Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference

Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evalua...

Full description

Saved in:
Bibliographic Details
Published inMetabolites Vol. 10; no. 7; p. 271
Main Authors Benedetti, Elisa, Gerstner, Nathalie, Pučić-Baković, Maja, Keser, Toma, Reiding, Karli R., Ruhaak, L. Renee, Štambuk, Tamara, Selman, Maurice H.J., Rudan, Igor, Polašek, Ozren, Hayward, Caroline, Beekman, Marian, Slagboom, Eline, Wuhrer, Manfred, Dunlop, Malcolm G., Lauc, Gordan, Krumsiek, Jan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 02.07.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN2218-1989
2218-1989
DOI10.3390/metabo10070271

Cover

Loading…
Abstract Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography-ElectroSpray Ionization-Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization-Furier Transform Ion Cyclotron Resonance-Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.
AbstractList Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography - ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization - Furier Transform Ion Cyclotron Resonance - Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the 'Probabilistic Quotient' method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.
Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography - ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization - Furier Transform Ion Cyclotron Resonance - Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the 'Probabilistic Quotient' method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography - ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization - Furier Transform Ion Cyclotron Resonance - Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the 'Probabilistic Quotient' method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.
Author Krumsiek, Jan
Rudan, Igor
Slagboom, Eline
Ruhaak, L. Renee
Gerstner, Nathalie
Reiding, Karli R.
Štambuk, Tamara
Dunlop, Malcolm G.
Polašek, Ozren
Benedetti, Elisa
Beekman, Marian
Pučić-Baković, Maja
Selman, Maurice H.J.
Wuhrer, Manfred
Keser, Toma
Hayward, Caroline
Lauc, Gordan
AuthorAffiliation 3 Max Planck Institute for Psychiatry, 80804 Munich, Germany
12 Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; caroline.hayward@igmm.ed.ac.uk
8 Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
11 Gen-Info Ltd., 10000 Zagreb, Croatia
6 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; k.r.reiding@uu.nl (K.R.R.); mauriceselman@yahoo.com (M.H.J.S.)
7 Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; lruhaak@ucdavis.edu (L.R.R.); m.wuhrer@lumc.nl (M.W.)
4 Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia; mpucicbakovic@genos.hr (M.P.-B.); glauc@genos.hr (G.L.)
13 Section of Molecular Epidemiology, Leiden University Medic
AuthorAffiliation_xml – name: 9 Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH8 9AG, UK; irudan@hotmail.com
– name: 12 Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; caroline.hayward@igmm.ed.ac.uk
– name: 10 Medical School, University of Split, 21000 Split, Croatia; opolasek@gmail.com
– name: 3 Max Planck Institute for Psychiatry, 80804 Munich, Germany
– name: 2 Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; nathalie_gerstner@psych.mpg.de
– name: 14 Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh EH8 9YL, UK; alcolm.dunlop@igmm.ed.ac.uk
– name: 11 Gen-Info Ltd., 10000 Zagreb, Croatia
– name: 1 Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10022, USA; elb4003@med.cornell.edu
– name: 5 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; tkeser@pharma.hr (T.K.); tpavic@unizg.hr (T.Š.)
– name: 7 Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; lruhaak@ucdavis.edu (L.R.R.); m.wuhrer@lumc.nl (M.W.)
– name: 4 Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia; mpucicbakovic@genos.hr (M.P.-B.); glauc@genos.hr (G.L.)
– name: 6 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; k.r.reiding@uu.nl (K.R.R.); mauriceselman@yahoo.com (M.H.J.S.)
– name: 8 Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
– name: 13 Section of Molecular Epidemiology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; m.beekman@lumc.nl (M.B.); p.slagboom@lumc.nl (E.S.)
Author_xml – sequence: 1
  givenname: Elisa
  surname: Benedetti
  fullname: Benedetti, Elisa
– sequence: 2
  givenname: Nathalie
  orcidid: 0000-0002-3111-5949
  surname: Gerstner
  fullname: Gerstner, Nathalie
– sequence: 3
  givenname: Maja
  orcidid: 0000-0003-0866-623X
  surname: Pučić-Baković
  fullname: Pučić-Baković, Maja
– sequence: 4
  givenname: Toma
  surname: Keser
  fullname: Keser, Toma
– sequence: 5
  givenname: Karli R.
  surname: Reiding
  fullname: Reiding, Karli R.
– sequence: 6
  givenname: L. Renee
  orcidid: 0000-0003-3737-3807
  surname: Ruhaak
  fullname: Ruhaak, L. Renee
– sequence: 7
  givenname: Tamara
  orcidid: 0000-0003-3174-120X
  surname: Štambuk
  fullname: Štambuk, Tamara
– sequence: 8
  givenname: Maurice H.J.
  surname: Selman
  fullname: Selman, Maurice H.J.
– sequence: 9
  givenname: Igor
  surname: Rudan
  fullname: Rudan, Igor
– sequence: 10
  givenname: Ozren
  orcidid: 0000-0002-5765-1862
  surname: Polašek
  fullname: Polašek, Ozren
– sequence: 11
  givenname: Caroline
  surname: Hayward
  fullname: Hayward, Caroline
– sequence: 12
  givenname: Marian
  orcidid: 0000-0003-0585-6206
  surname: Beekman
  fullname: Beekman, Marian
– sequence: 13
  givenname: Eline
  surname: Slagboom
  fullname: Slagboom, Eline
– sequence: 14
  givenname: Manfred
  orcidid: 0000-0002-0814-4995
  surname: Wuhrer
  fullname: Wuhrer, Manfred
– sequence: 15
  givenname: Malcolm G.
  surname: Dunlop
  fullname: Dunlop, Malcolm G.
– sequence: 16
  givenname: Gordan
  surname: Lauc
  fullname: Lauc, Gordan
– sequence: 17
  givenname: Jan
  surname: Krumsiek
  fullname: Krumsiek, Jan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32630764$$D View this record in MEDLINE/PubMed
BookMark eNp1kt9PFDEQxzcGIwi8-mj20ZfD_tp2-2KiiHgJKgn43My2U1jY3ULbw5x_vb07JJyJfelk-v1-ZpqZ19XOFCasqjeUHHGuyfsRM3SBEqIIU_RFtccYbWdUt3rnWbxbHaZ0Q8qRpFGEvqp2OZOcKCn2qtuLZco4Qu5tffIAw6JEYaqDr7-HOMLQ_94kvmG-Di7VPsT6dFjaMPY21Z8hQ_0JErq6aM4x-pVpsrgGYP4V4m09nzxGLMmD6qWHIeHh471f_fxycnn8dXb243R-_PFsZkUj86yzTINqGwWCslZarbxmyjMmNLWcU6KlAmepJq5rRdN1jDDpGsU58cIJz_er-YbrAtyYu9iPEJcmQG_WiRCvDMTy4QEN-qbV0jHwVItG0M5KorkkDjxaBbKwPmxYd4tuRGdxyhGGLej2y9Rfm6vwYJQgLW9XgHePgBjuF5iyGftkcRhgwrBIhglGKVWMiiJ9-7zWU5G_0yqCo43AxpBSRP8kocSsNsJsb0QxiH8Mts_rgZZe--F_tj9N4bvO
CitedBy_id crossref_primary_10_1021_acs_chemrev_1c01031
crossref_primary_10_1128_spectrum_01567_22
crossref_primary_10_1021_acs_analchem_3c03649
crossref_primary_10_1212_WNL_0000000000207459
crossref_primary_10_3390_ijms21249647
crossref_primary_10_1021_jasms_3c00295
crossref_primary_10_1002_mas_21806
crossref_primary_10_1038_s41598_021_95417_5
crossref_primary_10_1016_j_csbj_2024_03_008
crossref_primary_10_1002_cti2_70000
crossref_primary_10_1038_s41467_021_25183_5
Cites_doi 10.1023/A:1007568008032
10.1093/oso/9780198522195.001.0001
10.1074/mcp.M111.010090
10.1038/sj.ejhg.5201508
10.1007/BF00241259
10.1093/biostatistics/kxr054
10.1155/S1173912603000154
10.1111/j.2517-6161.1982.tb01195.x
10.1186/gb-2013-14-9-r95
10.1023/A:1023818214614
10.1371/journal.pgen.1003005
10.1074/mcp.M116.065250
10.1186/1471-2164-7-142
10.1111/j.2517-6161.1995.tb02031.x
10.1002/0470011815.b2a10020
10.1093/bioinformatics/btw308
10.1007/s11004-005-7383-7
10.3390/microarrays2020131
10.1089/rej.2007.0556
10.1093/bioinformatics/18.2.251
10.1093/bioinformatics/19.2.185
10.1093/gerona/glt190
10.1007/s11306-018-1420-2
10.4161/mabs.1.4.9122
10.1139/cjm-2015-0821
10.1158/1078-0432.CCR-15-1867
10.1002/1521-4036(200102)43:1<23::AID-BIMJ23>3.0.CO;2-8
10.1111/biom.12079
10.1177/1471082X17706135
10.1016/j.annepidem.2016.03.002
10.1038/s41467-017-01525-0
10.1038/s41540-017-0029-9
10.1002/prca.201400184
10.1023/A:1007529726302
10.1021/pr050300l
10.1007/s11306-011-0350-z
10.1016/j.jprot.2011.11.003
10.1039/C9MO00174C
10.1021/ac051632c
10.1158/1055-9965.EPI-06-0785
10.1038/srep38881
10.2142/biophysics.1.25
10.1007/s10930-018-9806-6
10.3325/cmj.2009.50.4
10.1016/0022-5193(66)90119-6
10.1021/pr1009959
10.1097/MD.0000000000004112
10.1214/16-AOAS928
10.3389/fmicb.2017.02224
10.1074/mcp.M113.037465
10.1186/1752-0509-5-21
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/metabo10070271
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-1989
ExternalDocumentID oai_doaj_org_article_ef5896d2af194541bc609360dafec7a6
PMC7408386
32630764
10_3390_metabo10070271
Genre Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 12076
– fundername: Medical Research Council
  grantid: MC_UU_00007/10
– fundername: Medical Research Council
  grantid: MC_PC_U127527198
– fundername: Medical Research Council
  grantid: MC_UU_00007/1
– fundername: Medical Research Council
  grantid: MC_U127527198
– fundername: Cancer Research UK
  grantid: 18927
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c456t-bc29a7857a41286c97f927f22491c3310967adc190db845bb2026d57330f4d4f3
IEDL.DBID M48
ISSN 2218-1989
IngestDate Wed Aug 27 01:26:32 EDT 2025
Thu Aug 21 13:16:41 EDT 2025
Fri Sep 05 09:19:08 EDT 2025
Mon Jul 21 06:06:36 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
Tue Jul 01 00:44:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords glycomics
data normalization
gaussian graphical models
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-bc29a7857a41286c97f927f22491c3310967adc190db845bb2026d57330f4d4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3111-5949
0000-0002-5765-1862
0000-0002-0814-4995
0000-0003-0585-6206
0000-0003-3174-120X
0000-0003-0866-623X
0000-0003-3737-3807
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/metabo10070271
PMID 32630764
PQID 2421117214
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ef5896d2af194541bc609360dafec7a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408386
proquest_miscellaneous_2421117214
pubmed_primary_32630764
crossref_primary_10_3390_metabo10070271
crossref_citationtrail_10_3390_metabo10070271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200702
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 7
  year: 2020
  text: 20200702
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Metabolites
PublicationTitleAlternate Metabolites
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Rudan (ref_27) 2009; 50
Theodoratou (ref_30) 2016; 22
ref_57
ref_53
Johnstone (ref_2) 2013; 2
Shi (ref_15) 2016; 10
Schoenmaker (ref_50) 2006; 14
Xia (ref_11) 2013; 69
Mandal (ref_12) 2015; 26
Egozcue (ref_18) 2003; 35
Suomi (ref_3) 2016; 19
Hansen (ref_33) 2012; 13
Phipps (ref_56) 2003; 7
Ruhaak (ref_44) 2011; 10
Uh (ref_8) 2017; 17
ref_25
Selman (ref_47) 2012; 75
Gloor (ref_10) 2017; 8
ref_24
ref_23
Do (ref_37) 2017; 3
Gloor (ref_13) 2016; 62
Yu (ref_41) 2016; 95
Tsodikov (ref_34) 2002; 18
Tsilimigras (ref_20) 2016; 26
Aitchison (ref_9) 1982; 44
Jefferis (ref_28) 2009; 1
Moh (ref_35) 2015; 9
Benedetti (ref_26) 2017; 8
Menni (ref_42) 2014; 69
Adamczyk (ref_31) 2011; 10
Dieterle (ref_36) 2006; 78
Koch (ref_38) 1966; 12
Callister (ref_21) 2006; 5
Li (ref_6) 2016; 6
Katrlik (ref_43) 2019; 38
Aitchison (ref_19) 2005; 37
Kohl (ref_5) 2012; 8
Vanhooren (ref_45) 2007; 10
Huffman (ref_48) 2014; 13
Seneta (ref_55) 2001; 43
Reiding (ref_32) 2017; 16
Benjamini (ref_54) 1995; 57
Aitchison (ref_51) 2003; 24
Furusawa (ref_39) 2005; 1
Theodoratou (ref_49) 2007; 16
Bolstad (ref_52) 2003; 19
Balbin (ref_29) 1994; 39
ref_1
Uh (ref_7) 2020; 16
Aitchison (ref_16) 1999; 31
Strimmer (ref_40) 2005; 4
Aitchison (ref_17) 2000; 32
Rapaport (ref_22) 2013; 14
Chen (ref_14) 2016; 32
Do (ref_46) 2018; 14
ref_4
References_xml – volume: 31
  start-page: 563
  year: 1999
  ident: ref_16
  article-title: Logratios and natural laws in compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1007568008032
– ident: ref_23
  doi: 10.1093/oso/9780198522195.001.0001
– volume: 24
  start-page: 73
  year: 2003
  ident: ref_51
  article-title: A Concise Guide to Compositional Data Analysis
  publication-title: CDA Work. Girona
– volume: 10
  start-page: M111.010090
  year: 2011
  ident: ref_31
  article-title: High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M111.010090
– volume: 14
  start-page: 79
  year: 2006
  ident: ref_50
  article-title: Evidence of genetic enrichment for exceptional survival using a family approach: The Leiden Longevity Study
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/sj.ejhg.5201508
– volume: 39
  start-page: 187
  year: 1994
  ident: ref_29
  article-title: DNA sequences specific for Caucasian G3m(b) and (g) allotypes: Allotyping at the genomic level
  publication-title: Immunogenetics
  doi: 10.1007/BF00241259
– volume: 13
  start-page: 204
  year: 2012
  ident: ref_33
  article-title: Removing technical variability in RNA-seq data using conditional quantile normalization
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr054
– volume: 4
  start-page: 32
  year: 2005
  ident: ref_40
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 7
  start-page: 165
  year: 2003
  ident: ref_56
  article-title: Inequalities between Hypergeometric Tails
  publication-title: J. Appl. Math. Decis. Sci.
  doi: 10.1155/S1173912603000154
– volume: 44
  start-page: 139
  year: 1982
  ident: ref_9
  article-title: The Statistical Analysis of Compositional Data
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 14
  start-page: 3158
  year: 2013
  ident: ref_22
  article-title: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-9-r95
– volume: 35
  start-page: 279
  year: 2003
  ident: ref_18
  article-title: Isometric logratio transformations for compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1023818214614
– ident: ref_25
  doi: 10.1371/journal.pgen.1003005
– volume: 16
  start-page: 228
  year: 2017
  ident: ref_32
  article-title: Human plasma N-glycosylation as analyzed by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance-MS associates with markers of inflammation and metabolic health
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M116.065250
– ident: ref_4
  doi: 10.1186/1471-2164-7-142
– ident: ref_1
– volume: 57
  start-page: 289
  year: 1995
  ident: ref_54
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref_57
  doi: 10.1002/0470011815.b2a10020
– volume: 32
  start-page: 2611
  year: 2016
  ident: ref_14
  article-title: A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw308
– volume: 37
  start-page: 829
  year: 2005
  ident: ref_19
  article-title: Compositional data analysis: Where are we and where should we be heading?
  publication-title: Math. Geol.
  doi: 10.1007/s11004-005-7383-7
– volume: 2
  start-page: 131
  year: 2013
  ident: ref_2
  article-title: Evaluation of Different Normalization and Analysis Procedures for Illumina Gene Expression Microarray Data Involving Small Changes
  publication-title: Microarrays
  doi: 10.3390/microarrays2020131
– volume: 10
  start-page: 521
  year: 2007
  ident: ref_45
  article-title: N-Glycomic Changes in Serum Proteins during Human Aging
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2007.0556
– volume: 18
  start-page: 251
  year: 2002
  ident: ref_34
  article-title: Adjustments and measures of differential expression for microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.251
– volume: 19
  start-page: 185
  year: 2003
  ident: ref_52
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 69
  start-page: 779
  year: 2014
  ident: ref_42
  article-title: Glycans Are a Novel Biomarker of Chronological and Biological Ages
  publication-title: J. Gerontol. Ser. A
  doi: 10.1093/gerona/glt190
– volume: 14
  start-page: 128
  year: 2018
  ident: ref_46
  article-title: Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1420-2
– volume: 19
  start-page: bbw095
  year: 2016
  ident: ref_3
  article-title: A systematic evaluation of normalization methods in quantitative label-free proteomics
  publication-title: Brief. Bioinform.
– volume: 1
  start-page: 332
  year: 2009
  ident: ref_28
  article-title: Human immunoglobulin allotypes: Possible implications for immunogenicity
  publication-title: MAbs
  doi: 10.4161/mabs.1.4.9122
– volume: 26
  start-page: 27663
  year: 2015
  ident: ref_12
  article-title: Analysis of composition of microbiomes: A novel method for studying microbial composition
  publication-title: Microb. Ecol. Health Dis.
– volume: 62
  start-page: 692
  year: 2016
  ident: ref_13
  article-title: Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data
  publication-title: Can. J. Microbiol.
  doi: 10.1139/cjm-2015-0821
– volume: 22
  start-page: 3078
  year: 2016
  ident: ref_30
  article-title: IgG Glycome in Colorectal Cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-1867
– ident: ref_53
– volume: 43
  start-page: 23
  year: 2001
  ident: ref_55
  article-title: On the Comparison of Two Observed Frequencies
  publication-title: Biom. J.
  doi: 10.1002/1521-4036(200102)43:1<23::AID-BIMJ23>3.0.CO;2-8
– volume: 69
  start-page: 1053
  year: 2013
  ident: ref_11
  article-title: A logistic normal multinomial regression model for microbiome compositional data analysis
  publication-title: Biometrics
  doi: 10.1111/biom.12079
– volume: 17
  start-page: 319
  year: 2017
  ident: ref_8
  article-title: Discussion on the paper ‘Statistical contributions to bioinformatics: Design, modelling, structure learning and integration’ by Jeffrey S. Morris and Veerabhadran Baladandayuthapani
  publication-title: Stat. Model.
  doi: 10.1177/1471082X17706135
– volume: 26
  start-page: 330
  year: 2016
  ident: ref_20
  article-title: Compositional data analysis of the microbiome: Fundamentals, tools, and challenges
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2016.03.002
– volume: 8
  start-page: 1483
  year: 2017
  ident: ref_26
  article-title: Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01525-0
– volume: 3
  start-page: 28
  year: 2017
  ident: ref_37
  article-title: Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations
  publication-title: NPJ Syst. Biol. Appl.
  doi: 10.1038/s41540-017-0029-9
– volume: 9
  start-page: 368
  year: 2015
  ident: ref_35
  article-title: Relative versus absolute quantitation in disease glycomics
  publication-title: PROTEOMICS Clin. Appl.
  doi: 10.1002/prca.201400184
– volume: 32
  start-page: 271
  year: 2000
  ident: ref_17
  article-title: Logratio analysis and compositional distance
  publication-title: Math. Geol.
  doi: 10.1023/A:1007529726302
– volume: 5
  start-page: 277
  year: 2006
  ident: ref_21
  article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr050300l
– volume: 8
  start-page: 146
  year: 2012
  ident: ref_5
  article-title: State-of-the art data normalization methods improve NMR-based metabolomic analysis
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0350-z
– volume: 75
  start-page: 1318
  year: 2012
  ident: ref_47
  article-title: Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2011.11.003
– volume: 16
  start-page: 231
  year: 2020
  ident: ref_7
  article-title: Choosing proper normalization is essential for discovery of sparse glycan biomarkers
  publication-title: Mol. Omi.
  doi: 10.1039/C9MO00174C
– volume: 78
  start-page: 4281
  year: 2006
  ident: ref_36
  article-title: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics
  publication-title: Anal. Chem.
  doi: 10.1021/ac051632c
– volume: 16
  start-page: 684
  year: 2007
  ident: ref_49
  article-title: Dietary flavonoids and the risk of colorectal cancer
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-06-0785
– volume: 6
  start-page: 38881
  year: 2016
  ident: ref_6
  article-title: Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis
  publication-title: Sci. Rep.
  doi: 10.1038/srep38881
– volume: 1
  start-page: 25
  year: 2005
  ident: ref_39
  article-title: Ubiquity of log-normal distributions in intra-cellular reaction dynamics
  publication-title: Biophysics
  doi: 10.2142/biophysics.1.25
– volume: 38
  start-page: 23
  year: 2019
  ident: ref_43
  article-title: Changes Due to Ageing in the Glycan Structure of Alpha-2-Macroglobulin and Its Reactivity with Ligands
  publication-title: Protein J.
  doi: 10.1007/s10930-018-9806-6
– volume: 50
  start-page: 4
  year: 2009
  ident: ref_27
  article-title: ‘10 001 Dalmatians:’ Croatia Launches Its National Biobank
  publication-title: Croat. Med. J.
  doi: 10.3325/cmj.2009.50.4
– volume: 12
  start-page: 276
  year: 1966
  ident: ref_38
  article-title: The logarithm in biology 1. Mechanisms generating the log-normal distribution exactly
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(66)90119-6
– volume: 10
  start-page: 1667
  year: 2011
  ident: ref_44
  article-title: Plasma protein N-glycan profiles are associated with calendar age, familial longevity and health
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1009959
– volume: 95
  start-page: e4112
  year: 2016
  ident: ref_41
  article-title: Profiling IgG N-glycans as potential biomarker of chronological and biological ages: A community-based study in a Han Chinese population
  publication-title: Medicine
  doi: 10.1097/MD.0000000000004112
– volume: 10
  start-page: 1019
  year: 2016
  ident: ref_15
  article-title: Regression analysis for microbiome compositional data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/16-AOAS928
– volume: 8
  start-page: 2224
  year: 2017
  ident: ref_10
  article-title: Microbiome datasets are compositional: And this is not optional
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02224
– volume: 13
  start-page: 1598
  year: 2014
  ident: ref_48
  article-title: Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M113.037465
– ident: ref_24
  doi: 10.1186/1752-0509-5-21
SSID ssj0000605701
Score 2.2196214
Snippet Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 271
SubjectTerms data normalization
gaussian graphical models
glycomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UhW3p8iVXQuUUkTiOHR9ZCoVKoEqAxC3yp0AsWcSGA_-eGSebbioQl17jUWJ5bM978cwzIbsAMjIXuE28zHnCtbKJwgPHlGlhmTY200gUz87FyRX_fV1cL131hTlhrTxwO3D7PhSlEo7pAHS74JmxAki4SJ0O3kodxbZTlS6RqXYPBhySZq1KYw68fv_eNzCqmBMARCwbRKEo1v8awvw3UXIp8hx_Jp86yEgP2q6ukg--XiOjgxro8v0z_UFjEmf8Oz4idxe9MjM96oW86SzQcwSn067qkp7Fi6PnFCAr_TV9tlibPKc_daPpBOKao2Dz529NQXxBmzBOTxclgl_I1fHR5eFJ0t2nkFiASU1iLFNaloXUHKKSsEoGxWSAIK4ym6NEqJDaWYAIzpS8MIYBQXMomJgG7njIv5KVelb7b4TmQippmC5zW3JtS5NLFazxAA8Kl0k5JslifCvbiY3jnRfTCkgH-qMa-mNM9nr7h1Zm403LCbqrt0J57PgAJk3VTZrqvUkzJt8Xzq5gOeEZia797Gle4Ql5hrSYj8l66_z-U4B0YUcU0CIH02LQl2FLfXsTJbslB6hbio3_0flN8pEh6cd_zGyLrDSPT34bkFFjduIieAEFVw6C
  priority: 102
  providerName: Directory of Open Access Journals
Title Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference
URI https://www.ncbi.nlm.nih.gov/pubmed/32630764
https://www.proquest.com/docview/2421117214
https://pubmed.ncbi.nlm.nih.gov/PMC7408386
https://doaj.org/article/ef5896d2af194541bc609360dafec7a6
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwELbQJqG9oLHxIwMqIyF4CjSOY8cPE1pHx0BqNQGV9hbZjg2ILoU2k-h_vzsnzQjqXlPLjXzn3Pf5zt8R8gpARlJ6bmMnUx5zrWysMOE4ZFpYpo1NNBLFyVScz_jny-zytv6pXcDVVmqH_aRmy_nbv3_W72HDHyPjBMr-7srVsGCY7geOBUxoF6KSQCI2aaF-81UGZBK6ITOIajGWCjUajlum2CP3AdWA9wveC1dB1X8bFP2_ovKfEHW2Tx602JKeNM7wkNxz1QE5PKmAV1-t6Wsaqj3DMfoh-fW1k3Cm407xmy48nSKKnbfXM-kkdJheUcC29ON8bfES84p-0LWmIwiAJYUxF7eXD8IETWU5_bS5S_iIzM7G307P47bxQmwBT9WxsUxpmWdScwhfwirpFZMeor1KbIpaokLq0gKWKE3OM2MYMLkSlRWHnpfcp4_JTrWo3FNCUyGVNEznqc25trlJpfLWOMARWZlIGZF4s76FbVXJsTnGvAB2gqYp-qaJyJtu_O9Gj-POkSM0VzcKdbTDg8Xye9Fuy8L5LFeiZNonimc8MVYMVSqGpfbOSi0i8nJj7AL2HSZTdOUW16sCU-kJ8mcekSeN8bu_2jhPRGTPLXrv0v-l-vkjaHtLDpg4F0d3zvmM7DGk_HjCzJ6TnXp57V4ALqrNgOyOxtOLL4NwrjAI7n8D_5gNLA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Evaluation+of+Normalization+Methods+for+Glycomics+Data+Based+on+Performance+of+Network+Inference&rft.jtitle=Metabolites&rft.au=Benedetti%2C+Elisa&rft.au=Gerstner%2C+Nathalie&rft.au=Pu%C4%8Di%C4%87-Bakovi%C4%87%2C+Maja&rft.au=Keser%2C+Toma&rft.date=2020-07-02&rft.issn=2218-1989&rft.eissn=2218-1989&rft.volume=10&rft.issue=7&rft_id=info:doi/10.3390%2Fmetabo10070271&rft_id=info%3Apmid%2F32630764&rft.externalDocID=32630764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon