Early mapping of winter wheat in Henan province of China using time series of Sentinel-2 data

Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study,...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 59; no. 1; pp. 1534 - 1549
Main Authors Huang, Xianda, Huang, Jianxi, Li, Xuecao, Shen, Qianrong, Chen, Zhengchao
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2022
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2022.2104999

Cover

Abstract Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study, a framework was proposed for early season mapping of winter wheat using spectral and temporal information of Sentinel-2 images. First, time series of temporal and spectral features were derived using Whittaker smoothing. Subsequently, sensitivities of different parameters (i.e. input features, time interval, and length of time-series data) to early mapping were analyzed. Finally, early maps of winter wheat were generated based on optimal parameters. Results show that the earliest identifiable timing was delayed as the time interval of the time series increased. Winter wheat can be mapped in the early overwintering period (5 months before harvest) with an overall accuracy of 0.91, which is comparable to that of post-season mapping (0.94). In addition, the misclassification in early mapping was caused by uneven sample spatial patterns, natural conditions, and planting management; however, most errors can be gradually amended during the green-up and jointing periods, and the overall accuracy remained stable after the jointing stage. This study demonstrates that it is feasible to implement large-scale early mapping of winter wheat using satellite observations. The proposed approach potentially provides a reference for early mapping of other crop types in agricultural regions worldwide.
AbstractList Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study, a framework was proposed for early season mapping of winter wheat using spectral and temporal information of Sentinel-2 images. First, time series of temporal and spectral features were derived using Whittaker smoothing. Subsequently, sensitivities of different parameters (i.e. input features, time interval, and length of time-series data) to early mapping were analyzed. Finally, early maps of winter wheat were generated based on optimal parameters. Results show that the earliest identifiable timing was delayed as the time interval of the time series increased. Winter wheat can be mapped in the early overwintering period (5 months before harvest) with an overall accuracy of 0.91, which is comparable to that of post-season mapping (0.94). In addition, the misclassification in early mapping was caused by uneven sample spatial patterns, natural conditions, and planting management; however, most errors can be gradually amended during the green-up and jointing periods, and the overall accuracy remained stable after the jointing stage. This study demonstrates that it is feasible to implement large-scale early mapping of winter wheat using satellite observations. The proposed approach potentially provides a reference for early mapping of other crop types in agricultural regions worldwide.
Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study, a framework was proposed for early season mapping of winter wheat using spectral and temporal information of Sentinel-2 images. First, time series of temporal and spectral features were derived using Whittaker smoothing. Subsequently, sensitivities of different parameters (i.e. input features, time interval, and length of time-series data) to early mapping were analyzed. Finally, early maps of winter wheat were generated based on optimal parameters. Results show that the earliest identifiable timing was delayed as the time interval of the time series increased. Winter wheat can be mapped in the early overwintering period (5 months before harvest) with an overall accuracy of 0.91, which is comparable to that of post-season mapping (0.94). In addition, the misclassification in early mapping was caused by uneven sample spatial patterns, natural conditions, and planting management; however, most errors can be gradually amended during the green-up and jointing periods, and the overall accuracy remained stable after the jointing stage. This study demonstrates that it is feasible to implement large-scale early mapping of winter wheat using satellite observations. The proposed approach potentially provides a reference for early mapping of other crop types in agricultural regions worldwide.
Author Huang, Xianda
Chen, Zhengchao
Huang, Jianxi
Li, Xuecao
Shen, Qianrong
Author_xml – sequence: 1
  givenname: Xianda
  surname: Huang
  fullname: Huang, Xianda
  organization: China Agricultural University
– sequence: 2
  givenname: Jianxi
  surname: Huang
  fullname: Huang, Jianxi
  email: jxhuang@cau.edu.cn
  organization: Ministry of Agriculture
– sequence: 3
  givenname: Xuecao
  surname: Li
  fullname: Li, Xuecao
  organization: Ministry of Agriculture
– sequence: 4
  givenname: Qianrong
  surname: Shen
  fullname: Shen, Qianrong
  organization: China Agricultural University
– sequence: 5
  givenname: Zhengchao
  surname: Chen
  fullname: Chen, Zhengchao
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences
BookMark eNqFUU1vFCEYnpia2FZ_gglHL7PyMTBDvGg21TZp4sFeDXmHj5aGgRVYN_vvy7jtxYOegIfn44XnojuLKdque0_whuAJfyR8mIjAbEMxpRtK8CClfNWdEzmwfqRUnLV94_Qr6U13UcojxowTws-7n1eQwxEtsNv5eI-SQwcfq83o8GChIh_RtY0Q0S6n3z5quzK2Dz4C2pdVUP1iUbHZ27Je_bCx-mhDT5GBCm-71w5Cse-e18vu7uvV3fa6v_3-7Wb75bbXAxe1186B0YRpbfg0TWJwjErHrWgQ1VKO2BmDOZ2IFOM8jW7mhgvZDg2iwC67m5OtSfCodtkvkI8qgVd_gJTvFeTqdbAK2n-MdAZuZjO0KADT8sTcAjQFIprXh5NXe_GvvS1VLb5oGwJEm_ZF0YkNlBFJaaN-OlF1TqVk65T2FapPsWbwQRGs1n7USz9q7Uc999PU_C_1y-D_030-6Xx0KS9wSDkYVeEYUnYZovZFsX9bPAGYcag2
CitedBy_id crossref_primary_10_3390_rs14205280
crossref_primary_10_3390_rs16091505
crossref_primary_10_1080_15481603_2022_2163576
crossref_primary_10_3390_rs16040659
crossref_primary_10_3390_su16198373
crossref_primary_10_1016_j_isprsjprs_2023_07_004
crossref_primary_10_3390_rs16162980
crossref_primary_10_1080_15481603_2023_2262833
crossref_primary_10_1016_j_atech_2024_100725
crossref_primary_10_3390_rs14215625
crossref_primary_10_3390_rs15081990
crossref_primary_10_1038_s41597_024_03867_z
crossref_primary_10_1109_TGRS_2023_3259742
crossref_primary_10_1016_j_jag_2024_104151
crossref_primary_10_3390_rs16244620
crossref_primary_10_1016_j_isprsjprs_2024_08_006
crossref_primary_10_3390_rs16173197
crossref_primary_10_3390_plants13152109
crossref_primary_10_1109_JSTARS_2024_3428627
crossref_primary_10_1016_j_compag_2023_108555
Cites_doi 10.1080/01431160802575653
10.1016/j.rse.2017.03.021
10.3390/rs11070820
10.3390/rs12010162
10.5194/essd-14-2851-2022
10.1016/j.rse.2006.10.010
10.1016/j.rse.2005.03.010
10.1016/j.rse.2020.111660
10.3390/rs12091449
10.1016/0034-4257(79)90013-0
10.1007/s10113-013-0528-1
10.1016/j.rse.2016.10.010
10.1016/j.rse.2018.11.032
10.1029/2005GL022688
10.1109/TSMC.1973.4309314
10.3390/rs11070861
10.3390/rs13193822
10.1016/j.rse.2017.06.022
10.1016/j.rse.2019.111624
10.3390/rs11222647
10.3390/rs14040829
10.1016/j.isprsjprs.2020.05.013
10.1016/j.isprsjprs.2022.06.012
10.1016/j.rse.2017.06.033
10.1016/j.jag.2014.08.011
10.1016/j.rse.2019.111411
10.1016/j.rse.2017.01.008
10.3390/rs11243023
10.3390/rs12030449
10.1016/j.rse.2017.06.031
10.3390/rs11050535
10.1016/j.scib.2019.03.002
10.1016/j.rse.2006.06.018
10.1016/j.rse.2007.07.019
10.1016/j.agrformet.2019.06.008
10.3390/rs12081274
10.3390/rs11121500
10.3390/rs11131618
10.1016/j.isprsjprs.2020.01.001
10.1038/s41597-022-01305-6
10.1016/j.eja.2022.126556
10.1016/j.rse.2004.09.005
10.1080/01431161.2010.527397
10.1016/j.ecolind.2011.04.026
10.1016/j.agrformet.2015.10.013
10.1016/j.rse.2011.10.011
10.3390/rs12233912
10.1016/j.rsase.2020.100414
10.1017/S0013091500077853
10.1016/j.isprsjprs.2019.06.014
10.1080/01431161.2012.748992
10.1016/j.rse.2016.02.016
10.3390/rs12111744
10.1016/j.jag.2021.102668
10.1016/j.rse.2018.02.045
10.1016/j.rse.2018.11.007
10.5194/essd-12-3081-2020
10.3390/rs12122065
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2022.2104999
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
EndPage 1549
ExternalDocumentID oai_doaj_org_article_a72272ba5dbd4886aad8646bfddc2a16
10_1080_15481603_2022_2104999
2104999
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ID FETCH-LOGICAL-c456t-cffadc13ccd588864f329f5e613c2c9970fdd05281967b87fb5d5699672812a3
IEDL.DBID DOA
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:08:42 EDT 2025
Mon May 05 21:11:27 EDT 2025
Tue Jul 01 02:27:28 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Wed Dec 25 09:04:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-cffadc13ccd588864f329f5e613c2c9970fdd05281967b87fb5d5699672812a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/a72272ba5dbd4886aad8646bfddc2a16
PQID 2834231922
PQPubID 24069
PageCount 16
ParticipantIDs crossref_citationtrail_10_1080_15481603_2022_2104999
crossref_primary_10_1080_15481603_2022_2104999
proquest_miscellaneous_2834231922
doaj_primary_oai_doaj_org_article_a72272ba5dbd4886aad8646bfddc2a16
informaworld_taylorfrancis_310_1080_15481603_2022_2104999
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0033
cit0034
cit0031
cit0032
cit0030
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0005
  doi: 10.1080/01431160802575653
– ident: cit0024
  doi: 10.1016/j.rse.2017.03.021
– ident: cit0038
  doi: 10.3390/rs11070820
– ident: cit0048
  doi: 10.3390/rs12010162
– ident: cit0031
  doi: 10.5194/essd-14-2851-2022
– ident: cit0025
  doi: 10.1016/j.rse.2006.10.010
– ident: cit0003
  doi: 10.1016/j.rse.2005.03.010
– ident: cit0007
  doi: 10.1016/j.rse.2020.111660
– ident: cit0001
  doi: 10.3390/rs12091449
– ident: cit0040
  doi: 10.1016/0034-4257(79)90013-0
– ident: cit0044
  doi: 10.1007/s10113-013-0528-1
– ident: cit0034
  doi: 10.1016/j.rse.2016.10.010
– ident: cit0054
  doi: 10.1016/j.rse.2018.11.032
– ident: cit0014
  doi: 10.1029/2005GL022688
– ident: cit0017
  doi: 10.1109/TSMC.1973.4309314
– ident: cit0021
  doi: 10.3390/rs11070861
– ident: cit0039
  doi: 10.3390/rs13193822
– ident: cit0002
  doi: 10.1016/j.rse.2017.06.022
– ident: cit0026
  doi: 10.1016/j.rse.2019.111624
– ident: cit0052
  doi: 10.3390/rs11222647
– ident: cit0011
  doi: 10.3390/rs14040829
– ident: cit0029
  doi: 10.1016/j.isprsjprs.2020.05.013
– ident: cit0043
  doi: 10.1016/j.isprsjprs.2022.06.012
– ident: cit0028
  doi: 10.1016/j.rse.2017.06.033
– ident: cit0032
  doi: 10.1016/j.jag.2014.08.011
– ident: cit0055
  doi: 10.1016/j.rse.2019.111411
– ident: cit0037
  doi: 10.1016/j.rse.2017.01.008
– ident: cit0046
  doi: 10.3390/rs11243023
– ident: cit0030
  doi: 10.3390/rs12030449
– ident: cit0016
  doi: 10.1016/j.rse.2017.06.031
– ident: cit0050
  doi: 10.3390/rs11050535
– ident: cit0006
  doi: 10.1016/j.scib.2019.03.002
– ident: cit0027
  doi: 10.1016/j.rse.2006.06.018
– ident: cit0042
  doi: 10.1016/j.rse.2007.07.019
– ident: cit0018
  doi: 10.1016/j.agrformet.2019.06.008
– ident: cit0009
  doi: 10.3390/rs12081274
– ident: cit0047
  doi: 10.3390/rs11121500
– ident: cit0058
  doi: 10.3390/rs11131618
– ident: cit0049
  doi: 10.1016/j.isprsjprs.2020.01.001
– ident: cit0019
  doi: 10.1038/s41597-022-01305-6
– ident: cit0057
  doi: 10.1016/j.eja.2022.126556
– ident: cit0013
  doi: 10.1016/j.rse.2004.09.005
– ident: cit0053
  doi: 10.1080/01431161.2010.527397
– ident: cit0036
  doi: 10.1016/j.ecolind.2011.04.026
– ident: cit0020
  doi: 10.1016/j.agrformet.2015.10.013
– ident: cit0033
  doi: 10.1016/j.rse.2011.10.011
– ident: cit0051
  doi: 10.3390/rs12233912
– ident: cit0035
  doi: 10.1016/j.rsase.2020.100414
– ident: cit0045
  doi: 10.1017/S0013091500077853
– ident: cit0023
  doi: 10.1016/j.isprsjprs.2019.06.014
– ident: cit0015
  doi: 10.1080/01431161.2012.748992
– ident: cit0022
  doi: 10.1016/j.rse.2016.02.016
– ident: cit0041
  doi: 10.3390/rs12111744
– ident: cit0056
  doi: 10.1016/j.jag.2021.102668
– ident: cit0004
  doi: 10.1016/j.rse.2018.02.045
– ident: cit0008
  doi: 10.1016/j.rse.2018.11.007
– ident: cit0010
  doi: 10.5194/essd-12-3081-2020
– ident: cit0012
  doi: 10.3390/rs12122065
SSID ssj0035115
Score 2.4384813
Snippet Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1534
SubjectTerms China
crop mapping
crop yield
early season
overwintering
remote sensing
satellites
Sentinel-2
time series
time series analysis
Winter wheat
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L17ETza_iCDeOre0adfjFMcQ9OIEPUjI5xC2VtaN4X_ve2krfiA7eGvTJjR9ycvvvbz8HiHnUNyxjpnAapsGUai6QWpUFDg8yCh1CgYZOvTv7uPhY3T7xOtowqIKq0Qb2pVEEV5X4-SWqqgj4i4RZWN2ZLDuGGuDzYKofZ1sMACKGNXXeR7Wyhi3ybinTI3AWII69SGev5r5tjx5Fv8fHKa_dLZfiAbbZKtCkLRfinyHrNlslzT7Bfq08-k7vaD-unRZFHvkxXMY06lEJoYxzR1dIkfEjC5RD9PXjA5tJjNaOhe0xTd8Vm2KMfFjitnnKQ5UW-CjBwwvyuwkYBSjS_fJaHAzuh4GVVKFQANWmgfaOWl0N9TacLB-48iFLHXcwrKumU7TpOOM6XDcX4sT1Uuc4obHYBUlUMRkeEAaWZ7ZJqEu0aGV-PNsLwqlkxpMbctNEoOwlQ1bJKp_pdAV4TjmvZiIbsVLWktAYCOikkCLtD-rvZWMG6sqXKGcPl9GwmxfkM_Gopp_QiYMhoeS3CgDOiuW0kDfYwWd1Ux24xZJv0pZzL2_xJXJTUS44gPO6iEhYHLijovMbL4oBGA3gKsAotnhP9o_Ipt4W9JLHpPGfLawJwCF5urUD_YPmBv8zg
  priority: 102
  providerName: Taylor & Francis
Title Early mapping of winter wheat in Henan province of China using time series of Sentinel-2 data
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2104999
https://www.proquest.com/docview/2834231922
https://doaj.org/article/a72272ba5dbd4886aad8646bfddc2a16
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qyYv4xPVFBPFW7SZNuj2qKIugF1dYDxLyFEG74q6I_96ZpF1WPezFW5mmbchMk_kmk28IOQJx7gNzmbe-ygpuulnlTJEFPMiobQWADAP6N7eyf19cD8VwptQX5oQleuA0cKe6ZKxkRgtnHBib1Nr1ZCFNcM4y3Y1k23mVt2AqzcG4OyYiU2oBGEnmvD2708tPUYYiwIaMnQDiQZ__x6oUyft_UZf-marj-nO1SlYax5GepQ6vkQVfr5PtszGGskevX_SYxusUqRhvkMdIXUxfNRIwPNFRoJ9IDfFOP3H6pc817fta1zTFFKzHFrGYNsVU-CeKRecp2qcf4607zCqq_UvGKCaVbpLB1eXgop81tRQyCy7SJLMhaGe73FonAPTKInBWBeFhNbfMVlWZw4DmArfVZGl6ZTDCCQlgqAQR03yLLNWj2m8TGkrLvcbB872C66AtIGwvXClBx8bzDinaoVS24RnHchcvqtvQkbYaUPgS1WigQ06mj70loo15D5yjnqaNkSc7CsB6VGM9ap71dEg1q2U1iWGSkGqaKD6nA4etSSj4J3GjRdd-9DFW4LKBlwq-M9v5j07ukmX8bqKX3CNLk_cPvw-u0MQckMX8oX8Qbf8bTz4CHA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DnoRn7g-I4i36m7atNujikt9XlxhPUjIcxF2W9kH4r93Jm3FB-LBW0mb0GSSyXyTyTeEHEJx0zpmAqttGkShagWpUVHg8CKj1CkAMnTo397F2UN01eO9T3dhMKwSMbQriSK8rsbFjc7oOiTuBM1sTI8M8I6xYwAtaLbPknneBjQBc7r5mNXaGM_JuOdMjQAtQZ36Fs9vzXzZnzyN_zcS0x9K2-9EnWWyVJmQ9LSU-QqZsfkq2Twdo1O7GL7RI-qfS5_FeI08eRJjOpRIxdCnhaOvSBIxoq-oiOlzTjOby5yW3gVt8QufVptiUHyfYvp5ijPVjvHVPcYX5XYQMIrhpeuk27nonmdBlVUh0GAsTQLtnDS6FWptOMDfOHIhSx23sK9rptM0aTpjmhwP2OJEtROnuOExwKIEipgMN8hcXuR2k1CX6NBKHDzbjkLppAasbblJYpC2smGDRPVQCl0xjmPii4FoVcSktQQENiIqCTTI8Ue1l5Jy468KZyinj4-RMdsXFKO-qBagkAljCVOSG2VAacVSGuh7rKCzmslW3CDpZymLiXeYuDK7iQj_-IGDekoIWJ145CJzW0zHAow3sFfBimZb_2h_nyxk3dsbcXN5d71NFvFVyTW5Q-Ymo6ndBbtoovb8xH8HRKEASA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRCXUl7qFlqMhLhl2bVjpzmWwmp5rZAoEhdk-blCtEm1yaoqv54ZJ6mgFeqht8ixrdgZj78Zj78BeInFkxC5z4ILZZYLO81Kb_Ms0kVG40o0yMih_3mh5t_yD9_lEE3Y9GGVZEPHjigi6Wpa3Kc-DhFxrwllU3ZktO44H6PNQqj9NtxRCE8oqk9MFoMypmMymShTczSWsM1wied_3fyzPSUW_0scpld0dtqIZvfBDkPo4k9-jdetHbvfl9gdbzTGLdjsYSo76OTqAdwK1UPYPmjIcV6fnLNXLD13fpHmEfxIRMnsxBDdw5LVkZ0REcWKnZGyZz8rNg-VqVjnwXCBaqTU3YwC75eMUtwzWg2hoVdfKYapCscZZxTC-hiOZu-ODudZn7khcwjI2szFaLybCue8RBNb5VHwMsqA2MFxV5bFJHo_kXSIpwq7X0QrvVRoehVYxI14AhtVXYVtYLFwIhiahLCfCxONQ3s-SF8olCgbxAjy4X9p17OaU3KNYz3tyU-HmdTUie5ncgTji2anHa3HdQ3ekDBcVCZW7lRQr5a6X-TaFJwX3BrprUfFqIzxOHZlcbCOm6kaQfm3KOk2OWVil0FFi2s-4MUgdxo1AB3rmCrU60YjQERMjEid79yg_-dw98vbmf70fvHxKdyjNx2d5TPYaFfrsIvQq7V7aXH9AeC1HvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+mapping+of+winter+wheat+in+Henan+province+of+China+using+time+series+of+Sentinel-2+data&rft.jtitle=GIScience+and+remote+sensing&rft.au=Huang%2C+Xianda&rft.au=Huang%2C+Jianxi&rft.au=Li%2C+Xuecao&rft.au=Shen%2C+Qianrong&rft.date=2022-12-31&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=1534&rft.epage=1549&rft_id=info:doi/10.1080%2F15481603.2022.2104999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2022_2104999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon