The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis

Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 192; no. 2; pp. 467 - 474
Main Authors Coursolle, Dan, Baron, Daniel B., Bond, Daniel R., Gralnick, Jeffrey A.
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.01.2010
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
AbstractList The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1.
The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1.The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1.
The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1.
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1. [PUBLICATION ABSTRACT]
Author Daniel B. Baron
Daniel R. Bond
Jeffrey A. Gralnick
Dan Coursolle
AuthorAffiliation BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108
AuthorAffiliation_xml – name: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108
Author_xml – sequence: 1
  givenname: Dan
  surname: Coursolle
  fullname: Coursolle, Dan
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108
– sequence: 2
  givenname: Daniel B.
  surname: Baron
  fullname: Baron, Daniel B.
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108
– sequence: 3
  givenname: Daniel R.
  surname: Bond
  fullname: Bond, Daniel R.
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108
– sequence: 4
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22379531$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19897659$$D View this record in MEDLINE/PubMed
BookMark eNp90s9v0zAUB3ALDbFucOKOLCTggDL8I4ntCxKbOtg0BIJxtl4cp3GV2p2drOp_T0JLBRPi5IM_fv4--52gIx-8Reg5JWeUMvnu-vyMEMWKjKhHaEZJKTIpOTtCM0IYzRRV_BidpLQkhOZ5wZ6gY6qkEmWhZsjethZ_7iP-ZtPaRehD3OKv0Lcb2OKrhOcpWd876HATJlQPxvkFvuzg3vmEwdd43lnTx1DbhJ3H31u7AW-7DvAY09XWJ5eeoscNdMk-26-n6Mfl_PbiU3bz5ePVxYebzORF2WeVUFA3NYGaWFOLikNhhKiE5MIWsiwMrQiRSilOacOlVNCwxjKwqhSsKS0_Re93dddDtbK1GaNH6PQ6uhXErQ7g9N873rV6Ee41k6TgPB8LvNkXiOFusKnXK5fM1I23YUhacF4SOcJRvv6vZJQzriQd4csHcBmG6Mdn0IwJIgXh5Yhe_Bn8kPj3R43g1R5AMtA1Ebxx6eAY40IVfLqN7pyJIaVoG21cD70LU7-u05ToaWj09bn-NTSaTLXfPjhzuP6fGu906xbtxkWrIa30shqzMs10Xgr-E3ohzMs
CODEN JOBAAY
CitedBy_id crossref_primary_10_1016_j_bpj_2015_10_038
crossref_primary_10_1016_j_biosystems_2014_10_005
crossref_primary_10_1016_j_jwpe_2024_105920
crossref_primary_10_1007_s41918_018_0020_1
crossref_primary_10_1111_j_1365_2958_2012_08088_x
crossref_primary_10_1039_D3NR00742A
crossref_primary_10_1002_anie_201400463
crossref_primary_10_1016_j_biortech_2012_10_103
crossref_primary_10_1016_j_copbio_2011_01_009
crossref_primary_10_1016_j_coelec_2017_08_013
crossref_primary_10_1016_j_jpowsour_2018_12_041
crossref_primary_10_1186_s13068_014_0118_6
crossref_primary_10_1016_j_elecom_2014_01_025
crossref_primary_10_1016_j_biortech_2012_01_099
crossref_primary_10_1128_AEM_06803_11
crossref_primary_10_1038_s42003_021_02040_1
crossref_primary_10_1073_pnas_1220074110
crossref_primary_10_1021_acs_biochem_2c00148
crossref_primary_10_1016_j_bios_2020_112312
crossref_primary_10_1021_acs_est_5b00006
crossref_primary_10_1016_j_biotechadv_2013_05_001
crossref_primary_10_1021_acssynbio_1c00335
crossref_primary_10_1038_s41467_019_13219_w
crossref_primary_10_1038_srep11677
crossref_primary_10_1016_j_jhazmat_2022_129500
crossref_primary_10_1021_acssynbio_8b00498
crossref_primary_10_1073_pnas_1305244110
crossref_primary_10_1016_j_cbpa_2018_06_007
crossref_primary_10_1016_j_jenvrad_2023_107356
crossref_primary_10_1128_jb_00391_22
crossref_primary_10_3389_fmicb_2019_00818
crossref_primary_10_1016_j_corsci_2024_112400
crossref_primary_10_1016_j_scitotenv_2022_153443
crossref_primary_10_1007_s11431_019_9509_8
crossref_primary_10_1021_acsestengg_4c00735
crossref_primary_10_1111_j_1472_4669_2012_00321_x
crossref_primary_10_1002_bit_25723
crossref_primary_10_1016_j_xcrp_2024_102200
crossref_primary_10_1002_anie_201701964
crossref_primary_10_1002_elan_200800007
crossref_primary_10_57634_RCR5073
crossref_primary_10_1016_j_bios_2014_07_003
crossref_primary_10_1002_celc_201402128
crossref_primary_10_1021_acsearthspacechem_4c00260
crossref_primary_10_1016_j_jwpe_2022_103199
crossref_primary_10_1016_j_biotechadv_2020_107682
crossref_primary_10_1073_pnas_1017200108
crossref_primary_10_3389_fmicb_2021_627595
crossref_primary_10_1021_acscatal_5b01733
crossref_primary_10_1038_s43246_021_00173_8
crossref_primary_10_1039_C4CP03197K
crossref_primary_10_1128_JB_00340_17
crossref_primary_10_1016_j_bioelechem_2011_12_012
crossref_primary_10_1016_j_envint_2019_03_010
crossref_primary_10_1016_j_scitotenv_2022_156501
crossref_primary_10_1021_acs_estlett_7b00227
crossref_primary_10_1016_j_margen_2020_100808
crossref_primary_10_1016_j_scitotenv_2024_170451
crossref_primary_10_1073_pnas_2000802117
crossref_primary_10_1099_mic_0_058404_0
crossref_primary_10_1149_2_001401jes
crossref_primary_10_1111_j_1365_2958_2010_07266_x
crossref_primary_10_1016_j_biortech_2013_02_083
crossref_primary_10_1093_jimb_kuac012
crossref_primary_10_1016_j_biortech_2014_03_048
crossref_primary_10_1038_s41570_017_0024
crossref_primary_10_1038_srep01616
crossref_primary_10_1016_j_bios_2018_01_032
crossref_primary_10_1371_journal_pone_0145871
crossref_primary_10_1039_C5NR04765J
crossref_primary_10_1016_j_scitotenv_2018_12_031
crossref_primary_10_1128_mBio_02034_14
crossref_primary_10_1128_mBio_00553_12
crossref_primary_10_1002_advs_202000641
crossref_primary_10_1016_j_ibiod_2018_11_002
crossref_primary_10_1186_s12934_019_1270_2
crossref_primary_10_1016_j_bioelechem_2014_06_010
crossref_primary_10_1142_S0218339019500037
crossref_primary_10_1116_1_4984007
crossref_primary_10_1186_s12951_021_00868_7
crossref_primary_10_1016_j_chempr_2017_01_001
crossref_primary_10_1002_anie_202416577
crossref_primary_10_1071_EN17158
crossref_primary_10_1007_s13205_021_02917_2
crossref_primary_10_1016_j_scitotenv_2024_171431
crossref_primary_10_1002_bit_25624
crossref_primary_10_1039_c3ee00071k
crossref_primary_10_2166_wpt_2024_246
crossref_primary_10_1002_advs_202403067
crossref_primary_10_1002_er_7050
crossref_primary_10_1002_bit_24538
crossref_primary_10_1111_j_1365_2958_2010_07353_x
crossref_primary_10_1016_j_bioelechem_2015_03_011
crossref_primary_10_1016_j_ibiod_2020_104969
crossref_primary_10_1007_s00253_011_3508_8
crossref_primary_10_1039_C6CC00976J
crossref_primary_10_1002_celc_202200965
crossref_primary_10_1128_spectrum_04081_23
crossref_primary_10_1016_j_synbio_2022_04_010
crossref_primary_10_1039_D1GC02094C
crossref_primary_10_1128_AEM_01460_12
crossref_primary_10_1128_aem_02465_24
crossref_primary_10_1128_AEM_01253_20
crossref_primary_10_1016_j_envres_2023_115843
crossref_primary_10_3390_en8010399
crossref_primary_10_1146_annurev_micro_092611_150104
crossref_primary_10_1007_s12274_019_2438_0
crossref_primary_10_1038_s41467_024_45759_1
crossref_primary_10_1021_sb300042w
crossref_primary_10_1042_BJ20120197
crossref_primary_10_1016_j_biortech_2017_05_077
crossref_primary_10_1016_j_biortech_2021_126218
crossref_primary_10_1016_j_synthmet_2016_02_015
crossref_primary_10_1039_c1ee02229f
crossref_primary_10_1016_j_rser_2021_110965
crossref_primary_10_1128_MMBR_00030_10
crossref_primary_10_1111_mmi_14067
crossref_primary_10_3389_fbioe_2021_786416
crossref_primary_10_1021_es301544b
crossref_primary_10_1016_j_envres_2022_114914
crossref_primary_10_1016_j_febslet_2014_04_013
crossref_primary_10_1016_j_fuel_2016_11_108
crossref_primary_10_1002_bit_26212
crossref_primary_10_1016_j_str_2012_04_016
crossref_primary_10_3389_fmicb_2014_00318
crossref_primary_10_1016_j_jhazmat_2024_135260
crossref_primary_10_3389_fmicb_2015_00994
crossref_primary_10_1038_srep05628
crossref_primary_10_1007_s00449_015_1454_z
crossref_primary_10_1021_acs_est_0c00141
crossref_primary_10_1002_bit_25128
crossref_primary_10_1111_j_1574_6968_2010_01949_x
crossref_primary_10_1007_s00253_011_3653_0
crossref_primary_10_1146_annurev_micro_032221_023725
crossref_primary_10_1016_j_scitotenv_2020_140213
crossref_primary_10_1002_yea_2929
crossref_primary_10_1007_s11274_018_2576_7
crossref_primary_10_1021_sb300119v
crossref_primary_10_1016_j_geoderma_2020_114706
crossref_primary_10_1128_JB_00927_15
crossref_primary_10_1002_ange_202416577
crossref_primary_10_1128_AEM_02115_18
crossref_primary_10_1007_s11356_021_15015_w
crossref_primary_10_1016_j_biortech_2014_09_079
crossref_primary_10_1128_AEM_02282_13
crossref_primary_10_1016_j_tibtech_2024_02_004
crossref_primary_10_1021_jacs_9b09262
crossref_primary_10_1049_el_2015_3226
crossref_primary_10_1002_celc_201402194
crossref_primary_10_1128_JB_00201_11
crossref_primary_10_1042_BST20120098
crossref_primary_10_1557_mrc_2019_27
crossref_primary_10_3389_fmicb_2019_00399
crossref_primary_10_1002_cjce_23836
crossref_primary_10_1016_j_bioelechem_2011_12_003
crossref_primary_10_1016_j_procbio_2012_07_032
crossref_primary_10_1128_AEM_02183_12
crossref_primary_10_1016_j_scitotenv_2020_143076
crossref_primary_10_1016_j_electacta_2022_140917
crossref_primary_10_1016_j_cej_2022_138717
crossref_primary_10_1016_j_chemosphere_2021_132299
crossref_primary_10_1016_j_electacta_2017_11_160
crossref_primary_10_1016_j_biortech_2018_01_133
crossref_primary_10_1038_s41467_025_57497_z
crossref_primary_10_1039_C9SC01942A
crossref_primary_10_1074_jbc_RA118_001850
crossref_primary_10_1002_advs_202206622
crossref_primary_10_1016_j_bios_2022_114754
crossref_primary_10_1021_acssynbio_9b00517
crossref_primary_10_1371_journal_pone_0016649
crossref_primary_10_2116_analsci_18P237
crossref_primary_10_1016_j_biortech_2021_126579
crossref_primary_10_1016_j_chemosphere_2017_03_066
crossref_primary_10_1186_s12866_015_0406_8
crossref_primary_10_1021_acssuschemeng_6b00647
crossref_primary_10_1007_s00253_014_6005_z
crossref_primary_10_1016_j_biotechadv_2018_07_001
crossref_primary_10_1021_acs_est_2c07697
crossref_primary_10_1016_j_bios_2016_11_059
crossref_primary_10_1016_j_biosystems_2011_10_003
crossref_primary_10_1021_jacs_8b05104
crossref_primary_10_1016_j_electacta_2016_03_074
crossref_primary_10_1021_acssynbio_6b00349
crossref_primary_10_1016_j_envint_2019_05_016
crossref_primary_10_1016_j_jhazmat_2017_06_054
crossref_primary_10_1039_C9RA02343G
crossref_primary_10_1016_j_scitotenv_2017_08_184
crossref_primary_10_1371_journal_pone_0030827
crossref_primary_10_1016_j_jhazmat_2013_02_040
crossref_primary_10_1021_acssynbio_2c00024
crossref_primary_10_1002_adfm_202109366
crossref_primary_10_3389_fmicb_2019_00410
crossref_primary_10_1002_ange_202305189
crossref_primary_10_1128_MRA_00800_19
crossref_primary_10_1016_j_jhazmat_2021_125140
crossref_primary_10_1016_j_chemosphere_2018_08_006
crossref_primary_10_1021_acs_chemrev_3c00831
crossref_primary_10_1002_er_3305
crossref_primary_10_1016_j_envpol_2020_115943
crossref_primary_10_3389_fmicb_2019_01623
crossref_primary_10_4014_jmb_2212_12024
crossref_primary_10_1007_s12010_020_03469_6
crossref_primary_10_1016_j_bioelechem_2018_07_001
crossref_primary_10_1016_j_rhisph_2020_100274
crossref_primary_10_1016_j_jhazmat_2024_135348
crossref_primary_10_1016_j_watres_2020_116612
crossref_primary_10_1002_er_3780
crossref_primary_10_1016_j_ibiod_2013_12_011
crossref_primary_10_1186_s40793_024_00586_1
crossref_primary_10_1016_j_mib_2010_02_002
crossref_primary_10_1002_bit_26094
crossref_primary_10_1155_2014_139653
crossref_primary_10_3389_fenrg_2019_00095
crossref_primary_10_1016_j_synbio_2022_09_005
crossref_primary_10_1016_j_scitotenv_2023_167294
crossref_primary_10_1002_adom_202401748
crossref_primary_10_1134_S0006297914130094
crossref_primary_10_1016_j_jenvman_2023_117455
crossref_primary_10_3390_ijms18040874
crossref_primary_10_1039_C4MB00386A
crossref_primary_10_1089_bioe_2021_0010
crossref_primary_10_1016_j_bej_2023_108928
crossref_primary_10_1016_j_aca_2019_05_007
crossref_primary_10_1016_j_ijfoodmicro_2020_108524
crossref_primary_10_1016_j_gca_2015_03_039
crossref_primary_10_1039_C8TB01598H
crossref_primary_10_1016_j_electacta_2023_141924
crossref_primary_10_1128_JB_01478_10
crossref_primary_10_1016_j_biortech_2025_132410
crossref_primary_10_3934_bioeng_2015_3_222
crossref_primary_10_1021_acs_langmuir_5b01033
crossref_primary_10_1016_j_snb_2011_11_066
crossref_primary_10_3390_microorganisms10081585
crossref_primary_10_1074_jbc_M112_348813
crossref_primary_10_2116_analsci_18P394
crossref_primary_10_1016_j_biortech_2017_12_042
crossref_primary_10_1021_acs_est_6b04640
crossref_primary_10_1021_acscentsci_1c01208
crossref_primary_10_1128_AEM_01154_18
crossref_primary_10_1002_ange_201400463
crossref_primary_10_1038_srep37456
crossref_primary_10_1039_D2EN00156J
crossref_primary_10_1039_c1ee02511b
crossref_primary_10_1007_s12566_012_0033_x
crossref_primary_10_1002_cssc_201000213
crossref_primary_10_1128_mBio_02668_19
crossref_primary_10_1128_AEM_02134_18
crossref_primary_10_1016_j_enzmictec_2018_04_005
crossref_primary_10_1039_C5DT00556F
crossref_primary_10_1002_bit_26046
crossref_primary_10_1002_ange_201701964
crossref_primary_10_1016_j_scitotenv_2024_174119
crossref_primary_10_1021_nn204656d
crossref_primary_10_1021_ac400486u
crossref_primary_10_1128_msystems_00038_23
crossref_primary_10_1016_j_biotechadv_2019_107468
crossref_primary_10_1021_es304606u
crossref_primary_10_1038_s41598_018_37025_4
crossref_primary_10_1002_celc_201402211
crossref_primary_10_1007_s00253_014_5973_3
crossref_primary_10_1021_acs_chemrev_0c00472
crossref_primary_10_3389_fmicb_2022_1070601
crossref_primary_10_1016_j_bios_2013_03_010
crossref_primary_10_1016_j_nanoen_2018_05_072
crossref_primary_10_1016_j_envpol_2020_114370
crossref_primary_10_1152_physiolgenomics_00010_2015
crossref_primary_10_1016_j_jelechem_2022_116387
crossref_primary_10_1007_s11814_014_0286_x
crossref_primary_10_1021_es5017312
crossref_primary_10_3389_fenrg_2019_00060
crossref_primary_10_1021_acssynbio_8b00218
crossref_primary_10_1039_C4CP00566J
crossref_primary_10_1007_s13213_015_1148_4
crossref_primary_10_1073_pnas_2404958121
crossref_primary_10_1021_sb500331x
crossref_primary_10_1002_jctb_6344
crossref_primary_10_1021_jacs_8b01734
crossref_primary_10_1016_j_procbio_2025_03_004
crossref_primary_10_1002_celc_202101423
crossref_primary_10_3389_fmicb_2017_01584
crossref_primary_10_1021_es2030752
crossref_primary_10_1021_acssynbio_4c00248
crossref_primary_10_1021_acsestwater_0c00124
crossref_primary_10_1039_c2ra21727a
crossref_primary_10_1073_pnas_1220823110
crossref_primary_10_1021_acssynbio_6b00374
crossref_primary_10_1039_C5AN01200G
crossref_primary_10_1002_celc_201901618
crossref_primary_10_1111_j_1462_2920_2010_02407_x
crossref_primary_10_1128_AEM_02852_20
crossref_primary_10_1002_anie_202305189
crossref_primary_10_1128_mBio_00190_10
crossref_primary_10_1039_c4nr01338g
crossref_primary_10_1111_1758_2229_12173
crossref_primary_10_1016_S1452_3981_23_14264_7
crossref_primary_10_1128_JB_00347_18
crossref_primary_10_1128_JB_00651_13
crossref_primary_10_1039_C5CC03188E
crossref_primary_10_1039_C4CP01524J
crossref_primary_10_1021_acsami_4c16868
crossref_primary_10_1039_C6CP07595A
crossref_primary_10_1016_j_bioelechem_2012_05_002
crossref_primary_10_1016_j_jpowsour_2017_05_101
crossref_primary_10_1128_AEM_00935_10
crossref_primary_10_1111_j_1365_2958_2012_08196_x
crossref_primary_10_1016_j_chemosphere_2016_10_085
crossref_primary_10_1007_s11120_023_01061_7
crossref_primary_10_1016_j_electacta_2016_09_002
crossref_primary_10_1016_j_fuel_2020_119291
crossref_primary_10_1016_j_jmst_2023_01_041
crossref_primary_10_1038_ismej_2016_149
crossref_primary_10_1016_j_jes_2021_08_043
crossref_primary_10_1128_AEM_00852_19
crossref_primary_10_3389_fmicb_2018_02886
crossref_primary_10_1007_s11783_024_1808_3
crossref_primary_10_1042_BST20120018
crossref_primary_10_1016_j_scitotenv_2021_151009
crossref_primary_10_1021_acs_est_2c07862
crossref_primary_10_1038_s41598_019_51452_x
crossref_primary_10_1073_pnas_1718810115
crossref_primary_10_1016_j_cej_2019_123408
crossref_primary_10_1128_jb_00469_22
crossref_primary_10_1016_j_biortech_2017_06_013
crossref_primary_10_1016_j_cej_2024_151456
crossref_primary_10_1016_j_biortech_2022_127686
crossref_primary_10_1128_mSystems_00165_16
crossref_primary_10_1016_j_bioelechem_2022_108054
crossref_primary_10_1016_j_mimet_2010_05_011
crossref_primary_10_1016_j_jhazmat_2023_133401
crossref_primary_10_1038_s41598_019_44088_4
crossref_primary_10_1016_j_rser_2020_110184
crossref_primary_10_1016_j_biotechadv_2019_02_007
crossref_primary_10_1016_j_gca_2013_05_039
crossref_primary_10_1021_es204302w
crossref_primary_10_1038_nrmicro_2016_93
crossref_primary_10_1098_rsif_2014_1117
crossref_primary_10_1016_j_biotechadv_2023_108175
crossref_primary_10_1042_BST20120129
crossref_primary_10_1080_01490451003604311
crossref_primary_10_1002_cssc_201900413
crossref_primary_10_1038_s41598_019_57206_z
crossref_primary_10_1080_08927014_2012_710324
crossref_primary_10_1002_aic_15611
crossref_primary_10_1039_C5CC00026B
Cites_doi 10.1021/jp0718698
10.1128/AEM.00840-08
10.1074/jbc.M109.043455
10.1046/j.1365-2958.2001.02257.x
10.1073/pnas.0505959103
10.1111/j.1365-2958.2007.05778.x
10.1126/science.240.4857.1319
10.1016/S0167-7012(99)00097-4
10.1128/AEM.00146-07
10.1016/j.watres.2007.04.009
10.1111/j.1365-2958.2007.05783.x
10.1016/S0065-2164(03)53003-9
10.1128/JB.182.1.67-75.2000
10.1016/S0065-2911(04)49005-5
10.1042/bj0540646
10.1128/JB.184.1.142-151.2002
10.1016/0378-1119(95)00584-1
10.1038/nrmicro1947
10.1021/bi00700a029
10.1128/AEM.68.11.5585-5594.2002
10.1002/9783527613229
10.1128/JB.01966-05
10.1021/ac60289a016
10.1007/s00425-006-0476-9
10.1073/pnas.0604517103
10.1073/pnas.0710525105
10.1007/s00775-007-0278-y
10.1128/AEM.00544-09
10.1111/j.1472-765X.2004.01611.x
10.1002/jobm.200610279
10.1016/j.abb.2008.02.008
10.1016/j.jinorgbio.2007.07.020
10.1128/AEM.71.8.4414-4426.2005
10.1128/AEM.68.6.2781-2793.2002
10.1021/ja063526d
10.1146/annurev.micro.61.080706.093257
10.1128/JB.180.23.6292-6297.1998
10.1126/science.1059567
10.1016/j.tibtech.2005.04.008
10.1111/j.1742-4658.2007.05907.x
10.1128/JB.184.3.846-848.2002
10.1146/annurev.micro.59.030804.121357
10.1128/AEM.32.6.781-791.1976
10.1038/35011098
10.1007/s00775-008-0398-z
10.1128/jb.179.4.1143-1152.1997
10.1128/AEM.01087-07
10.1099/00207713-49-2-705
10.1128/AEM.01387-07
10.1128/JB.180.6.1473-1479.1998
10.1128/JB.01518-06
10.1128/AEM.67.1.260-269.2001
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Society for Microbiology Jan 2010
Copyright © 2010, American Society for Microbiology 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Society for Microbiology Jan 2010
– notice: Copyright © 2010, American Society for Microbiology 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.00925-09
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)


Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1067-8832
1098-5530
EndPage 474
ExternalDocumentID PMC2805334
1933103271
19897659
22379531
10_1128_JB_00925_09
jb_192_2_467
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008347
– fundername: NIGMS NIH HHS
  grantid: 2T32-GM008347-16
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGCDD
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
O9-
OK1
P-S
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
ZY4
~02
~KM
.GJ
186
1VV
3O-
8WZ
9M8
A6W
ADXHL
AFFDN
AFFNX
AI.
AIDAL
AJUXI
IQODW
MVM
NHB
OHT
P-O
QZG
VH1
WHG
Y6R
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c456t-b79adfd0ad0ecd7b3a5c77b7837e5865c1b008999311f3889af2fe2ae9672f6e3
ISSN 0021-9193
1098-5530
IngestDate Thu Aug 21 18:28:30 EDT 2025
Fri Jul 11 10:06:40 EDT 2025
Fri Jul 11 00:30:21 EDT 2025
Mon Jun 30 10:38:03 EDT 2025
Mon Jul 21 05:49:06 EDT 2025
Mon Jul 21 09:11:08 EDT 2025
Tue Jul 01 03:26:05 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Wed May 18 15:26:45 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Shewanella
Bacteria
Vibrionaceae
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-b79adfd0ad0ecd7b3a5c77b7837e5865c1b008999311f3889af2fe2ae9672f6e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19897659
PQID 227087036
PQPubID 40724
PageCount 8
ParticipantIDs pubmed_primary_19897659
proquest_miscellaneous_733608343
pascalfrancis_primary_22379531
highwire_asm_jb_192_2_467
crossref_primary_10_1128_JB_00925_09
crossref_citationtrail_10_1128_JB_00925_09
proquest_miscellaneous_21323981
proquest_journals_227087036
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2805334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2010
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
(e_1_3_2_9_2) 2007; 274
(e_1_3_2_11_2) 2002; 52
(e_1_3_2_28_2) 2004; 49
(e_1_3_2_14_2) 2008; 474
(e_1_3_2_51_2) 1999; 49
(e_1_3_2_21_2) 2007; 12
e_1_3_2_43_2
(e_1_3_2_17_2) 1974; 13
e_1_3_2_22_2
e_1_3_2_45_2
(e_1_3_2_50_2) 2007; 101
e_1_3_2_47_2
(e_1_3_2_5_2) 2009; 284
(e_1_3_2_18_2) 2006; 103
(e_1_3_2_30_2) 2001; 292
(e_1_3_2_23_2) 2007; 61
(e_1_3_2_7_2) 2001; 39
(e_1_3_2_41_2) 2007; 41
e_1_3_2_16_2
e_1_3_2_37_2
(e_1_3_2_3_2) 1950; 47
(e_1_3_2_39_2) 1984; 1
(e_1_3_2_24_2) 1999; 9
(e_1_3_2_27_2) 2003; 53
e_1_3_2_10_2
e_1_3_2_52_2
(e_1_3_2_57_2) 2006; 128
(e_1_3_2_48_2) 2007; 65
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_35_2
e_1_3_2_56_2
(e_1_3_2_19_2) 2007; 65
(e_1_3_2_20_2) 2006; 103
e_1_3_2_29_2
(e_1_3_2_42_2) 2005; 23
(e_1_3_2_8_2) 2007; 47
e_1_3_2_40_2
(e_1_3_2_15_2) 2008; 6
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
(e_1_3_2_13_2) 2008; 13
(e_1_3_2_53_2) 2007; 226
(e_1_3_2_2_2) 1953; 54
(e_1_3_2_34_2) 2004; 39
e_1_3_2_38_2
e_1_3_2_6_2
(e_1_3_2_54_2) 2006; 60
(e_1_3_2_31_2) 2008; 105
e_1_3_2_32_2
e_1_3_2_4_2
e_1_3_2_36_2
(e_1_3_2_55_2) 2007; 111
16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74
16704344 - Annu Rev Microbiol. 2006;60:149-66
17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9
17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94
19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73
15518832 - Adv Microb Physiol. 2004;49:219-86
17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64
17815852 - Science. 1988 Jun 3;240(4857):1319-21
16849424 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63
11169112 - Mol Microbiol. 2001 Feb;39(3):722-30
8529885 - Gene. 1995 Dec 1;166(1):175-6
16788180 - J Bacteriol. 2006 Jul;188(13):4705-14
14696317 - Adv Appl Microbiol. 2003;53:85-128
17910100 - J Basic Microbiol. 2007 Oct;47(5):371-7
17581116 - Mol Microbiol. 2007 Jul;65(1):12-20
11133454 - Appl Environ Microbiol. 2001 Jan;67(1):260-9
14800901 - Biochem J. 1950 Sep;47(3):xxvii
15922081 - Trends Biotechnol. 2005 Jun;23(6):291-8
17644630 - Appl Environ Microbiol. 2007 Nov;73(21):7003-12
17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7
13058968 - Biochem J. 1953 Jul;54(4):646-54
19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26
17608722 - FEBS J. 2007 Jul;274(14):3728-38
18035608 - Annu Rev Microbiol. 2007;61:237-58
17468239 - J Bacteriol. 2007 Jul;189(13):4944-52
11741854 - J Bacteriol. 2002 Jan;184(1):142-51
9023196 - J Bacteriol. 1997 Feb;179(4):1143-52
9515916 - J Bacteriol. 1998 Mar;180(6):1473-9
17260143 - Planta. 2007 Jun;226(1):147-58
18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
15482439 - Lett Appl Microbiol. 2004;39(5):466-70
18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6
17537478 - Water Res. 2007 Jul;41(13):2921-40
4149231 - Biochemistry. 1974 Jan 29;13(3):589-97
18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603
18298940 - Arch Biochem Biophys. 2008 Jun 15;474(2):252-65
18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54
11790756 - J Bacteriol. 2002 Feb;184(3):846-8
11359008 - Science. 2001 May 18;292(5520):1360-3
10811225 - Nature. 2000 May 4;405(6782):94-7
12406753 - Appl Environ Microbiol. 2002 Nov;68(11):5585-94
6242877 - Microbiol Sci. 1984 Apr;1(1):9-14
12508890 - Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2211-7
10613864 - J Bacteriol. 2000 Jan;182(1):67-75
827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91
9829939 - J Bacteriol. 1998 Dec;180(23):6292-7
16085832 - Appl Environ Microbiol. 2005 Aug;71(8):4414-26
10576700 - J Microbiol Methods. 2000 Jan;39(2):109-19
10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24
17581115 - Mol Microbiol. 2007 Jul;65(1):1-11
17675441 - Appl Environ Microbiol. 2007 Sep;73(18):5797-808
12039733 - Appl Environ Microbiol. 2002 Jun;68(6):2781-93
18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
References_xml – volume: 111
  start-page: 12857
  year: 2007
  ident: e_1_3_2_55_2
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0718698
– ident: e_1_3_2_22_2
  doi: 10.1128/AEM.00840-08
– volume: 284
  start-page: 28865
  year: 2009
  ident: e_1_3_2_5_2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.043455
– volume: 39
  start-page: 722
  year: 2001
  ident: e_1_3_2_7_2
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02257.x
– volume: 103
  start-page: 4669
  year: 2006
  ident: e_1_3_2_20_2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0505959103
– volume: 65
  start-page: 1
  year: 2007
  ident: e_1_3_2_19_2
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05778.x
– ident: e_1_3_2_35_2
  doi: 10.1126/science.240.4857.1319
– ident: e_1_3_2_58_2
  doi: 10.1016/S0167-7012(99)00097-4
– ident: e_1_3_2_44_2
  doi: 10.1128/AEM.00146-07
– volume: 41
  start-page: 2921
  year: 2007
  ident: e_1_3_2_41_2
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.04.009
– volume: 65
  start-page: 12
  year: 2007
  ident: e_1_3_2_48_2
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05783.x
– volume: 53
  start-page: 85
  year: 2003
  ident: e_1_3_2_27_2
  publication-title: Adv. Appl. Microbiol.
  doi: 10.1016/S0065-2164(03)53003-9
– ident: e_1_3_2_38_2
  doi: 10.1128/JB.182.1.67-75.2000
– volume: 49
  start-page: 219
  year: 2004
  ident: e_1_3_2_28_2
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/S0065-2911(04)49005-5
– volume: 54
  start-page: 646
  year: 1953
  ident: e_1_3_2_2_2
  publication-title: Biochem. J.
  doi: 10.1042/bj0540646
– ident: e_1_3_2_12_2
  doi: 10.1128/JB.184.1.142-151.2002
– ident: e_1_3_2_25_2
  doi: 10.1016/0378-1119(95)00584-1
– volume: 6
  start-page: 592
  year: 2008
  ident: e_1_3_2_15_2
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1947
– volume: 13
  start-page: 589
  year: 1974
  ident: e_1_3_2_17_2
  publication-title: Biochemistry
  doi: 10.1021/bi00700a029
– ident: e_1_3_2_33_2
  doi: 10.1128/AEM.68.11.5585-5594.2002
– ident: e_1_3_2_46_2
  doi: 10.1002/9783527613229
– ident: e_1_3_2_47_2
  doi: 10.1128/JB.01966-05
– ident: e_1_3_2_49_2
  doi: 10.1021/ac60289a016
– volume: 226
  start-page: 147
  year: 2007
  ident: e_1_3_2_53_2
  publication-title: Planta
  doi: 10.1007/s00425-006-0476-9
– volume: 103
  start-page: 11358
  year: 2006
  ident: e_1_3_2_18_2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0604517103
– volume: 105
  start-page: 3968
  year: 2008
  ident: e_1_3_2_31_2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0710525105
– volume: 12
  start-page: 1083
  year: 2007
  ident: e_1_3_2_21_2
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-007-0278-y
– ident: e_1_3_2_43_2
  doi: 10.1128/AEM.00544-09
– volume: 39
  start-page: 466
  year: 2004
  ident: e_1_3_2_34_2
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2004.01611.x
– volume: 47
  start-page: 371
  year: 2007
  ident: e_1_3_2_8_2
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.200610279
– volume: 474
  start-page: 252
  year: 2008
  ident: e_1_3_2_14_2
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2008.02.008
– volume: 101
  start-page: 1760
  year: 2007
  ident: e_1_3_2_50_2
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2007.07.020
– ident: e_1_3_2_26_2
  doi: 10.1128/AEM.71.8.4414-4426.2005
– ident: e_1_3_2_36_2
  doi: 10.1128/AEM.68.6.2781-2793.2002
– volume: 128
  start-page: 13978
  year: 2006
  ident: e_1_3_2_57_2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063526d
– volume: 9
  start-page: 127
  year: 1999
  ident: e_1_3_2_24_2
  publication-title: J. Microbiol. Biotechnol.
– volume: 61
  start-page: 237
  year: 2007
  ident: e_1_3_2_23_2
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.61.080706.093257
– ident: e_1_3_2_6_2
  doi: 10.1128/JB.180.23.6292-6297.1998
– volume: 292
  start-page: 1360
  year: 2001
  ident: e_1_3_2_30_2
  publication-title: Science
  doi: 10.1126/science.1059567
– volume: 23
  start-page: 291
  year: 2005
  ident: e_1_3_2_42_2
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2005.04.008
– volume: 274
  start-page: 3728
  year: 2007
  ident: e_1_3_2_9_2
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.05907.x
– ident: e_1_3_2_45_2
  doi: 10.1128/JB.184.3.846-848.2002
– volume: 60
  start-page: 149
  year: 2006
  ident: e_1_3_2_54_2
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.030804.121357
– volume: 47
  start-page: xxvii
  year: 1950
  ident: e_1_3_2_3_2
  publication-title: Biochem. J.
– volume: 52
  start-page: 2211
  year: 2002
  ident: e_1_3_2_11_2
  publication-title: Int. J. Syst. Evol. Microbiol.
– ident: e_1_3_2_4_2
  doi: 10.1128/AEM.32.6.781-791.1976
– ident: e_1_3_2_40_2
  doi: 10.1038/35011098
– volume: 13
  start-page: 849
  year: 2008
  ident: e_1_3_2_13_2
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-008-0398-z
– ident: e_1_3_2_32_2
  doi: 10.1128/jb.179.4.1143-1152.1997
– ident: e_1_3_2_10_2
  doi: 10.1128/AEM.01087-07
– volume: 49
  start-page: 705
  year: 1999
  ident: e_1_3_2_51_2
  publication-title: Int. J. Syst. Bacteriol.
  doi: 10.1099/00207713-49-2-705
– ident: e_1_3_2_52_2
  doi: 10.1128/AEM.01387-07
– ident: e_1_3_2_56_2
  doi: 10.1128/JB.180.6.1473-1479.1998
– volume: 1
  start-page: 9
  year: 1984
  ident: e_1_3_2_39_2
  publication-title: Microbiol. Sci.
– ident: e_1_3_2_16_2
– ident: e_1_3_2_29_2
  doi: 10.1128/JB.01518-06
– ident: e_1_3_2_37_2
  doi: 10.1128/AEM.67.1.260-269.2001
– reference: 18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54
– reference: 17910100 - J Basic Microbiol. 2007 Oct;47(5):371-7
– reference: 9829939 - J Bacteriol. 1998 Dec;180(23):6292-7
– reference: 14696317 - Adv Appl Microbiol. 2003;53:85-128
– reference: 18035608 - Annu Rev Microbiol. 2007;61:237-58
– reference: 17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94
– reference: 16849424 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63
– reference: 18298940 - Arch Biochem Biophys. 2008 Jun 15;474(2):252-65
– reference: 10613864 - J Bacteriol. 2000 Jan;182(1):67-75
– reference: 17537478 - Water Res. 2007 Jul;41(13):2921-40
– reference: 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64
– reference: 18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6
– reference: 17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7
– reference: 17644630 - Appl Environ Microbiol. 2007 Nov;73(21):7003-12
– reference: 16704344 - Annu Rev Microbiol. 2006;60:149-66
– reference: 6242877 - Microbiol Sci. 1984 Apr;1(1):9-14
– reference: 10811225 - Nature. 2000 May 4;405(6782):94-7
– reference: 15922081 - Trends Biotechnol. 2005 Jun;23(6):291-8
– reference: 19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26
– reference: 9515916 - J Bacteriol. 1998 Mar;180(6):1473-9
– reference: 17581116 - Mol Microbiol. 2007 Jul;65(1):12-20
– reference: 13058968 - Biochem J. 1953 Jul;54(4):646-54
– reference: 15482439 - Lett Appl Microbiol. 2004;39(5):466-70
– reference: 12406753 - Appl Environ Microbiol. 2002 Nov;68(11):5585-94
– reference: 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52
– reference: 19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73
– reference: 4149231 - Biochemistry. 1974 Jan 29;13(3):589-97
– reference: 12508890 - Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2211-7
– reference: 18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603
– reference: 14800901 - Biochem J. 1950 Sep;47(3):xxvii
– reference: 17468239 - J Bacteriol. 2007 Jul;189(13):4944-52
– reference: 16788180 - J Bacteriol. 2006 Jul;188(13):4705-14
– reference: 11790756 - J Bacteriol. 2002 Feb;184(3):846-8
– reference: 17581115 - Mol Microbiol. 2007 Jul;65(1):1-11
– reference: 17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9
– reference: 17675441 - Appl Environ Microbiol. 2007 Sep;73(18):5797-808
– reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23
– reference: 8529885 - Gene. 1995 Dec 1;166(1):175-6
– reference: 16085832 - Appl Environ Microbiol. 2005 Aug;71(8):4414-26
– reference: 10576700 - J Microbiol Methods. 2000 Jan;39(2):109-19
– reference: 11741854 - J Bacteriol. 2002 Jan;184(1):142-51
– reference: 11169112 - Mol Microbiol. 2001 Feb;39(3):722-30
– reference: 10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24
– reference: 17260143 - Planta. 2007 Jun;226(1):147-58
– reference: 17815852 - Science. 1988 Jun 3;240(4857):1319-21
– reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73
– reference: 15518832 - Adv Microb Physiol. 2004;49:219-86
– reference: 11359008 - Science. 2001 May 18;292(5520):1360-3
– reference: 11133454 - Appl Environ Microbiol. 2001 Jan;67(1):260-9
– reference: 17608722 - FEBS J. 2007 Jul;274(14):3728-38
– reference: 16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74
– reference: 827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91
– reference: 12039733 - Appl Environ Microbiol. 2002 Jun;68(6):2781-93
SSID ssj0014452
Score 2.4904432
Snippet Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins...
The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 467
SubjectTerms Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - physiology
Bacteriology
Biofilms
Biological and medical sciences
Bioreactors
Cells
Chemical compounds
Cytochromes - metabolism
Electrodes
Electron Transport - genetics
Electron Transport - physiology
Ferric Compounds - metabolism
Flavins - metabolism
Fundamental and applied biological sciences. Psychology
Metal concentrations
Microbiology
Microscopy, Confocal
Miscellaneous
Mutation
Oxidation-Reduction
Physiology and Metabolism
Proteins
Shewanella - genetics
Shewanella - metabolism
Shewanella oneidensis
Signal transduction
Signal Transduction - genetics
Signal Transduction - physiology
Title The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis
URI http://jb.asm.org/content/192/2/467.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19897659
https://www.proquest.com/docview/227087036
https://www.proquest.com/docview/21323981
https://www.proquest.com/docview/733608343
https://pubmed.ncbi.nlm.nih.gov/PMC2805334
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiDehUHzoiShL3k6Ou9WWttKiirbS3iwncdRF27TaZKnKr2cmdl6wlaCXKIqdWMl8sWfGM98Qsi8S4aBebbGMYQmzzIdfKogs38_sNMo9W0p0Dcy_hUcX_skiWIxGfYbgTZWM019b80oeIlW4BnLFLNn_kGz7ULgA5yBfOIKE4fjPMp5Xa_TBt_vlp6DS3Yo787g0ZyVmFi1ViiJ0yjYpOgYOV-InBsagy3ymquBkdViWeXYpbwXGvQjzukACrKJclveor4mieR545bEAXomeCJ283rlJ12pzXyW0m9Nx26KrGuuG723D17VYFbrKu842Myfjvo-iDnUbxHs0m0_9SNT5ssc0Bdr05GzeOD-aPAMHcKPqJ46lmp6R_RQLHQ3m79jtAdXtzca-qvShF3ZflQP6e81wMQ_iZDpG_qnAqtkaqh56bq5q-GBwGQs1ffmQovt0fuBGdVLzI_LYBXulzjpftLFGYLQGmrZevZJOFIWRv_TGrQls1SBDLalhrsbAXVHCv5uroivbrKI_g3t72tL5c_JM44ROFGZfkJEsXpInqvDp3SsiAbkUkEt7yKUaufS4pC1yKciQNsilGrkUkEs75NJlQTvk0g65r8nF4ez84MjSBT-sFPT4ykpYLLI8s0VmyzRjiSeClLGERR6TQRQGqQOLRAQmjec4uRdFscjdXLpCxiFz81B6b8hOAaO8IxSsYDsN3STIEttnMCOJVAQxau8giiQMDfK5-cA81Wz4WJRlxWur2I34yZTXguF2bJD9tvONIoHZ3s1oJMVFecV_JBywyV0OODTI3kB07XNAPWcxLIQG2W1kyfUUU0IjsyOkyDPIp7YV5n_c1IOPer2BLo6HFJ5wP72nBxKegqHlewZ5q6DRvYSGm0HYADRtBySfH7YUy8uahF4D_v2D79wlT7up4gPZqdYb-REU_CrZq3-e385h_RA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mtr+Respiratory+Pathway+Is+Essential+for+Reducing+Flavins+and+Electrodes+in+Shewanella+oneidensis&rft.jtitle=Journal+of+bacteriology&rft.au=Coursolle%2C+Dan&rft.au=Baron%2C+Daniel+B.&rft.au=Bond%2C+Daniel+R.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2010-01-01&rft.pub=American+Society+for+Microbiology+%28ASM%29&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=192&rft.issue=2&rft.spage=467&rft.epage=474&rft_id=info:doi/10.1128%2FJB.00925-09&rft_id=info%3Apmid%2F19897659&rft.externalDocID=PMC2805334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon