Early mapping of winter wheat in Henan province of China using time series of Sentinel-2 data
Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study,...
Saved in:
Published in | GIScience and remote sensing Vol. 59; no. 1; pp. 1534 - 1549 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2022
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2022.2104999 |
Cover
Abstract | Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study, a framework was proposed for early season mapping of winter wheat using spectral and temporal information of Sentinel-2 images. First, time series of temporal and spectral features were derived using Whittaker smoothing. Subsequently, sensitivities of different parameters (i.e. input features, time interval, and length of time-series data) to early mapping were analyzed. Finally, early maps of winter wheat were generated based on optimal parameters. Results show that the earliest identifiable timing was delayed as the time interval of the time series increased. Winter wheat can be mapped in the early overwintering period (5 months before harvest) with an overall accuracy of 0.91, which is comparable to that of post-season mapping (0.94). In addition, the misclassification in early mapping was caused by uneven sample spatial patterns, natural conditions, and planting management; however, most errors can be gradually amended during the green-up and jointing periods, and the overall accuracy remained stable after the jointing stage. This study demonstrates that it is feasible to implement large-scale early mapping of winter wheat using satellite observations. The proposed approach potentially provides a reference for early mapping of other crop types in agricultural regions worldwide. |
---|---|
AbstractList | Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study, a framework was proposed for early season mapping of winter wheat using spectral and temporal information of Sentinel-2 images. First, time series of temporal and spectral features were derived using Whittaker smoothing. Subsequently, sensitivities of different parameters (i.e. input features, time interval, and length of time-series data) to early mapping were analyzed. Finally, early maps of winter wheat were generated based on optimal parameters. Results show that the earliest identifiable timing was delayed as the time interval of the time series increased. Winter wheat can be mapped in the early overwintering period (5 months before harvest) with an overall accuracy of 0.91, which is comparable to that of post-season mapping (0.94). In addition, the misclassification in early mapping was caused by uneven sample spatial patterns, natural conditions, and planting management; however, most errors can be gradually amended during the green-up and jointing periods, and the overall accuracy remained stable after the jointing stage. This study demonstrates that it is feasible to implement large-scale early mapping of winter wheat using satellite observations. The proposed approach potentially provides a reference for early mapping of other crop types in agricultural regions worldwide. Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat using remotely sensed data is challenging because remote sensing observations can only be used for a part of the growth period. In this study, a framework was proposed for early season mapping of winter wheat using spectral and temporal information of Sentinel-2 images. First, time series of temporal and spectral features were derived using Whittaker smoothing. Subsequently, sensitivities of different parameters (i.e. input features, time interval, and length of time-series data) to early mapping were analyzed. Finally, early maps of winter wheat were generated based on optimal parameters. Results show that the earliest identifiable timing was delayed as the time interval of the time series increased. Winter wheat can be mapped in the early overwintering period (5 months before harvest) with an overall accuracy of 0.91, which is comparable to that of post-season mapping (0.94). In addition, the misclassification in early mapping was caused by uneven sample spatial patterns, natural conditions, and planting management; however, most errors can be gradually amended during the green-up and jointing periods, and the overall accuracy remained stable after the jointing stage. This study demonstrates that it is feasible to implement large-scale early mapping of winter wheat using satellite observations. The proposed approach potentially provides a reference for early mapping of other crop types in agricultural regions worldwide. |
Author | Huang, Xianda Chen, Zhengchao Huang, Jianxi Li, Xuecao Shen, Qianrong |
Author_xml | – sequence: 1 givenname: Xianda surname: Huang fullname: Huang, Xianda organization: China Agricultural University – sequence: 2 givenname: Jianxi surname: Huang fullname: Huang, Jianxi email: jxhuang@cau.edu.cn organization: Ministry of Agriculture – sequence: 3 givenname: Xuecao surname: Li fullname: Li, Xuecao organization: Ministry of Agriculture – sequence: 4 givenname: Qianrong surname: Shen fullname: Shen, Qianrong organization: China Agricultural University – sequence: 5 givenname: Zhengchao surname: Chen fullname: Chen, Zhengchao organization: Aerospace Information Research Institute, Chinese Academy of Sciences |
BookMark | eNqFUU1vFCEYnpia2FZ_gglHL7PyMTBDvGg21TZp4sFeDXmHj5aGgRVYN_vvy7jtxYOegIfn44XnojuLKdque0_whuAJfyR8mIjAbEMxpRtK8CClfNWdEzmwfqRUnLV94_Qr6U13UcojxowTws-7n1eQwxEtsNv5eI-SQwcfq83o8GChIh_RtY0Q0S6n3z5quzK2Dz4C2pdVUP1iUbHZ27Je_bCx-mhDT5GBCm-71w5Cse-e18vu7uvV3fa6v_3-7Wb75bbXAxe1186B0YRpbfg0TWJwjErHrWgQ1VKO2BmDOZ2IFOM8jW7mhgvZDg2iwC67m5OtSfCodtkvkI8qgVd_gJTvFeTqdbAK2n-MdAZuZjO0KADT8sTcAjQFIprXh5NXe_GvvS1VLb5oGwJEm_ZF0YkNlBFJaaN-OlF1TqVk65T2FapPsWbwQRGs1n7USz9q7Uc999PU_C_1y-D_030-6Xx0KS9wSDkYVeEYUnYZovZFsX9bPAGYcag2 |
CitedBy_id | crossref_primary_10_3390_rs14205280 crossref_primary_10_3390_rs16091505 crossref_primary_10_1080_15481603_2022_2163576 crossref_primary_10_3390_rs16040659 crossref_primary_10_3390_su16198373 crossref_primary_10_1016_j_isprsjprs_2023_07_004 crossref_primary_10_3390_rs16162980 crossref_primary_10_1080_15481603_2023_2262833 crossref_primary_10_1016_j_atech_2024_100725 crossref_primary_10_3390_rs14215625 crossref_primary_10_3390_rs15081990 crossref_primary_10_1038_s41597_024_03867_z crossref_primary_10_1109_TGRS_2023_3259742 crossref_primary_10_1016_j_jag_2024_104151 crossref_primary_10_3390_rs16244620 crossref_primary_10_1016_j_isprsjprs_2024_08_006 crossref_primary_10_3390_rs16173197 crossref_primary_10_3390_plants13152109 crossref_primary_10_1109_JSTARS_2024_3428627 crossref_primary_10_1016_j_compag_2023_108555 |
Cites_doi | 10.1080/01431160802575653 10.1016/j.rse.2017.03.021 10.3390/rs11070820 10.3390/rs12010162 10.5194/essd-14-2851-2022 10.1016/j.rse.2006.10.010 10.1016/j.rse.2005.03.010 10.1016/j.rse.2020.111660 10.3390/rs12091449 10.1016/0034-4257(79)90013-0 10.1007/s10113-013-0528-1 10.1016/j.rse.2016.10.010 10.1016/j.rse.2018.11.032 10.1029/2005GL022688 10.1109/TSMC.1973.4309314 10.3390/rs11070861 10.3390/rs13193822 10.1016/j.rse.2017.06.022 10.1016/j.rse.2019.111624 10.3390/rs11222647 10.3390/rs14040829 10.1016/j.isprsjprs.2020.05.013 10.1016/j.isprsjprs.2022.06.012 10.1016/j.rse.2017.06.033 10.1016/j.jag.2014.08.011 10.1016/j.rse.2019.111411 10.1016/j.rse.2017.01.008 10.3390/rs11243023 10.3390/rs12030449 10.1016/j.rse.2017.06.031 10.3390/rs11050535 10.1016/j.scib.2019.03.002 10.1016/j.rse.2006.06.018 10.1016/j.rse.2007.07.019 10.1016/j.agrformet.2019.06.008 10.3390/rs12081274 10.3390/rs11121500 10.3390/rs11131618 10.1016/j.isprsjprs.2020.01.001 10.1038/s41597-022-01305-6 10.1016/j.eja.2022.126556 10.1016/j.rse.2004.09.005 10.1080/01431161.2010.527397 10.1016/j.ecolind.2011.04.026 10.1016/j.agrformet.2015.10.013 10.1016/j.rse.2011.10.011 10.3390/rs12233912 10.1016/j.rsase.2020.100414 10.1017/S0013091500077853 10.1016/j.isprsjprs.2019.06.014 10.1080/01431161.2012.748992 10.1016/j.rse.2016.02.016 10.3390/rs12111744 10.1016/j.jag.2021.102668 10.1016/j.rse.2018.02.045 10.1016/j.rse.2018.11.007 10.5194/essd-12-3081-2020 10.3390/rs12122065 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2022.2104999 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
EndPage | 1549 |
ExternalDocumentID | oai_doaj_org_article_a72272ba5dbd4886aad8646bfddc2a16 10_1080_15481603_2022_2104999 2104999 |
Genre | Research Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-cffadc13ccd588864f329f5e613c2c9970fdd05281967b87fb5d5699672812a3 |
IEDL.DBID | DOA |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:08:42 EDT 2025 Mon May 05 21:11:27 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Wed Dec 25 09:04:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-cffadc13ccd588864f329f5e613c2c9970fdd05281967b87fb5d5699672812a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/a72272ba5dbd4886aad8646bfddc2a16 |
PQID | 2834231922 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1080_15481603_2022_2104999 crossref_primary_10_1080_15481603_2022_2104999 proquest_miscellaneous_2834231922 doaj_primary_oai_doaj_org_article_a72272ba5dbd4886aad8646bfddc2a16 informaworld_taylorfrancis_310_1080_15481603_2022_2104999 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | cit0033 cit0034 cit0031 cit0032 cit0030 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0005 doi: 10.1080/01431160802575653 – ident: cit0024 doi: 10.1016/j.rse.2017.03.021 – ident: cit0038 doi: 10.3390/rs11070820 – ident: cit0048 doi: 10.3390/rs12010162 – ident: cit0031 doi: 10.5194/essd-14-2851-2022 – ident: cit0025 doi: 10.1016/j.rse.2006.10.010 – ident: cit0003 doi: 10.1016/j.rse.2005.03.010 – ident: cit0007 doi: 10.1016/j.rse.2020.111660 – ident: cit0001 doi: 10.3390/rs12091449 – ident: cit0040 doi: 10.1016/0034-4257(79)90013-0 – ident: cit0044 doi: 10.1007/s10113-013-0528-1 – ident: cit0034 doi: 10.1016/j.rse.2016.10.010 – ident: cit0054 doi: 10.1016/j.rse.2018.11.032 – ident: cit0014 doi: 10.1029/2005GL022688 – ident: cit0017 doi: 10.1109/TSMC.1973.4309314 – ident: cit0021 doi: 10.3390/rs11070861 – ident: cit0039 doi: 10.3390/rs13193822 – ident: cit0002 doi: 10.1016/j.rse.2017.06.022 – ident: cit0026 doi: 10.1016/j.rse.2019.111624 – ident: cit0052 doi: 10.3390/rs11222647 – ident: cit0011 doi: 10.3390/rs14040829 – ident: cit0029 doi: 10.1016/j.isprsjprs.2020.05.013 – ident: cit0043 doi: 10.1016/j.isprsjprs.2022.06.012 – ident: cit0028 doi: 10.1016/j.rse.2017.06.033 – ident: cit0032 doi: 10.1016/j.jag.2014.08.011 – ident: cit0055 doi: 10.1016/j.rse.2019.111411 – ident: cit0037 doi: 10.1016/j.rse.2017.01.008 – ident: cit0046 doi: 10.3390/rs11243023 – ident: cit0030 doi: 10.3390/rs12030449 – ident: cit0016 doi: 10.1016/j.rse.2017.06.031 – ident: cit0050 doi: 10.3390/rs11050535 – ident: cit0006 doi: 10.1016/j.scib.2019.03.002 – ident: cit0027 doi: 10.1016/j.rse.2006.06.018 – ident: cit0042 doi: 10.1016/j.rse.2007.07.019 – ident: cit0018 doi: 10.1016/j.agrformet.2019.06.008 – ident: cit0009 doi: 10.3390/rs12081274 – ident: cit0047 doi: 10.3390/rs11121500 – ident: cit0058 doi: 10.3390/rs11131618 – ident: cit0049 doi: 10.1016/j.isprsjprs.2020.01.001 – ident: cit0019 doi: 10.1038/s41597-022-01305-6 – ident: cit0057 doi: 10.1016/j.eja.2022.126556 – ident: cit0013 doi: 10.1016/j.rse.2004.09.005 – ident: cit0053 doi: 10.1080/01431161.2010.527397 – ident: cit0036 doi: 10.1016/j.ecolind.2011.04.026 – ident: cit0020 doi: 10.1016/j.agrformet.2015.10.013 – ident: cit0033 doi: 10.1016/j.rse.2011.10.011 – ident: cit0051 doi: 10.3390/rs12233912 – ident: cit0035 doi: 10.1016/j.rsase.2020.100414 – ident: cit0045 doi: 10.1017/S0013091500077853 – ident: cit0023 doi: 10.1016/j.isprsjprs.2019.06.014 – ident: cit0015 doi: 10.1080/01431161.2012.748992 – ident: cit0022 doi: 10.1016/j.rse.2016.02.016 – ident: cit0041 doi: 10.3390/rs12111744 – ident: cit0056 doi: 10.1016/j.jag.2021.102668 – ident: cit0004 doi: 10.1016/j.rse.2018.02.045 – ident: cit0008 doi: 10.1016/j.rse.2018.11.007 – ident: cit0010 doi: 10.5194/essd-12-3081-2020 – ident: cit0012 doi: 10.3390/rs12122065 |
SSID | ssj0035115 |
Score | 2.4384813 |
Snippet | Accurate mapping of winter wheat in its early stages is crucial for crop growth monitoring and crop yield forecasting. However, early mapping of winter wheat... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1534 |
SubjectTerms | China crop mapping crop yield early season overwintering remote sensing satellites Sentinel-2 time series time series analysis Winter wheat |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L17ETza_iCDeOre0adfjFMcQ9OIEPUjI5xC2VtaN4X_ve2krfiA7eGvTJjR9ycvvvbz8HiHnUNyxjpnAapsGUai6QWpUFDg8yCh1CgYZOvTv7uPhY3T7xOtowqIKq0Qb2pVEEV5X4-SWqqgj4i4RZWN2ZLDuGGuDzYKofZ1sMACKGNXXeR7Wyhi3ybinTI3AWII69SGev5r5tjx5Fv8fHKa_dLZfiAbbZKtCkLRfinyHrNlslzT7Bfq08-k7vaD-unRZFHvkxXMY06lEJoYxzR1dIkfEjC5RD9PXjA5tJjNaOhe0xTd8Vm2KMfFjitnnKQ5UW-CjBwwvyuwkYBSjS_fJaHAzuh4GVVKFQANWmgfaOWl0N9TacLB-48iFLHXcwrKumU7TpOOM6XDcX4sT1Uuc4obHYBUlUMRkeEAaWZ7ZJqEu0aGV-PNsLwqlkxpMbctNEoOwlQ1bJKp_pdAV4TjmvZiIbsVLWktAYCOikkCLtD-rvZWMG6sqXKGcPl9GwmxfkM_Gopp_QiYMhoeS3CgDOiuW0kDfYwWd1Ux24xZJv0pZzL2_xJXJTUS44gPO6iEhYHLijovMbL4oBGA3gKsAotnhP9o_Ipt4W9JLHpPGfLawJwCF5urUD_YPmBv8zg priority: 102 providerName: Taylor & Francis |
Title | Early mapping of winter wheat in Henan province of China using time series of Sentinel-2 data |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2104999 https://www.proquest.com/docview/2834231922 https://doaj.org/article/a72272ba5dbd4886aad8646bfddc2a16 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qyYv4xPVFBPFW7SZNuj2qKIugF1dYDxLyFEG74q6I_96ZpF1WPezFW5mmbchMk_kmk28IOQJx7gNzmbe-ygpuulnlTJEFPMiobQWADAP6N7eyf19cD8VwptQX5oQleuA0cKe6ZKxkRgtnHBib1Nr1ZCFNcM4y3Y1k23mVt2AqzcG4OyYiU2oBGEnmvD2708tPUYYiwIaMnQDiQZ__x6oUyft_UZf-marj-nO1SlYax5GepQ6vkQVfr5PtszGGskevX_SYxusUqRhvkMdIXUxfNRIwPNFRoJ9IDfFOP3H6pc817fta1zTFFKzHFrGYNsVU-CeKRecp2qcf4607zCqq_UvGKCaVbpLB1eXgop81tRQyCy7SJLMhaGe73FonAPTKInBWBeFhNbfMVlWZw4DmArfVZGl6ZTDCCQlgqAQR03yLLNWj2m8TGkrLvcbB872C66AtIGwvXClBx8bzDinaoVS24RnHchcvqtvQkbYaUPgS1WigQ06mj70loo15D5yjnqaNkSc7CsB6VGM9ap71dEg1q2U1iWGSkGqaKD6nA4etSSj4J3GjRdd-9DFW4LKBlwq-M9v5j07ukmX8bqKX3CNLk_cPvw-u0MQckMX8oX8Qbf8bTz4CHA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-DnoRn7g-I4i36m7atNujikt9XlxhPUjIcxF2W9kH4r93Jm3FB-LBW0mb0GSSyXyTyTeEHEJx0zpmAqttGkShagWpUVHg8CKj1CkAMnTo397F2UN01eO9T3dhMKwSMbQriSK8rsbFjc7oOiTuBM1sTI8M8I6xYwAtaLbPknneBjQBc7r5mNXaGM_JuOdMjQAtQZ36Fs9vzXzZnzyN_zcS0x9K2-9EnWWyVJmQ9LSU-QqZsfkq2Twdo1O7GL7RI-qfS5_FeI08eRJjOpRIxdCnhaOvSBIxoq-oiOlzTjOby5yW3gVt8QufVptiUHyfYvp5ijPVjvHVPcYX5XYQMIrhpeuk27nonmdBlVUh0GAsTQLtnDS6FWptOMDfOHIhSx23sK9rptM0aTpjmhwP2OJEtROnuOExwKIEipgMN8hcXuR2k1CX6NBKHDzbjkLppAasbblJYpC2smGDRPVQCl0xjmPii4FoVcSktQQENiIqCTTI8Ue1l5Jy468KZyinj4-RMdsXFKO-qBagkAljCVOSG2VAacVSGuh7rKCzmslW3CDpZymLiXeYuDK7iQj_-IGDekoIWJ145CJzW0zHAow3sFfBimZb_2h_nyxk3dsbcXN5d71NFvFVyTW5Q-Ymo6ndBbtoovb8xH8HRKEASA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRCXUl7qFlqMhLhl2bVjpzmWwmp5rZAoEhdk-blCtEm1yaoqv54ZJ6mgFeqht8ixrdgZj78Zj78BeInFkxC5z4ILZZYLO81Kb_Ms0kVG40o0yMih_3mh5t_yD9_lEE3Y9GGVZEPHjigi6Wpa3Kc-DhFxrwllU3ZktO44H6PNQqj9NtxRCE8oqk9MFoMypmMymShTczSWsM1wied_3fyzPSUW_0scpld0dtqIZvfBDkPo4k9-jdetHbvfl9gdbzTGLdjsYSo76OTqAdwK1UPYPmjIcV6fnLNXLD13fpHmEfxIRMnsxBDdw5LVkZ0REcWKnZGyZz8rNg-VqVjnwXCBaqTU3YwC75eMUtwzWg2hoVdfKYapCscZZxTC-hiOZu-ODudZn7khcwjI2szFaLybCue8RBNb5VHwMsqA2MFxV5bFJHo_kXSIpwq7X0QrvVRoehVYxI14AhtVXYVtYLFwIhiahLCfCxONQ3s-SF8olCgbxAjy4X9p17OaU3KNYz3tyU-HmdTUie5ncgTji2anHa3HdQ3ekDBcVCZW7lRQr5a6X-TaFJwX3BrprUfFqIzxOHZlcbCOm6kaQfm3KOk2OWVil0FFi2s-4MUgdxo1AB3rmCrU60YjQERMjEid79yg_-dw98vbmf70fvHxKdyjNx2d5TPYaFfrsIvQq7V7aXH9AeC1HvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+mapping+of+winter+wheat+in+Henan+province+of+China+using+time+series+of+Sentinel-2+data&rft.jtitle=GIScience+and+remote+sensing&rft.au=Huang%2C+Xianda&rft.au=Huang%2C+Jianxi&rft.au=Li%2C+Xuecao&rft.au=Shen%2C+Qianrong&rft.date=2022-12-31&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=1534&rft.epage=1549&rft_id=info:doi/10.1080%2F15481603.2022.2104999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2022_2104999 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |