Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference
Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evalua...
Saved in:
Published in | Metabolites Vol. 10; no. 7; p. 271 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
02.07.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 2218-1989 2218-1989 |
DOI | 10.3390/metabo10070271 |
Cover
Loading…
Abstract | Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography-ElectroSpray Ionization-Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization-Furier Transform Ion Cyclotron Resonance-Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements. |
---|---|
AbstractList | Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography - ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization - Furier Transform Ion Cyclotron Resonance - Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the 'Probabilistic Quotient' method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements. Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography - ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization - Furier Transform Ion Cyclotron Resonance - Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the 'Probabilistic Quotient' method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography - ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization - Furier Transform Ion Cyclotron Resonance - Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the 'Probabilistic Quotient' method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements. |
Author | Krumsiek, Jan Rudan, Igor Slagboom, Eline Ruhaak, L. Renee Gerstner, Nathalie Reiding, Karli R. Štambuk, Tamara Dunlop, Malcolm G. Polašek, Ozren Benedetti, Elisa Beekman, Marian Pučić-Baković, Maja Selman, Maurice H.J. Wuhrer, Manfred Keser, Toma Hayward, Caroline Lauc, Gordan |
AuthorAffiliation | 3 Max Planck Institute for Psychiatry, 80804 Munich, Germany 12 Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; caroline.hayward@igmm.ed.ac.uk 8 Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands 11 Gen-Info Ltd., 10000 Zagreb, Croatia 6 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; k.r.reiding@uu.nl (K.R.R.); mauriceselman@yahoo.com (M.H.J.S.) 7 Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; lruhaak@ucdavis.edu (L.R.R.); m.wuhrer@lumc.nl (M.W.) 4 Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia; mpucicbakovic@genos.hr (M.P.-B.); glauc@genos.hr (G.L.) 13 Section of Molecular Epidemiology, Leiden University Medic |
AuthorAffiliation_xml | – name: 9 Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH8 9AG, UK; irudan@hotmail.com – name: 12 Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; caroline.hayward@igmm.ed.ac.uk – name: 10 Medical School, University of Split, 21000 Split, Croatia; opolasek@gmail.com – name: 3 Max Planck Institute for Psychiatry, 80804 Munich, Germany – name: 2 Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; nathalie_gerstner@psych.mpg.de – name: 14 Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh EH8 9YL, UK; alcolm.dunlop@igmm.ed.ac.uk – name: 11 Gen-Info Ltd., 10000 Zagreb, Croatia – name: 1 Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10022, USA; elb4003@med.cornell.edu – name: 5 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; tkeser@pharma.hr (T.K.); tpavic@unizg.hr (T.Š.) – name: 7 Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; lruhaak@ucdavis.edu (L.R.R.); m.wuhrer@lumc.nl (M.W.) – name: 4 Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia; mpucicbakovic@genos.hr (M.P.-B.); glauc@genos.hr (G.L.) – name: 6 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; k.r.reiding@uu.nl (K.R.R.); mauriceselman@yahoo.com (M.H.J.S.) – name: 8 Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands – name: 13 Section of Molecular Epidemiology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; m.beekman@lumc.nl (M.B.); p.slagboom@lumc.nl (E.S.) |
Author_xml | – sequence: 1 givenname: Elisa surname: Benedetti fullname: Benedetti, Elisa – sequence: 2 givenname: Nathalie orcidid: 0000-0002-3111-5949 surname: Gerstner fullname: Gerstner, Nathalie – sequence: 3 givenname: Maja orcidid: 0000-0003-0866-623X surname: Pučić-Baković fullname: Pučić-Baković, Maja – sequence: 4 givenname: Toma surname: Keser fullname: Keser, Toma – sequence: 5 givenname: Karli R. surname: Reiding fullname: Reiding, Karli R. – sequence: 6 givenname: L. Renee orcidid: 0000-0003-3737-3807 surname: Ruhaak fullname: Ruhaak, L. Renee – sequence: 7 givenname: Tamara orcidid: 0000-0003-3174-120X surname: Štambuk fullname: Štambuk, Tamara – sequence: 8 givenname: Maurice H.J. surname: Selman fullname: Selman, Maurice H.J. – sequence: 9 givenname: Igor surname: Rudan fullname: Rudan, Igor – sequence: 10 givenname: Ozren orcidid: 0000-0002-5765-1862 surname: Polašek fullname: Polašek, Ozren – sequence: 11 givenname: Caroline surname: Hayward fullname: Hayward, Caroline – sequence: 12 givenname: Marian orcidid: 0000-0003-0585-6206 surname: Beekman fullname: Beekman, Marian – sequence: 13 givenname: Eline surname: Slagboom fullname: Slagboom, Eline – sequence: 14 givenname: Manfred orcidid: 0000-0002-0814-4995 surname: Wuhrer fullname: Wuhrer, Manfred – sequence: 15 givenname: Malcolm G. surname: Dunlop fullname: Dunlop, Malcolm G. – sequence: 16 givenname: Gordan surname: Lauc fullname: Lauc, Gordan – sequence: 17 givenname: Jan surname: Krumsiek fullname: Krumsiek, Jan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32630764$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt9PFDEQxzcGIwi8-mj20ZfD_tp2-2KiiHgJKgn43My2U1jY3ULbw5x_vb07JJyJfelk-v1-ZpqZ19XOFCasqjeUHHGuyfsRM3SBEqIIU_RFtccYbWdUt3rnWbxbHaZ0Q8qRpFGEvqp2OZOcKCn2qtuLZco4Qu5tffIAw6JEYaqDr7-HOMLQ_94kvmG-Di7VPsT6dFjaMPY21Z8hQ_0JErq6aM4x-pVpsrgGYP4V4m09nzxGLMmD6qWHIeHh471f_fxycnn8dXb243R-_PFsZkUj86yzTINqGwWCslZarbxmyjMmNLWcU6KlAmepJq5rRdN1jDDpGsU58cIJz_er-YbrAtyYu9iPEJcmQG_WiRCvDMTy4QEN-qbV0jHwVItG0M5KorkkDjxaBbKwPmxYd4tuRGdxyhGGLej2y9Rfm6vwYJQgLW9XgHePgBjuF5iyGftkcRhgwrBIhglGKVWMiiJ9-7zWU5G_0yqCo43AxpBSRP8kocSsNsJsb0QxiH8Mts_rgZZe--F_tj9N4bvO |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_1c01031 crossref_primary_10_1128_spectrum_01567_22 crossref_primary_10_1021_acs_analchem_3c03649 crossref_primary_10_1212_WNL_0000000000207459 crossref_primary_10_3390_ijms21249647 crossref_primary_10_1021_jasms_3c00295 crossref_primary_10_1002_mas_21806 crossref_primary_10_1038_s41598_021_95417_5 crossref_primary_10_1016_j_csbj_2024_03_008 crossref_primary_10_1002_cti2_70000 crossref_primary_10_1038_s41467_021_25183_5 |
Cites_doi | 10.1023/A:1007568008032 10.1093/oso/9780198522195.001.0001 10.1074/mcp.M111.010090 10.1038/sj.ejhg.5201508 10.1007/BF00241259 10.1093/biostatistics/kxr054 10.1155/S1173912603000154 10.1111/j.2517-6161.1982.tb01195.x 10.1186/gb-2013-14-9-r95 10.1023/A:1023818214614 10.1371/journal.pgen.1003005 10.1074/mcp.M116.065250 10.1186/1471-2164-7-142 10.1111/j.2517-6161.1995.tb02031.x 10.1002/0470011815.b2a10020 10.1093/bioinformatics/btw308 10.1007/s11004-005-7383-7 10.3390/microarrays2020131 10.1089/rej.2007.0556 10.1093/bioinformatics/18.2.251 10.1093/bioinformatics/19.2.185 10.1093/gerona/glt190 10.1007/s11306-018-1420-2 10.4161/mabs.1.4.9122 10.1139/cjm-2015-0821 10.1158/1078-0432.CCR-15-1867 10.1002/1521-4036(200102)43:1<23::AID-BIMJ23>3.0.CO;2-8 10.1111/biom.12079 10.1177/1471082X17706135 10.1016/j.annepidem.2016.03.002 10.1038/s41467-017-01525-0 10.1038/s41540-017-0029-9 10.1002/prca.201400184 10.1023/A:1007529726302 10.1021/pr050300l 10.1007/s11306-011-0350-z 10.1016/j.jprot.2011.11.003 10.1039/C9MO00174C 10.1021/ac051632c 10.1158/1055-9965.EPI-06-0785 10.1038/srep38881 10.2142/biophysics.1.25 10.1007/s10930-018-9806-6 10.3325/cmj.2009.50.4 10.1016/0022-5193(66)90119-6 10.1021/pr1009959 10.1097/MD.0000000000004112 10.1214/16-AOAS928 10.3389/fmicb.2017.02224 10.1074/mcp.M113.037465 10.1186/1752-0509-5-21 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/metabo10070271 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-1989 |
ExternalDocumentID | oai_doaj_org_article_ef5896d2af194541bc609360dafec7a6 PMC7408386 32630764 10_3390_metabo10070271 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 12076 – fundername: Medical Research Council grantid: MC_UU_00007/10 – fundername: Medical Research Council grantid: MC_PC_U127527198 – fundername: Medical Research Council grantid: MC_UU_00007/1 – fundername: Medical Research Council grantid: MC_U127527198 – fundername: Cancer Research UK grantid: 18927 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c456t-bc29a7857a41286c97f927f22491c3310967adc190db845bb2026d57330f4d4f3 |
IEDL.DBID | M48 |
ISSN | 2218-1989 |
IngestDate | Wed Aug 27 01:26:32 EDT 2025 Thu Aug 21 13:16:41 EDT 2025 Fri Sep 05 09:19:08 EDT 2025 Mon Jul 21 06:06:36 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 Tue Jul 01 00:44:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | glycomics data normalization gaussian graphical models |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-bc29a7857a41286c97f927f22491c3310967adc190db845bb2026d57330f4d4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3111-5949 0000-0002-5765-1862 0000-0002-0814-4995 0000-0003-0585-6206 0000-0003-3174-120X 0000-0003-0866-623X 0000-0003-3737-3807 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/metabo10070271 |
PMID | 32630764 |
PQID | 2421117214 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef5896d2af194541bc609360dafec7a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408386 proquest_miscellaneous_2421117214 pubmed_primary_32630764 crossref_primary_10_3390_metabo10070271 crossref_citationtrail_10_3390_metabo10070271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200702 |
PublicationDateYYYYMMDD | 2020-07-02 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200702 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Metabolites |
PublicationTitleAlternate | Metabolites |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Rudan (ref_27) 2009; 50 Theodoratou (ref_30) 2016; 22 ref_57 ref_53 Johnstone (ref_2) 2013; 2 Shi (ref_15) 2016; 10 Schoenmaker (ref_50) 2006; 14 Xia (ref_11) 2013; 69 Mandal (ref_12) 2015; 26 Egozcue (ref_18) 2003; 35 Suomi (ref_3) 2016; 19 Hansen (ref_33) 2012; 13 Phipps (ref_56) 2003; 7 Ruhaak (ref_44) 2011; 10 Uh (ref_8) 2017; 17 ref_25 Selman (ref_47) 2012; 75 Gloor (ref_10) 2017; 8 ref_24 ref_23 Do (ref_37) 2017; 3 Gloor (ref_13) 2016; 62 Yu (ref_41) 2016; 95 Tsodikov (ref_34) 2002; 18 Tsilimigras (ref_20) 2016; 26 Aitchison (ref_9) 1982; 44 Jefferis (ref_28) 2009; 1 Moh (ref_35) 2015; 9 Benedetti (ref_26) 2017; 8 Menni (ref_42) 2014; 69 Adamczyk (ref_31) 2011; 10 Dieterle (ref_36) 2006; 78 Koch (ref_38) 1966; 12 Callister (ref_21) 2006; 5 Li (ref_6) 2016; 6 Katrlik (ref_43) 2019; 38 Aitchison (ref_19) 2005; 37 Kohl (ref_5) 2012; 8 Vanhooren (ref_45) 2007; 10 Huffman (ref_48) 2014; 13 Seneta (ref_55) 2001; 43 Reiding (ref_32) 2017; 16 Benjamini (ref_54) 1995; 57 Aitchison (ref_51) 2003; 24 Furusawa (ref_39) 2005; 1 Theodoratou (ref_49) 2007; 16 Bolstad (ref_52) 2003; 19 Balbin (ref_29) 1994; 39 ref_1 Uh (ref_7) 2020; 16 Aitchison (ref_16) 1999; 31 Strimmer (ref_40) 2005; 4 Aitchison (ref_17) 2000; 32 Rapaport (ref_22) 2013; 14 Chen (ref_14) 2016; 32 Do (ref_46) 2018; 14 ref_4 |
References_xml | – volume: 31 start-page: 563 year: 1999 ident: ref_16 article-title: Logratios and natural laws in compositional data analysis publication-title: Math. Geol. doi: 10.1023/A:1007568008032 – ident: ref_23 doi: 10.1093/oso/9780198522195.001.0001 – volume: 24 start-page: 73 year: 2003 ident: ref_51 article-title: A Concise Guide to Compositional Data Analysis publication-title: CDA Work. Girona – volume: 10 start-page: M111.010090 year: 2011 ident: ref_31 article-title: High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M111.010090 – volume: 14 start-page: 79 year: 2006 ident: ref_50 article-title: Evidence of genetic enrichment for exceptional survival using a family approach: The Leiden Longevity Study publication-title: Eur. J. Hum. Genet. doi: 10.1038/sj.ejhg.5201508 – volume: 39 start-page: 187 year: 1994 ident: ref_29 article-title: DNA sequences specific for Caucasian G3m(b) and (g) allotypes: Allotyping at the genomic level publication-title: Immunogenetics doi: 10.1007/BF00241259 – volume: 13 start-page: 204 year: 2012 ident: ref_33 article-title: Removing technical variability in RNA-seq data using conditional quantile normalization publication-title: Biostatistics doi: 10.1093/biostatistics/kxr054 – volume: 4 start-page: 32 year: 2005 ident: ref_40 article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 7 start-page: 165 year: 2003 ident: ref_56 article-title: Inequalities between Hypergeometric Tails publication-title: J. Appl. Math. Decis. Sci. doi: 10.1155/S1173912603000154 – volume: 44 start-page: 139 year: 1982 ident: ref_9 article-title: The Statistical Analysis of Compositional Data publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 14 start-page: 3158 year: 2013 ident: ref_22 article-title: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data publication-title: Genome Biol. doi: 10.1186/gb-2013-14-9-r95 – volume: 35 start-page: 279 year: 2003 ident: ref_18 article-title: Isometric logratio transformations for compositional data analysis publication-title: Math. Geol. doi: 10.1023/A:1023818214614 – ident: ref_25 doi: 10.1371/journal.pgen.1003005 – volume: 16 start-page: 228 year: 2017 ident: ref_32 article-title: Human plasma N-glycosylation as analyzed by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance-MS associates with markers of inflammation and metabolic health publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M116.065250 – ident: ref_4 doi: 10.1186/1471-2164-7-142 – ident: ref_1 – volume: 57 start-page: 289 year: 1995 ident: ref_54 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: ref_57 doi: 10.1002/0470011815.b2a10020 – volume: 32 start-page: 2611 year: 2016 ident: ref_14 article-title: A two-part mixed-effects model for analyzing longitudinal microbiome compositional data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw308 – volume: 37 start-page: 829 year: 2005 ident: ref_19 article-title: Compositional data analysis: Where are we and where should we be heading? publication-title: Math. Geol. doi: 10.1007/s11004-005-7383-7 – volume: 2 start-page: 131 year: 2013 ident: ref_2 article-title: Evaluation of Different Normalization and Analysis Procedures for Illumina Gene Expression Microarray Data Involving Small Changes publication-title: Microarrays doi: 10.3390/microarrays2020131 – volume: 10 start-page: 521 year: 2007 ident: ref_45 article-title: N-Glycomic Changes in Serum Proteins during Human Aging publication-title: Rejuvenation Res. doi: 10.1089/rej.2007.0556 – volume: 18 start-page: 251 year: 2002 ident: ref_34 article-title: Adjustments and measures of differential expression for microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.251 – volume: 19 start-page: 185 year: 2003 ident: ref_52 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 69 start-page: 779 year: 2014 ident: ref_42 article-title: Glycans Are a Novel Biomarker of Chronological and Biological Ages publication-title: J. Gerontol. Ser. A doi: 10.1093/gerona/glt190 – volume: 14 start-page: 128 year: 2018 ident: ref_46 article-title: Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies publication-title: Metabolomics doi: 10.1007/s11306-018-1420-2 – volume: 19 start-page: bbw095 year: 2016 ident: ref_3 article-title: A systematic evaluation of normalization methods in quantitative label-free proteomics publication-title: Brief. Bioinform. – volume: 1 start-page: 332 year: 2009 ident: ref_28 article-title: Human immunoglobulin allotypes: Possible implications for immunogenicity publication-title: MAbs doi: 10.4161/mabs.1.4.9122 – volume: 26 start-page: 27663 year: 2015 ident: ref_12 article-title: Analysis of composition of microbiomes: A novel method for studying microbial composition publication-title: Microb. Ecol. Health Dis. – volume: 62 start-page: 692 year: 2016 ident: ref_13 article-title: Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2015-0821 – volume: 22 start-page: 3078 year: 2016 ident: ref_30 article-title: IgG Glycome in Colorectal Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-1867 – ident: ref_53 – volume: 43 start-page: 23 year: 2001 ident: ref_55 article-title: On the Comparison of Two Observed Frequencies publication-title: Biom. J. doi: 10.1002/1521-4036(200102)43:1<23::AID-BIMJ23>3.0.CO;2-8 – volume: 69 start-page: 1053 year: 2013 ident: ref_11 article-title: A logistic normal multinomial regression model for microbiome compositional data analysis publication-title: Biometrics doi: 10.1111/biom.12079 – volume: 17 start-page: 319 year: 2017 ident: ref_8 article-title: Discussion on the paper ‘Statistical contributions to bioinformatics: Design, modelling, structure learning and integration’ by Jeffrey S. Morris and Veerabhadran Baladandayuthapani publication-title: Stat. Model. doi: 10.1177/1471082X17706135 – volume: 26 start-page: 330 year: 2016 ident: ref_20 article-title: Compositional data analysis of the microbiome: Fundamentals, tools, and challenges publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2016.03.002 – volume: 8 start-page: 1483 year: 2017 ident: ref_26 article-title: Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway publication-title: Nat. Commun. doi: 10.1038/s41467-017-01525-0 – volume: 3 start-page: 28 year: 2017 ident: ref_37 article-title: Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations publication-title: NPJ Syst. Biol. Appl. doi: 10.1038/s41540-017-0029-9 – volume: 9 start-page: 368 year: 2015 ident: ref_35 article-title: Relative versus absolute quantitation in disease glycomics publication-title: PROTEOMICS Clin. Appl. doi: 10.1002/prca.201400184 – volume: 32 start-page: 271 year: 2000 ident: ref_17 article-title: Logratio analysis and compositional distance publication-title: Math. Geol. doi: 10.1023/A:1007529726302 – volume: 5 start-page: 277 year: 2006 ident: ref_21 article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics publication-title: J. Proteome Res. doi: 10.1021/pr050300l – volume: 8 start-page: 146 year: 2012 ident: ref_5 article-title: State-of-the art data normalization methods improve NMR-based metabolomic analysis publication-title: Metabolomics doi: 10.1007/s11306-011-0350-z – volume: 75 start-page: 1318 year: 2012 ident: ref_47 article-title: Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface publication-title: J. Proteom. doi: 10.1016/j.jprot.2011.11.003 – volume: 16 start-page: 231 year: 2020 ident: ref_7 article-title: Choosing proper normalization is essential for discovery of sparse glycan biomarkers publication-title: Mol. Omi. doi: 10.1039/C9MO00174C – volume: 78 start-page: 4281 year: 2006 ident: ref_36 article-title: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics publication-title: Anal. Chem. doi: 10.1021/ac051632c – volume: 16 start-page: 684 year: 2007 ident: ref_49 article-title: Dietary flavonoids and the risk of colorectal cancer publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-06-0785 – volume: 6 start-page: 38881 year: 2016 ident: ref_6 article-title: Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis publication-title: Sci. Rep. doi: 10.1038/srep38881 – volume: 1 start-page: 25 year: 2005 ident: ref_39 article-title: Ubiquity of log-normal distributions in intra-cellular reaction dynamics publication-title: Biophysics doi: 10.2142/biophysics.1.25 – volume: 38 start-page: 23 year: 2019 ident: ref_43 article-title: Changes Due to Ageing in the Glycan Structure of Alpha-2-Macroglobulin and Its Reactivity with Ligands publication-title: Protein J. doi: 10.1007/s10930-018-9806-6 – volume: 50 start-page: 4 year: 2009 ident: ref_27 article-title: ‘10 001 Dalmatians:’ Croatia Launches Its National Biobank publication-title: Croat. Med. J. doi: 10.3325/cmj.2009.50.4 – volume: 12 start-page: 276 year: 1966 ident: ref_38 article-title: The logarithm in biology 1. Mechanisms generating the log-normal distribution exactly publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(66)90119-6 – volume: 10 start-page: 1667 year: 2011 ident: ref_44 article-title: Plasma protein N-glycan profiles are associated with calendar age, familial longevity and health publication-title: J. Proteome Res. doi: 10.1021/pr1009959 – volume: 95 start-page: e4112 year: 2016 ident: ref_41 article-title: Profiling IgG N-glycans as potential biomarker of chronological and biological ages: A community-based study in a Han Chinese population publication-title: Medicine doi: 10.1097/MD.0000000000004112 – volume: 10 start-page: 1019 year: 2016 ident: ref_15 article-title: Regression analysis for microbiome compositional data publication-title: Ann. Appl. Stat. doi: 10.1214/16-AOAS928 – volume: 8 start-page: 2224 year: 2017 ident: ref_10 article-title: Microbiome datasets are compositional: And this is not optional publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02224 – volume: 13 start-page: 1598 year: 2014 ident: ref_48 article-title: Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M113.037465 – ident: ref_24 doi: 10.1186/1752-0509-5-21 |
SSID | ssj0000605701 |
Score | 2.2196214 |
Snippet | Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 271 |
SubjectTerms | data normalization gaussian graphical models glycomics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr1UhW3p8iVXQuUUkTiOHR9ZCoVKoEqAxC3yp0AsWcSGA_-eGSebbioQl17jUWJ5bM978cwzIbsAMjIXuE28zHnCtbKJwgPHlGlhmTY200gUz87FyRX_fV1cL131hTlhrTxwO3D7PhSlEo7pAHS74JmxAki4SJ0O3kodxbZTlS6RqXYPBhySZq1KYw68fv_eNzCqmBMARCwbRKEo1v8awvw3UXIp8hx_Jp86yEgP2q6ukg--XiOjgxro8v0z_UFjEmf8Oz4idxe9MjM96oW86SzQcwSn067qkp7Fi6PnFCAr_TV9tlibPKc_daPpBOKao2Dz529NQXxBmzBOTxclgl_I1fHR5eFJ0t2nkFiASU1iLFNaloXUHKKSsEoGxWSAIK4ym6NEqJDaWYAIzpS8MIYBQXMomJgG7njIv5KVelb7b4TmQippmC5zW3JtS5NLFazxAA8Kl0k5JslifCvbiY3jnRfTCkgH-qMa-mNM9nr7h1Zm403LCbqrt0J57PgAJk3VTZrqvUkzJt8Xzq5gOeEZia797Gle4Ql5hrSYj8l66_z-U4B0YUcU0CIH02LQl2FLfXsTJbslB6hbio3_0flN8pEh6cd_zGyLrDSPT34bkFFjduIieAEFVw6C priority: 102 providerName: Directory of Open Access Journals |
Title | Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32630764 https://www.proquest.com/docview/2421117214 https://pubmed.ncbi.nlm.nih.gov/PMC7408386 https://doaj.org/article/ef5896d2af194541bc609360dafec7a6 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwELbQJqG9oLHxIwMqIyF4CjSOY8cPE1pHx0BqNQGV9hbZjg2ILoU2k-h_vzsnzQjqXlPLjXzn3Pf5zt8R8gpARlJ6bmMnUx5zrWysMOE4ZFpYpo1NNBLFyVScz_jny-zytv6pXcDVVmqH_aRmy_nbv3_W72HDHyPjBMr-7srVsGCY7geOBUxoF6KSQCI2aaF-81UGZBK6ITOIajGWCjUajlum2CP3AdWA9wveC1dB1X8bFP2_ovKfEHW2Tx602JKeNM7wkNxz1QE5PKmAV1-t6Wsaqj3DMfoh-fW1k3Cm407xmy48nSKKnbfXM-kkdJheUcC29ON8bfES84p-0LWmIwiAJYUxF7eXD8IETWU5_bS5S_iIzM7G307P47bxQmwBT9WxsUxpmWdScwhfwirpFZMeor1KbIpaokLq0gKWKE3OM2MYMLkSlRWHnpfcp4_JTrWo3FNCUyGVNEznqc25trlJpfLWOMARWZlIGZF4s76FbVXJsTnGvAB2gqYp-qaJyJtu_O9Gj-POkSM0VzcKdbTDg8Xye9Fuy8L5LFeiZNonimc8MVYMVSqGpfbOSi0i8nJj7AL2HSZTdOUW16sCU-kJ8mcekSeN8bu_2jhPRGTPLXrv0v-l-vkjaHtLDpg4F0d3zvmM7DGk_HjCzJ6TnXp57V4ALqrNgOyOxtOLL4NwrjAI7n8D_5gNLA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Evaluation+of+Normalization+Methods+for+Glycomics+Data+Based+on+Performance+of+Network+Inference&rft.jtitle=Metabolites&rft.au=Benedetti%2C+Elisa&rft.au=Gerstner%2C+Nathalie&rft.au=Pu%C4%8Di%C4%87-Bakovi%C4%87%2C+Maja&rft.au=Keser%2C+Toma&rft.date=2020-07-02&rft.issn=2218-1989&rft.eissn=2218-1989&rft.volume=10&rft.issue=7&rft_id=info:doi/10.3390%2Fmetabo10070271&rft_id=info%3Apmid%2F32630764&rft.externalDocID=32630764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1989&client=summon |