Detection of Abnormal Visual Events via Global Optical Flow Orientation Histogram
The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optic...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 9; no. 6; pp. 988 - 998 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optical flow orientation as a descriptor encoding the moving information of each video frame. The nonlinear one-class support vector machine classification algorithm, following a learning period characterizing the normal behavior of training frames, detects abnormal events in the current frame. Further, a fast version of the detection algorithm is designed by fusing the optical flow computation with a background subtraction step. We finally apply the method to detect abnormal events on several benchmark data sets, and show promising results. |
---|---|
AbstractList | The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optical flow orientation as a descriptor encoding the moving information of each video frame. The nonlinear one-class support vector machine classification algorithm, following a learning period characterizing the normal behavior of training frames, detects abnormal events in the current frame. Further, a fast version of the detection algorithm is designed by fusing the optical flow computation with a background subtraction step. We finally apply the method to detect abnormal events on several benchmark data sets, and show promising results. |
Author | Snoussi, Hichem Tian Wang |
Author_xml | – sequence: 1 surname: Tian Wang fullname: Tian Wang email: wangtian8704@gmail.com organization: Inst. Charles Delaunay, Univ. of Technol. of Troyes, Troyes, France – sequence: 2 givenname: Hichem surname: Snoussi fullname: Snoussi, Hichem email: hichem.snoussi@utt.fr organization: Inst. Charles Delaunay, Univ. of Technol. of Troyes, Troyes, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28538557$$DView record in Pascal Francis https://utt.hal.science/hal-02307896$$DView record in HAL |
BookMark | eNp9kU9rGzEQxUVJoUnaD1B6WQiB5mBXo3-7ezRJHAcMpjTtVcjSbKOwXjnS2iXfPtqs8SGHXvTE6PdG0rwzctKFDgn5CnQKQOsfD_fzX1NGQUwZB1mX8IGcgpRqoiiDk-Me-CdyltITpUKAqk7Jzxvs0fY-dEVoitm6C3Fj2uKPT7sst3vs-lTsvSnu2rDOldW29zbrvA3_ilX0-dy8uRc-9eFvNJvP5GNj2oRfDnpOfs9vH64Xk-Xq7v56tpxYIVWfV8MUA8EZOCeZ4paXwtoSGXPgSletUblGIXOWriU00KAwnKKghqFznJ-Tq7Hvo2n1NvqNiS86GK8Xs6UeapRxWla12kNmv4_sNobnHaZeb3yy2Lamw7BLGlQeHVV1PbS9eIc-hV3s8k80SCFrrgSnmbo8UCblcTTRdNan4zNYJXklZZk5GDkbQ0oRmyMCVA_B6SE4PQSnD8FlT_nOY_045D4a3_7X-W10ekQ83qTKSlBQ_BVwaKWw |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1109_JSEN_2015_2472960 crossref_primary_10_1007_s11042_016_3316_3 crossref_primary_10_1080_17538947_2020_1738569 crossref_primary_10_1007_s11704_021_0236_9 crossref_primary_10_1080_17509653_2025_2475759 crossref_primary_10_3390_s22030825 crossref_primary_10_1016_j_neucom_2024_127726 crossref_primary_10_1049_iet_ipr_2019_0549 crossref_primary_10_1117_1_JEI_27_4_043050 crossref_primary_10_1007_s10845_018_1431_x crossref_primary_10_1007_s11042_018_5701_6 crossref_primary_10_3233_JIFS_211338 crossref_primary_10_1007_s11042_023_14840_0 crossref_primary_10_1016_j_ijleo_2017_11_176 crossref_primary_10_1016_j_jvcir_2018_11_035 crossref_primary_10_1016_j_jvcir_2020_102765 crossref_primary_10_1016_j_neucom_2019_11_087 crossref_primary_10_1007_s11042_020_09774_w crossref_primary_10_1109_ACCESS_2019_2947518 crossref_primary_10_1049_ipr2_12006 crossref_primary_10_1109_TIFS_2017_2705623 crossref_primary_10_1049_iet_ipr_2017_0367 crossref_primary_10_1049_iet_cvi_2018_5256 crossref_primary_10_1117_1_JEI_24_3_033021 crossref_primary_10_1007_s12652_022_03702_6 crossref_primary_10_1007_s11704_018_7407_3 crossref_primary_10_1145_3417989 crossref_primary_10_1080_13682199_2023_2216971 crossref_primary_10_1109_TIFS_2021_3124734 crossref_primary_10_1016_j_compag_2019_105048 crossref_primary_10_3233_JIFS_192062 crossref_primary_10_1016_j_patrec_2017_04_015 crossref_primary_10_1016_j_imavis_2023_104710 crossref_primary_10_1016_j_ins_2017_11_062 crossref_primary_10_1007_s00500_019_04544_9 crossref_primary_10_3390_app13084956 crossref_primary_10_1049_ipr2_12258 crossref_primary_10_1007_s00779_021_01586_5 crossref_primary_10_1109_TIFS_2023_3300094 crossref_primary_10_1007_s11042_018_6504_5 crossref_primary_10_1109_TIFS_2018_2856189 crossref_primary_10_1186_s13634_018_0574_4 crossref_primary_10_1002_cpe_5302 crossref_primary_10_1109_TASE_2024_3434610 crossref_primary_10_1049_iet_cvi_2015_0271 crossref_primary_10_1109_TCSVT_2023_3325451 crossref_primary_10_1016_j_eng_2019_02_008 crossref_primary_10_1109_TSMC_2016_2638048 crossref_primary_10_1016_j_patrec_2017_07_016 crossref_primary_10_1007_s11042_017_5309_2 crossref_primary_10_1007_s10044_017_0669_9 crossref_primary_10_1016_j_neucom_2020_07_068 crossref_primary_10_1088_1742_6596_1518_1_012018 crossref_primary_10_1109_TIFS_2018_2878538 crossref_primary_10_1088_1742_6596_2890_1_012026 crossref_primary_10_1109_JSEN_2018_2866943 crossref_primary_10_1109_MIS_2015_95 crossref_primary_10_1007_s11760_017_1153_0 crossref_primary_10_1016_j_neucom_2018_02_012 crossref_primary_10_3233_ICA_210652 crossref_primary_10_1109_TIFS_2020_3023791 crossref_primary_10_1587_transinf_2015EDL8113 crossref_primary_10_1109_TIFS_2018_2868617 crossref_primary_10_3390_app9040757 crossref_primary_10_3390_s23239616 crossref_primary_10_1007_s11042_020_08885_8 crossref_primary_10_12677_AIRR_2017_61002 crossref_primary_10_1016_j_patcog_2020_107355 crossref_primary_10_1007_s11042_015_2664_8 crossref_primary_10_1007_s13735_022_00227_8 crossref_primary_10_1016_j_imavis_2024_105205 crossref_primary_10_1007_s11042_021_10702_9 crossref_primary_10_1016_j_ijleo_2017_07_064 crossref_primary_10_1007_s11042_016_4115_6 crossref_primary_10_1109_ACCESS_2021_3077577 crossref_primary_10_1007_s11042_021_11722_1 crossref_primary_10_1109_TII_2019_2962603 crossref_primary_10_1016_j_eswa_2017_09_029 |
Cites_doi | 10.1109/ICCV.2011.6126497 10.1109/ICIA.2007.4295746 10.1016/j.patrec.2010.10.008 10.1109/MSP.2010.937392 10.1007/978-1-4757-3264-1 10.1109/CVPR.2008.4587756 10.1109/ICPR.2010.891 10.1117/1.3542038 10.1016/j.cviu.2007.06.004 10.1109/CVPR.2011.5995434 10.1016/0004-3702(81)90024-2 10.1109/CVPR.2009.5206641 10.1162/089976601750264965 10.1109/CVPR.2010.5540235 10.1109/TPAMI.2007.70825 10.1117/12.883799 10.1007/978-3-642-28598-1_1 10.1145/130385.130401 10.1109/TSMCC.2011.2178594 10.1007/s11263-006-0009-9 10.1109/TITS.2009.2030963 10.1109/CVPR.1997.609382 10.1109/AVSS.2005.1577267 10.1109/CVPR.2005.384 10.1109/TCSVT.2008.2005599 10.1109/TSMCC.2009.2023380 10.1017/CBO9780511801389 10.1109/ISCV.1995.477012 10.1109/34.910878 10.1109/ICCVW.2009.5457456 10.1109/AVSS.2012.39 10.1109/ICPR.2004.1334462 10.1117/1.3280284 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D F28 1XC |
DOI | 10.1109/TIFS.2014.2315971 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1556-6021 |
EndPage | 998 |
ExternalDocumentID | oai_HAL_hal_02307896v1 3377371751 28538557 10_1109_TIFS_2014_2315971 6784016 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council of the Chinese Government – fundername: SURECAP CPER project (fonction de surveillance dans les réseaux de capteurs sans fil via contrat de plan Etat-Région) – fundername: Platform CAPSEC (capteurs pour la sécurité) funded by Région hampagne-Ardenne and FEDER (fonds européen de développement régional) |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG IQODW 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D F28 1XC |
ID | FETCH-LOGICAL-c456t-c4a26214321dd5263c374cc7e22d1d7d8be6df6e2dc0b51f1fe4a30e40a2edd33 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Wed Aug 13 07:45:31 EDT 2025 Fri Jul 11 03:03:21 EDT 2025 Sun Jun 29 16:34:56 EDT 2025 Wed Apr 02 07:18:33 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Tue Jul 01 02:34:09 EDT 2025 Tue Aug 26 16:49:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | HOFO optical flow Abnormal detection one-class SVM Image subtraction Streaming Computer vision Histogram Descriptor system Image processing Image content Video signal Image segmentation Surveillance ABackground Scene analysis Vector support machine Anomaly Learning algorithm Artificial intelligence Optical flow Binary classification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-c4a26214321dd5263c374cc7e22d1d7d8be6df6e2dc0b51f1fe4a30e40a2edd33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6563-2135 |
PQID | 1545936430 |
PQPubID | 85506 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1545936430 hal_primary_oai_HAL_hal_02307896v1 crossref_primary_10_1109_TIFS_2014_2315971 ieee_primary_6784016 crossref_citationtrail_10_1109_TIFS_2014_2315971 pascalfrancis_primary_28538557 proquest_miscellaneous_1620106993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2014 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref36 ref14 ref30 ref33 utasi (ref9) 2010; 49 ref10 metro (ref4) 2013 ref1 ref17 ref38 ref16 ref19 ref18 collins (ref2) 2000; 2 (ref32) 2009 ref46 ref24 ref45 ref23 schölkopf (ref39) 2002 dalal (ref27) 2006 ref25 vapnik (ref34) 1963; 24 ref20 ref42 ref22 ref44 wang (ref29) 0; 1 ref21 lavee (ref6) 2009 kim (ref15) 0 ref28 vapnik (ref41) 1998 ref8 (ref31) 2006 ref7 ref3 ref5 dalal (ref26) 0 ref40 porikli (ref43) 2012 xiang (ref11) 0; 2 |
References_xml | – year: 2009 ident: ref32 publication-title: Performance Evaluation of Tracking and Surveillance (PETS) 2009 Benchmark Data Multisensor Sequences Containing Different Crowd Activities – ident: ref12 doi: 10.1109/ICCV.2011.6126497 – volume: 1 start-page: 113 year: 0 ident: ref29 article-title: Detection of visual abnormal events via one-class SVM publication-title: Proc Int Conf Pattern Recog – volume: 24 start-page: 774 year: 1963 ident: ref34 article-title: Pattern recognition using generalized portrait method publication-title: Autom Remote Control – year: 2006 ident: ref27 publication-title: Finding People in Images and Videos – ident: ref23 doi: 10.1109/ICIA.2007.4295746 – ident: ref16 doi: 10.1016/j.patrec.2010.10.008 – ident: ref8 doi: 10.1109/MSP.2010.937392 – ident: ref40 doi: 10.1007/978-1-4757-3264-1 – year: 2002 ident: ref39 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond – ident: ref28 doi: 10.1109/CVPR.2008.4587756 – ident: ref46 doi: 10.1109/ICPR.2010.891 – ident: ref14 doi: 10.1117/1.3542038 – ident: ref10 doi: 10.1016/j.cviu.2007.06.004 – ident: ref45 doi: 10.1109/CVPR.2011.5995434 – ident: ref33 doi: 10.1016/0004-3702(81)90024-2 – ident: ref44 doi: 10.1109/CVPR.2009.5206641 – ident: ref38 doi: 10.1162/089976601750264965 – year: 2009 ident: ref6 publication-title: Understanding Video Events A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video – ident: ref25 doi: 10.1109/CVPR.2010.5540235 – ident: ref17 doi: 10.1109/TPAMI.2007.70825 – ident: ref18 doi: 10.1117/12.883799 – volume: 2 year: 2000 ident: ref2 publication-title: A system for video surveillance and monitoring – start-page: 3 year: 2012 ident: ref43 article-title: Object detection and tracking publication-title: Video Analytics for Business Intelligence doi: 10.1007/978-3-642-28598-1_1 – ident: ref35 doi: 10.1145/130385.130401 – year: 2013 ident: ref4 publication-title: Autonomous Operator of Parisian Transports – ident: ref1 doi: 10.1109/TSMCC.2011.2178594 – year: 1998 ident: ref41 publication-title: Statistical Learning Theory – year: 2006 ident: ref31 publication-title: Unusual Crowd Activity Dataset of University of Minnesota Department of Computer Science and Engineering – ident: ref19 doi: 10.1007/s11263-006-0009-9 – ident: ref3 doi: 10.1109/TITS.2009.2030963 – ident: ref20 doi: 10.1109/CVPR.1997.609382 – ident: ref5 doi: 10.1109/AVSS.2005.1577267 – ident: ref42 doi: 10.1109/CVPR.2005.384 – ident: ref36 doi: 10.1109/TCSVT.2008.2005599 – ident: ref7 doi: 10.1109/TSMCC.2009.2023380 – ident: ref37 doi: 10.1017/CBO9780511801389 – ident: ref21 doi: 10.1109/ISCV.1995.477012 – ident: ref22 doi: 10.1109/34.910878 – ident: ref13 doi: 10.1109/ICCVW.2009.5457456 – start-page: 2921 year: 0 ident: ref15 article-title: Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates publication-title: Proc IEEE Conf CVPR – ident: ref30 doi: 10.1109/AVSS.2012.39 – ident: ref24 doi: 10.1109/ICPR.2004.1334462 – volume: 2 start-page: 1238 year: 0 ident: ref11 article-title: Video behaviour profiling and abnormality detection without manual labelling publication-title: Proc IEEE 10th ICCV – start-page: 428 year: 0 ident: ref26 article-title: Human detection using oriented histograms of flow and appearance publication-title: Proc ECCV – volume: 49 start-page: 17201 year: 2010 ident: ref9 article-title: Detection of unusual optical flow patterns by multilevel hidden Markov models publication-title: Opt Eng doi: 10.1117/1.3280284 |
SSID | ssj0044168 |
Score | 2.4755716 |
Snippet | The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to... |
SourceID | hal proquest pascalfrancis crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 988 |
SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Classification Computer science; control theory; systems Data processing. List processing. Character string processing Encoding Engineering Sciences Exact sciences and technology Feature extraction Forensic engineering Frames Histograms Memory organisation. Data processing Nonlinear optics Nonlinearity Optical imaging Orientation Pattern recognition. Digital image processing. Computational geometry Signal and Image processing Software Support vector machines Theoretical computing Training Vectors |
Title | Detection of Abnormal Visual Events via Global Optical Flow Orientation Histogram |
URI | https://ieeexplore.ieee.org/document/6784016 https://www.proquest.com/docview/1545936430 https://www.proquest.com/docview/1620106993 https://utt.hal.science/hal-02307896 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEJ_0-qQPVluNaG1W45ORKyzscvt40V5OY22MrekbYT-IFy_Q9KAm_vXOwEL6YRpfgLBDYJn9-M3ub2YA3orYGqGtCk2mdYjzdRGqNBWhkzrOpBZaKPJ3Pv4ql2fp53NxvgXvR18Y51xHPnNTuuz28m1tWloqO8SBFc0BOYEJGm69r9Yw6uKs3ru9CSFDNDISv4MZR-rw9NPiO5G40imCGQTQ8Y05aPKTGJBdahUiRhYb_Ddln9TizvjcTTqLHTgePrfnmvyato2emj-3Ijn-b30ewyOPPtm8by5PYMtVu7AzZHZgvqPvwsNrYQr34NtH13SMrYrVJZvrinDumv1YbVo8HRFjcsOuVgXrEwiwk4tugZwt1vVvdnK58u5NFetikhAd7CmcLY5OPyxDn4ohNIiwGjwWXHLEVjy2VnCZmCRLjckc5za2mZ1pJ20pHbcm0iIu49KlRRK5NCq4szZJnsF2VVfuOTCrI1XqRLiSYtmVqbIaMRNlP1PKmVgEEA3KyY2PU07pMtZ5Z69EKid95qTP3OszgHfjIxd9kI77hN-gxkc5Cq-9nH_J6R7ZY9lMySsU2iN1jVJeUwEc3GggYzlH1DMTIgtgf2gxuR8MNjmhVJUg9IsCeD0WYzemvZmicnWLMpJoCRLR4ot_v_olPKBa9Cy1fdhuLlv3CvFQow-6jvAXcWEFZw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAcKLRUBEoxiBMi2ziJnfVxBV1tYbcVYot6i-JHxIpVUnWTIvHrmclLFBDikkTxRIkztuez_c0MwGvBrRHaKt8kWvtorzNfxbHwndQ8kVpoocjfeXEmZxfxh0txuQVvB18Y51xDPnMjumz28m1paloqO8aBFacDchvuoN0XvPXW6sddtOut45sQ0sdpRtTtYfJAHS9Pp5-JxhWPEM4ghOa3rND2V-JANslViBqZbfDv5G1aiz9G6MbsTHdh0X9wyzb5NqorPTI_fovl-L81eggPOvzJJm2DeQRbrtiD3T63A-u6-h7c_yVQ4T58eu-qhrNVsDJnE10Q0l2zL6tNjacT4kxu2M0qY20KAXZ-1SyRs-m6_M7Or1edg1PBmqgkRAh7DBfTk-W7md8lY_ANYqwKj1koQ0RXIbdWhDIyURIbk7gwtNwmdqydtLl0oTWBFjznuYuzKHBxkIXO2ig6gJ2iLNwTYFYHKteRcDlFs8tjZTWiJsp_ppQzXHgQ9MpJTRepnBJmrNNmxhKolPSZkj7TTp8evBkeuWrDdPxL-BVqfJCjANuzyTylezQjS8ZK3qDQPqlrkOo05cHRrQYylIeIe8ZCJB4c9i0m7YaDTUo4VUUI_gIPXg7F2JFpdyYrXFmjjCRigkS8-PTvr34Bd2fLxTydn559fAb3qEYtZ-0Qdqrr2j1HdFTpo6ZT_AQ0bAiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Abnormal+Visual+Events+via+Global+Optical+Flow+Orientation+Histogram&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Tian+Wang&rft.au=Snoussi%2C+Hichem&rft.date=2014-06-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=9&rft.issue=6&rft.spage=988&rft.epage=998&rft_id=info:doi/10.1109%2FTIFS.2014.2315971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2014_2315971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |