The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 192; no. 2; pp. 467 - 474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.01.2010
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | The Mtr respiratory pathway of
Shewanella oneidensis
strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other
Shewanella
species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1. The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1.The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1. The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1. Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JB .asm.org, visit: JB The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1. [PUBLICATION ABSTRACT] |
Author | Daniel B. Baron Daniel R. Bond Jeffrey A. Gralnick Dan Coursolle |
AuthorAffiliation | BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108 |
AuthorAffiliation_xml | – name: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108 |
Author_xml | – sequence: 1 givenname: Dan surname: Coursolle fullname: Coursolle, Dan organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108 – sequence: 2 givenname: Daniel B. surname: Baron fullname: Baron, Daniel B. organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108 – sequence: 3 givenname: Daniel R. surname: Bond fullname: Bond, Daniel R. organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108 – sequence: 4 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. organization: BioTechnology Institute and Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota 55108 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22379531$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19897659$$D View this record in MEDLINE/PubMed |
BookMark | eNp90s9v0zAUB3ALDbFucOKOLCTggDL8I4ntCxKbOtg0BIJxtl4cp3GV2p2drOp_T0JLBRPi5IM_fv4--52gIx-8Reg5JWeUMvnu-vyMEMWKjKhHaEZJKTIpOTtCM0IYzRRV_BidpLQkhOZ5wZ6gY6qkEmWhZsjethZ_7iP-ZtPaRehD3OKv0Lcb2OKrhOcpWd876HATJlQPxvkFvuzg3vmEwdd43lnTx1DbhJ3H31u7AW-7DvAY09XWJ5eeoscNdMk-26-n6Mfl_PbiU3bz5ePVxYebzORF2WeVUFA3NYGaWFOLikNhhKiE5MIWsiwMrQiRSilOacOlVNCwxjKwqhSsKS0_Re93dddDtbK1GaNH6PQ6uhXErQ7g9N873rV6Ee41k6TgPB8LvNkXiOFusKnXK5fM1I23YUhacF4SOcJRvv6vZJQzriQd4csHcBmG6Mdn0IwJIgXh5Yhe_Bn8kPj3R43g1R5AMtA1Ebxx6eAY40IVfLqN7pyJIaVoG21cD70LU7-u05ToaWj09bn-NTSaTLXfPjhzuP6fGu906xbtxkWrIa30shqzMs10Xgr-E3ohzMs |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1016_j_bpj_2015_10_038 crossref_primary_10_1016_j_biosystems_2014_10_005 crossref_primary_10_1016_j_jwpe_2024_105920 crossref_primary_10_1007_s41918_018_0020_1 crossref_primary_10_1111_j_1365_2958_2012_08088_x crossref_primary_10_1039_D3NR00742A crossref_primary_10_1002_anie_201400463 crossref_primary_10_1016_j_biortech_2012_10_103 crossref_primary_10_1016_j_copbio_2011_01_009 crossref_primary_10_1016_j_coelec_2017_08_013 crossref_primary_10_1016_j_jpowsour_2018_12_041 crossref_primary_10_1186_s13068_014_0118_6 crossref_primary_10_1016_j_elecom_2014_01_025 crossref_primary_10_1016_j_biortech_2012_01_099 crossref_primary_10_1128_AEM_06803_11 crossref_primary_10_1038_s42003_021_02040_1 crossref_primary_10_1073_pnas_1220074110 crossref_primary_10_1021_acs_biochem_2c00148 crossref_primary_10_1016_j_bios_2020_112312 crossref_primary_10_1021_acs_est_5b00006 crossref_primary_10_1016_j_biotechadv_2013_05_001 crossref_primary_10_1021_acssynbio_1c00335 crossref_primary_10_1038_s41467_019_13219_w crossref_primary_10_1038_srep11677 crossref_primary_10_1016_j_jhazmat_2022_129500 crossref_primary_10_1021_acssynbio_8b00498 crossref_primary_10_1073_pnas_1305244110 crossref_primary_10_1016_j_cbpa_2018_06_007 crossref_primary_10_1016_j_jenvrad_2023_107356 crossref_primary_10_1128_jb_00391_22 crossref_primary_10_3389_fmicb_2019_00818 crossref_primary_10_1016_j_corsci_2024_112400 crossref_primary_10_1016_j_scitotenv_2022_153443 crossref_primary_10_1007_s11431_019_9509_8 crossref_primary_10_1021_acsestengg_4c00735 crossref_primary_10_1111_j_1472_4669_2012_00321_x crossref_primary_10_1002_bit_25723 crossref_primary_10_1016_j_xcrp_2024_102200 crossref_primary_10_1002_anie_201701964 crossref_primary_10_1002_elan_200800007 crossref_primary_10_57634_RCR5073 crossref_primary_10_1016_j_bios_2014_07_003 crossref_primary_10_1002_celc_201402128 crossref_primary_10_1021_acsearthspacechem_4c00260 crossref_primary_10_1016_j_jwpe_2022_103199 crossref_primary_10_1016_j_biotechadv_2020_107682 crossref_primary_10_1073_pnas_1017200108 crossref_primary_10_3389_fmicb_2021_627595 crossref_primary_10_1021_acscatal_5b01733 crossref_primary_10_1038_s43246_021_00173_8 crossref_primary_10_1039_C4CP03197K crossref_primary_10_1128_JB_00340_17 crossref_primary_10_1016_j_bioelechem_2011_12_012 crossref_primary_10_1016_j_envint_2019_03_010 crossref_primary_10_1016_j_scitotenv_2022_156501 crossref_primary_10_1021_acs_estlett_7b00227 crossref_primary_10_1016_j_margen_2020_100808 crossref_primary_10_1016_j_scitotenv_2024_170451 crossref_primary_10_1073_pnas_2000802117 crossref_primary_10_1099_mic_0_058404_0 crossref_primary_10_1149_2_001401jes crossref_primary_10_1111_j_1365_2958_2010_07266_x crossref_primary_10_1016_j_biortech_2013_02_083 crossref_primary_10_1093_jimb_kuac012 crossref_primary_10_1016_j_biortech_2014_03_048 crossref_primary_10_1038_s41570_017_0024 crossref_primary_10_1038_srep01616 crossref_primary_10_1016_j_bios_2018_01_032 crossref_primary_10_1371_journal_pone_0145871 crossref_primary_10_1039_C5NR04765J crossref_primary_10_1016_j_scitotenv_2018_12_031 crossref_primary_10_1128_mBio_02034_14 crossref_primary_10_1128_mBio_00553_12 crossref_primary_10_1002_advs_202000641 crossref_primary_10_1016_j_ibiod_2018_11_002 crossref_primary_10_1186_s12934_019_1270_2 crossref_primary_10_1016_j_bioelechem_2014_06_010 crossref_primary_10_1142_S0218339019500037 crossref_primary_10_1116_1_4984007 crossref_primary_10_1186_s12951_021_00868_7 crossref_primary_10_1016_j_chempr_2017_01_001 crossref_primary_10_1002_anie_202416577 crossref_primary_10_1071_EN17158 crossref_primary_10_1007_s13205_021_02917_2 crossref_primary_10_1016_j_scitotenv_2024_171431 crossref_primary_10_1002_bit_25624 crossref_primary_10_1039_c3ee00071k crossref_primary_10_2166_wpt_2024_246 crossref_primary_10_1002_advs_202403067 crossref_primary_10_1002_er_7050 crossref_primary_10_1002_bit_24538 crossref_primary_10_1111_j_1365_2958_2010_07353_x crossref_primary_10_1016_j_bioelechem_2015_03_011 crossref_primary_10_1016_j_ibiod_2020_104969 crossref_primary_10_1007_s00253_011_3508_8 crossref_primary_10_1039_C6CC00976J crossref_primary_10_1002_celc_202200965 crossref_primary_10_1128_spectrum_04081_23 crossref_primary_10_1016_j_synbio_2022_04_010 crossref_primary_10_1039_D1GC02094C crossref_primary_10_1128_AEM_01460_12 crossref_primary_10_1128_aem_02465_24 crossref_primary_10_1128_AEM_01253_20 crossref_primary_10_1016_j_envres_2023_115843 crossref_primary_10_3390_en8010399 crossref_primary_10_1146_annurev_micro_092611_150104 crossref_primary_10_1007_s12274_019_2438_0 crossref_primary_10_1038_s41467_024_45759_1 crossref_primary_10_1021_sb300042w crossref_primary_10_1042_BJ20120197 crossref_primary_10_1016_j_biortech_2017_05_077 crossref_primary_10_1016_j_biortech_2021_126218 crossref_primary_10_1016_j_synthmet_2016_02_015 crossref_primary_10_1039_c1ee02229f crossref_primary_10_1016_j_rser_2021_110965 crossref_primary_10_1128_MMBR_00030_10 crossref_primary_10_1111_mmi_14067 crossref_primary_10_3389_fbioe_2021_786416 crossref_primary_10_1021_es301544b crossref_primary_10_1016_j_envres_2022_114914 crossref_primary_10_1016_j_febslet_2014_04_013 crossref_primary_10_1016_j_fuel_2016_11_108 crossref_primary_10_1002_bit_26212 crossref_primary_10_1016_j_str_2012_04_016 crossref_primary_10_3389_fmicb_2014_00318 crossref_primary_10_1016_j_jhazmat_2024_135260 crossref_primary_10_3389_fmicb_2015_00994 crossref_primary_10_1038_srep05628 crossref_primary_10_1007_s00449_015_1454_z crossref_primary_10_1021_acs_est_0c00141 crossref_primary_10_1002_bit_25128 crossref_primary_10_1111_j_1574_6968_2010_01949_x crossref_primary_10_1007_s00253_011_3653_0 crossref_primary_10_1146_annurev_micro_032221_023725 crossref_primary_10_1016_j_scitotenv_2020_140213 crossref_primary_10_1002_yea_2929 crossref_primary_10_1007_s11274_018_2576_7 crossref_primary_10_1021_sb300119v crossref_primary_10_1016_j_geoderma_2020_114706 crossref_primary_10_1128_JB_00927_15 crossref_primary_10_1002_ange_202416577 crossref_primary_10_1128_AEM_02115_18 crossref_primary_10_1007_s11356_021_15015_w crossref_primary_10_1016_j_biortech_2014_09_079 crossref_primary_10_1128_AEM_02282_13 crossref_primary_10_1016_j_tibtech_2024_02_004 crossref_primary_10_1021_jacs_9b09262 crossref_primary_10_1049_el_2015_3226 crossref_primary_10_1002_celc_201402194 crossref_primary_10_1128_JB_00201_11 crossref_primary_10_1042_BST20120098 crossref_primary_10_1557_mrc_2019_27 crossref_primary_10_3389_fmicb_2019_00399 crossref_primary_10_1002_cjce_23836 crossref_primary_10_1016_j_bioelechem_2011_12_003 crossref_primary_10_1016_j_procbio_2012_07_032 crossref_primary_10_1128_AEM_02183_12 crossref_primary_10_1016_j_scitotenv_2020_143076 crossref_primary_10_1016_j_electacta_2022_140917 crossref_primary_10_1016_j_cej_2022_138717 crossref_primary_10_1016_j_chemosphere_2021_132299 crossref_primary_10_1016_j_electacta_2017_11_160 crossref_primary_10_1016_j_biortech_2018_01_133 crossref_primary_10_1038_s41467_025_57497_z crossref_primary_10_1039_C9SC01942A crossref_primary_10_1074_jbc_RA118_001850 crossref_primary_10_1002_advs_202206622 crossref_primary_10_1016_j_bios_2022_114754 crossref_primary_10_1021_acssynbio_9b00517 crossref_primary_10_1371_journal_pone_0016649 crossref_primary_10_2116_analsci_18P237 crossref_primary_10_1016_j_biortech_2021_126579 crossref_primary_10_1016_j_chemosphere_2017_03_066 crossref_primary_10_1186_s12866_015_0406_8 crossref_primary_10_1021_acssuschemeng_6b00647 crossref_primary_10_1007_s00253_014_6005_z crossref_primary_10_1016_j_biotechadv_2018_07_001 crossref_primary_10_1021_acs_est_2c07697 crossref_primary_10_1016_j_bios_2016_11_059 crossref_primary_10_1016_j_biosystems_2011_10_003 crossref_primary_10_1021_jacs_8b05104 crossref_primary_10_1016_j_electacta_2016_03_074 crossref_primary_10_1021_acssynbio_6b00349 crossref_primary_10_1016_j_envint_2019_05_016 crossref_primary_10_1016_j_jhazmat_2017_06_054 crossref_primary_10_1039_C9RA02343G crossref_primary_10_1016_j_scitotenv_2017_08_184 crossref_primary_10_1371_journal_pone_0030827 crossref_primary_10_1016_j_jhazmat_2013_02_040 crossref_primary_10_1021_acssynbio_2c00024 crossref_primary_10_1002_adfm_202109366 crossref_primary_10_3389_fmicb_2019_00410 crossref_primary_10_1002_ange_202305189 crossref_primary_10_1128_MRA_00800_19 crossref_primary_10_1016_j_jhazmat_2021_125140 crossref_primary_10_1016_j_chemosphere_2018_08_006 crossref_primary_10_1021_acs_chemrev_3c00831 crossref_primary_10_1002_er_3305 crossref_primary_10_1016_j_envpol_2020_115943 crossref_primary_10_3389_fmicb_2019_01623 crossref_primary_10_4014_jmb_2212_12024 crossref_primary_10_1007_s12010_020_03469_6 crossref_primary_10_1016_j_bioelechem_2018_07_001 crossref_primary_10_1016_j_rhisph_2020_100274 crossref_primary_10_1016_j_jhazmat_2024_135348 crossref_primary_10_1016_j_watres_2020_116612 crossref_primary_10_1002_er_3780 crossref_primary_10_1016_j_ibiod_2013_12_011 crossref_primary_10_1186_s40793_024_00586_1 crossref_primary_10_1016_j_mib_2010_02_002 crossref_primary_10_1002_bit_26094 crossref_primary_10_1155_2014_139653 crossref_primary_10_3389_fenrg_2019_00095 crossref_primary_10_1016_j_synbio_2022_09_005 crossref_primary_10_1016_j_scitotenv_2023_167294 crossref_primary_10_1002_adom_202401748 crossref_primary_10_1134_S0006297914130094 crossref_primary_10_1016_j_jenvman_2023_117455 crossref_primary_10_3390_ijms18040874 crossref_primary_10_1039_C4MB00386A crossref_primary_10_1089_bioe_2021_0010 crossref_primary_10_1016_j_bej_2023_108928 crossref_primary_10_1016_j_aca_2019_05_007 crossref_primary_10_1016_j_ijfoodmicro_2020_108524 crossref_primary_10_1016_j_gca_2015_03_039 crossref_primary_10_1039_C8TB01598H crossref_primary_10_1016_j_electacta_2023_141924 crossref_primary_10_1128_JB_01478_10 crossref_primary_10_1016_j_biortech_2025_132410 crossref_primary_10_3934_bioeng_2015_3_222 crossref_primary_10_1021_acs_langmuir_5b01033 crossref_primary_10_1016_j_snb_2011_11_066 crossref_primary_10_3390_microorganisms10081585 crossref_primary_10_1074_jbc_M112_348813 crossref_primary_10_2116_analsci_18P394 crossref_primary_10_1016_j_biortech_2017_12_042 crossref_primary_10_1021_acs_est_6b04640 crossref_primary_10_1021_acscentsci_1c01208 crossref_primary_10_1128_AEM_01154_18 crossref_primary_10_1002_ange_201400463 crossref_primary_10_1038_srep37456 crossref_primary_10_1039_D2EN00156J crossref_primary_10_1039_c1ee02511b crossref_primary_10_1007_s12566_012_0033_x crossref_primary_10_1002_cssc_201000213 crossref_primary_10_1128_mBio_02668_19 crossref_primary_10_1128_AEM_02134_18 crossref_primary_10_1016_j_enzmictec_2018_04_005 crossref_primary_10_1039_C5DT00556F crossref_primary_10_1002_bit_26046 crossref_primary_10_1002_ange_201701964 crossref_primary_10_1016_j_scitotenv_2024_174119 crossref_primary_10_1021_nn204656d crossref_primary_10_1021_ac400486u crossref_primary_10_1128_msystems_00038_23 crossref_primary_10_1016_j_biotechadv_2019_107468 crossref_primary_10_1021_es304606u crossref_primary_10_1038_s41598_018_37025_4 crossref_primary_10_1002_celc_201402211 crossref_primary_10_1007_s00253_014_5973_3 crossref_primary_10_1021_acs_chemrev_0c00472 crossref_primary_10_3389_fmicb_2022_1070601 crossref_primary_10_1016_j_bios_2013_03_010 crossref_primary_10_1016_j_nanoen_2018_05_072 crossref_primary_10_1016_j_envpol_2020_114370 crossref_primary_10_1152_physiolgenomics_00010_2015 crossref_primary_10_1016_j_jelechem_2022_116387 crossref_primary_10_1007_s11814_014_0286_x crossref_primary_10_1021_es5017312 crossref_primary_10_3389_fenrg_2019_00060 crossref_primary_10_1021_acssynbio_8b00218 crossref_primary_10_1039_C4CP00566J crossref_primary_10_1007_s13213_015_1148_4 crossref_primary_10_1073_pnas_2404958121 crossref_primary_10_1021_sb500331x crossref_primary_10_1002_jctb_6344 crossref_primary_10_1021_jacs_8b01734 crossref_primary_10_1016_j_procbio_2025_03_004 crossref_primary_10_1002_celc_202101423 crossref_primary_10_3389_fmicb_2017_01584 crossref_primary_10_1021_es2030752 crossref_primary_10_1021_acssynbio_4c00248 crossref_primary_10_1021_acsestwater_0c00124 crossref_primary_10_1039_c2ra21727a crossref_primary_10_1073_pnas_1220823110 crossref_primary_10_1021_acssynbio_6b00374 crossref_primary_10_1039_C5AN01200G crossref_primary_10_1002_celc_201901618 crossref_primary_10_1111_j_1462_2920_2010_02407_x crossref_primary_10_1128_AEM_02852_20 crossref_primary_10_1002_anie_202305189 crossref_primary_10_1128_mBio_00190_10 crossref_primary_10_1039_c4nr01338g crossref_primary_10_1111_1758_2229_12173 crossref_primary_10_1016_S1452_3981_23_14264_7 crossref_primary_10_1128_JB_00347_18 crossref_primary_10_1128_JB_00651_13 crossref_primary_10_1039_C5CC03188E crossref_primary_10_1039_C4CP01524J crossref_primary_10_1021_acsami_4c16868 crossref_primary_10_1039_C6CP07595A crossref_primary_10_1016_j_bioelechem_2012_05_002 crossref_primary_10_1016_j_jpowsour_2017_05_101 crossref_primary_10_1128_AEM_00935_10 crossref_primary_10_1111_j_1365_2958_2012_08196_x crossref_primary_10_1016_j_chemosphere_2016_10_085 crossref_primary_10_1007_s11120_023_01061_7 crossref_primary_10_1016_j_electacta_2016_09_002 crossref_primary_10_1016_j_fuel_2020_119291 crossref_primary_10_1016_j_jmst_2023_01_041 crossref_primary_10_1038_ismej_2016_149 crossref_primary_10_1016_j_jes_2021_08_043 crossref_primary_10_1128_AEM_00852_19 crossref_primary_10_3389_fmicb_2018_02886 crossref_primary_10_1007_s11783_024_1808_3 crossref_primary_10_1042_BST20120018 crossref_primary_10_1016_j_scitotenv_2021_151009 crossref_primary_10_1021_acs_est_2c07862 crossref_primary_10_1038_s41598_019_51452_x crossref_primary_10_1073_pnas_1718810115 crossref_primary_10_1016_j_cej_2019_123408 crossref_primary_10_1128_jb_00469_22 crossref_primary_10_1016_j_biortech_2017_06_013 crossref_primary_10_1016_j_cej_2024_151456 crossref_primary_10_1016_j_biortech_2022_127686 crossref_primary_10_1128_mSystems_00165_16 crossref_primary_10_1016_j_bioelechem_2022_108054 crossref_primary_10_1016_j_mimet_2010_05_011 crossref_primary_10_1016_j_jhazmat_2023_133401 crossref_primary_10_1038_s41598_019_44088_4 crossref_primary_10_1016_j_rser_2020_110184 crossref_primary_10_1016_j_biotechadv_2019_02_007 crossref_primary_10_1016_j_gca_2013_05_039 crossref_primary_10_1021_es204302w crossref_primary_10_1038_nrmicro_2016_93 crossref_primary_10_1098_rsif_2014_1117 crossref_primary_10_1016_j_biotechadv_2023_108175 crossref_primary_10_1042_BST20120129 crossref_primary_10_1080_01490451003604311 crossref_primary_10_1002_cssc_201900413 crossref_primary_10_1038_s41598_019_57206_z crossref_primary_10_1080_08927014_2012_710324 crossref_primary_10_1002_aic_15611 crossref_primary_10_1039_C5CC00026B |
Cites_doi | 10.1021/jp0718698 10.1128/AEM.00840-08 10.1074/jbc.M109.043455 10.1046/j.1365-2958.2001.02257.x 10.1073/pnas.0505959103 10.1111/j.1365-2958.2007.05778.x 10.1126/science.240.4857.1319 10.1016/S0167-7012(99)00097-4 10.1128/AEM.00146-07 10.1016/j.watres.2007.04.009 10.1111/j.1365-2958.2007.05783.x 10.1016/S0065-2164(03)53003-9 10.1128/JB.182.1.67-75.2000 10.1016/S0065-2911(04)49005-5 10.1042/bj0540646 10.1128/JB.184.1.142-151.2002 10.1016/0378-1119(95)00584-1 10.1038/nrmicro1947 10.1021/bi00700a029 10.1128/AEM.68.11.5585-5594.2002 10.1002/9783527613229 10.1128/JB.01966-05 10.1021/ac60289a016 10.1007/s00425-006-0476-9 10.1073/pnas.0604517103 10.1073/pnas.0710525105 10.1007/s00775-007-0278-y 10.1128/AEM.00544-09 10.1111/j.1472-765X.2004.01611.x 10.1002/jobm.200610279 10.1016/j.abb.2008.02.008 10.1016/j.jinorgbio.2007.07.020 10.1128/AEM.71.8.4414-4426.2005 10.1128/AEM.68.6.2781-2793.2002 10.1021/ja063526d 10.1146/annurev.micro.61.080706.093257 10.1128/JB.180.23.6292-6297.1998 10.1126/science.1059567 10.1016/j.tibtech.2005.04.008 10.1111/j.1742-4658.2007.05907.x 10.1128/JB.184.3.846-848.2002 10.1146/annurev.micro.59.030804.121357 10.1128/AEM.32.6.781-791.1976 10.1038/35011098 10.1007/s00775-008-0398-z 10.1128/jb.179.4.1143-1152.1997 10.1128/AEM.01087-07 10.1099/00207713-49-2-705 10.1128/AEM.01387-07 10.1128/JB.180.6.1473-1479.1998 10.1128/JB.01518-06 10.1128/AEM.67.1.260-269.2001 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Jan 2010 Copyright © 2010, American Society for Microbiology 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Jan 2010 – notice: Copyright © 2010, American Society for Microbiology 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.00925-09 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 474 |
ExternalDocumentID | PMC2805334 1933103271 19897659 22379531 10_1128_JB_00925_09 jb_192_2_467 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008347 – fundername: NIGMS NIH HHS grantid: 2T32-GM008347-16 |
GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH AGCDD AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ZY4 ~02 ~KM .GJ 186 1VV 3O- 8WZ 9M8 A6W ADXHL AFFDN AFFNX AI. AIDAL AJUXI IQODW MVM NHB OHT P-O QZG VH1 WHG Y6R ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c456t-b79adfd0ad0ecd7b3a5c77b7837e5865c1b008999311f3889af2fe2ae9672f6e3 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Thu Aug 21 18:28:30 EDT 2025 Fri Jul 11 10:06:40 EDT 2025 Fri Jul 11 00:30:21 EDT 2025 Mon Jun 30 10:38:03 EDT 2025 Mon Jul 21 05:49:06 EDT 2025 Mon Jul 21 09:11:08 EDT 2025 Tue Jul 01 03:26:05 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Wed May 18 15:26:45 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Shewanella Bacteria Vibrionaceae |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-b79adfd0ad0ecd7b3a5c77b7837e5865c1b008999311f3889af2fe2ae9672f6e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 19897659 |
PQID | 227087036 |
PQPubID | 40724 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_19897659 proquest_miscellaneous_733608343 pascalfrancis_primary_22379531 highwire_asm_jb_192_2_467 crossref_primary_10_1128_JB_00925_09 crossref_citationtrail_10_1128_JB_00925_09 proquest_miscellaneous_21323981 proquest_journals_227087036 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2805334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2010 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_49_2 (e_1_3_2_9_2) 2007; 274 (e_1_3_2_11_2) 2002; 52 (e_1_3_2_28_2) 2004; 49 (e_1_3_2_14_2) 2008; 474 (e_1_3_2_51_2) 1999; 49 (e_1_3_2_21_2) 2007; 12 e_1_3_2_43_2 (e_1_3_2_17_2) 1974; 13 e_1_3_2_22_2 e_1_3_2_45_2 (e_1_3_2_50_2) 2007; 101 e_1_3_2_47_2 (e_1_3_2_5_2) 2009; 284 (e_1_3_2_18_2) 2006; 103 (e_1_3_2_30_2) 2001; 292 (e_1_3_2_23_2) 2007; 61 (e_1_3_2_7_2) 2001; 39 (e_1_3_2_41_2) 2007; 41 e_1_3_2_16_2 e_1_3_2_37_2 (e_1_3_2_3_2) 1950; 47 (e_1_3_2_39_2) 1984; 1 (e_1_3_2_24_2) 1999; 9 (e_1_3_2_27_2) 2003; 53 e_1_3_2_10_2 e_1_3_2_52_2 (e_1_3_2_57_2) 2006; 128 (e_1_3_2_48_2) 2007; 65 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_35_2 e_1_3_2_56_2 (e_1_3_2_19_2) 2007; 65 (e_1_3_2_20_2) 2006; 103 e_1_3_2_29_2 (e_1_3_2_42_2) 2005; 23 (e_1_3_2_8_2) 2007; 47 e_1_3_2_40_2 (e_1_3_2_15_2) 2008; 6 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 (e_1_3_2_13_2) 2008; 13 (e_1_3_2_53_2) 2007; 226 (e_1_3_2_2_2) 1953; 54 (e_1_3_2_34_2) 2004; 39 e_1_3_2_38_2 e_1_3_2_6_2 (e_1_3_2_54_2) 2006; 60 (e_1_3_2_31_2) 2008; 105 e_1_3_2_32_2 e_1_3_2_4_2 e_1_3_2_36_2 (e_1_3_2_55_2) 2007; 111 16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74 16704344 - Annu Rev Microbiol. 2006;60:149-66 17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9 17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94 19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73 15518832 - Adv Microb Physiol. 2004;49:219-86 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64 17815852 - Science. 1988 Jun 3;240(4857):1319-21 16849424 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63 11169112 - Mol Microbiol. 2001 Feb;39(3):722-30 8529885 - Gene. 1995 Dec 1;166(1):175-6 16788180 - J Bacteriol. 2006 Jul;188(13):4705-14 14696317 - Adv Appl Microbiol. 2003;53:85-128 17910100 - J Basic Microbiol. 2007 Oct;47(5):371-7 17581116 - Mol Microbiol. 2007 Jul;65(1):12-20 11133454 - Appl Environ Microbiol. 2001 Jan;67(1):260-9 14800901 - Biochem J. 1950 Sep;47(3):xxvii 15922081 - Trends Biotechnol. 2005 Jun;23(6):291-8 17644630 - Appl Environ Microbiol. 2007 Nov;73(21):7003-12 17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7 13058968 - Biochem J. 1953 Jul;54(4):646-54 19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26 17608722 - FEBS J. 2007 Jul;274(14):3728-38 18035608 - Annu Rev Microbiol. 2007;61:237-58 17468239 - J Bacteriol. 2007 Jul;189(13):4944-52 11741854 - J Bacteriol. 2002 Jan;184(1):142-51 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52 9515916 - J Bacteriol. 1998 Mar;180(6):1473-9 17260143 - Planta. 2007 Jun;226(1):147-58 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 15482439 - Lett Appl Microbiol. 2004;39(5):466-70 18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6 17537478 - Water Res. 2007 Jul;41(13):2921-40 4149231 - Biochemistry. 1974 Jan 29;13(3):589-97 18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603 18298940 - Arch Biochem Biophys. 2008 Jun 15;474(2):252-65 18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54 11790756 - J Bacteriol. 2002 Feb;184(3):846-8 11359008 - Science. 2001 May 18;292(5520):1360-3 10811225 - Nature. 2000 May 4;405(6782):94-7 12406753 - Appl Environ Microbiol. 2002 Nov;68(11):5585-94 6242877 - Microbiol Sci. 1984 Apr;1(1):9-14 12508890 - Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2211-7 10613864 - J Bacteriol. 2000 Jan;182(1):67-75 827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91 9829939 - J Bacteriol. 1998 Dec;180(23):6292-7 16085832 - Appl Environ Microbiol. 2005 Aug;71(8):4414-26 10576700 - J Microbiol Methods. 2000 Jan;39(2):109-19 10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24 17581115 - Mol Microbiol. 2007 Jul;65(1):1-11 17675441 - Appl Environ Microbiol. 2007 Sep;73(18):5797-808 12039733 - Appl Environ Microbiol. 2002 Jun;68(6):2781-93 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 |
References_xml | – volume: 111 start-page: 12857 year: 2007 ident: e_1_3_2_55_2 publication-title: J. Phys. Chem. B doi: 10.1021/jp0718698 – ident: e_1_3_2_22_2 doi: 10.1128/AEM.00840-08 – volume: 284 start-page: 28865 year: 2009 ident: e_1_3_2_5_2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.043455 – volume: 39 start-page: 722 year: 2001 ident: e_1_3_2_7_2 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2001.02257.x – volume: 103 start-page: 4669 year: 2006 ident: e_1_3_2_20_2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0505959103 – volume: 65 start-page: 1 year: 2007 ident: e_1_3_2_19_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05778.x – ident: e_1_3_2_35_2 doi: 10.1126/science.240.4857.1319 – ident: e_1_3_2_58_2 doi: 10.1016/S0167-7012(99)00097-4 – ident: e_1_3_2_44_2 doi: 10.1128/AEM.00146-07 – volume: 41 start-page: 2921 year: 2007 ident: e_1_3_2_41_2 publication-title: Water Res. doi: 10.1016/j.watres.2007.04.009 – volume: 65 start-page: 12 year: 2007 ident: e_1_3_2_48_2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05783.x – volume: 53 start-page: 85 year: 2003 ident: e_1_3_2_27_2 publication-title: Adv. Appl. Microbiol. doi: 10.1016/S0065-2164(03)53003-9 – ident: e_1_3_2_38_2 doi: 10.1128/JB.182.1.67-75.2000 – volume: 49 start-page: 219 year: 2004 ident: e_1_3_2_28_2 publication-title: Adv. Microb. Physiol. doi: 10.1016/S0065-2911(04)49005-5 – volume: 54 start-page: 646 year: 1953 ident: e_1_3_2_2_2 publication-title: Biochem. J. doi: 10.1042/bj0540646 – ident: e_1_3_2_12_2 doi: 10.1128/JB.184.1.142-151.2002 – ident: e_1_3_2_25_2 doi: 10.1016/0378-1119(95)00584-1 – volume: 6 start-page: 592 year: 2008 ident: e_1_3_2_15_2 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1947 – volume: 13 start-page: 589 year: 1974 ident: e_1_3_2_17_2 publication-title: Biochemistry doi: 10.1021/bi00700a029 – ident: e_1_3_2_33_2 doi: 10.1128/AEM.68.11.5585-5594.2002 – ident: e_1_3_2_46_2 doi: 10.1002/9783527613229 – ident: e_1_3_2_47_2 doi: 10.1128/JB.01966-05 – ident: e_1_3_2_49_2 doi: 10.1021/ac60289a016 – volume: 226 start-page: 147 year: 2007 ident: e_1_3_2_53_2 publication-title: Planta doi: 10.1007/s00425-006-0476-9 – volume: 103 start-page: 11358 year: 2006 ident: e_1_3_2_18_2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0604517103 – volume: 105 start-page: 3968 year: 2008 ident: e_1_3_2_31_2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0710525105 – volume: 12 start-page: 1083 year: 2007 ident: e_1_3_2_21_2 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-007-0278-y – ident: e_1_3_2_43_2 doi: 10.1128/AEM.00544-09 – volume: 39 start-page: 466 year: 2004 ident: e_1_3_2_34_2 publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2004.01611.x – volume: 47 start-page: 371 year: 2007 ident: e_1_3_2_8_2 publication-title: J. Basic Microbiol. doi: 10.1002/jobm.200610279 – volume: 474 start-page: 252 year: 2008 ident: e_1_3_2_14_2 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.02.008 – volume: 101 start-page: 1760 year: 2007 ident: e_1_3_2_50_2 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2007.07.020 – ident: e_1_3_2_26_2 doi: 10.1128/AEM.71.8.4414-4426.2005 – ident: e_1_3_2_36_2 doi: 10.1128/AEM.68.6.2781-2793.2002 – volume: 128 start-page: 13978 year: 2006 ident: e_1_3_2_57_2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063526d – volume: 9 start-page: 127 year: 1999 ident: e_1_3_2_24_2 publication-title: J. Microbiol. Biotechnol. – volume: 61 start-page: 237 year: 2007 ident: e_1_3_2_23_2 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.61.080706.093257 – ident: e_1_3_2_6_2 doi: 10.1128/JB.180.23.6292-6297.1998 – volume: 292 start-page: 1360 year: 2001 ident: e_1_3_2_30_2 publication-title: Science doi: 10.1126/science.1059567 – volume: 23 start-page: 291 year: 2005 ident: e_1_3_2_42_2 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2005.04.008 – volume: 274 start-page: 3728 year: 2007 ident: e_1_3_2_9_2 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.05907.x – ident: e_1_3_2_45_2 doi: 10.1128/JB.184.3.846-848.2002 – volume: 60 start-page: 149 year: 2006 ident: e_1_3_2_54_2 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.030804.121357 – volume: 47 start-page: xxvii year: 1950 ident: e_1_3_2_3_2 publication-title: Biochem. J. – volume: 52 start-page: 2211 year: 2002 ident: e_1_3_2_11_2 publication-title: Int. J. Syst. Evol. Microbiol. – ident: e_1_3_2_4_2 doi: 10.1128/AEM.32.6.781-791.1976 – ident: e_1_3_2_40_2 doi: 10.1038/35011098 – volume: 13 start-page: 849 year: 2008 ident: e_1_3_2_13_2 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-008-0398-z – ident: e_1_3_2_32_2 doi: 10.1128/jb.179.4.1143-1152.1997 – ident: e_1_3_2_10_2 doi: 10.1128/AEM.01087-07 – volume: 49 start-page: 705 year: 1999 ident: e_1_3_2_51_2 publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-49-2-705 – ident: e_1_3_2_52_2 doi: 10.1128/AEM.01387-07 – ident: e_1_3_2_56_2 doi: 10.1128/JB.180.6.1473-1479.1998 – volume: 1 start-page: 9 year: 1984 ident: e_1_3_2_39_2 publication-title: Microbiol. Sci. – ident: e_1_3_2_16_2 – ident: e_1_3_2_29_2 doi: 10.1128/JB.01518-06 – ident: e_1_3_2_37_2 doi: 10.1128/AEM.67.1.260-269.2001 – reference: 18575901 - J Biol Inorg Chem. 2008 Aug;13(6):849-54 – reference: 17910100 - J Basic Microbiol. 2007 Oct;47(5):371-7 – reference: 9829939 - J Bacteriol. 1998 Dec;180(23):6292-7 – reference: 14696317 - Adv Appl Microbiol. 2003;53:85-128 – reference: 18035608 - Annu Rev Microbiol. 2007;61:237-58 – reference: 17701062 - J Biol Inorg Chem. 2007 Sep;12(7):1083-94 – reference: 16849424 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11358-63 – reference: 18298940 - Arch Biochem Biophys. 2008 Jun 15;474(2):252-65 – reference: 10613864 - J Bacteriol. 2000 Jan;182(1):67-75 – reference: 17537478 - Water Res. 2007 Jul;41(13):2921-40 – reference: 17939701 - J Phys Chem B. 2007 Nov 8;111(44):12857-64 – reference: 18836009 - Appl Environ Microbiol. 2008 Nov;74(22):6880-6 – reference: 17765315 - J Inorg Biochem. 2007 Nov;101(11-12):1760-7 – reference: 17644630 - Appl Environ Microbiol. 2007 Nov;73(21):7003-12 – reference: 16704344 - Annu Rev Microbiol. 2006;60:149-66 – reference: 6242877 - Microbiol Sci. 1984 Apr;1(1):9-14 – reference: 10811225 - Nature. 2000 May 4;405(6782):94-7 – reference: 15922081 - Trends Biotechnol. 2005 Jun;23(6):291-8 – reference: 19542342 - Appl Environ Microbiol. 2009 Aug;75(16):5218-26 – reference: 9515916 - J Bacteriol. 1998 Mar;180(6):1473-9 – reference: 17581116 - Mol Microbiol. 2007 Jul;65(1):12-20 – reference: 13058968 - Biochem J. 1953 Jul;54(4):646-54 – reference: 15482439 - Lett Appl Microbiol. 2004;39(5):466-70 – reference: 12406753 - Appl Environ Microbiol. 2002 Nov;68(11):5585-94 – reference: 9023196 - J Bacteriol. 1997 Feb;179(4):1143-52 – reference: 19661057 - J Biol Chem. 2009 Oct 16;284(42):28865-73 – reference: 4149231 - Biochemistry. 1974 Jan 29;13(3):589-97 – reference: 12508890 - Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2211-7 – reference: 18604222 - Nat Rev Microbiol. 2008 Aug;6(8):592-603 – reference: 14800901 - Biochem J. 1950 Sep;47(3):xxvii – reference: 17468239 - J Bacteriol. 2007 Jul;189(13):4944-52 – reference: 16788180 - J Bacteriol. 2006 Jul;188(13):4705-14 – reference: 11790756 - J Bacteriol. 2002 Feb;184(3):846-8 – reference: 17581115 - Mol Microbiol. 2007 Jul;65(1):1-11 – reference: 17061851 - J Am Chem Soc. 2006 Nov 1;128(43):13978-9 – reference: 17675441 - Appl Environ Microbiol. 2007 Sep;73(18):5797-808 – reference: 18065612 - Appl Environ Microbiol. 2008 Feb;74(3):615-23 – reference: 8529885 - Gene. 1995 Dec 1;166(1):175-6 – reference: 16085832 - Appl Environ Microbiol. 2005 Aug;71(8):4414-26 – reference: 10576700 - J Microbiol Methods. 2000 Jan;39(2):109-19 – reference: 11741854 - J Bacteriol. 2002 Jan;184(1):142-51 – reference: 11169112 - Mol Microbiol. 2001 Feb;39(3):722-30 – reference: 10319494 - Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24 – reference: 17260143 - Planta. 2007 Jun;226(1):147-58 – reference: 17815852 - Science. 1988 Jun 3;240(4857):1319-21 – reference: 18316736 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3968-73 – reference: 15518832 - Adv Microb Physiol. 2004;49:219-86 – reference: 11359008 - Science. 2001 May 18;292(5520):1360-3 – reference: 11133454 - Appl Environ Microbiol. 2001 Jan;67(1):260-9 – reference: 17608722 - FEBS J. 2007 Jul;274(14):3728-38 – reference: 16537430 - Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4669-74 – reference: 827241 - Appl Environ Microbiol. 1976 Dec;32(6):781-91 – reference: 12039733 - Appl Environ Microbiol. 2002 Jun;68(6):2781-93 |
SSID | ssj0014452 |
Score | 2.4904432 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins... The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 467 |
SubjectTerms | Bacteria Bacterial Proteins - genetics Bacterial Proteins - physiology Bacteriology Biofilms Biological and medical sciences Bioreactors Cells Chemical compounds Cytochromes - metabolism Electrodes Electron Transport - genetics Electron Transport - physiology Ferric Compounds - metabolism Flavins - metabolism Fundamental and applied biological sciences. Psychology Metal concentrations Microbiology Microscopy, Confocal Miscellaneous Mutation Oxidation-Reduction Physiology and Metabolism Proteins Shewanella - genetics Shewanella - metabolism Shewanella oneidensis Signal transduction Signal Transduction - genetics Signal Transduction - physiology |
Title | The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in Shewanella oneidensis |
URI | http://jb.asm.org/content/192/2/467.abstract https://www.ncbi.nlm.nih.gov/pubmed/19897659 https://www.proquest.com/docview/227087036 https://www.proquest.com/docview/21323981 https://www.proquest.com/docview/733608343 https://pubmed.ncbi.nlm.nih.gov/PMC2805334 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiDehUHzoiShL3k6Ou9WWttKiirbS3iwncdRF27TaZKnKr2cmdl6wlaCXKIqdWMl8sWfGM98Qsi8S4aBebbGMYQmzzIdfKogs38_sNMo9W0p0Dcy_hUcX_skiWIxGfYbgTZWM019b80oeIlW4BnLFLNn_kGz7ULgA5yBfOIKE4fjPMp5Xa_TBt_vlp6DS3Yo787g0ZyVmFi1ViiJ0yjYpOgYOV-InBsagy3ymquBkdViWeXYpbwXGvQjzukACrKJclveor4mieR545bEAXomeCJ283rlJ12pzXyW0m9Nx26KrGuuG723D17VYFbrKu842Myfjvo-iDnUbxHs0m0_9SNT5ssc0Bdr05GzeOD-aPAMHcKPqJ46lmp6R_RQLHQ3m79jtAdXtzca-qvShF3ZflQP6e81wMQ_iZDpG_qnAqtkaqh56bq5q-GBwGQs1ffmQovt0fuBGdVLzI_LYBXulzjpftLFGYLQGmrZevZJOFIWRv_TGrQls1SBDLalhrsbAXVHCv5uroivbrKI_g3t72tL5c_JM44ROFGZfkJEsXpInqvDp3SsiAbkUkEt7yKUaufS4pC1yKciQNsilGrkUkEs75NJlQTvk0g65r8nF4ez84MjSBT-sFPT4ykpYLLI8s0VmyzRjiSeClLGERR6TQRQGqQOLRAQmjec4uRdFscjdXLpCxiFz81B6b8hOAaO8IxSsYDsN3STIEttnMCOJVAQxau8giiQMDfK5-cA81Wz4WJRlxWur2I34yZTXguF2bJD9tvONIoHZ3s1oJMVFecV_JBywyV0OODTI3kB07XNAPWcxLIQG2W1kyfUUU0IjsyOkyDPIp7YV5n_c1IOPer2BLo6HFJ5wP72nBxKegqHlewZ5q6DRvYSGm0HYADRtBySfH7YUy8uahF4D_v2D79wlT7up4gPZqdYb-REU_CrZq3-e385h_RA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mtr+Respiratory+Pathway+Is+Essential+for+Reducing+Flavins+and+Electrodes+in+Shewanella+oneidensis&rft.jtitle=Journal+of+bacteriology&rft.au=Coursolle%2C+Dan&rft.au=Baron%2C+Daniel+B.&rft.au=Bond%2C+Daniel+R.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2010-01-01&rft.pub=American+Society+for+Microbiology+%28ASM%29&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=192&rft.issue=2&rft.spage=467&rft.epage=474&rft_id=info:doi/10.1128%2FJB.00925-09&rft_id=info%3Apmid%2F19897659&rft.externalDocID=PMC2805334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |