021112105524946000_18.11.2029.38 doi: 10.1371/journal.pgen.1002273 – ident: 2021112105524946000_18.11.2029.10 doi: 10.1073/pnas.0703348104 – ident: 2021112105524946000_18.11.2029.20 doi: 10.1261/rna.291506 – ident: 2021112105524946000_18.11.2029.3 doi: 10.1016/j.cell.2011.12.005 – ident: 2021112105524946000_18.11.2029.4 doi: 10.1038/nsmb.1984 – ident: 2021112105524946000_18.11.2029.41 doi: 10.1016/S0076-6879(08)02608-6 – ident: 2021112105524946000_18.11.2029.47 doi: 10.1016/j.cell.2011.11.051 – ident: 2021112105524946000_18.11.2029.43 doi: 10.1261/rna.2816711 – volume: 72 start-page: 7270 year: 1998 ident: 2021112105524946000_18.11.2029.18 article-title: Trans-complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells publication-title: J Virol doi: 10.1128/JVI.72.9.7270-7279.1998 – ident: 2021112105524946000_18.11.2029.14 doi: 10.1128/JVI.01027-08 – ident: 2021112105524946000_18.11.2029.30 doi: 10.1099/vir.0.039685-0 – ident: 2021112105524946000_18.11.2029.9 doi: 10.1186/1471-2164-11-259 – ident: 2021112105524946000_18.11.2029.2 doi: 10.1016/j.chom.2008.03.004 – ident: 2021112105524946000_18.11.2029.23 doi: 10.1016/j.tig.2011.11.001 – ident: 2021112105524946000_18.11.2029.31 doi: 10.1016/j.chom.2008.10.007 – ident: 2021112105524946000_18.11.2029.34 doi: 10.1002/wrna.78 – ident: 2021112105524946000_18.11.2029.32 doi: 10.1128/JVI.79.7.4519-4526.2005 – ident: 2021112105524946000_18.11.2029.29 doi: 10.1371/journal.pone.0033561 – ident: 2021112105524946000_18.11.2029.35 doi: 10.1002/wrna.13 – ident: 2021112105524946000_18.11.2029.39 doi: 10.1073/pnas.1112263109 – ident: 2021112105524946000_18.11.2029.28 doi: 10.1038/nature04735 – ident: 2021112105524946000_18.11.2029.7 doi: 10.1016/j.tig.2011.04.003 – ident: 2021112105524946000_18.11.2029.19 doi: 10.1042/BST0380242 – ident: 2021112105524946000_18.11.2029.33 doi: 10.4049/jimmunol.0803883 – ident: 2021112105524946000_18.11.2029.36 doi: 10.1128/JVI.00207-12 – ident: 2021112105524946000_18.11.2029.5 doi: 10.1186/1471-2164-6-75 – ident: 2021112105524946000_18.11.2029.44 doi: 10.1038/sj.embor.7400572 – ident: 2021112105524946000_18.11.2029.11 doi: 10.1101/gad.13.2.188 – volume: 8 start-page: 1126 year: 2001 ident: 2021112105524946000_18.11.2029.27 article-title: Poly(rC) binding proteins mediate poliovirus mRNA stability publication-title: RNA – ident: 2021112105524946000_18.11.2029.12 doi: 10.1128/JVI.01159-10 – ident: 2021112105524946000_18.11.2029.45 doi: 10.1093/nar/gkr686 – ident: 2021112105524946000_18.11.2029.46 doi: 10.1261/rna.958908 – ident: 2021112105524946000_18.11.2029.15 doi: 10.1016/j.molcel.2011.02.004 – ident: 2021112105524946000_18.11.2029.42 doi: 10.1016/j.chom.2010.07.003 – ident: 2021112105524946000_18.11.2029.26 doi: 10.1128/MCB.01445-06 – ident: 2021112105524946000_18.11.2029.6 doi: 10.1002/wrna.40 – ident: 2021112105524946000_18.11.2029.13 doi: 10.1038/nrm2104 – ident: 2021112105524946000_18.11.2029.22 doi: 10.4161/rna.8.1.14237 – ident: 2021112105524946000_18.11.2029.1 doi: 10.1038/ng.1071 – ident: 2021112105524946000_18.11.2029.17 doi: 10.1128/JVI.01513-07 – ident: 2021112105524946000_18.11.2029.37 doi: 10.1038/nature10098 – ident: 2021112105524946000_18.11.2029.40 doi: 10.1128/JVI.01047-10 – ident: 2021112105524946000_18.11.2029.8 doi: 10.1128/JVI.01657-10 – ident: 2021112105524946000_18.11.2029.16 doi: 10.1128/JVI.01514-07 |
SSID | ssj0013146 |
Score | 2.504197 |
Snippet | All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular... All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection due to stalling of the cellular... Cells infected with arthropod-borne flaviviruses (e.g., Dengue or Kunjin viruses) accumulate uncapped mRNAs or viral genomes, decay intermediates normally... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2029 |
SubjectTerms | 3' Untranslated Regions Aedes - cytology Aedes - virology Animals Cell Line Cricetinae Dengue Virus - genetics Dengue Virus - physiology Exoribonucleases - antagonists & inhibitors Exoribonucleases - chemistry Exoribonucleases - metabolism Gene Expression Regulation Half-Life Host-Pathogen Interactions Humans Insect Proteins - antagonists & inhibitors Insect Proteins - chemistry Insect Proteins - metabolism Microtubule-Associated Proteins - antagonists & inhibitors Microtubule-Associated Proteins - chemistry Microtubule-Associated Proteins - metabolism Oligonucleotide Array Sequence Analysis RNA Stability RNA, Messenger - chemistry RNA, Messenger - metabolism RNA, Untranslated - chemistry RNA, Untranslated - metabolism RNA, Untranslated - physiology RNA, Viral - chemistry RNA, Viral - metabolism RNA, Viral - physiology Saccharomyces cerevisiae Proteins - antagonists & inhibitors Saccharomyces cerevisiae Proteins - chemistry Transcriptome West Nile virus - genetics West Nile virus - physiology |
Title | A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23006624 https://search.proquest.com/docview/1113216541 https://pubmed.ncbi.nlm.nih.gov/PMC3479393 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZNYWwvY2t3SdeVMxjbkxNLlm-PaVgpGw1bWSFvRldqaJQQJ6V53S_fkWyXZXvbm8FX6RM-3yed84mQj9K7uunSRiaWKFAYo1FBvT0eNSiJMp1a7Sf0r2bZ5Q3_Ok_nByTta2FC0r6S9cjdLUauvg25lauFGvd5YuPvV9NQ_Vgm4wEZYPjtJXq_dNCVFGEgjYqkYJ1TIyqFMWIzihOOEt5Xzngf4CQ4oPP9oPQP0_w7YfKPCHTxgjzvqCNM2k98SQ6MOyLHE4eyebGDTxCSOcMs-RF5ct4fPZ32W7odk18TQLWvlj5ewfVsAqvg92o0yB1g08OWCTrCYeEM2DtxX9_X621jGqjdbS3rTQPIF8FP9vvsVTAPy3Utl857ImM0hPn1jIJwGsIafAO-ggQW_kXIQUMW7u4Vubn48nN6GXWbMEQKudUm0rGxXKJ2jVMZSy6MTstMG5VTlWca0RQ6x59AXgplOVOsQMagVCwUVVRkwiavySE2zbwlUCqprELFpGLNGTciS21puC14YVJO2ZB87lGoVq3XRuU1CkJXYQdXLXSoWfDKDz1IFXahb7ZwZrltvKBJmK_QokPypgXt8Vk92kOS78H5eIG32t4_gyMwWG53I-7kv-98R54h1WJtFeMpOdyst-Y90pmNPCODbz-KszCIfwNtaPfG |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEBov09i4dDA4SAie0saJc3vsKqYCa4WmTepb5Fu0SKtbNe1EX_nlHDvxtMIbb5FytT8r5_vscz4T8klYVzdVVIEOBQqUKKJBTq09HtUoiVKVVMpO6E-m6fiGfZ8lsz2S-FoYl7QvRd03d_O-qW9dbuVyLgc-T2zwczJy1Y9FPHhCniZxVlAv0v3iQVdUhKE0yOM86rwaUSsMEJ1-GDMU8bZ2xjoBx84Dne2GpX-45t8pk49i0MUROezIIwzbj3xB9rQ5JidDg8J5voXP4NI53Tz5MXl27o8ORn5TtxPyewio9-XCRiy4mg5h6RxftQKxBWy82zRBBTgwjIbqjt_X9_Vq0-gGanNbi3rdADJGsNP9Nn8V9K_FqhYLY12RMR7C7GpKgRsFbhW-AVtDAnP7ImShLg93-5LcXHy9Ho2DbhuGQCK7Wgcq1BUTqF7DRISCca2SIlVaZlRmqUI8ucrwN5AVXFYsklGOnEHKkEsqKU95Fb8i-9g0_YZAIYWsJGomGSoWMc3TpCo0q3KW64TRqEe-eBTKZeu2UVqVgtCV2MFlCx2qFrzyowepxC60zeZGLzaNlTRxZGu0aI-8bkF7eJZHu0eyHTgfLrBm27tncAw60-1uzJ3-950fyMH4enJZXn6b_nhLniPxitqaxndkf73a6DMkN2vx3g3lP8CM-iY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BEZRLBS3Q8BwkBCfH9nr9OqaBqDwaVRWVcrP2qVpqNlGcVOTKL2d2bVcN3LjZ8vqx-6088-3OfEPIB-FU3VRpAh0JJCiUxkERO3m8WCMlylRqlFvQP5tmp5fs2yyd3Sn15YP2paiH9no-tPWVj61czmXYx4mF52djn_1YJuFSmfA-eZAmeNoT9X4DoUssQnMaFElBO71G5AshIjSMEoZE3uXPODXgxOugs13T9I-_-XfY5B07NHlCDjoHEkbthz4l97Q9JEcji-R5voWP4EM6_Vr5IXl40h_tj_vCbkfk9wiQ88uFs1pwMR3B0qu-agViCzgAvnCCCnByWA3mmt_UN_Vq0-gGantVi3rdAHqN4Jb8XQwr6F-LVS0W1ikjo02E2cU0Bm4V-J34BlweCczdi9AT9bG422fkcvLl5_g06EoxBBI9rHWgIm2YQAYbpSISjGuVlpnSMo9lninElKscfwV5yaVhVNIC_QYpIy5jGfOMm-Q52cOu6WMCpRTSSORNMlKMMs2z1JSamYIVOmUxHZBPPQrVslXcqBxTQegqHOCqhQ6ZC7Z834NU4RC6bnOrF5vG0ZqEujyteEBetKDdPqtHe0DyHThvGzjB7d0rOA-98HY3717-953vyKPzz5Pqx9fp91fkMfpetE1rfE321quNfoP-zVq89TP5D1G7-zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+noncoding+RNA+produced+by+arthropod-borne+flaviviruses+inhibits+the+cellular+exoribonuclease+XRN1+and+alters+host+mRNA+stability&rft.jtitle=RNA+%28Cambridge%29&rft.au=Moon%2C+Stephanie+L.&rft.au=Anderson%2C+John+R.&rft.au=Kumagai%2C+Yutaro&rft.au=Wilusz%2C+Carol+J.&rft.date=2012-11-01&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=18&rft.issue=11&rft.spage=2029&rft.epage=2040&rft_id=info:doi/10.1261%2Frna.034330.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1261_rna_034330_112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon |