Detection of Abnormal Visual Events via Global Optical Flow Orientation Histogram

The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 9; no. 6; pp. 988 - 998
Main Authors Tian Wang, Snoussi, Hichem
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optical flow orientation as a descriptor encoding the moving information of each video frame. The nonlinear one-class support vector machine classification algorithm, following a learning period characterizing the normal behavior of training frames, detects abnormal events in the current frame. Further, a fast version of the detection algorithm is designed by fusing the optical flow computation with a background subtraction step. We finally apply the method to detect abnormal events on several benchmark data sets, and show promising results.
AbstractList The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optical flow orientation as a descriptor encoding the moving information of each video frame. The nonlinear one-class support vector machine classification algorithm, following a learning period characterizing the normal behavior of training frames, detects abnormal events in the current frame. Further, a fast version of the detection algorithm is designed by fusing the optical flow computation with a background subtraction step. We finally apply the method to detect abnormal events on several benchmark data sets, and show promising results.
Author Snoussi, Hichem
Tian Wang
Author_xml – sequence: 1
  surname: Tian Wang
  fullname: Tian Wang
  email: wangtian8704@gmail.com
  organization: Inst. Charles Delaunay, Univ. of Technol. of Troyes, Troyes, France
– sequence: 2
  givenname: Hichem
  surname: Snoussi
  fullname: Snoussi, Hichem
  email: hichem.snoussi@utt.fr
  organization: Inst. Charles Delaunay, Univ. of Technol. of Troyes, Troyes, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28538557$$DView record in Pascal Francis
https://utt.hal.science/hal-02307896$$DView record in HAL
BookMark eNp9kU9rGzEQxUVJoUnaD1B6WQiB5mBXo3-7ezRJHAcMpjTtVcjSbKOwXjnS2iXfPtqs8SGHXvTE6PdG0rwzctKFDgn5CnQKQOsfD_fzX1NGQUwZB1mX8IGcgpRqoiiDk-Me-CdyltITpUKAqk7Jzxvs0fY-dEVoitm6C3Fj2uKPT7sst3vs-lTsvSnu2rDOldW29zbrvA3_ilX0-dy8uRc-9eFvNJvP5GNj2oRfDnpOfs9vH64Xk-Xq7v56tpxYIVWfV8MUA8EZOCeZ4paXwtoSGXPgSletUblGIXOWriU00KAwnKKghqFznJ-Tq7Hvo2n1NvqNiS86GK8Xs6UeapRxWla12kNmv4_sNobnHaZeb3yy2Lamw7BLGlQeHVV1PbS9eIc-hV3s8k80SCFrrgSnmbo8UCblcTTRdNan4zNYJXklZZk5GDkbQ0oRmyMCVA_B6SE4PQSnD8FlT_nOY_045D4a3_7X-W10ekQ83qTKSlBQ_BVwaKWw
CODEN ITIFA6
CitedBy_id crossref_primary_10_1109_JSEN_2015_2472960
crossref_primary_10_1007_s11042_016_3316_3
crossref_primary_10_1080_17538947_2020_1738569
crossref_primary_10_1007_s11704_021_0236_9
crossref_primary_10_1080_17509653_2025_2475759
crossref_primary_10_3390_s22030825
crossref_primary_10_1016_j_neucom_2024_127726
crossref_primary_10_1049_iet_ipr_2019_0549
crossref_primary_10_1117_1_JEI_27_4_043050
crossref_primary_10_1007_s10845_018_1431_x
crossref_primary_10_1007_s11042_018_5701_6
crossref_primary_10_3233_JIFS_211338
crossref_primary_10_1007_s11042_023_14840_0
crossref_primary_10_1016_j_ijleo_2017_11_176
crossref_primary_10_1016_j_jvcir_2018_11_035
crossref_primary_10_1016_j_jvcir_2020_102765
crossref_primary_10_1016_j_neucom_2019_11_087
crossref_primary_10_1007_s11042_020_09774_w
crossref_primary_10_1109_ACCESS_2019_2947518
crossref_primary_10_1049_ipr2_12006
crossref_primary_10_1109_TIFS_2017_2705623
crossref_primary_10_1049_iet_ipr_2017_0367
crossref_primary_10_1049_iet_cvi_2018_5256
crossref_primary_10_1117_1_JEI_24_3_033021
crossref_primary_10_1007_s12652_022_03702_6
crossref_primary_10_1007_s11704_018_7407_3
crossref_primary_10_1145_3417989
crossref_primary_10_1080_13682199_2023_2216971
crossref_primary_10_1109_TIFS_2021_3124734
crossref_primary_10_1016_j_compag_2019_105048
crossref_primary_10_3233_JIFS_192062
crossref_primary_10_1016_j_patrec_2017_04_015
crossref_primary_10_1016_j_imavis_2023_104710
crossref_primary_10_1016_j_ins_2017_11_062
crossref_primary_10_1007_s00500_019_04544_9
crossref_primary_10_3390_app13084956
crossref_primary_10_1049_ipr2_12258
crossref_primary_10_1007_s00779_021_01586_5
crossref_primary_10_1109_TIFS_2023_3300094
crossref_primary_10_1007_s11042_018_6504_5
crossref_primary_10_1109_TIFS_2018_2856189
crossref_primary_10_1186_s13634_018_0574_4
crossref_primary_10_1002_cpe_5302
crossref_primary_10_1109_TASE_2024_3434610
crossref_primary_10_1049_iet_cvi_2015_0271
crossref_primary_10_1109_TCSVT_2023_3325451
crossref_primary_10_1016_j_eng_2019_02_008
crossref_primary_10_1109_TSMC_2016_2638048
crossref_primary_10_1016_j_patrec_2017_07_016
crossref_primary_10_1007_s11042_017_5309_2
crossref_primary_10_1007_s10044_017_0669_9
crossref_primary_10_1016_j_neucom_2020_07_068
crossref_primary_10_1088_1742_6596_1518_1_012018
crossref_primary_10_1109_TIFS_2018_2878538
crossref_primary_10_1088_1742_6596_2890_1_012026
crossref_primary_10_1109_JSEN_2018_2866943
crossref_primary_10_1109_MIS_2015_95
crossref_primary_10_1007_s11760_017_1153_0
crossref_primary_10_1016_j_neucom_2018_02_012
crossref_primary_10_3233_ICA_210652
crossref_primary_10_1109_TIFS_2020_3023791
crossref_primary_10_1587_transinf_2015EDL8113
crossref_primary_10_1109_TIFS_2018_2868617
crossref_primary_10_3390_app9040757
crossref_primary_10_3390_s23239616
crossref_primary_10_1007_s11042_020_08885_8
crossref_primary_10_12677_AIRR_2017_61002
crossref_primary_10_1016_j_patcog_2020_107355
crossref_primary_10_1007_s11042_015_2664_8
crossref_primary_10_1007_s13735_022_00227_8
crossref_primary_10_1016_j_imavis_2024_105205
crossref_primary_10_1007_s11042_021_10702_9
crossref_primary_10_1016_j_ijleo_2017_07_064
crossref_primary_10_1007_s11042_016_4115_6
crossref_primary_10_1109_ACCESS_2021_3077577
crossref_primary_10_1007_s11042_021_11722_1
crossref_primary_10_1109_TII_2019_2962603
crossref_primary_10_1016_j_eswa_2017_09_029
Cites_doi 10.1109/ICCV.2011.6126497
10.1109/ICIA.2007.4295746
10.1016/j.patrec.2010.10.008
10.1109/MSP.2010.937392
10.1007/978-1-4757-3264-1
10.1109/CVPR.2008.4587756
10.1109/ICPR.2010.891
10.1117/1.3542038
10.1016/j.cviu.2007.06.004
10.1109/CVPR.2011.5995434
10.1016/0004-3702(81)90024-2
10.1109/CVPR.2009.5206641
10.1162/089976601750264965
10.1109/CVPR.2010.5540235
10.1109/TPAMI.2007.70825
10.1117/12.883799
10.1007/978-3-642-28598-1_1
10.1145/130385.130401
10.1109/TSMCC.2011.2178594
10.1007/s11263-006-0009-9
10.1109/TITS.2009.2030963
10.1109/CVPR.1997.609382
10.1109/AVSS.2005.1577267
10.1109/CVPR.2005.384
10.1109/TCSVT.2008.2005599
10.1109/TSMCC.2009.2023380
10.1017/CBO9780511801389
10.1109/ISCV.1995.477012
10.1109/34.910878
10.1109/ICCVW.2009.5457456
10.1109/AVSS.2012.39
10.1109/ICPR.2004.1334462
10.1117/1.3280284
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
F28
1XC
DOI 10.1109/TIFS.2014.2315971
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1556-6021
EndPage 998
ExternalDocumentID oai_HAL_hal_02307896v1
3377371751
28538557
10_1109_TIFS_2014_2315971
6784016
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council of the Chinese Government
– fundername: SURECAP CPER project (fonction de surveillance dans les réseaux de capteurs sans fil via contrat de plan Etat-Région)
– fundername: Platform CAPSEC (capteurs pour la sécurité) funded by Région hampagne-Ardenne and FEDER (fonds européen de développement régional)
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
F28
1XC
ID FETCH-LOGICAL-c456t-c4a26214321dd5263c374cc7e22d1d7d8be6df6e2dc0b51f1fe4a30e40a2edd33
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Wed Aug 13 07:45:31 EDT 2025
Fri Jul 11 03:03:21 EDT 2025
Sun Jun 29 16:34:56 EDT 2025
Wed Apr 02 07:18:33 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Tue Jul 01 02:34:09 EDT 2025
Tue Aug 26 16:49:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords HOFO
optical flow
Abnormal detection
one-class SVM
Image subtraction
Streaming
Computer vision
Histogram
Descriptor system
Image processing
Image content
Video signal
Image segmentation
Surveillance
ABackground
Scene analysis
Vector support machine
Anomaly
Learning algorithm
Artificial intelligence
Optical flow
Binary classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-c4a26214321dd5263c374cc7e22d1d7d8be6df6e2dc0b51f1fe4a30e40a2edd33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6563-2135
PQID 1545936430
PQPubID 85506
PageCount 11
ParticipantIDs proquest_journals_1545936430
hal_primary_oai_HAL_hal_02307896v1
crossref_primary_10_1109_TIFS_2014_2315971
ieee_primary_6784016
crossref_citationtrail_10_1109_TIFS_2014_2315971
pascalfrancis_primary_28538557
proquest_miscellaneous_1620106993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref36
ref14
ref30
ref33
utasi (ref9) 2010; 49
ref10
metro (ref4) 2013
ref1
ref17
ref38
ref16
ref19
ref18
collins (ref2) 2000; 2
(ref32) 2009
ref46
ref24
ref45
ref23
schölkopf (ref39) 2002
dalal (ref27) 2006
ref25
vapnik (ref34) 1963; 24
ref20
ref42
ref22
ref44
wang (ref29) 0; 1
ref21
lavee (ref6) 2009
kim (ref15) 0
ref28
vapnik (ref41) 1998
ref8
(ref31) 2006
ref7
ref3
ref5
dalal (ref26) 0
ref40
porikli (ref43) 2012
xiang (ref11) 0; 2
References_xml – year: 2009
  ident: ref32
  publication-title: Performance Evaluation of Tracking and Surveillance (PETS) 2009 Benchmark Data Multisensor Sequences Containing Different Crowd Activities
– ident: ref12
  doi: 10.1109/ICCV.2011.6126497
– volume: 1
  start-page: 113
  year: 0
  ident: ref29
  article-title: Detection of visual abnormal events via one-class SVM
  publication-title: Proc Int Conf Pattern Recog
– volume: 24
  start-page: 774
  year: 1963
  ident: ref34
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom Remote Control
– year: 2006
  ident: ref27
  publication-title: Finding People in Images and Videos
– ident: ref23
  doi: 10.1109/ICIA.2007.4295746
– ident: ref16
  doi: 10.1016/j.patrec.2010.10.008
– ident: ref8
  doi: 10.1109/MSP.2010.937392
– ident: ref40
  doi: 10.1007/978-1-4757-3264-1
– year: 2002
  ident: ref39
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
– ident: ref28
  doi: 10.1109/CVPR.2008.4587756
– ident: ref46
  doi: 10.1109/ICPR.2010.891
– ident: ref14
  doi: 10.1117/1.3542038
– ident: ref10
  doi: 10.1016/j.cviu.2007.06.004
– ident: ref45
  doi: 10.1109/CVPR.2011.5995434
– ident: ref33
  doi: 10.1016/0004-3702(81)90024-2
– ident: ref44
  doi: 10.1109/CVPR.2009.5206641
– ident: ref38
  doi: 10.1162/089976601750264965
– year: 2009
  ident: ref6
  publication-title: Understanding Video Events A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video
– ident: ref25
  doi: 10.1109/CVPR.2010.5540235
– ident: ref17
  doi: 10.1109/TPAMI.2007.70825
– ident: ref18
  doi: 10.1117/12.883799
– volume: 2
  year: 2000
  ident: ref2
  publication-title: A system for video surveillance and monitoring
– start-page: 3
  year: 2012
  ident: ref43
  article-title: Object detection and tracking
  publication-title: Video Analytics for Business Intelligence
  doi: 10.1007/978-3-642-28598-1_1
– ident: ref35
  doi: 10.1145/130385.130401
– year: 2013
  ident: ref4
  publication-title: Autonomous Operator of Parisian Transports
– ident: ref1
  doi: 10.1109/TSMCC.2011.2178594
– year: 1998
  ident: ref41
  publication-title: Statistical Learning Theory
– year: 2006
  ident: ref31
  publication-title: Unusual Crowd Activity Dataset of University of Minnesota Department of Computer Science and Engineering
– ident: ref19
  doi: 10.1007/s11263-006-0009-9
– ident: ref3
  doi: 10.1109/TITS.2009.2030963
– ident: ref20
  doi: 10.1109/CVPR.1997.609382
– ident: ref5
  doi: 10.1109/AVSS.2005.1577267
– ident: ref42
  doi: 10.1109/CVPR.2005.384
– ident: ref36
  doi: 10.1109/TCSVT.2008.2005599
– ident: ref7
  doi: 10.1109/TSMCC.2009.2023380
– ident: ref37
  doi: 10.1017/CBO9780511801389
– ident: ref21
  doi: 10.1109/ISCV.1995.477012
– ident: ref22
  doi: 10.1109/34.910878
– ident: ref13
  doi: 10.1109/ICCVW.2009.5457456
– start-page: 2921
  year: 0
  ident: ref15
  article-title: Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
  publication-title: Proc IEEE Conf CVPR
– ident: ref30
  doi: 10.1109/AVSS.2012.39
– ident: ref24
  doi: 10.1109/ICPR.2004.1334462
– volume: 2
  start-page: 1238
  year: 0
  ident: ref11
  article-title: Video behaviour profiling and abnormality detection without manual labelling
  publication-title: Proc IEEE 10th ICCV
– start-page: 428
  year: 0
  ident: ref26
  article-title: Human detection using oriented histograms of flow and appearance
  publication-title: Proc ECCV
– volume: 49
  start-page: 17201
  year: 2010
  ident: ref9
  article-title: Detection of unusual optical flow patterns by multilevel hidden Markov models
  publication-title: Opt Eng
  doi: 10.1117/1.3280284
SSID ssj0044168
Score 2.4755716
Snippet The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to...
SourceID hal
proquest
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 988
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Classification
Computer science; control theory; systems
Data processing. List processing. Character string processing
Encoding
Engineering Sciences
Exact sciences and technology
Feature extraction
Forensic engineering
Frames
Histograms
Memory organisation. Data processing
Nonlinear optics
Nonlinearity
Optical imaging
Orientation
Pattern recognition. Digital image processing. Computational geometry
Signal and Image processing
Software
Support vector machines
Theoretical computing
Training
Vectors
Title Detection of Abnormal Visual Events via Global Optical Flow Orientation Histogram
URI https://ieeexplore.ieee.org/document/6784016
https://www.proquest.com/docview/1545936430
https://www.proquest.com/docview/1620106993
https://utt.hal.science/hal-02307896
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEJ_0-qQPVluNaG1W45ORKyzscvt40V5OY22MrekbYT-IFy_Q9KAm_vXOwEL6YRpfgLBDYJn9-M3ub2YA3orYGqGtCk2mdYjzdRGqNBWhkzrOpBZaKPJ3Pv4ql2fp53NxvgXvR18Y51xHPnNTuuz28m1tWloqO8SBFc0BOYEJGm69r9Yw6uKs3ru9CSFDNDISv4MZR-rw9NPiO5G40imCGQTQ8Y05aPKTGJBdahUiRhYb_Ddln9TizvjcTTqLHTgePrfnmvyato2emj-3Ijn-b30ewyOPPtm8by5PYMtVu7AzZHZgvqPvwsNrYQr34NtH13SMrYrVJZvrinDumv1YbVo8HRFjcsOuVgXrEwiwk4tugZwt1vVvdnK58u5NFetikhAd7CmcLY5OPyxDn4ohNIiwGjwWXHLEVjy2VnCZmCRLjckc5za2mZ1pJ20pHbcm0iIu49KlRRK5NCq4szZJnsF2VVfuOTCrI1XqRLiSYtmVqbIaMRNlP1PKmVgEEA3KyY2PU07pMtZ5Z69EKid95qTP3OszgHfjIxd9kI77hN-gxkc5Cq-9nH_J6R7ZY9lMySsU2iN1jVJeUwEc3GggYzlH1DMTIgtgf2gxuR8MNjmhVJUg9IsCeD0WYzemvZmicnWLMpJoCRLR4ot_v_olPKBa9Cy1fdhuLlv3CvFQow-6jvAXcWEFZw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAcKLRUBEoxiBMi2ziJnfVxBV1tYbcVYot6i-JHxIpVUnWTIvHrmclLFBDikkTxRIkztuez_c0MwGvBrRHaKt8kWvtorzNfxbHwndQ8kVpoocjfeXEmZxfxh0txuQVvB18Y51xDPnMjumz28m1paloqO8aBFacDchvuoN0XvPXW6sddtOut45sQ0sdpRtTtYfJAHS9Pp5-JxhWPEM4ghOa3rND2V-JANslViBqZbfDv5G1aiz9G6MbsTHdh0X9wyzb5NqorPTI_fovl-L81eggPOvzJJm2DeQRbrtiD3T63A-u6-h7c_yVQ4T58eu-qhrNVsDJnE10Q0l2zL6tNjacT4kxu2M0qY20KAXZ-1SyRs-m6_M7Or1edg1PBmqgkRAh7DBfTk-W7md8lY_ANYqwKj1koQ0RXIbdWhDIyURIbk7gwtNwmdqydtLl0oTWBFjznuYuzKHBxkIXO2ig6gJ2iLNwTYFYHKteRcDlFs8tjZTWiJsp_ppQzXHgQ9MpJTRepnBJmrNNmxhKolPSZkj7TTp8evBkeuWrDdPxL-BVqfJCjANuzyTylezQjS8ZK3qDQPqlrkOo05cHRrQYylIeIe8ZCJB4c9i0m7YaDTUo4VUUI_gIPXg7F2JFpdyYrXFmjjCRigkS8-PTvr34Bd2fLxTydn559fAb3qEYtZ-0Qdqrr2j1HdFTpo6ZT_AQ0bAiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Abnormal+Visual+Events+via+Global+Optical+Flow+Orientation+Histogram&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Tian+Wang&rft.au=Snoussi%2C+Hichem&rft.date=2014-06-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=9&rft.issue=6&rft.spage=988&rft.epage=998&rft_id=info:doi/10.1109%2FTIFS.2014.2315971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2014_2315971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon