Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access...

Full description

Saved in:
Bibliographic Details
Published inSemiconductor science and technology Vol. 33; no. 1; pp. 13002 - 13033
Main Authors Noé, Pierre, Vallée, Christophe, Hippert, Françoise, Fillot, Frédéric, Raty, Jean-Yves
Format Journal Article Web Resource
LanguageEnglish
Published IOP Publishing 01.01.2018
Institute of Physics (IoP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.
AbstractList Abstract Chalcogenide Phase-Change Materials (PCMs), such as Ge-Sb-Te alloys, are showing outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as Phase-Change Material memories or Phase-Change Random Access Memories (PCRAMs), are the most promising candidate among emerging Non-Volatile Memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large scale integration means incorporation of the phase-change material into more and more confined structures and raises material science issues to understand interface and size effects on crystallization. Other material science issues are related to the stability and ageing of the amorphous state of phase-change materials. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the phase-change material. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has hindered up-to-now the development of ultra-high multilevel storage devices. A review of the current understanding of all these issues is provided from a material science point of view.
Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.
Author Noé, Pierre
Hippert, Françoise
Raty, Jean-Yves
Vallée, Christophe
Fillot, Frédéric
Author_xml – sequence: 1
  givenname: Pierre
  surname: Noé
  fullname: Noé, Pierre
  organization: UGA, CEA, LETI, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble Cedex 9, France
– sequence: 2
  givenname: Christophe
  surname: Vallée
  fullname: Vallée, Christophe
  email: christophe.vallee@cea.fr
  organization: UGA, CNRS-LTM, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble Cedex 9, France
– sequence: 3
  givenname: Françoise
  surname: Hippert
  fullname: Hippert, Françoise
  organization: Université Grenoble Alpes LNCMI (CNRS, UPS, INSA), 25 rue des Martyrs, F 38042 Grenoble Cedex 9, France
– sequence: 4
  givenname: Frédéric
  surname: Fillot
  fullname: Fillot, Frédéric
  organization: UGA, CEA, LETI, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble Cedex 9, France
– sequence: 5
  givenname: Jean-Yves
  surname: Raty
  fullname: Raty, Jean-Yves
  organization: Université de Liège Physics of Solids Interfaces and Nanostructures, B5, B4000 Sart-Tilman, Belgium
BackLink https://hal.univ-grenoble-alpes.fr/hal-01954870$$DView record in HAL
BookMark eNp9kUGLFDEQhYOs4Ozq3WNuIthukk6nO96WRV1hQA96LqozlZksmc6Y9Azsvzdjq4iop4TK-15V6l2yiylNxNhzKV5LMQzXsjWyMUbLa8Teqe4RW_0qXbCVUGZopNLqCbss5V4IKYdWrNjXTzss1LgdTlvie5wpB4yF-5R57dCcUsQ5xPpE-5Qf-IZOwVF5w31Oez6T200ppm1wGHk1iZGqT-Fz-s2ruECTIx5KOVJ5yh77WqVnP84r9uXd28-3d8364_sPtzfrxunOzM3Y2RGNx37UvSQ7oBfW21Z31jtr0GiFaiM8GaMMKi0GJzZV4qxwvZPj2F6xdvGNgbYEKY8BTgoShuV-jFtAByOBqrsBJTttbKVeLlT9Cxxy2GN--M7c3azhXBPSdnroxUlWrVm0LqdSMnlwYa7bStOcMUSQAs7RwDkHOOcASzQVFH-APzv9B3mxICEd4D4d81R3B6XM0LYg61StEAoOG1-Vr_6i_KfxN-agr8I
CODEN SSTEET
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_157642
crossref_primary_10_1016_j_mtchem_2023_101650
crossref_primary_10_1039_D0MA00554A
crossref_primary_10_1039_D1NR03432D
crossref_primary_10_1002_pssr_202000471
crossref_primary_10_1016_j_apsusc_2020_146227
crossref_primary_10_1021_acsaelm_1c00491
crossref_primary_10_1039_D2TC05062E
crossref_primary_10_1039_C9NA00366E
crossref_primary_10_1016_j_jallcom_2020_156307
crossref_primary_10_1116_1_5089037
crossref_primary_10_1016_j_ceramint_2024_04_415
crossref_primary_10_1002_pssr_202300402
crossref_primary_10_1002_pssr_202200496
crossref_primary_10_3390_nano12040631
crossref_primary_10_1116_1_5140841
crossref_primary_10_1002_pssr_202300421
crossref_primary_10_1039_D2MH01449A
crossref_primary_10_1088_1361_6463_ab77de
crossref_primary_10_1088_1402_4896_ad75cf
crossref_primary_10_3390_nano11071729
crossref_primary_10_1002_pssr_202100199
crossref_primary_10_1021_acsaelm_0c00717
crossref_primary_10_1002_aelm_202400203
crossref_primary_10_1007_s00339_019_2865_5
crossref_primary_10_1002_adma_202416938
crossref_primary_10_1002_pssr_202000451
crossref_primary_10_1149_2_0981811jes
crossref_primary_10_1103_PhysRevMaterials_5_095004
crossref_primary_10_1002_aelm_202100164
crossref_primary_10_1002_appl_202200024
crossref_primary_10_1063_5_0023653
crossref_primary_10_1021_acs_jpcc_4c05157
crossref_primary_10_1126_sciadv_aay2830
crossref_primary_10_1002_pssr_201900105
crossref_primary_10_1039_D2TC00486K
crossref_primary_10_1016_j_jacomc_2024_100004
crossref_primary_10_1002_adma_202003032
crossref_primary_10_1002_pssr_202000443
crossref_primary_10_1002_pssr_201900581
crossref_primary_10_1016_j_optlastec_2022_108773
crossref_primary_10_1016_j_apsusc_2024_159679
crossref_primary_10_1002_pssr_202000441
crossref_primary_10_1016_j_jallcom_2023_169229
crossref_primary_10_1063_5_0023761
crossref_primary_10_1016_j_materresbull_2021_111679
crossref_primary_10_1039_D2TC04538A
crossref_primary_10_3389_fphy_2022_854393
crossref_primary_10_1103_PhysRevMaterials_4_015001
crossref_primary_10_1002_pssr_202400129
crossref_primary_10_1063_1_5118217
crossref_primary_10_1088_1674_1056_ab3cc3
crossref_primary_10_1016_j_optlastec_2021_107701
crossref_primary_10_1039_D4TC03146F
crossref_primary_10_1021_acs_chemmater_1c04411
crossref_primary_10_1063_5_0014375
crossref_primary_10_1039_D4CP00078A
crossref_primary_10_1007_s10946_023_10180_4
crossref_primary_10_1016_j_mssp_2024_109206
crossref_primary_10_1016_j_ceramint_2022_10_293
crossref_primary_10_1063_5_0198244
crossref_primary_10_1063_5_0202152
crossref_primary_10_1002_pssr_202200054
crossref_primary_10_1002_pssb_202000416
crossref_primary_10_1039_C8NR09711A
crossref_primary_10_3390_jcm12144830
crossref_primary_10_1002_advs_202304323
crossref_primary_10_1016_j_actamat_2020_04_001
crossref_primary_10_1515_pac_2019_0105
crossref_primary_10_1038_s41598_024_79750_z
crossref_primary_10_1002_adma_201908302
crossref_primary_10_1016_j_jallcom_2022_167000
crossref_primary_10_1002_pssr_202000538
crossref_primary_10_1063_5_0156207
crossref_primary_10_1088_1757_899X_889_1_012032
crossref_primary_10_1021_acs_langmuir_4c04836
crossref_primary_10_1002_pssr_202000412
crossref_primary_10_30526_37_1_3314
crossref_primary_10_1002_pssr_202000534
crossref_primary_10_1063_5_0166245
crossref_primary_10_2320_materia_59_387
crossref_primary_10_1002_pssr_202000414
crossref_primary_10_1016_j_mssp_2023_107644
crossref_primary_10_1016_j_scriptamat_2021_114011
crossref_primary_10_1016_j_matdes_2020_109392
crossref_primary_10_1103_PhysRevB_106_184103
crossref_primary_10_1109_TED_2022_3215550
crossref_primary_10_1002_smll_202310209
crossref_primary_10_1038_s41598_024_56463_x
crossref_primary_10_1016_j_apsusc_2019_144337
crossref_primary_10_1063_1_5088068
crossref_primary_10_1016_j_mssp_2021_106079
crossref_primary_10_1116_6_0000336
crossref_primary_10_1002_pssa_202300921
crossref_primary_10_1088_1361_648X_abf077
crossref_primary_10_1016_j_optlastec_2022_107916
crossref_primary_10_1021_acs_cgd_1c00508
crossref_primary_10_1002_advs_202304785
crossref_primary_10_1038_s41467_019_10980_w
crossref_primary_10_31857_S0544126923700461
crossref_primary_10_1007_s00339_022_06265_7
crossref_primary_10_1021_acsami_0c10184
crossref_primary_10_1002_smll_202201753
crossref_primary_10_1017_S1431927620018036
crossref_primary_10_1016_j_mattod_2020_07_016
crossref_primary_10_1021_acsaelm_4c00721
crossref_primary_10_1088_1674_1056_abeedf
crossref_primary_10_1088_2515_7647_ac9a91
crossref_primary_10_1002_aelm_202400905
crossref_primary_10_1021_acsanm_0c00463
crossref_primary_10_1557_mrc_2018_168
crossref_primary_10_1007_s11082_022_03564_4
crossref_primary_10_1016_j_mssp_2022_107101
crossref_primary_10_1088_1361_6641_ac33c3
crossref_primary_10_1002_smll_201704514
crossref_primary_10_2320_materia_62_520
crossref_primary_10_1007_s11664_020_08590_0
crossref_primary_10_3390_ma14123396
crossref_primary_10_1002_adma_202205098
crossref_primary_10_1002_pssr_201800590
crossref_primary_10_1063_1_5124027
crossref_primary_10_1016_j_apsusc_2020_147959
crossref_primary_10_1002_pssr_202400413
crossref_primary_10_1016_j_mtla_2023_101738
crossref_primary_10_1103_PhysRevMaterials_5_045004
crossref_primary_10_1002_adfm_201803380
crossref_primary_10_1002_aelm_202400290
crossref_primary_10_1088_1361_6528_ac3613
crossref_primary_10_1002_aelm_202201224
crossref_primary_10_1039_D0NA00577K
crossref_primary_10_1002_admi_202100405
crossref_primary_10_1016_j_jnoncrysol_2021_121311
crossref_primary_10_1088_2053_1591_ac1d17
crossref_primary_10_1002_pssr_202100470
crossref_primary_10_1063_5_0180695
crossref_primary_10_1021_acsanm_0c02303
crossref_primary_10_15251_CL_2024_211_21
crossref_primary_10_1063_5_0206808
crossref_primary_10_1149_2162_8777_ab7885
crossref_primary_10_1021_acs_chemmater_9b02533
crossref_primary_10_1016_j_mtla_2023_101885
crossref_primary_10_1039_D0RA10408F
crossref_primary_10_1051_refdp_202274058
crossref_primary_10_1038_s41598_020_73407_3
crossref_primary_10_1016_j_physb_2021_413330
crossref_primary_10_1039_C8TC03176B
crossref_primary_10_1108_MI_01_2019_0007
crossref_primary_10_1007_s10470_019_01576_x
crossref_primary_10_1063_5_0012485
crossref_primary_10_1039_C8FD00126J
crossref_primary_10_1103_PhysRevB_99_245124
crossref_primary_10_1109_ACCESS_2020_2990536
crossref_primary_10_1021_acsaelm_2c00038
crossref_primary_10_1103_PhysRevMaterials_3_105401
crossref_primary_10_1016_j_jallcom_2022_166614
crossref_primary_10_1063_5_0030956
crossref_primary_10_1016_j_materresbull_2024_113280
crossref_primary_10_1116_1_5144736
crossref_primary_10_1016_j_apsusc_2024_160696
crossref_primary_10_1039_D4SC01477D
crossref_primary_10_1038_s41598_024_84963_3
crossref_primary_10_1088_1361_6528_ac6813
crossref_primary_10_1002_pssr_202200450
crossref_primary_10_1038_s41598_024_65828_1
crossref_primary_10_1016_j_jnoncrysol_2024_122952
crossref_primary_10_1039_D3CE01067H
crossref_primary_10_3390_nano11112945
crossref_primary_10_1038_s41467_024_52132_9
crossref_primary_10_3390_app142411713
crossref_primary_10_1002_pssr_202000382
crossref_primary_10_1002_pssr_202200433
crossref_primary_10_1038_s41524_024_01217_6
crossref_primary_10_1109_LED_2022_3218626
crossref_primary_10_7498_aps_71_20220666
crossref_primary_10_1021_acsaelm_1c00340
crossref_primary_10_1021_acsaelm_9b00070
crossref_primary_10_1134_S1063739723700555
crossref_primary_10_1021_acs_jpcc_0c01824
crossref_primary_10_1016_j_sse_2020_107871
crossref_primary_10_1002_adom_202301154
crossref_primary_10_1016_j_jcrysgro_2021_126159
crossref_primary_10_1016_j_actamat_2021_117123
crossref_primary_10_1021_acsaem_1c01899
crossref_primary_10_1021_acs_chemmater_4c01009
crossref_primary_10_1002_adma_202102721
crossref_primary_10_1088_1361_6463_abfe7e
crossref_primary_10_1063_5_0133981
crossref_primary_10_1002_pssr_202100222
crossref_primary_10_1002_pssr_201900548
crossref_primary_10_1063_5_0041242
crossref_primary_10_1134_S2075113320020227
crossref_primary_10_1002_adfm_202009803
crossref_primary_10_1002_pssr_202000485
crossref_primary_10_3390_nano11092382
crossref_primary_10_1039_D2TC03567G
crossref_primary_10_1016_j_compeleceng_2019_01_009
crossref_primary_10_1021_acsnano_3c01187
crossref_primary_10_1021_acsnano_9b02108
crossref_primary_10_1115_1_4067819
crossref_primary_10_1016_j_actamat_2021_117465
crossref_primary_10_1016_j_actamat_2024_120608
crossref_primary_10_1021_acs_jpcc_1c08549
Cites_doi 10.7567/JJAPS.26S4.61
10.1021/cm4034885
10.1103/PhysRevLett.107.145702
10.1103/PhysRevB.76.235201
10.1016/j.sse.2011.06.029
10.1016/j.solidstatesciences.2009.06.018
10.1063/1.3683522
10.1088/0022-3727/48/26/265203
10.1103/PhysRevB.82.214201
10.1016/j.sse.2009.09.034
10.1063/1.2387870
10.1063/1.4769435
10.1063/1.4794870
10.1038/srep12612
10.1021/cm300539a
10.1016/j.actamat.2016.03.022
10.1063/1.2408660
10.1016/S0022-3093(05)80761-6
10.1002/anie.201404223
10.1109/TED.2013.2285403
10.1016/j.inoche.2015.01.008
10.1103/PhysRevB.83.094113
10.1002/adma.201004255
10.1063/1.3126501
10.1063/1.4861721
10.1038/nmat2931
10.1109/TED.2004.825805
10.1103/PhysRevB.80.020201
10.1143/JJAP.49.100001
10.1088/1367-2630/16/4/043015
10.1038/srep29162
10.1021/cm902180d
10.1063/1.2930680
10.1109/LED.2010.2044136
10.1016/j.pcrysgrow.2015.10.001
10.1063/1.4904832
10.1038/nmat2934
10.1063/1.3040314
10.1038/nmat2023
10.1016/j.tsf.2008.08.194
10.1143/JJAP.46.2211
10.1063/1.4901321
10.1016/S0040-6090(02)00062-7
10.1103/PhysRevB.78.052201
10.1103/PhysRevB.86.144113
10.1002/pssb.201200370
10.1063/1.2912958
10.1063/1.3212732
10.1063/1.3091271
10.1016/j.microrel.2012.06.017
10.1063/1.4892394
10.1063/1.481644
10.7567/JJAP.52.128006
10.1149/2.027204jes
10.1038/nmat3456
10.1063/1.362548
10.1038/nmat2226
10.1038/nmat2157
10.1016/j.cap.2010.11.036
10.1063/1.2801626
10.1016/j.mee.2010.06.042
10.1016/j.cap.2010.11.127
10.1149/2.017206jss
10.1063/1.3191670
10.1038/srep00360
10.1063/1.348620
10.1038/ncomms8467
10.1063/1.2719148
10.1149/2.019112esl
10.1103/PhysRevB.81.081204
10.1063/1.1803612
10.1063/1.1805200
10.1103/PhysRevLett.100.205502
10.1039/B917024C
10.1007/978-0-387-84874-7
10.1109/LED.2011.2163697
10.1143/JJAP.31.461
10.1002/pssb.201200355
10.1063/1.4938532
10.1063/1.4790801
10.1186/s11671-015-1136-4
10.1143/JJAP.37.1852
10.1103/PhysRevB.93.115201
10.1016/j.mee.2008.09.014
10.3389/fphy.2014.00075
10.1186/s11671-015-0815-5
10.1016/j.tsf.2012.02.025
10.1063/1.3447941
10.1038/nmat1215
10.1063/1.3664631
10.1016/j.mssp.2015.06.027
10.1088/0268-1242/31/6/063002
10.1147/rd.524.0465
10.1063/1.97617
10.1103/PhysRevLett.98.236403
10.1038/nnano.2011.96
10.1063/1.5002637
10.1063/1.1610775
10.1002/pssb.201552335
10.1063/1.3155202
10.1038/srep11150
10.1063/1.2034655
10.1088/0022-3727/49/3/035305
10.1063/1.2535857
10.1557/PROC-0997-I10-08
10.1016/j.apsusc.2006.08.044
10.1063/1.3651321
10.1016/j.mssp.2004.09.127
10.1002/pssa.200982664
10.1016/j.mee.2013.02.105
10.1103/PhysRevB.81.174206
10.1016/S0040-6090(99)01090-1
10.1063/1.3093915
10.1103/PhysRevLett.21.1450
10.1116/1.1430249
10.1063/1.4893743
10.1039/C5NR04530D
10.1063/1.3544432
10.1063/1.4719074
10.1038/srep06529
10.1002/pssb.201200618
10.1063/1.1415419
10.1143/JJAP.30.101
10.1016/j.mee.2009.03.085
10.1002/admi.201300027
10.1016/j.tsf.2016.02.020
10.1088/0022-3727/46/50/505311
10.1021/nl902777z
10.1038/nnano.2016.70
10.1116/1.3301579
10.1103/PhysRevB.92.054201
10.1007/978-3-319-69053-7
10.1021/ja8090388
10.1021/cm8004584
10.1166/jnn.2010.2308
10.1038/nmat2330
10.1109/LED.2007.906084
10.1109/LED.2007.901347
10.1016/j.jcrysgro.2008.07.054
10.1002/adfm.201501607
10.1002/cvde.200906791
10.1063/1.4720182
10.1016/j.mee.2009.03.014
10.1103/PhysRevLett.104.085503
10.1109/LED.2016.2553370
10.1149/1.2456199
10.1109/LED.2015.2448731
10.1063/1.4881927
10.7567/JJAP.50.061201
10.1002/pssb.201200393
10.1063/1.4809598
10.1143/JJAP.49.058003
10.1038/srep22353
10.1016/0025-5416(88)90049-3
10.1063/1.4874415
10.1016/j.sse.2013.07.005
10.1063/1.371606
10.1038/ncomms9181
10.1021/acsnano.5b02579
10.1126/science.1221561
10.1109/LED.2014.2311461
10.1063/1.2773959
10.1038/nmat2009
10.1016/j.sse.2015.09.004
10.1109/TED.2012.2218607
10.1103/PhysRevB.39.1270
10.1557/PROC-0997-I11-01
10.1063/1.4769871
10.1016/j.mee.2008.08.004
10.1149/1.3439647
10.1038/srep05727
10.1063/1.370803
10.1103/PhysRevB.88.014203
10.1063/1.3078820
10.1063/1.2938076
10.1103/PhysRevB.83.184204
10.1149/2.0121512ssl
ContentType Journal Article
Web Resource
Contributor Physique de Solides Interfaces et Nanostructures
Contributor_xml – sequence: 1
  fullname: Physique de Solides Interfaces et Nanostructures
Copyright 2017 IOP Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 IOP Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
Q33
DOI 10.1088/1361-6641/aa7c25
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues
EISSN 1361-6641
ExternalDocumentID oai_orbi_ulg_ac_be_2268_215469
oai_HAL_hal_01954870v1
10_1088_1361_6641_aa7c25
sstaa7c25
GrantInformation_xml – fundername: ANR SESAME
  grantid: ANR SESAME contract ANR-15-CE24-0021
– fundername: Labex Minos
  grantid: ANR-10-LABX-55-01
– fundername: PANACHE
  grantid: European 621217-PANACHE project
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
E.-
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
PZZ
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
UCJ
W28
XPP
ZMT
AAYXX
CITATION
1XC
02O
1WK
5ZI
9BW
AAGCF
ACARI
ACWPO
AEINN
AERVB
AETNG
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
Q02
Q33
RKQ
S3P
T37
XOL
ZY4
ID FETCH-LOGICAL-c456t-b59ba6fa7b471e98af09f93459fc96a642a2d0fe6626a2408c0df09c90c7c1bb3
IEDL.DBID IOP
ISSN 0268-1242
1361-6641
IngestDate Fri Aug 01 18:36:01 EDT 2025
Fri May 09 12:20:17 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Tue Jul 01 03:26:03 EDT 2025
Thu Jan 07 13:52:54 EST 2021
Wed Aug 21 03:34:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-b59ba6fa7b471e98af09f93459fc96a642a2d0fe6626a2408c0df09c90c7c1bb3
Notes SST-103514.R1
scopus-id:2-s2.0-85038874528
ORCID 0000-0003-1827-0618
PageCount 32
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_215469
crossref_primary_10_1088_1361_6641_aa7c25
iop_journals_10_1088_1361_6641_aa7c25
hal_primary_oai_HAL_hal_01954870v1
crossref_citationtrail_10_1088_1361_6641_aa7c25
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Semiconductor science and technology
PublicationTitleAbbrev SST
PublicationTitleAlternate Semicond. Sci. Technol
PublicationYear 2018
Publisher IOP Publishing
Institute of Physics (IoP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IoP)
References Raoux (sstaa7c25bib110) 2008; 103
Clima (sstaa7c25bib7) 2015; 36
Huang (sstaa7c25bib140) 2010; 81
Luckas (sstaa7c25bib171) 2013; 113
Lencer (sstaa7c25bib25) 2011; 23
Skelton (sstaa7c25bib207) 2013; 102
Silva (sstaa7c25bib56) 2013
Beneventi (sstaa7c25bib41) 2011; vol 65–66
Wamwangi (sstaa7c25bib192) 2002; 408
Akola (sstaa7c25bib154) 2012; 249
Mitra (sstaa7c25bib169) 2010; 96
Pirovano (sstaa7c25bib167) 2004; 51
Li (sstaa7c25bib164) 2012
Fu (sstaa7c25bib209) 2012; 100
Berthier (sstaa7c25bib120) 2017; 122
Micoulaut (sstaa7c25bib137) 2010; 81
Yamada (sstaa7c25bib18) 1991; 69
Njoroge (sstaa7c25bib190) 2002; 20
Choi (sstaa7c25bib84) 2007; 154
Gabardi (sstaa7c25bib176) 2015; 92
Simpson (sstaa7c25bib212) 2011; 6
Ovshinsky (sstaa7c25bib16) 1968; 21
Chao (sstaa7c25bib55) 2007; 28
Do (sstaa7c25bib203) 2010; 13
Ielmini (sstaa7c25bib6) 2016; 31
Kim (sstaa7c25bib81) 2009; 15
Ritala (sstaa7c25bib91) 2009; 86
Wu (sstaa7c25bib98) 2011
Raoux (sstaa7c25bib131) 2008; 85
Akola (sstaa7c25bib149) 2007; 76
Liu (sstaa7c25bib121) 2000; 112
Putero (sstaa7c25bib208) 2014; 105
Hubert (sstaa7c25bib47) 2013
Privitera (sstaa7c25bib122) 2004; 85
Ouled-Khachroum (sstaa7c25bib200) 2016; 617
Park (sstaa7c25bib199) 2011; 50
Raty (sstaa7c25bib136) 2009; 12
Keckes (sstaa7c25bib202) 2007; 78
Koelmans (sstaa7c25bib62) 2015; 6
Ohshima (sstaa7c25bib108) 1996; 79
Ielmini (sstaa7c25bib166) 2009; 86
Fujisaki (sstaa7c25bib101) 2010; 49
Burr (sstaa7c25bib14) 2010; 28
Breitwisch (sstaa7c25bib52) 2007
Ghezzi (sstaa7c25bib150) 2011; 99
Ghezzi (sstaa7c25bib114) 2014; 104
Song (sstaa7c25bib206) 2011; 109
Kalikka (sstaa7c25bib151) 2012; 86
Guo (sstaa7c25bib201) 2008; 93
Raoux (sstaa7c25bib157) 2009; 95
Eom (sstaa7c25bib94) 2012; 24
Breitwisch (sstaa7c25bib29) 2009
Chen (sstaa7c25bib30) 1986; 49
Shportko (sstaa7c25bib26) 2008; 7
Kim (sstaa7c25bib54) 2007; 28
Park (sstaa7c25bib197) 2008; 517
Navarro (sstaa7c25bib106) 2012; 52
Hegedüs (sstaa7c25bib160) 2010; 207
Aoukar (sstaa7c25bib88) 2015
Mitrofanov (sstaa7c25bib174) 2014; 115
Yu (sstaa7c25bib215) 2015; 5
Maitrejean (sstaa7c25bib92) 2012
Wang (sstaa7c25bib78) 2015; 53
Liu (sstaa7c25bib129) 2014; 115
Raoux (sstaa7c25bib22) 2009; 105
Köster (sstaa7c25bib127) 1988; 97
Kalb (sstaa7c25bib118) 2005; 98
Kalb (sstaa7c25bib179) 2003; 94
Kolobov (sstaa7c25bib184) 2012; 100
Kim (sstaa7c25bib48) 2010
Cho (sstaa7c25bib99) 2005
Raoux (sstaa7c25bib12) 2008; 52
Zhou (sstaa7c25bib42) 2014; 105
Cheng (sstaa7c25bib35) 2011; 2011
Orava (sstaa7c25bib163) 2015; 25
Kim (sstaa7c25bib180) 2006; 89
Im (sstaa7c25bib178) 2011; 11
Sousa (sstaa7c25bib43) 2017
Bang (sstaa7c25bib214) 2014; 4
Lacaita (sstaa7c25bib50) 2013; 109
Akola (sstaa7c25bib141) 2011; 83
Momand (sstaa7c25bib216) 2015; 7
Iwasaki (sstaa7c25bib19) 1992; 31
Lee (sstaa7c25bib130) 2011; 107
Maeda (sstaa7c25bib147) 1991; 30
Fantini (sstaa7c25bib11) 2010
Lee (sstaa7c25bib89) 2007; 253
Liu (sstaa7c25bib224) 2014
Im (sstaa7c25bib103) 2008
Ielmini (sstaa7c25bib168) 2008; 92
Szkutnik (sstaa7c25bib87) 2015
Tompa (sstaa7c25bib74) 2007; 997
Lee (sstaa7c25bib183) 2011; 11
Gourvest (sstaa7c25bib124) 2012; 159
Liu (sstaa7c25bib222) 2014
Noé (sstaa7c25bib115) 2016; 110
Matsunaga (sstaa7c25bib145) 2011; 10
Flores-Ruiz (sstaa7c25bib186) 2011; 82
Fantini (sstaa7c25bib32) 2009
(sstaa7c25bib57) 2004
Abrutis (sstaa7c25bib79) 2008; 85
Casarin (sstaa7c25bib217) 2016; 6
Nonaka (sstaa7c25bib189) 2000; 370
Li (sstaa7c25bib28) 2012; 100
Yashina (sstaa7c25bib125) 2008; 103
Raty (sstaa7c25bib153) 2010; 12
Sousa (sstaa7c25bib38) 2015
van Eijk (sstaa7c25bib148) 2010
Krebs (sstaa7c25bib172) 2014; 16
Raty (sstaa7c25bib185) 2013; 88
Jung (sstaa7c25bib181) 2007; 91
Liu (sstaa7c25bib223) 2014; 35
Huang (sstaa7c25bib73) 2015; 10
Perniola (sstaa7c25bib34) 2010; 31
Navarro (sstaa7c25bib36) 2013; 89
Moore (sstaa7c25bib126) 1992; 140
Garbin (sstaa7c25bib4) 2015
Caldwell (sstaa7c25bib112) 2010; 20
Hegedüs (sstaa7c25bib135) 2008; 7
Son (sstaa7c25bib68) 2011; 32
Akola (sstaa7c25bib142) 2009; 80
Yamada (sstaa7c25bib17) 1987; 26
Chen (sstaa7c25bib102) 2006
Stanisavljevic (sstaa7c25bib9) 2016
Cha (sstaa7c25bib67) 2013
La Fata (sstaa7c25bib119) 2009; 105
Raty (sstaa7c25bib144) 2015; 6
Bragaglia (sstaa7c25bib191) 2014; 116
Raoux (sstaa7c25bib58) 2009
Kügeler (sstaa7c25bib64) 2009; 53
Shelby (sstaa7c25bib39) 2009; 105
Sosso (sstaa7c25bib162) 2012; 249
Eom (sstaa7c25bib95) 2014; 26
Tominaga (sstaa7c25bib213) 2014; 1
Gourvest (sstaa7c25bib85) 2012; 1
Song (sstaa7c25bib97) 2006
Liu (sstaa7c25bib221) 2013; 113
Bez (sstaa7c25bib15) 2004; 7
Abrutis (sstaa7c25bib75) 2008; 20
Kamada (sstaa7c25bib210) 2012; 520
Leervad Pedersen (sstaa7c25bib196) 2001; 79
Jeong (sstaa7c25bib76) 2015; 40
Sousa (sstaa7c25bib72) 2011; 88
Chen (sstaa7c25bib2) 2012; 59
Lee (sstaa7c25bib46) 2009; 94
Otooni (sstaa7c25bib128) 2012; vol 278
Seong (sstaa7c25bib10) 2013
Longo (sstaa7c25bib82) 2008; 310
Wuttig (sstaa7c25bib20) 2007; 6
Weidenhof (sstaa7c25bib204) 1999; 86
Simpson (sstaa7c25bib111) 2010; 10
Hu (sstaa7c25bib205) 2015; 4
Wełnic (sstaa7c25bib138) 2007; 98
Tanaka (sstaa7c25bib211) 1989; 39
Noé (sstaa7c25bib60) 2016; 49
Burr (sstaa7c25bib13) 2016; 6
Suda (sstaa7c25bib80) 2013; 52
Loke (sstaa7c25bib159) 2012; 336
Siegrist (sstaa7c25bib146) 2011; 10
Cho (sstaa7c25bib182) 2011; 109
Wimmer (sstaa7c25bib59) 2014; 2
Karpov (sstaa7c25bib27) 2008; 78
Krusin-Elbaum (sstaa7c25bib195) 2007; 90
Flores-Ruiz (sstaa7c25bib187) 2011; 83
Kang (sstaa7c25bib49) 2011
Goux (sstaa7c25bib8) 2014
Bez (sstaa7c25bib44) 2009
Lencer (sstaa7c25bib24) 2008; 7
Bruns (sstaa7c25bib31) 2009; 95
Song (sstaa7c25bib96) 2015; 10
Wang (sstaa7c25bib193) 2004; 96
Waser (sstaa7c25bib1) 2007; 6
Tominaga (sstaa7c25bib116) 1998; 37
Zhang (sstaa7c25bib161) 2014; 4
Pore (sstaa7c25bib90) 2009; 131
Hardtdegen (sstaa7c25bib77) 2015; 61
Le Gallo (sstaa7c25bib173) 2016; 119
Yamada (sstaa7c25bib21) 2012; 249
Ha (sstaa7c25bib51) 2003
Fujisaki (sstaa7c25bib100) 2007; 997
Gopalakrishnan (sstaa7c25bib69) 2010
Garbin (sstaa7c25bib3) 2016; 115
Mazzarello (sstaa7c25bib139) 2010; 104
You (sstaa7c25bib107) 2015; 9
Ciocchini (sstaa7c25bib61) 2016; 6
Jeong (sstaa7c25bib45) 2005
Stanisavljevic (sstaa7c25bib63) 2015
Zuliani (sstaa7c25bib37) 2013; 60
Caravati (sstaa7c25bib134) 2007; 91
Raoux (sstaa7c25bib23) 2012; 249
Kim (sstaa7c25bib65) 2013
Ghezzi (sstaa7c25bib113) 2012; 101
Tuma (sstaa7c25bib220) 2016; 11
Yin (sstaa7c25bib188) 2013; 46
Li (sstaa7c25bib194) 2010; 49
Zhang (sstaa7c25bib143) 2012; 11
Park (sstaa7c25bib198) 2009; 94
Saito (sstaa7c25bib218) 2015; 252
Aoukar (sstaa7c25bib86) 2015; 4
Pellizzer (sstaa7c25bib105) 2004
Krbal (sstaa7c25bib156) 2013; 102
Knapas (sstaa7c25bib93) 2010; 22
Kolobov (sstaa7c25bib132) 2004; 3
Deringer (sstaa7c25bib155) 2014; 53
Rizzi (sstaa7c25bib170) 2011; 99
Raoux (sstaa7c25bib33) 2009
Kim (sstaa7c25bib66) 2014
Wei (sstaa7c25bib109) 2007; 46
Beneventi (sstaa7c25bib40) 2010; vol 2010
Wang (sstaa7c25bib219) 2012; 2
Carria (sstaa7c25bib158) 2011; 14
Jo (sstaa7c25bib70) 2014
Pellizzer (sstaa7c25bib104) 2006
Zhou (sstaa7c25bib123) 2015; 5
Piccolboni (sstaa7c25bib5) 2016; 37
Kohara (sstaa7c25bib152) 2006; 89
Zipoli (sstaa7c25bib177) 2016; 93
Yang (sstaa7c25bib71) 2015
Jeong (sstaa7c25bib117) 1999; 86
Luckas (sstaa7c25bib175) 2014; 105
Akola (sstaa7c25bib133) 2008; 100
Suk (sstaa7c25bib83) 2010; 10
Fantini (sstaa7c25bib165) 2012; 100
Pirovano (sstaa7c25bib53) 2003
References_xml – volume: 26
  start-page: 61
  year: 1987
  ident: sstaa7c25bib17
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAPS.26S4.61
– volume: 26
  start-page: 1583
  year: 2014
  ident: sstaa7c25bib95
  publication-title: Chem. Mater.
  doi: 10.1021/cm4034885
– year: 2013
  ident: sstaa7c25bib10
– volume: 107
  year: 2011
  ident: sstaa7c25bib130
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.145702
– volume: 76
  year: 2007
  ident: sstaa7c25bib149
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.235201
– start-page: 1
  year: 2011
  ident: sstaa7c25bib49
– volume: vol 65–66
  start-page: 197
  year: 2011
  ident: sstaa7c25bib41
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2011.06.029
– volume: 12
  start-page: 193
  year: 2009
  ident: sstaa7c25bib136
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2009.06.018
– volume: 100
  year: 2012
  ident: sstaa7c25bib184
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3683522
– volume: 4
  year: 2015
  ident: sstaa7c25bib86
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/26/265203
– start-page: 550
  year: 2013
  ident: sstaa7c25bib47
– start-page: 170
  year: 2014
  ident: sstaa7c25bib66
– volume: 82
  year: 2011
  ident: sstaa7c25bib186
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.214201
– start-page: 125
  year: 2015
  ident: sstaa7c25bib4
– volume: 53
  start-page: 1287
  year: 2009
  ident: sstaa7c25bib64
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2009.09.034
– start-page: 381
  year: 2009
  ident: sstaa7c25bib29
– volume: 89
  year: 2006
  ident: sstaa7c25bib152
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2387870
– volume: 101
  year: 2012
  ident: sstaa7c25bib113
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4769435
– start-page: 118
  year: 2006
  ident: sstaa7c25bib97
– volume: 102
  year: 2013
  ident: sstaa7c25bib156
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.4794870
– start-page: 1
  year: 2014
  ident: sstaa7c25bib70
– start-page: 96
  year: 2005
  ident: sstaa7c25bib99
– volume: 5
  start-page: 12612
  year: 2015
  ident: sstaa7c25bib215
  publication-title: Sci. Rep.
  doi: 10.1038/srep12612
– start-page: 1
  year: 2008
  ident: sstaa7c25bib103
– volume: 24
  start-page: 2099
  year: 2012
  ident: sstaa7c25bib94
  publication-title: Chem. Mater.
  doi: 10.1021/cm300539a
– volume: 110
  start-page: 142
  year: 2016
  ident: sstaa7c25bib115
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.022
– volume: 89
  year: 2006
  ident: sstaa7c25bib180
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2408660
– start-page: 644
  year: 2010
  ident: sstaa7c25bib11
– volume: 109
  start-page: 1
  year: 2011
  ident: sstaa7c25bib182
  publication-title: J. Appl. Phys.
– year: 2004
  ident: sstaa7c25bib57
– volume: 140
  start-page: 159
  year: 1992
  ident: sstaa7c25bib126
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(05)80761-6
– volume: 53
  start-page: 10817
  year: 2014
  ident: sstaa7c25bib155
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201404223
– volume: 60
  start-page: 4020
  year: 2013
  ident: sstaa7c25bib37
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2013.2285403
– year: 2013
  ident: sstaa7c25bib56
  article-title: Phase-change devices and electrothermal modeling
– volume: 53
  start-page: 26
  year: 2015
  ident: sstaa7c25bib78
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2015.01.008
– volume: 83
  year: 2011
  ident: sstaa7c25bib141
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.094113
– volume: 23
  start-page: 2030
  year: 2011
  ident: sstaa7c25bib25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004255
– volume: 105
  year: 2009
  ident: sstaa7c25bib39
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3126501
– volume: 115
  year: 2014
  ident: sstaa7c25bib129
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4861721
– volume: 10
  start-page: 129
  year: 2011
  ident: sstaa7c25bib145
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2931
– volume: 51
  start-page: 714
  year: 2004
  ident: sstaa7c25bib167
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2004.825805
– volume: 80
  year: 2009
  ident: sstaa7c25bib142
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.020201
– volume: 49
  year: 2010
  ident: sstaa7c25bib101
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.49.100001
– volume: 16
  year: 2014
  ident: sstaa7c25bib172
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/4/043015
– volume: 6
  start-page: 29162
  year: 2016
  ident: sstaa7c25bib61
  publication-title: Sci. Rep.
  doi: 10.1038/srep29162
– volume: 22
  start-page: 1386
  year: 2010
  ident: sstaa7c25bib93
  publication-title: Chem. Mater.
  doi: 10.1021/cm902180d
– volume: 92
  year: 2008
  ident: sstaa7c25bib168
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2930680
– volume: 31
  start-page: 488
  year: 2010
  ident: sstaa7c25bib34
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2010.2044136
– volume: 61
  start-page: 27
  year: 2015
  ident: sstaa7c25bib77
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/j.pcrysgrow.2015.10.001
– volume: 105
  year: 2014
  ident: sstaa7c25bib42
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904832
– volume: 10
  start-page: 202
  year: 2011
  ident: sstaa7c25bib146
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2934
– volume: 93
  year: 2008
  ident: sstaa7c25bib201
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3040314
– volume: 6
  start-page: 833
  year: 2007
  ident: sstaa7c25bib1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2023
– volume: 517
  start-page: 848
  year: 2008
  ident: sstaa7c25bib197
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.08.194
– volume: 46
  start-page: 2211
  year: 2007
  ident: sstaa7c25bib109
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.2211
– volume: 105
  year: 2014
  ident: sstaa7c25bib208
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901321
– volume: 408
  start-page: 310
  year: 2002
  ident: sstaa7c25bib192
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(02)00062-7
– volume: 78
  year: 2008
  ident: sstaa7c25bib27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.052201
– volume: 86
  year: 2012
  ident: sstaa7c25bib151
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.144113
– volume: vol 2010
  start-page: 313
  year: 2010
  ident: sstaa7c25bib40
– volume: 249
  start-page: 1999
  year: 2012
  ident: sstaa7c25bib23
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201200370
– volume: 103
  year: 2008
  ident: sstaa7c25bib125
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2912958
– volume: vol 278
  year: 2012
  ident: sstaa7c25bib128
– volume: 95
  year: 2009
  ident: sstaa7c25bib157
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3212732
– volume: 105
  year: 2009
  ident: sstaa7c25bib22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3091271
– year: 2014
  ident: sstaa7c25bib8
– volume: 52
  start-page: 1928
  year: 2012
  ident: sstaa7c25bib106
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2012.06.017
– volume: 116
  year: 2014
  ident: sstaa7c25bib191
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4892394
– start-page: 175
  year: 2003
  ident: sstaa7c25bib51
– volume: 112
  start-page: 9949
  year: 2000
  ident: sstaa7c25bib121
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481644
– volume: 52
  year: 2013
  ident: sstaa7c25bib80
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.128006
– volume: 159
  start-page: H373
  year: 2012
  ident: sstaa7c25bib124
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.027204jes
– volume: 6
  start-page: 146
  year: 2016
  ident: sstaa7c25bib13
  publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems, issue on ‘Emerging Memories—Technology, Architecture & Applications,’
– volume: 11
  start-page: 952
  year: 2012
  ident: sstaa7c25bib143
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3456
– volume: 79
  start-page: 8357
  year: 1996
  ident: sstaa7c25bib108
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362548
– volume: 7
  start-page: 653
  year: 2008
  ident: sstaa7c25bib26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2226
– volume: 7
  start-page: 399
  year: 2008
  ident: sstaa7c25bib135
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2157
– volume: 11
  start-page: 710
  year: 2011
  ident: sstaa7c25bib183
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2010.11.036
– volume: 91
  year: 2007
  ident: sstaa7c25bib134
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2801626
– volume: 88
  start-page: 807
  year: 2011
  ident: sstaa7c25bib72
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2010.06.042
– volume: 11
  start-page: e82
  year: 2011
  ident: sstaa7c25bib178
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2010.11.127
– volume: 1
  start-page: Q119
  year: 2012
  ident: sstaa7c25bib85
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.017206jss
– volume: 95
  year: 2009
  ident: sstaa7c25bib31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3191670
– volume: 2
  start-page: 360
  year: 2012
  ident: sstaa7c25bib219
  publication-title: Sci. Rep.
  doi: 10.1038/srep00360
– volume: 69
  start-page: 2849
  year: 1991
  ident: sstaa7c25bib18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.348620
– start-page: 66
  year: 2009
  ident: sstaa7c25bib32
– volume: 6
  start-page: 7467
  year: 2015
  ident: sstaa7c25bib144
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms8467
– volume: 90
  year: 2007
  ident: sstaa7c25bib195
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2719148
– volume: 14
  start-page: H480
  year: 2011
  ident: sstaa7c25bib158
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/2.019112esl
– volume: 81
  year: 2010
  ident: sstaa7c25bib140
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.081204
– volume: 96
  start-page: 5557
  year: 2004
  ident: sstaa7c25bib193
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1803612
– volume: 85
  start-page: 3044
  year: 2004
  ident: sstaa7c25bib122
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1805200
– volume: 100
  start-page: 21
  year: 2008
  ident: sstaa7c25bib133
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.205502
– volume: 20
  start-page: 1285
  year: 2010
  ident: sstaa7c25bib112
  publication-title: J. Mater. Chem.
  doi: 10.1039/B917024C
– start-page: 19
  year: 2005
  ident: sstaa7c25bib45
– year: 2009
  ident: sstaa7c25bib58
  doi: 10.1007/978-0-387-84874-7
– volume: 32
  start-page: 1579
  year: 2011
  ident: sstaa7c25bib68
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2011.2163697
– volume: 31
  start-page: 461
  year: 1992
  ident: sstaa7c25bib19
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.31.461
– volume: 249
  start-page: 1880
  year: 2012
  ident: sstaa7c25bib162
  publication-title: Phys. Stat. Sol. B
  doi: 10.1002/pssb.201200355
– volume: 119
  year: 2016
  ident: sstaa7c25bib173
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4938532
– volume: 12
  start-page: 193
  year: 2010
  ident: sstaa7c25bib153
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2009.06.018
– volume: 113
  year: 2013
  ident: sstaa7c25bib221
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4790801
– volume: 10
  start-page: 432
  year: 2015
  ident: sstaa7c25bib73
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-1136-4
– volume: 37
  start-page: 1852
  year: 1998
  ident: sstaa7c25bib116
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.37.1852
– volume: 2011
  start-page: 3.4.1.
  year: 2011
  ident: sstaa7c25bib35
  publication-title: IEEE Int. Electron Devices Meet
– volume: 93
  year: 2016
  ident: sstaa7c25bib177
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.115201
– year: 2012
  ident: sstaa7c25bib92
– start-page: 1
  year: 2016
  ident: sstaa7c25bib9
– start-page: 1
  year: 2015
  ident: sstaa7c25bib63
– volume: 85
  start-page: 2338
  year: 2008
  ident: sstaa7c25bib79
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.09.014
– volume: 2
  start-page: 75
  year: 2014
  ident: sstaa7c25bib59
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00075
– volume: 10
  start-page: 89
  year: 2015
  ident: sstaa7c25bib96
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-0815-5
– volume: 520
  start-page: 4389
  year: 2012
  ident: sstaa7c25bib210
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.02.025
– volume: 96
  year: 2010
  ident: sstaa7c25bib169
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3447941
– year: 2015
  ident: sstaa7c25bib88
– volume: 3
  start-page: 703
  year: 2004
  ident: sstaa7c25bib132
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1215
– volume: 99
  year: 2011
  ident: sstaa7c25bib170
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3664631
– volume: 40
  start-page: 50
  year: 2015
  ident: sstaa7c25bib76
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2015.06.027
– volume: 31
  year: 2016
  ident: sstaa7c25bib6
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/6/063002
– volume: 52
  start-page: 465
  year: 2008
  ident: sstaa7c25bib12
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.524.0465
– volume: 49
  start-page: 502
  year: 1986
  ident: sstaa7c25bib30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97617
– start-page: 91
  year: 2009
  ident: sstaa7c25bib33
– volume: 98
  year: 2007
  ident: sstaa7c25bib138
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.236403
– volume: 6
  start-page: 501
  year: 2011
  ident: sstaa7c25bib212
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.96
– start-page: 18
  year: 2004
  ident: sstaa7c25bib105
– volume: 122
  year: 2017
  ident: sstaa7c25bib120
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5002637
– volume: 94
  start-page: 4908
  year: 2003
  ident: sstaa7c25bib179
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1610775
– year: 2015
  ident: sstaa7c25bib87
– volume: 252
  start-page: 2151
  year: 2015
  ident: sstaa7c25bib218
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201552335
– volume: 94
  year: 2009
  ident: sstaa7c25bib46
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3155202
– volume: 5
  start-page: 11150
  year: 2015
  ident: sstaa7c25bib123
  publication-title: Sci. Rep.
  doi: 10.1038/srep11150
– volume: 98
  year: 2005
  ident: sstaa7c25bib118
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2034655
– volume: 49
  year: 2016
  ident: sstaa7c25bib60
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/3/035305
– volume: 78
  year: 2007
  ident: sstaa7c25bib202
  publication-title: Rev. Sci. Instr.
  doi: 10.1063/1.2535857
– volume: 997
  start-page: 110
  year: 2007
  ident: sstaa7c25bib74
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-0997-I10-08
– volume: 253
  start-page: 3969
  year: 2007
  ident: sstaa7c25bib89
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.08.044
– volume: 99
  year: 2011
  ident: sstaa7c25bib150
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3651321
– start-page: T98
  year: 2015
  ident: sstaa7c25bib38
– volume: 7
  start-page: 349
  year: 2004
  ident: sstaa7c25bib15
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2004.09.127
– volume: 207
  start-page: 510
  year: 2010
  ident: sstaa7c25bib160
  publication-title: Phys. Stat. Sol. A
  doi: 10.1002/pssa.200982664
– start-page: 1
  year: 2011
  ident: sstaa7c25bib98
– volume: 109
  start-page: 351
  year: 2013
  ident: sstaa7c25bib50
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2013.02.105
– volume: 81
  year: 2010
  ident: sstaa7c25bib137
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.174206
– volume: 370
  start-page: 258
  year: 2000
  ident: sstaa7c25bib189
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)01090-1
– volume: 105
  year: 2009
  ident: sstaa7c25bib119
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3093915
– start-page: 1
  year: 2003
  ident: sstaa7c25bib53
– volume: 21
  start-page: 1450
  year: 1968
  ident: sstaa7c25bib16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.21.1450
– volume: 20
  start-page: 230
  year: 2002
  ident: sstaa7c25bib190
  publication-title: J. Vac. Sci. Tech. A
  doi: 10.1116/1.1430249
– volume: 105
  year: 2014
  ident: sstaa7c25bib175
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4893743
– volume: 7
  start-page: 19136
  year: 2015
  ident: sstaa7c25bib216
  publication-title: Nanoscale
  doi: 10.1039/C5NR04530D
– volume: 109
  year: 2011
  ident: sstaa7c25bib206
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3544432
– volume: 100
  year: 2012
  ident: sstaa7c25bib209
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4719074
– volume: 4
  start-page: 6529
  year: 2014
  ident: sstaa7c25bib161
  publication-title: Sci. Reports
  doi: 10.1038/srep06529
– volume: 249
  start-page: 1837
  year: 2012
  ident: sstaa7c25bib21
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201200618
– volume: 79
  start-page: 3597
  year: 2001
  ident: sstaa7c25bib196
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1415419
– volume: 30
  start-page: 101
  year: 1991
  ident: sstaa7c25bib147
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.30.101
– volume: 86
  start-page: 1942
  year: 2009
  ident: sstaa7c25bib166
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.03.085
– volume: 1
  year: 2014
  ident: sstaa7c25bib213
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201300027
– volume: 617
  start-page: 44
  year: 2016
  ident: sstaa7c25bib200
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.02.020
– volume: 46
  year: 2013
  ident: sstaa7c25bib188
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/50/505311
– volume: 10
  year: 2010
  ident: sstaa7c25bib111
  publication-title: Nano Lett.
  doi: 10.1021/nl902777z
– start-page: 205
  year: 2010
  ident: sstaa7c25bib69
– volume: 11
  start-page: 693
  year: 2016
  ident: sstaa7c25bib220
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.70
– volume: 28
  start-page: 223
  year: 2010
  ident: sstaa7c25bib14
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3301579
– volume: 92
  year: 2015
  ident: sstaa7c25bib176
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.054201
– volume: 100
  start-page: 1
  year: 2012
  ident: sstaa7c25bib28
  publication-title: Appl. Phys. Lett.
– start-page: 89
  year: 2009
  ident: sstaa7c25bib44
– year: 2015
  ident: sstaa7c25bib71
– start-page: 122
  year: 2006
  ident: sstaa7c25bib104
– year: 2017
  ident: sstaa7c25bib43
  article-title: Material engineering for PCM devices optimisation
  doi: 10.1007/978-3-319-69053-7
– volume: 131
  start-page: 3478
  year: 2009
  ident: sstaa7c25bib90
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8090388
– volume: 20
  start-page: 3557
  year: 2008
  ident: sstaa7c25bib75
  publication-title: Chem. Mater.
  doi: 10.1021/cm8004584
– volume: 10
  start-page: 3354
  year: 2010
  ident: sstaa7c25bib83
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2308
– volume: 7
  start-page: 972
  year: 2008
  ident: sstaa7c25bib24
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2330
– start-page: 1
  year: 2012
  ident: sstaa7c25bib164
– volume: 28
  start-page: 871
  year: 2007
  ident: sstaa7c25bib55
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2007.906084
– volume: 28
  start-page: 697
  year: 2007
  ident: sstaa7c25bib54
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2007.901347
– volume: 310
  start-page: 5053
  year: 2008
  ident: sstaa7c25bib82
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.07.054
– volume: 25
  start-page: 4851
  year: 2015
  ident: sstaa7c25bib163
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501607
– volume: 15
  start-page: 296
  year: 2009
  ident: sstaa7c25bib81
  publication-title: Chem. Vap. Deposition
  doi: 10.1002/cvde.200906791
– volume: 100
  year: 2012
  ident: sstaa7c25bib165
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4720182
– volume: 86
  start-page: 1946
  year: 2009
  ident: sstaa7c25bib91
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.03.014
– volume: 104
  year: 2010
  ident: sstaa7c25bib139
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.085503
– volume: 37
  start-page: 721
  year: 2016
  ident: sstaa7c25bib5
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2016.2553370
– volume: 154
  start-page: H318
  year: 2007
  ident: sstaa7c25bib84
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2456199
– start-page: hh03
  year: 2014
  ident: sstaa7c25bib224
– volume: 36
  start-page: 769
  year: 2015
  ident: sstaa7c25bib7
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2448731
– volume: 104
  year: 2014
  ident: sstaa7c25bib114
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4881927
– volume: 50
  year: 2011
  ident: sstaa7c25bib199
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.50.061201
– volume: 249
  start-page: 1851
  year: 2012
  ident: sstaa7c25bib154
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201200393
– volume: 102
  year: 2013
  ident: sstaa7c25bib207
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4809598
– volume: 49
  year: 2010
  ident: sstaa7c25bib194
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.49.058003
– volume: 6
  start-page: 22353
  year: 2016
  ident: sstaa7c25bib217
  publication-title: Sci. Rep.
  doi: 10.1038/srep22353
– volume: 97
  start-page: 233
  year: 1988
  ident: sstaa7c25bib127
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(88)90049-3
– volume: 115
  year: 2014
  ident: sstaa7c25bib174
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4874415
– volume: 89
  start-page: 93
  year: 2013
  ident: sstaa7c25bib36
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2013.07.005
– start-page: 203
  year: 2010
  ident: sstaa7c25bib48
– volume: 86
  start-page: 5879
  year: 1999
  ident: sstaa7c25bib204
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371606
– volume: 6
  start-page: 8181
  year: 2015
  ident: sstaa7c25bib62
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9181
– start-page: 16
  year: 2013
  ident: sstaa7c25bib65
– volume: 9
  start-page: 6587
  year: 2015
  ident: sstaa7c25bib107
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02579
– volume: 336
  start-page: 1566
  year: 2012
  ident: sstaa7c25bib159
  publication-title: Science
  doi: 10.1126/science.1221561
– volume: 35
  start-page: 533
  year: 2014
  ident: sstaa7c25bib223
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2014.2311461
– volume: 91
  year: 2007
  ident: sstaa7c25bib181
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2773959
– start-page: 777
  year: 2006
  ident: sstaa7c25bib102
  article-title: I
– volume: 6
  start-page: 824
  year: 2007
  ident: sstaa7c25bib20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2009
– volume: 115
  start-page: 126
  year: 2016
  ident: sstaa7c25bib3
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2015.09.004
– volume: 59
  start-page: 3243
  year: 2012
  ident: sstaa7c25bib2
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2012.2218607
– volume: 39
  start-page: 1270
  year: 1989
  ident: sstaa7c25bib211
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1270
– volume: 997
  start-page: 293
  year: 2007
  ident: sstaa7c25bib100
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-0997-I11-01
– volume: 113
  year: 2013
  ident: sstaa7c25bib171
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4769871
– volume: 85
  start-page: 2330
  year: 2008
  ident: sstaa7c25bib131
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.08.004
– volume: 13
  start-page: H284
  year: 2010
  ident: sstaa7c25bib203
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.3439647
– start-page: 1
  year: 2013
  ident: sstaa7c25bib67
– year: 2010
  ident: sstaa7c25bib148
  article-title: Structural analysis of phase-change materials using x-ray absorption measurements
– volume: 4
  start-page: 1
  year: 2014
  ident: sstaa7c25bib214
  publication-title: Sci. Rep.
  doi: 10.1038/srep05727
– start-page: hh06
  year: 2014
  ident: sstaa7c25bib222
– volume: 86
  start-page: 774
  year: 1999
  ident: sstaa7c25bib117
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.370803
– start-page: 100
  year: 2007
  ident: sstaa7c25bib52
– volume: 88
  year: 2013
  ident: sstaa7c25bib185
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.014203
– volume: 94
  year: 2009
  ident: sstaa7c25bib198
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3078820
– volume: 103
  year: 2008
  ident: sstaa7c25bib110
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2938076
– volume: 83
  year: 2011
  ident: sstaa7c25bib187
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.184204
– volume: 4
  start-page: P105
  year: 2015
  ident: sstaa7c25bib205
  publication-title: ECS Solid State Lett.
  doi: 10.1149/2.0121512ssl
RestrictionsOnAccess restricted access
SSID ssj0011830
Score 2.6006465
SecondaryResourceType review_article
Snippet Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time...
Abstract Chalcogenide Phase-Change Materials (PCMs), such as Ge-Sb-Te alloys, are showing outstanding properties, which has led to their successful use for a...
SourceID liege
hal
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 13002
SubjectTerms ab initio
GST
memories
non-volatile memory
Phase change materials
Physical, chemical, mathematical & earth Sciences
Physics
Physique
Physique, chimie, mathématiques & sciences de la terre
Title Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues
URI https://iopscience.iop.org/article/10.1088/1361-6641/aa7c25
https://hal.univ-grenoble-alpes.fr/hal-01954870
http://orbi.ulg.ac.be/handle/2268/215469
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA7dimAfvFSl640g-iCY3WQym0n0qYhlES99sNAHISSZxIrL7tqZLeiv9-Syy1akiG_DzJlkcnIm5zs5lyD0TMaS4tZKwoWxpK5aTmwVPLHOKUd58CFlyH34KKYn9bvTyekOer3JhVksy9I_gstcKDizsATEyTHjghEhajY2pnHVZICucQmKM2bvfTreuBBAVssGC5hJoIiKj_JvLVzSSYOzGBE5gN4Br86i53pL4RzdQl_Wn5rjTL6PVr0duV9_VHH8z7HcRjcLEMWHmfQO2vHzfbS3VZ5wH11P4aGuu4t-HJ-BtiM5SxgDyM1yiwHx4vliTmCNgxmewaMYuPsTtz4tQK9wzF7B_Xr7PgoEduvjWzrcL7baKoPASRK6e-jk6O3nN1NSDmsgDjBYT-xEWSOCaSyoO6-kCVQFxeuJCk4JA2aOqVoavAALysS6ao62QOIUdY1j1vL7aBc-2B8gDNY6C4ArTDRWGbXWA2yiLW9qwyQNYYjG6-nSrlQyjwdqzHTyqEupI1t1ZKvObB2iF5s3lrmKxxW0T4EPG7JYfnt6-F7HezSVx2voBRui5zCluvzv3RWN4Ut0XddrzjXT0WFMK71sYTQvk5Tpxbn9pi-q1GO6Xs2-auO09RowstQAzmqhHvxjzw_RDcB2Mu8WPUK7_fnKPwb81Nsn6T_5DcSHEdg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6RIhAceJQiwtNCcEDCib3eJ7cKiAKUkgOVenNtr90ioiR0N5XaX8_Y60QpQhUSt9XurNcez3q-8TwM8Kr0JcW1LqnIlaZpUguqE2epNqYyTDjrQobc1_18fJB-PswO4zmnIRdmvohL_wAvu0LBHQtjQFw55CLnNM9TPlSqMEk2XNSuB9czgbrTZ_B9m6zdCCivcZMFTSVURtFP-bdWLuml3omPiuxhDxCzTr33ekPpjO7C0aq7XazJz8Gy1QNz8Uclx_8Yzz24EwEp2e3I78M1O9uG2xtlCrfhRggTNc0D-DU5Qa1Hu2xhgmC3k1-CyJfM5jOKax3O9BQf-QDec1LbsBC9Iz6LhbSrbXwvGMSsjnFpSDvfaCsOhASJaHbgYPTx-_sxjYc2UINYrKU6q7TKnSo0qj1blcqxylUizSpnqlyhuaOSmjmboyWlfH01w2okMRUzheFai4ewhR22j4Cg1c4d4gvljVbOtLYIn1gtilTxkjnXh-FqyqSJFc39wRpTGTzrZSk9a6VnrexY24c36zcWXTWPK2hfIh_WZL4M93h3T_p7LJTJK9gZ78NrnFYZ__vmisbIJbqmaaUQkkvvOGaJxCnvw9sgaXJ-qn_IsyR8MVwvp8dSGamtRKxcSgRpaV49_scvv4Cbkw8jufdp_8sTuIVwr-w2kJ7CVnu6tM8QUrX6efhtfgOVVhc8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-change+materials+for+non-volatile+memory+devices%3A+from+technological+challenges+to+materials+science+issues&rft.jtitle=Semiconductor+science+and+technology&rft.au=No%C3%A9%2C+Pierre&rft.au=Vall%C3%A9e%2C+Christophe&rft.au=Hippert%2C+Fran%C3%A7oise&rft.au=Fillot%2C+Fr%C3%A9d%C3%A9ric&rft.date=2018-01-01&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=33&rft.issue=1&rft.spage=13002&rft_id=info:doi/10.1088%2F1361-6641%2Faa7c25&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_aa7c25
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon