Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues
Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access...
Saved in:
Published in | Semiconductor science and technology Vol. 33; no. 1; pp. 13002 - 13033 |
---|---|
Main Authors | , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
IOP Publishing
01.01.2018
Institute of Physics (IoP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view. |
---|---|
AbstractList | Abstract Chalcogenide Phase-Change Materials (PCMs), such as Ge-Sb-Te alloys, are showing outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as Phase-Change Material memories or Phase-Change Random Access Memories (PCRAMs), are the most promising candidate among emerging Non-Volatile Memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large scale integration means incorporation of the phase-change material into more and more confined structures and raises material science issues to understand interface and size effects on crystallization. Other material science issues are related to the stability and ageing of the amorphous state of phase-change materials. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the phase-change material. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has hindered up-to-now the development of ultra-high multilevel storage devices. A review of the current understanding of all these issues is provided from a material science point of view. Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view. |
Author | Noé, Pierre Hippert, Françoise Raty, Jean-Yves Vallée, Christophe Fillot, Frédéric |
Author_xml | – sequence: 1 givenname: Pierre surname: Noé fullname: Noé, Pierre organization: UGA, CEA, LETI, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble Cedex 9, France – sequence: 2 givenname: Christophe surname: Vallée fullname: Vallée, Christophe email: christophe.vallee@cea.fr organization: UGA, CNRS-LTM, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble Cedex 9, France – sequence: 3 givenname: Françoise surname: Hippert fullname: Hippert, Françoise organization: Université Grenoble Alpes LNCMI (CNRS, UPS, INSA), 25 rue des Martyrs, F 38042 Grenoble Cedex 9, France – sequence: 4 givenname: Frédéric surname: Fillot fullname: Fillot, Frédéric organization: UGA, CEA, LETI, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble Cedex 9, France – sequence: 5 givenname: Jean-Yves surname: Raty fullname: Raty, Jean-Yves organization: Université de Liège Physics of Solids Interfaces and Nanostructures, B5, B4000 Sart-Tilman, Belgium |
BackLink | https://hal.univ-grenoble-alpes.fr/hal-01954870$$DView record in HAL |
BookMark | eNp9kUGLFDEQhYOs4Ozq3WNuIthukk6nO96WRV1hQA96LqozlZksmc6Y9Azsvzdjq4iop4TK-15V6l2yiylNxNhzKV5LMQzXsjWyMUbLa8Teqe4RW_0qXbCVUGZopNLqCbss5V4IKYdWrNjXTzss1LgdTlvie5wpB4yF-5R57dCcUsQ5xPpE-5Qf-IZOwVF5w31Oez6T200ppm1wGHk1iZGqT-Fz-s2ruECTIx5KOVJ5yh77WqVnP84r9uXd28-3d8364_sPtzfrxunOzM3Y2RGNx37UvSQ7oBfW21Z31jtr0GiFaiM8GaMMKi0GJzZV4qxwvZPj2F6xdvGNgbYEKY8BTgoShuV-jFtAByOBqrsBJTttbKVeLlT9Cxxy2GN--M7c3azhXBPSdnroxUlWrVm0LqdSMnlwYa7bStOcMUSQAs7RwDkHOOcASzQVFH-APzv9B3mxICEd4D4d81R3B6XM0LYg61StEAoOG1-Vr_6i_KfxN-agr8I |
CODEN | SSTEET |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_157642 crossref_primary_10_1016_j_mtchem_2023_101650 crossref_primary_10_1039_D0MA00554A crossref_primary_10_1039_D1NR03432D crossref_primary_10_1002_pssr_202000471 crossref_primary_10_1016_j_apsusc_2020_146227 crossref_primary_10_1021_acsaelm_1c00491 crossref_primary_10_1039_D2TC05062E crossref_primary_10_1039_C9NA00366E crossref_primary_10_1016_j_jallcom_2020_156307 crossref_primary_10_1116_1_5089037 crossref_primary_10_1016_j_ceramint_2024_04_415 crossref_primary_10_1002_pssr_202300402 crossref_primary_10_1002_pssr_202200496 crossref_primary_10_3390_nano12040631 crossref_primary_10_1116_1_5140841 crossref_primary_10_1002_pssr_202300421 crossref_primary_10_1039_D2MH01449A crossref_primary_10_1088_1361_6463_ab77de crossref_primary_10_1088_1402_4896_ad75cf crossref_primary_10_3390_nano11071729 crossref_primary_10_1002_pssr_202100199 crossref_primary_10_1021_acsaelm_0c00717 crossref_primary_10_1002_aelm_202400203 crossref_primary_10_1007_s00339_019_2865_5 crossref_primary_10_1002_adma_202416938 crossref_primary_10_1002_pssr_202000451 crossref_primary_10_1149_2_0981811jes crossref_primary_10_1103_PhysRevMaterials_5_095004 crossref_primary_10_1002_aelm_202100164 crossref_primary_10_1002_appl_202200024 crossref_primary_10_1063_5_0023653 crossref_primary_10_1021_acs_jpcc_4c05157 crossref_primary_10_1126_sciadv_aay2830 crossref_primary_10_1002_pssr_201900105 crossref_primary_10_1039_D2TC00486K crossref_primary_10_1016_j_jacomc_2024_100004 crossref_primary_10_1002_adma_202003032 crossref_primary_10_1002_pssr_202000443 crossref_primary_10_1002_pssr_201900581 crossref_primary_10_1016_j_optlastec_2022_108773 crossref_primary_10_1016_j_apsusc_2024_159679 crossref_primary_10_1002_pssr_202000441 crossref_primary_10_1016_j_jallcom_2023_169229 crossref_primary_10_1063_5_0023761 crossref_primary_10_1016_j_materresbull_2021_111679 crossref_primary_10_1039_D2TC04538A crossref_primary_10_3389_fphy_2022_854393 crossref_primary_10_1103_PhysRevMaterials_4_015001 crossref_primary_10_1002_pssr_202400129 crossref_primary_10_1063_1_5118217 crossref_primary_10_1088_1674_1056_ab3cc3 crossref_primary_10_1016_j_optlastec_2021_107701 crossref_primary_10_1039_D4TC03146F crossref_primary_10_1021_acs_chemmater_1c04411 crossref_primary_10_1063_5_0014375 crossref_primary_10_1039_D4CP00078A crossref_primary_10_1007_s10946_023_10180_4 crossref_primary_10_1016_j_mssp_2024_109206 crossref_primary_10_1016_j_ceramint_2022_10_293 crossref_primary_10_1063_5_0198244 crossref_primary_10_1063_5_0202152 crossref_primary_10_1002_pssr_202200054 crossref_primary_10_1002_pssb_202000416 crossref_primary_10_1039_C8NR09711A crossref_primary_10_3390_jcm12144830 crossref_primary_10_1002_advs_202304323 crossref_primary_10_1016_j_actamat_2020_04_001 crossref_primary_10_1515_pac_2019_0105 crossref_primary_10_1038_s41598_024_79750_z crossref_primary_10_1002_adma_201908302 crossref_primary_10_1016_j_jallcom_2022_167000 crossref_primary_10_1002_pssr_202000538 crossref_primary_10_1063_5_0156207 crossref_primary_10_1088_1757_899X_889_1_012032 crossref_primary_10_1021_acs_langmuir_4c04836 crossref_primary_10_1002_pssr_202000412 crossref_primary_10_30526_37_1_3314 crossref_primary_10_1002_pssr_202000534 crossref_primary_10_1063_5_0166245 crossref_primary_10_2320_materia_59_387 crossref_primary_10_1002_pssr_202000414 crossref_primary_10_1016_j_mssp_2023_107644 crossref_primary_10_1016_j_scriptamat_2021_114011 crossref_primary_10_1016_j_matdes_2020_109392 crossref_primary_10_1103_PhysRevB_106_184103 crossref_primary_10_1109_TED_2022_3215550 crossref_primary_10_1002_smll_202310209 crossref_primary_10_1038_s41598_024_56463_x crossref_primary_10_1016_j_apsusc_2019_144337 crossref_primary_10_1063_1_5088068 crossref_primary_10_1016_j_mssp_2021_106079 crossref_primary_10_1116_6_0000336 crossref_primary_10_1002_pssa_202300921 crossref_primary_10_1088_1361_648X_abf077 crossref_primary_10_1016_j_optlastec_2022_107916 crossref_primary_10_1021_acs_cgd_1c00508 crossref_primary_10_1002_advs_202304785 crossref_primary_10_1038_s41467_019_10980_w crossref_primary_10_31857_S0544126923700461 crossref_primary_10_1007_s00339_022_06265_7 crossref_primary_10_1021_acsami_0c10184 crossref_primary_10_1002_smll_202201753 crossref_primary_10_1017_S1431927620018036 crossref_primary_10_1016_j_mattod_2020_07_016 crossref_primary_10_1021_acsaelm_4c00721 crossref_primary_10_1088_1674_1056_abeedf crossref_primary_10_1088_2515_7647_ac9a91 crossref_primary_10_1002_aelm_202400905 crossref_primary_10_1021_acsanm_0c00463 crossref_primary_10_1557_mrc_2018_168 crossref_primary_10_1007_s11082_022_03564_4 crossref_primary_10_1016_j_mssp_2022_107101 crossref_primary_10_1088_1361_6641_ac33c3 crossref_primary_10_1002_smll_201704514 crossref_primary_10_2320_materia_62_520 crossref_primary_10_1007_s11664_020_08590_0 crossref_primary_10_3390_ma14123396 crossref_primary_10_1002_adma_202205098 crossref_primary_10_1002_pssr_201800590 crossref_primary_10_1063_1_5124027 crossref_primary_10_1016_j_apsusc_2020_147959 crossref_primary_10_1002_pssr_202400413 crossref_primary_10_1016_j_mtla_2023_101738 crossref_primary_10_1103_PhysRevMaterials_5_045004 crossref_primary_10_1002_adfm_201803380 crossref_primary_10_1002_aelm_202400290 crossref_primary_10_1088_1361_6528_ac3613 crossref_primary_10_1002_aelm_202201224 crossref_primary_10_1039_D0NA00577K crossref_primary_10_1002_admi_202100405 crossref_primary_10_1016_j_jnoncrysol_2021_121311 crossref_primary_10_1088_2053_1591_ac1d17 crossref_primary_10_1002_pssr_202100470 crossref_primary_10_1063_5_0180695 crossref_primary_10_1021_acsanm_0c02303 crossref_primary_10_15251_CL_2024_211_21 crossref_primary_10_1063_5_0206808 crossref_primary_10_1149_2162_8777_ab7885 crossref_primary_10_1021_acs_chemmater_9b02533 crossref_primary_10_1016_j_mtla_2023_101885 crossref_primary_10_1039_D0RA10408F crossref_primary_10_1051_refdp_202274058 crossref_primary_10_1038_s41598_020_73407_3 crossref_primary_10_1016_j_physb_2021_413330 crossref_primary_10_1039_C8TC03176B crossref_primary_10_1108_MI_01_2019_0007 crossref_primary_10_1007_s10470_019_01576_x crossref_primary_10_1063_5_0012485 crossref_primary_10_1039_C8FD00126J crossref_primary_10_1103_PhysRevB_99_245124 crossref_primary_10_1109_ACCESS_2020_2990536 crossref_primary_10_1021_acsaelm_2c00038 crossref_primary_10_1103_PhysRevMaterials_3_105401 crossref_primary_10_1016_j_jallcom_2022_166614 crossref_primary_10_1063_5_0030956 crossref_primary_10_1016_j_materresbull_2024_113280 crossref_primary_10_1116_1_5144736 crossref_primary_10_1016_j_apsusc_2024_160696 crossref_primary_10_1039_D4SC01477D crossref_primary_10_1038_s41598_024_84963_3 crossref_primary_10_1088_1361_6528_ac6813 crossref_primary_10_1002_pssr_202200450 crossref_primary_10_1038_s41598_024_65828_1 crossref_primary_10_1016_j_jnoncrysol_2024_122952 crossref_primary_10_1039_D3CE01067H crossref_primary_10_3390_nano11112945 crossref_primary_10_1038_s41467_024_52132_9 crossref_primary_10_3390_app142411713 crossref_primary_10_1002_pssr_202000382 crossref_primary_10_1002_pssr_202200433 crossref_primary_10_1038_s41524_024_01217_6 crossref_primary_10_1109_LED_2022_3218626 crossref_primary_10_7498_aps_71_20220666 crossref_primary_10_1021_acsaelm_1c00340 crossref_primary_10_1021_acsaelm_9b00070 crossref_primary_10_1134_S1063739723700555 crossref_primary_10_1021_acs_jpcc_0c01824 crossref_primary_10_1016_j_sse_2020_107871 crossref_primary_10_1002_adom_202301154 crossref_primary_10_1016_j_jcrysgro_2021_126159 crossref_primary_10_1016_j_actamat_2021_117123 crossref_primary_10_1021_acsaem_1c01899 crossref_primary_10_1021_acs_chemmater_4c01009 crossref_primary_10_1002_adma_202102721 crossref_primary_10_1088_1361_6463_abfe7e crossref_primary_10_1063_5_0133981 crossref_primary_10_1002_pssr_202100222 crossref_primary_10_1002_pssr_201900548 crossref_primary_10_1063_5_0041242 crossref_primary_10_1134_S2075113320020227 crossref_primary_10_1002_adfm_202009803 crossref_primary_10_1002_pssr_202000485 crossref_primary_10_3390_nano11092382 crossref_primary_10_1039_D2TC03567G crossref_primary_10_1016_j_compeleceng_2019_01_009 crossref_primary_10_1021_acsnano_3c01187 crossref_primary_10_1021_acsnano_9b02108 crossref_primary_10_1115_1_4067819 crossref_primary_10_1016_j_actamat_2021_117465 crossref_primary_10_1016_j_actamat_2024_120608 crossref_primary_10_1021_acs_jpcc_1c08549 |
Cites_doi | 10.7567/JJAPS.26S4.61 10.1021/cm4034885 10.1103/PhysRevLett.107.145702 10.1103/PhysRevB.76.235201 10.1016/j.sse.2011.06.029 10.1016/j.solidstatesciences.2009.06.018 10.1063/1.3683522 10.1088/0022-3727/48/26/265203 10.1103/PhysRevB.82.214201 10.1016/j.sse.2009.09.034 10.1063/1.2387870 10.1063/1.4769435 10.1063/1.4794870 10.1038/srep12612 10.1021/cm300539a 10.1016/j.actamat.2016.03.022 10.1063/1.2408660 10.1016/S0022-3093(05)80761-6 10.1002/anie.201404223 10.1109/TED.2013.2285403 10.1016/j.inoche.2015.01.008 10.1103/PhysRevB.83.094113 10.1002/adma.201004255 10.1063/1.3126501 10.1063/1.4861721 10.1038/nmat2931 10.1109/TED.2004.825805 10.1103/PhysRevB.80.020201 10.1143/JJAP.49.100001 10.1088/1367-2630/16/4/043015 10.1038/srep29162 10.1021/cm902180d 10.1063/1.2930680 10.1109/LED.2010.2044136 10.1016/j.pcrysgrow.2015.10.001 10.1063/1.4904832 10.1038/nmat2934 10.1063/1.3040314 10.1038/nmat2023 10.1016/j.tsf.2008.08.194 10.1143/JJAP.46.2211 10.1063/1.4901321 10.1016/S0040-6090(02)00062-7 10.1103/PhysRevB.78.052201 10.1103/PhysRevB.86.144113 10.1002/pssb.201200370 10.1063/1.2912958 10.1063/1.3212732 10.1063/1.3091271 10.1016/j.microrel.2012.06.017 10.1063/1.4892394 10.1063/1.481644 10.7567/JJAP.52.128006 10.1149/2.027204jes 10.1038/nmat3456 10.1063/1.362548 10.1038/nmat2226 10.1038/nmat2157 10.1016/j.cap.2010.11.036 10.1063/1.2801626 10.1016/j.mee.2010.06.042 10.1016/j.cap.2010.11.127 10.1149/2.017206jss 10.1063/1.3191670 10.1038/srep00360 10.1063/1.348620 10.1038/ncomms8467 10.1063/1.2719148 10.1149/2.019112esl 10.1103/PhysRevB.81.081204 10.1063/1.1803612 10.1063/1.1805200 10.1103/PhysRevLett.100.205502 10.1039/B917024C 10.1007/978-0-387-84874-7 10.1109/LED.2011.2163697 10.1143/JJAP.31.461 10.1002/pssb.201200355 10.1063/1.4938532 10.1063/1.4790801 10.1186/s11671-015-1136-4 10.1143/JJAP.37.1852 10.1103/PhysRevB.93.115201 10.1016/j.mee.2008.09.014 10.3389/fphy.2014.00075 10.1186/s11671-015-0815-5 10.1016/j.tsf.2012.02.025 10.1063/1.3447941 10.1038/nmat1215 10.1063/1.3664631 10.1016/j.mssp.2015.06.027 10.1088/0268-1242/31/6/063002 10.1147/rd.524.0465 10.1063/1.97617 10.1103/PhysRevLett.98.236403 10.1038/nnano.2011.96 10.1063/1.5002637 10.1063/1.1610775 10.1002/pssb.201552335 10.1063/1.3155202 10.1038/srep11150 10.1063/1.2034655 10.1088/0022-3727/49/3/035305 10.1063/1.2535857 10.1557/PROC-0997-I10-08 10.1016/j.apsusc.2006.08.044 10.1063/1.3651321 10.1016/j.mssp.2004.09.127 10.1002/pssa.200982664 10.1016/j.mee.2013.02.105 10.1103/PhysRevB.81.174206 10.1016/S0040-6090(99)01090-1 10.1063/1.3093915 10.1103/PhysRevLett.21.1450 10.1116/1.1430249 10.1063/1.4893743 10.1039/C5NR04530D 10.1063/1.3544432 10.1063/1.4719074 10.1038/srep06529 10.1002/pssb.201200618 10.1063/1.1415419 10.1143/JJAP.30.101 10.1016/j.mee.2009.03.085 10.1002/admi.201300027 10.1016/j.tsf.2016.02.020 10.1088/0022-3727/46/50/505311 10.1021/nl902777z 10.1038/nnano.2016.70 10.1116/1.3301579 10.1103/PhysRevB.92.054201 10.1007/978-3-319-69053-7 10.1021/ja8090388 10.1021/cm8004584 10.1166/jnn.2010.2308 10.1038/nmat2330 10.1109/LED.2007.906084 10.1109/LED.2007.901347 10.1016/j.jcrysgro.2008.07.054 10.1002/adfm.201501607 10.1002/cvde.200906791 10.1063/1.4720182 10.1016/j.mee.2009.03.014 10.1103/PhysRevLett.104.085503 10.1109/LED.2016.2553370 10.1149/1.2456199 10.1109/LED.2015.2448731 10.1063/1.4881927 10.7567/JJAP.50.061201 10.1002/pssb.201200393 10.1063/1.4809598 10.1143/JJAP.49.058003 10.1038/srep22353 10.1016/0025-5416(88)90049-3 10.1063/1.4874415 10.1016/j.sse.2013.07.005 10.1063/1.371606 10.1038/ncomms9181 10.1021/acsnano.5b02579 10.1126/science.1221561 10.1109/LED.2014.2311461 10.1063/1.2773959 10.1038/nmat2009 10.1016/j.sse.2015.09.004 10.1109/TED.2012.2218607 10.1103/PhysRevB.39.1270 10.1557/PROC-0997-I11-01 10.1063/1.4769871 10.1016/j.mee.2008.08.004 10.1149/1.3439647 10.1038/srep05727 10.1063/1.370803 10.1103/PhysRevB.88.014203 10.1063/1.3078820 10.1063/1.2938076 10.1103/PhysRevB.83.184204 10.1149/2.0121512ssl |
ContentType | Journal Article Web Resource |
Contributor | Physique de Solides Interfaces et Nanostructures |
Contributor_xml | – sequence: 1 fullname: Physique de Solides Interfaces et Nanostructures |
Copyright | 2017 IOP Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 IOP Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC Q33 |
DOI | 10.1088/1361-6641/aa7c25 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues |
EISSN | 1361-6641 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_215469 oai_HAL_hal_01954870v1 10_1088_1361_6641_aa7c25 sstaa7c25 |
GrantInformation_xml | – fundername: ANR SESAME grantid: ANR SESAME contract ANR-15-CE24-0021 – fundername: Labex Minos grantid: ANR-10-LABX-55-01 – fundername: PANACHE grantid: European 621217-PANACHE project |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 E.- EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE PZZ R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ UCJ W28 XPP ZMT AAYXX CITATION 1XC 02O 1WK 5ZI 9BW AAGCF ACARI ACWPO AEINN AERVB AETNG AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ Q02 Q33 RKQ S3P T37 XOL ZY4 |
ID | FETCH-LOGICAL-c456t-b59ba6fa7b471e98af09f93459fc96a642a2d0fe6626a2408c0df09c90c7c1bb3 |
IEDL.DBID | IOP |
ISSN | 0268-1242 1361-6641 |
IngestDate | Fri Aug 01 18:36:01 EDT 2025 Fri May 09 12:20:17 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Tue Jul 01 03:26:03 EDT 2025 Thu Jan 07 13:52:54 EST 2021 Wed Aug 21 03:34:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-b59ba6fa7b471e98af09f93459fc96a642a2d0fe6626a2408c0df09c90c7c1bb3 |
Notes | SST-103514.R1 scopus-id:2-s2.0-85038874528 |
ORCID | 0000-0003-1827-0618 |
PageCount | 32 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_215469 crossref_primary_10_1088_1361_6641_aa7c25 iop_journals_10_1088_1361_6641_aa7c25 hal_primary_oai_HAL_hal_01954870v1 crossref_citationtrail_10_1088_1361_6641_aa7c25 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Semiconductor science and technology |
PublicationTitleAbbrev | SST |
PublicationTitleAlternate | Semicond. Sci. Technol |
PublicationYear | 2018 |
Publisher | IOP Publishing Institute of Physics (IoP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IoP) |
References | Raoux (sstaa7c25bib110) 2008; 103 Clima (sstaa7c25bib7) 2015; 36 Huang (sstaa7c25bib140) 2010; 81 Luckas (sstaa7c25bib171) 2013; 113 Lencer (sstaa7c25bib25) 2011; 23 Skelton (sstaa7c25bib207) 2013; 102 Silva (sstaa7c25bib56) 2013 Beneventi (sstaa7c25bib41) 2011; vol 65–66 Wamwangi (sstaa7c25bib192) 2002; 408 Akola (sstaa7c25bib154) 2012; 249 Mitra (sstaa7c25bib169) 2010; 96 Pirovano (sstaa7c25bib167) 2004; 51 Li (sstaa7c25bib164) 2012 Fu (sstaa7c25bib209) 2012; 100 Berthier (sstaa7c25bib120) 2017; 122 Micoulaut (sstaa7c25bib137) 2010; 81 Yamada (sstaa7c25bib18) 1991; 69 Njoroge (sstaa7c25bib190) 2002; 20 Choi (sstaa7c25bib84) 2007; 154 Gabardi (sstaa7c25bib176) 2015; 92 Simpson (sstaa7c25bib212) 2011; 6 Ovshinsky (sstaa7c25bib16) 1968; 21 Chao (sstaa7c25bib55) 2007; 28 Do (sstaa7c25bib203) 2010; 13 Ielmini (sstaa7c25bib6) 2016; 31 Kim (sstaa7c25bib81) 2009; 15 Ritala (sstaa7c25bib91) 2009; 86 Wu (sstaa7c25bib98) 2011 Raoux (sstaa7c25bib131) 2008; 85 Akola (sstaa7c25bib149) 2007; 76 Liu (sstaa7c25bib121) 2000; 112 Putero (sstaa7c25bib208) 2014; 105 Hubert (sstaa7c25bib47) 2013 Privitera (sstaa7c25bib122) 2004; 85 Ouled-Khachroum (sstaa7c25bib200) 2016; 617 Park (sstaa7c25bib199) 2011; 50 Raty (sstaa7c25bib136) 2009; 12 Keckes (sstaa7c25bib202) 2007; 78 Koelmans (sstaa7c25bib62) 2015; 6 Ohshima (sstaa7c25bib108) 1996; 79 Ielmini (sstaa7c25bib166) 2009; 86 Fujisaki (sstaa7c25bib101) 2010; 49 Burr (sstaa7c25bib14) 2010; 28 Breitwisch (sstaa7c25bib52) 2007 Ghezzi (sstaa7c25bib150) 2011; 99 Ghezzi (sstaa7c25bib114) 2014; 104 Song (sstaa7c25bib206) 2011; 109 Kalikka (sstaa7c25bib151) 2012; 86 Guo (sstaa7c25bib201) 2008; 93 Raoux (sstaa7c25bib157) 2009; 95 Eom (sstaa7c25bib94) 2012; 24 Breitwisch (sstaa7c25bib29) 2009 Chen (sstaa7c25bib30) 1986; 49 Shportko (sstaa7c25bib26) 2008; 7 Kim (sstaa7c25bib54) 2007; 28 Park (sstaa7c25bib197) 2008; 517 Navarro (sstaa7c25bib106) 2012; 52 Hegedüs (sstaa7c25bib160) 2010; 207 Aoukar (sstaa7c25bib88) 2015 Mitrofanov (sstaa7c25bib174) 2014; 115 Yu (sstaa7c25bib215) 2015; 5 Maitrejean (sstaa7c25bib92) 2012 Wang (sstaa7c25bib78) 2015; 53 Liu (sstaa7c25bib129) 2014; 115 Raoux (sstaa7c25bib22) 2009; 105 Köster (sstaa7c25bib127) 1988; 97 Kalb (sstaa7c25bib118) 2005; 98 Kalb (sstaa7c25bib179) 2003; 94 Kolobov (sstaa7c25bib184) 2012; 100 Kim (sstaa7c25bib48) 2010 Cho (sstaa7c25bib99) 2005 Raoux (sstaa7c25bib12) 2008; 52 Zhou (sstaa7c25bib42) 2014; 105 Cheng (sstaa7c25bib35) 2011; 2011 Orava (sstaa7c25bib163) 2015; 25 Kim (sstaa7c25bib180) 2006; 89 Im (sstaa7c25bib178) 2011; 11 Sousa (sstaa7c25bib43) 2017 Bang (sstaa7c25bib214) 2014; 4 Lacaita (sstaa7c25bib50) 2013; 109 Akola (sstaa7c25bib141) 2011; 83 Momand (sstaa7c25bib216) 2015; 7 Iwasaki (sstaa7c25bib19) 1992; 31 Lee (sstaa7c25bib130) 2011; 107 Maeda (sstaa7c25bib147) 1991; 30 Fantini (sstaa7c25bib11) 2010 Lee (sstaa7c25bib89) 2007; 253 Liu (sstaa7c25bib224) 2014 Im (sstaa7c25bib103) 2008 Ielmini (sstaa7c25bib168) 2008; 92 Szkutnik (sstaa7c25bib87) 2015 Tompa (sstaa7c25bib74) 2007; 997 Lee (sstaa7c25bib183) 2011; 11 Gourvest (sstaa7c25bib124) 2012; 159 Liu (sstaa7c25bib222) 2014 Noé (sstaa7c25bib115) 2016; 110 Matsunaga (sstaa7c25bib145) 2011; 10 Flores-Ruiz (sstaa7c25bib186) 2011; 82 Fantini (sstaa7c25bib32) 2009 (sstaa7c25bib57) 2004 Abrutis (sstaa7c25bib79) 2008; 85 Casarin (sstaa7c25bib217) 2016; 6 Nonaka (sstaa7c25bib189) 2000; 370 Li (sstaa7c25bib28) 2012; 100 Yashina (sstaa7c25bib125) 2008; 103 Raty (sstaa7c25bib153) 2010; 12 Sousa (sstaa7c25bib38) 2015 van Eijk (sstaa7c25bib148) 2010 Krebs (sstaa7c25bib172) 2014; 16 Raty (sstaa7c25bib185) 2013; 88 Jung (sstaa7c25bib181) 2007; 91 Liu (sstaa7c25bib223) 2014; 35 Huang (sstaa7c25bib73) 2015; 10 Perniola (sstaa7c25bib34) 2010; 31 Navarro (sstaa7c25bib36) 2013; 89 Moore (sstaa7c25bib126) 1992; 140 Garbin (sstaa7c25bib4) 2015 Caldwell (sstaa7c25bib112) 2010; 20 Hegedüs (sstaa7c25bib135) 2008; 7 Son (sstaa7c25bib68) 2011; 32 Akola (sstaa7c25bib142) 2009; 80 Yamada (sstaa7c25bib17) 1987; 26 Chen (sstaa7c25bib102) 2006 Stanisavljevic (sstaa7c25bib9) 2016 Cha (sstaa7c25bib67) 2013 La Fata (sstaa7c25bib119) 2009; 105 Raty (sstaa7c25bib144) 2015; 6 Bragaglia (sstaa7c25bib191) 2014; 116 Raoux (sstaa7c25bib58) 2009 Kügeler (sstaa7c25bib64) 2009; 53 Shelby (sstaa7c25bib39) 2009; 105 Sosso (sstaa7c25bib162) 2012; 249 Eom (sstaa7c25bib95) 2014; 26 Tominaga (sstaa7c25bib213) 2014; 1 Gourvest (sstaa7c25bib85) 2012; 1 Song (sstaa7c25bib97) 2006 Liu (sstaa7c25bib221) 2013; 113 Bez (sstaa7c25bib15) 2004; 7 Abrutis (sstaa7c25bib75) 2008; 20 Kamada (sstaa7c25bib210) 2012; 520 Leervad Pedersen (sstaa7c25bib196) 2001; 79 Jeong (sstaa7c25bib76) 2015; 40 Sousa (sstaa7c25bib72) 2011; 88 Chen (sstaa7c25bib2) 2012; 59 Lee (sstaa7c25bib46) 2009; 94 Otooni (sstaa7c25bib128) 2012; vol 278 Seong (sstaa7c25bib10) 2013 Longo (sstaa7c25bib82) 2008; 310 Wuttig (sstaa7c25bib20) 2007; 6 Weidenhof (sstaa7c25bib204) 1999; 86 Simpson (sstaa7c25bib111) 2010; 10 Hu (sstaa7c25bib205) 2015; 4 Wełnic (sstaa7c25bib138) 2007; 98 Tanaka (sstaa7c25bib211) 1989; 39 Noé (sstaa7c25bib60) 2016; 49 Burr (sstaa7c25bib13) 2016; 6 Suda (sstaa7c25bib80) 2013; 52 Loke (sstaa7c25bib159) 2012; 336 Siegrist (sstaa7c25bib146) 2011; 10 Cho (sstaa7c25bib182) 2011; 109 Wimmer (sstaa7c25bib59) 2014; 2 Karpov (sstaa7c25bib27) 2008; 78 Krusin-Elbaum (sstaa7c25bib195) 2007; 90 Flores-Ruiz (sstaa7c25bib187) 2011; 83 Kang (sstaa7c25bib49) 2011 Goux (sstaa7c25bib8) 2014 Bez (sstaa7c25bib44) 2009 Lencer (sstaa7c25bib24) 2008; 7 Bruns (sstaa7c25bib31) 2009; 95 Song (sstaa7c25bib96) 2015; 10 Wang (sstaa7c25bib193) 2004; 96 Waser (sstaa7c25bib1) 2007; 6 Tominaga (sstaa7c25bib116) 1998; 37 Zhang (sstaa7c25bib161) 2014; 4 Pore (sstaa7c25bib90) 2009; 131 Hardtdegen (sstaa7c25bib77) 2015; 61 Le Gallo (sstaa7c25bib173) 2016; 119 Yamada (sstaa7c25bib21) 2012; 249 Ha (sstaa7c25bib51) 2003 Fujisaki (sstaa7c25bib100) 2007; 997 Gopalakrishnan (sstaa7c25bib69) 2010 Garbin (sstaa7c25bib3) 2016; 115 Mazzarello (sstaa7c25bib139) 2010; 104 You (sstaa7c25bib107) 2015; 9 Ciocchini (sstaa7c25bib61) 2016; 6 Jeong (sstaa7c25bib45) 2005 Stanisavljevic (sstaa7c25bib63) 2015 Zuliani (sstaa7c25bib37) 2013; 60 Caravati (sstaa7c25bib134) 2007; 91 Raoux (sstaa7c25bib23) 2012; 249 Kim (sstaa7c25bib65) 2013 Ghezzi (sstaa7c25bib113) 2012; 101 Tuma (sstaa7c25bib220) 2016; 11 Yin (sstaa7c25bib188) 2013; 46 Li (sstaa7c25bib194) 2010; 49 Zhang (sstaa7c25bib143) 2012; 11 Park (sstaa7c25bib198) 2009; 94 Saito (sstaa7c25bib218) 2015; 252 Aoukar (sstaa7c25bib86) 2015; 4 Pellizzer (sstaa7c25bib105) 2004 Krbal (sstaa7c25bib156) 2013; 102 Knapas (sstaa7c25bib93) 2010; 22 Kolobov (sstaa7c25bib132) 2004; 3 Deringer (sstaa7c25bib155) 2014; 53 Rizzi (sstaa7c25bib170) 2011; 99 Raoux (sstaa7c25bib33) 2009 Kim (sstaa7c25bib66) 2014 Wei (sstaa7c25bib109) 2007; 46 Beneventi (sstaa7c25bib40) 2010; vol 2010 Wang (sstaa7c25bib219) 2012; 2 Carria (sstaa7c25bib158) 2011; 14 Jo (sstaa7c25bib70) 2014 Pellizzer (sstaa7c25bib104) 2006 Zhou (sstaa7c25bib123) 2015; 5 Piccolboni (sstaa7c25bib5) 2016; 37 Kohara (sstaa7c25bib152) 2006; 89 Zipoli (sstaa7c25bib177) 2016; 93 Yang (sstaa7c25bib71) 2015 Jeong (sstaa7c25bib117) 1999; 86 Luckas (sstaa7c25bib175) 2014; 105 Akola (sstaa7c25bib133) 2008; 100 Suk (sstaa7c25bib83) 2010; 10 Fantini (sstaa7c25bib165) 2012; 100 Pirovano (sstaa7c25bib53) 2003 |
References_xml | – volume: 26 start-page: 61 year: 1987 ident: sstaa7c25bib17 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAPS.26S4.61 – volume: 26 start-page: 1583 year: 2014 ident: sstaa7c25bib95 publication-title: Chem. Mater. doi: 10.1021/cm4034885 – year: 2013 ident: sstaa7c25bib10 – volume: 107 year: 2011 ident: sstaa7c25bib130 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.145702 – volume: 76 year: 2007 ident: sstaa7c25bib149 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.235201 – start-page: 1 year: 2011 ident: sstaa7c25bib49 – volume: vol 65–66 start-page: 197 year: 2011 ident: sstaa7c25bib41 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2011.06.029 – volume: 12 start-page: 193 year: 2009 ident: sstaa7c25bib136 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2009.06.018 – volume: 100 year: 2012 ident: sstaa7c25bib184 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3683522 – volume: 4 year: 2015 ident: sstaa7c25bib86 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/26/265203 – start-page: 550 year: 2013 ident: sstaa7c25bib47 – start-page: 170 year: 2014 ident: sstaa7c25bib66 – volume: 82 year: 2011 ident: sstaa7c25bib186 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.214201 – start-page: 125 year: 2015 ident: sstaa7c25bib4 – volume: 53 start-page: 1287 year: 2009 ident: sstaa7c25bib64 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2009.09.034 – start-page: 381 year: 2009 ident: sstaa7c25bib29 – volume: 89 year: 2006 ident: sstaa7c25bib152 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2387870 – volume: 101 year: 2012 ident: sstaa7c25bib113 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4769435 – start-page: 118 year: 2006 ident: sstaa7c25bib97 – volume: 102 year: 2013 ident: sstaa7c25bib156 publication-title: App. Phys. Lett. doi: 10.1063/1.4794870 – start-page: 1 year: 2014 ident: sstaa7c25bib70 – start-page: 96 year: 2005 ident: sstaa7c25bib99 – volume: 5 start-page: 12612 year: 2015 ident: sstaa7c25bib215 publication-title: Sci. Rep. doi: 10.1038/srep12612 – start-page: 1 year: 2008 ident: sstaa7c25bib103 – volume: 24 start-page: 2099 year: 2012 ident: sstaa7c25bib94 publication-title: Chem. Mater. doi: 10.1021/cm300539a – volume: 110 start-page: 142 year: 2016 ident: sstaa7c25bib115 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.022 – volume: 89 year: 2006 ident: sstaa7c25bib180 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2408660 – start-page: 644 year: 2010 ident: sstaa7c25bib11 – volume: 109 start-page: 1 year: 2011 ident: sstaa7c25bib182 publication-title: J. Appl. Phys. – year: 2004 ident: sstaa7c25bib57 – volume: 140 start-page: 159 year: 1992 ident: sstaa7c25bib126 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(05)80761-6 – volume: 53 start-page: 10817 year: 2014 ident: sstaa7c25bib155 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404223 – volume: 60 start-page: 4020 year: 2013 ident: sstaa7c25bib37 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2285403 – year: 2013 ident: sstaa7c25bib56 article-title: Phase-change devices and electrothermal modeling – volume: 53 start-page: 26 year: 2015 ident: sstaa7c25bib78 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2015.01.008 – volume: 83 year: 2011 ident: sstaa7c25bib141 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.094113 – volume: 23 start-page: 2030 year: 2011 ident: sstaa7c25bib25 publication-title: Adv. Mater. doi: 10.1002/adma.201004255 – volume: 105 year: 2009 ident: sstaa7c25bib39 publication-title: J. Appl. Phys. doi: 10.1063/1.3126501 – volume: 115 year: 2014 ident: sstaa7c25bib129 publication-title: J. Appl. Phys. doi: 10.1063/1.4861721 – volume: 10 start-page: 129 year: 2011 ident: sstaa7c25bib145 publication-title: Nat. Mater. doi: 10.1038/nmat2931 – volume: 51 start-page: 714 year: 2004 ident: sstaa7c25bib167 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2004.825805 – volume: 80 year: 2009 ident: sstaa7c25bib142 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.020201 – volume: 49 year: 2010 ident: sstaa7c25bib101 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.49.100001 – volume: 16 year: 2014 ident: sstaa7c25bib172 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/4/043015 – volume: 6 start-page: 29162 year: 2016 ident: sstaa7c25bib61 publication-title: Sci. Rep. doi: 10.1038/srep29162 – volume: 22 start-page: 1386 year: 2010 ident: sstaa7c25bib93 publication-title: Chem. Mater. doi: 10.1021/cm902180d – volume: 92 year: 2008 ident: sstaa7c25bib168 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2930680 – volume: 31 start-page: 488 year: 2010 ident: sstaa7c25bib34 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2010.2044136 – volume: 61 start-page: 27 year: 2015 ident: sstaa7c25bib77 publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/j.pcrysgrow.2015.10.001 – volume: 105 year: 2014 ident: sstaa7c25bib42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904832 – volume: 10 start-page: 202 year: 2011 ident: sstaa7c25bib146 publication-title: Nat. Mater. doi: 10.1038/nmat2934 – volume: 93 year: 2008 ident: sstaa7c25bib201 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3040314 – volume: 6 start-page: 833 year: 2007 ident: sstaa7c25bib1 publication-title: Nat. Mater. doi: 10.1038/nmat2023 – volume: 517 start-page: 848 year: 2008 ident: sstaa7c25bib197 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.08.194 – volume: 46 start-page: 2211 year: 2007 ident: sstaa7c25bib109 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.2211 – volume: 105 year: 2014 ident: sstaa7c25bib208 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901321 – volume: 408 start-page: 310 year: 2002 ident: sstaa7c25bib192 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(02)00062-7 – volume: 78 year: 2008 ident: sstaa7c25bib27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.052201 – volume: 86 year: 2012 ident: sstaa7c25bib151 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.144113 – volume: vol 2010 start-page: 313 year: 2010 ident: sstaa7c25bib40 – volume: 249 start-page: 1999 year: 2012 ident: sstaa7c25bib23 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201200370 – volume: 103 year: 2008 ident: sstaa7c25bib125 publication-title: J. Appl. Phys. doi: 10.1063/1.2912958 – volume: vol 278 year: 2012 ident: sstaa7c25bib128 – volume: 95 year: 2009 ident: sstaa7c25bib157 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3212732 – volume: 105 year: 2009 ident: sstaa7c25bib22 publication-title: J. Appl. Phys. doi: 10.1063/1.3091271 – year: 2014 ident: sstaa7c25bib8 – volume: 52 start-page: 1928 year: 2012 ident: sstaa7c25bib106 publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2012.06.017 – volume: 116 year: 2014 ident: sstaa7c25bib191 publication-title: J. Appl. Phys. doi: 10.1063/1.4892394 – start-page: 175 year: 2003 ident: sstaa7c25bib51 – volume: 112 start-page: 9949 year: 2000 ident: sstaa7c25bib121 publication-title: J. Chem. Phys. doi: 10.1063/1.481644 – volume: 52 year: 2013 ident: sstaa7c25bib80 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.128006 – volume: 159 start-page: H373 year: 2012 ident: sstaa7c25bib124 publication-title: J. Electrochem. Soc. doi: 10.1149/2.027204jes – volume: 6 start-page: 146 year: 2016 ident: sstaa7c25bib13 publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems, issue on ‘Emerging Memories—Technology, Architecture & Applications,’ – volume: 11 start-page: 952 year: 2012 ident: sstaa7c25bib143 publication-title: Nat. Mater. doi: 10.1038/nmat3456 – volume: 79 start-page: 8357 year: 1996 ident: sstaa7c25bib108 publication-title: J. Appl. Phys. doi: 10.1063/1.362548 – volume: 7 start-page: 653 year: 2008 ident: sstaa7c25bib26 publication-title: Nat. Mater. doi: 10.1038/nmat2226 – volume: 7 start-page: 399 year: 2008 ident: sstaa7c25bib135 publication-title: Nat. Mater. doi: 10.1038/nmat2157 – volume: 11 start-page: 710 year: 2011 ident: sstaa7c25bib183 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.11.036 – volume: 91 year: 2007 ident: sstaa7c25bib134 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2801626 – volume: 88 start-page: 807 year: 2011 ident: sstaa7c25bib72 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2010.06.042 – volume: 11 start-page: e82 year: 2011 ident: sstaa7c25bib178 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.11.127 – volume: 1 start-page: Q119 year: 2012 ident: sstaa7c25bib85 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.017206jss – volume: 95 year: 2009 ident: sstaa7c25bib31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3191670 – volume: 2 start-page: 360 year: 2012 ident: sstaa7c25bib219 publication-title: Sci. Rep. doi: 10.1038/srep00360 – volume: 69 start-page: 2849 year: 1991 ident: sstaa7c25bib18 publication-title: J. Appl. Phys. doi: 10.1063/1.348620 – start-page: 66 year: 2009 ident: sstaa7c25bib32 – volume: 6 start-page: 7467 year: 2015 ident: sstaa7c25bib144 publication-title: Nat. Comm. doi: 10.1038/ncomms8467 – volume: 90 year: 2007 ident: sstaa7c25bib195 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2719148 – volume: 14 start-page: H480 year: 2011 ident: sstaa7c25bib158 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/2.019112esl – volume: 81 year: 2010 ident: sstaa7c25bib140 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.081204 – volume: 96 start-page: 5557 year: 2004 ident: sstaa7c25bib193 publication-title: J. Appl. Phys. doi: 10.1063/1.1803612 – volume: 85 start-page: 3044 year: 2004 ident: sstaa7c25bib122 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1805200 – volume: 100 start-page: 21 year: 2008 ident: sstaa7c25bib133 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.205502 – volume: 20 start-page: 1285 year: 2010 ident: sstaa7c25bib112 publication-title: J. Mater. Chem. doi: 10.1039/B917024C – start-page: 19 year: 2005 ident: sstaa7c25bib45 – year: 2009 ident: sstaa7c25bib58 doi: 10.1007/978-0-387-84874-7 – volume: 32 start-page: 1579 year: 2011 ident: sstaa7c25bib68 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2011.2163697 – volume: 31 start-page: 461 year: 1992 ident: sstaa7c25bib19 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.31.461 – volume: 249 start-page: 1880 year: 2012 ident: sstaa7c25bib162 publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.201200355 – volume: 119 year: 2016 ident: sstaa7c25bib173 publication-title: J. Appl. Phys. doi: 10.1063/1.4938532 – volume: 12 start-page: 193 year: 2010 ident: sstaa7c25bib153 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2009.06.018 – volume: 113 year: 2013 ident: sstaa7c25bib221 publication-title: J. Appl. Phys. doi: 10.1063/1.4790801 – volume: 10 start-page: 432 year: 2015 ident: sstaa7c25bib73 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-015-1136-4 – volume: 37 start-page: 1852 year: 1998 ident: sstaa7c25bib116 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.37.1852 – volume: 2011 start-page: 3.4.1. year: 2011 ident: sstaa7c25bib35 publication-title: IEEE Int. Electron Devices Meet – volume: 93 year: 2016 ident: sstaa7c25bib177 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.115201 – year: 2012 ident: sstaa7c25bib92 – start-page: 1 year: 2016 ident: sstaa7c25bib9 – start-page: 1 year: 2015 ident: sstaa7c25bib63 – volume: 85 start-page: 2338 year: 2008 ident: sstaa7c25bib79 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.09.014 – volume: 2 start-page: 75 year: 2014 ident: sstaa7c25bib59 publication-title: Front. Phys. doi: 10.3389/fphy.2014.00075 – volume: 10 start-page: 89 year: 2015 ident: sstaa7c25bib96 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-015-0815-5 – volume: 520 start-page: 4389 year: 2012 ident: sstaa7c25bib210 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.02.025 – volume: 96 year: 2010 ident: sstaa7c25bib169 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3447941 – year: 2015 ident: sstaa7c25bib88 – volume: 3 start-page: 703 year: 2004 ident: sstaa7c25bib132 publication-title: Nat. Mater. doi: 10.1038/nmat1215 – volume: 99 year: 2011 ident: sstaa7c25bib170 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3664631 – volume: 40 start-page: 50 year: 2015 ident: sstaa7c25bib76 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2015.06.027 – volume: 31 year: 2016 ident: sstaa7c25bib6 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/31/6/063002 – volume: 52 start-page: 465 year: 2008 ident: sstaa7c25bib12 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.524.0465 – volume: 49 start-page: 502 year: 1986 ident: sstaa7c25bib30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.97617 – start-page: 91 year: 2009 ident: sstaa7c25bib33 – volume: 98 year: 2007 ident: sstaa7c25bib138 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.236403 – volume: 6 start-page: 501 year: 2011 ident: sstaa7c25bib212 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.96 – start-page: 18 year: 2004 ident: sstaa7c25bib105 – volume: 122 year: 2017 ident: sstaa7c25bib120 publication-title: J. Appl. Phys. doi: 10.1063/1.5002637 – volume: 94 start-page: 4908 year: 2003 ident: sstaa7c25bib179 publication-title: J. Appl. Phys. doi: 10.1063/1.1610775 – year: 2015 ident: sstaa7c25bib87 – volume: 252 start-page: 2151 year: 2015 ident: sstaa7c25bib218 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201552335 – volume: 94 year: 2009 ident: sstaa7c25bib46 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3155202 – volume: 5 start-page: 11150 year: 2015 ident: sstaa7c25bib123 publication-title: Sci. Rep. doi: 10.1038/srep11150 – volume: 98 year: 2005 ident: sstaa7c25bib118 publication-title: J. Appl. Phys. doi: 10.1063/1.2034655 – volume: 49 year: 2016 ident: sstaa7c25bib60 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/3/035305 – volume: 78 year: 2007 ident: sstaa7c25bib202 publication-title: Rev. Sci. Instr. doi: 10.1063/1.2535857 – volume: 997 start-page: 110 year: 2007 ident: sstaa7c25bib74 publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-0997-I10-08 – volume: 253 start-page: 3969 year: 2007 ident: sstaa7c25bib89 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.08.044 – volume: 99 year: 2011 ident: sstaa7c25bib150 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3651321 – start-page: T98 year: 2015 ident: sstaa7c25bib38 – volume: 7 start-page: 349 year: 2004 ident: sstaa7c25bib15 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2004.09.127 – volume: 207 start-page: 510 year: 2010 ident: sstaa7c25bib160 publication-title: Phys. Stat. Sol. A doi: 10.1002/pssa.200982664 – start-page: 1 year: 2011 ident: sstaa7c25bib98 – volume: 109 start-page: 351 year: 2013 ident: sstaa7c25bib50 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2013.02.105 – volume: 81 year: 2010 ident: sstaa7c25bib137 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.174206 – volume: 370 start-page: 258 year: 2000 ident: sstaa7c25bib189 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)01090-1 – volume: 105 year: 2009 ident: sstaa7c25bib119 publication-title: J. Appl. Phys. doi: 10.1063/1.3093915 – start-page: 1 year: 2003 ident: sstaa7c25bib53 – volume: 21 start-page: 1450 year: 1968 ident: sstaa7c25bib16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.21.1450 – volume: 20 start-page: 230 year: 2002 ident: sstaa7c25bib190 publication-title: J. Vac. Sci. Tech. A doi: 10.1116/1.1430249 – volume: 105 year: 2014 ident: sstaa7c25bib175 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4893743 – volume: 7 start-page: 19136 year: 2015 ident: sstaa7c25bib216 publication-title: Nanoscale doi: 10.1039/C5NR04530D – volume: 109 year: 2011 ident: sstaa7c25bib206 publication-title: J. Appl. Phys. doi: 10.1063/1.3544432 – volume: 100 year: 2012 ident: sstaa7c25bib209 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4719074 – volume: 4 start-page: 6529 year: 2014 ident: sstaa7c25bib161 publication-title: Sci. Reports doi: 10.1038/srep06529 – volume: 249 start-page: 1837 year: 2012 ident: sstaa7c25bib21 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201200618 – volume: 79 start-page: 3597 year: 2001 ident: sstaa7c25bib196 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1415419 – volume: 30 start-page: 101 year: 1991 ident: sstaa7c25bib147 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.30.101 – volume: 86 start-page: 1942 year: 2009 ident: sstaa7c25bib166 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2009.03.085 – volume: 1 year: 2014 ident: sstaa7c25bib213 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201300027 – volume: 617 start-page: 44 year: 2016 ident: sstaa7c25bib200 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.02.020 – volume: 46 year: 2013 ident: sstaa7c25bib188 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/50/505311 – volume: 10 year: 2010 ident: sstaa7c25bib111 publication-title: Nano Lett. doi: 10.1021/nl902777z – start-page: 205 year: 2010 ident: sstaa7c25bib69 – volume: 11 start-page: 693 year: 2016 ident: sstaa7c25bib220 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.70 – volume: 28 start-page: 223 year: 2010 ident: sstaa7c25bib14 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3301579 – volume: 92 year: 2015 ident: sstaa7c25bib176 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.054201 – volume: 100 start-page: 1 year: 2012 ident: sstaa7c25bib28 publication-title: Appl. Phys. Lett. – start-page: 89 year: 2009 ident: sstaa7c25bib44 – year: 2015 ident: sstaa7c25bib71 – start-page: 122 year: 2006 ident: sstaa7c25bib104 – year: 2017 ident: sstaa7c25bib43 article-title: Material engineering for PCM devices optimisation doi: 10.1007/978-3-319-69053-7 – volume: 131 start-page: 3478 year: 2009 ident: sstaa7c25bib90 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8090388 – volume: 20 start-page: 3557 year: 2008 ident: sstaa7c25bib75 publication-title: Chem. Mater. doi: 10.1021/cm8004584 – volume: 10 start-page: 3354 year: 2010 ident: sstaa7c25bib83 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2308 – volume: 7 start-page: 972 year: 2008 ident: sstaa7c25bib24 publication-title: Nat. Mater. doi: 10.1038/nmat2330 – start-page: 1 year: 2012 ident: sstaa7c25bib164 – volume: 28 start-page: 871 year: 2007 ident: sstaa7c25bib55 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.906084 – volume: 28 start-page: 697 year: 2007 ident: sstaa7c25bib54 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.901347 – volume: 310 start-page: 5053 year: 2008 ident: sstaa7c25bib82 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.07.054 – volume: 25 start-page: 4851 year: 2015 ident: sstaa7c25bib163 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501607 – volume: 15 start-page: 296 year: 2009 ident: sstaa7c25bib81 publication-title: Chem. Vap. Deposition doi: 10.1002/cvde.200906791 – volume: 100 year: 2012 ident: sstaa7c25bib165 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4720182 – volume: 86 start-page: 1946 year: 2009 ident: sstaa7c25bib91 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2009.03.014 – volume: 104 year: 2010 ident: sstaa7c25bib139 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.085503 – volume: 37 start-page: 721 year: 2016 ident: sstaa7c25bib5 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2016.2553370 – volume: 154 start-page: H318 year: 2007 ident: sstaa7c25bib84 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2456199 – start-page: hh03 year: 2014 ident: sstaa7c25bib224 – volume: 36 start-page: 769 year: 2015 ident: sstaa7c25bib7 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2448731 – volume: 104 year: 2014 ident: sstaa7c25bib114 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4881927 – volume: 50 year: 2011 ident: sstaa7c25bib199 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.50.061201 – volume: 249 start-page: 1851 year: 2012 ident: sstaa7c25bib154 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201200393 – volume: 102 year: 2013 ident: sstaa7c25bib207 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4809598 – volume: 49 year: 2010 ident: sstaa7c25bib194 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.49.058003 – volume: 6 start-page: 22353 year: 2016 ident: sstaa7c25bib217 publication-title: Sci. Rep. doi: 10.1038/srep22353 – volume: 97 start-page: 233 year: 1988 ident: sstaa7c25bib127 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(88)90049-3 – volume: 115 year: 2014 ident: sstaa7c25bib174 publication-title: J. Appl. Phys. doi: 10.1063/1.4874415 – volume: 89 start-page: 93 year: 2013 ident: sstaa7c25bib36 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2013.07.005 – start-page: 203 year: 2010 ident: sstaa7c25bib48 – volume: 86 start-page: 5879 year: 1999 ident: sstaa7c25bib204 publication-title: J. Appl. Phys. doi: 10.1063/1.371606 – volume: 6 start-page: 8181 year: 2015 ident: sstaa7c25bib62 publication-title: Nat. Commun. doi: 10.1038/ncomms9181 – start-page: 16 year: 2013 ident: sstaa7c25bib65 – volume: 9 start-page: 6587 year: 2015 ident: sstaa7c25bib107 publication-title: ACS Nano doi: 10.1021/acsnano.5b02579 – volume: 336 start-page: 1566 year: 2012 ident: sstaa7c25bib159 publication-title: Science doi: 10.1126/science.1221561 – volume: 35 start-page: 533 year: 2014 ident: sstaa7c25bib223 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2014.2311461 – volume: 91 year: 2007 ident: sstaa7c25bib181 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2773959 – start-page: 777 year: 2006 ident: sstaa7c25bib102 article-title: I – volume: 6 start-page: 824 year: 2007 ident: sstaa7c25bib20 publication-title: Nat. Mater. doi: 10.1038/nmat2009 – volume: 115 start-page: 126 year: 2016 ident: sstaa7c25bib3 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2015.09.004 – volume: 59 start-page: 3243 year: 2012 ident: sstaa7c25bib2 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2012.2218607 – volume: 39 start-page: 1270 year: 1989 ident: sstaa7c25bib211 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1270 – volume: 997 start-page: 293 year: 2007 ident: sstaa7c25bib100 publication-title: Mater. Res. Soc. Symp. Proc. doi: 10.1557/PROC-0997-I11-01 – volume: 113 year: 2013 ident: sstaa7c25bib171 publication-title: J. Appl. Phys. doi: 10.1063/1.4769871 – volume: 85 start-page: 2330 year: 2008 ident: sstaa7c25bib131 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.08.004 – volume: 13 start-page: H284 year: 2010 ident: sstaa7c25bib203 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.3439647 – start-page: 1 year: 2013 ident: sstaa7c25bib67 – year: 2010 ident: sstaa7c25bib148 article-title: Structural analysis of phase-change materials using x-ray absorption measurements – volume: 4 start-page: 1 year: 2014 ident: sstaa7c25bib214 publication-title: Sci. Rep. doi: 10.1038/srep05727 – start-page: hh06 year: 2014 ident: sstaa7c25bib222 – volume: 86 start-page: 774 year: 1999 ident: sstaa7c25bib117 publication-title: J. Appl. Phys. doi: 10.1063/1.370803 – start-page: 100 year: 2007 ident: sstaa7c25bib52 – volume: 88 year: 2013 ident: sstaa7c25bib185 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.014203 – volume: 94 year: 2009 ident: sstaa7c25bib198 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3078820 – volume: 103 year: 2008 ident: sstaa7c25bib110 publication-title: J. Appl. Phys. doi: 10.1063/1.2938076 – volume: 83 year: 2011 ident: sstaa7c25bib187 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.184204 – volume: 4 start-page: P105 year: 2015 ident: sstaa7c25bib205 publication-title: ECS Solid State Lett. doi: 10.1149/2.0121512ssl |
RestrictionsOnAccess | restricted access |
SSID | ssj0011830 |
Score | 2.6006465 |
SecondaryResourceType | review_article |
Snippet | Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time... Abstract Chalcogenide Phase-Change Materials (PCMs), such as Ge-Sb-Te alloys, are showing outstanding properties, which has led to their successful use for a... |
SourceID | liege hal crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 13002 |
SubjectTerms | ab initio GST memories non-volatile memory Phase change materials Physical, chemical, mathematical & earth Sciences Physics Physique Physique, chimie, mathématiques & sciences de la terre |
Title | Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues |
URI | https://iopscience.iop.org/article/10.1088/1361-6641/aa7c25 https://hal.univ-grenoble-alpes.fr/hal-01954870 http://orbi.ulg.ac.be/handle/2268/215469 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA7dimAfvFSl640g-iCY3WQym0n0qYhlES99sNAHISSZxIrL7tqZLeiv9-Syy1akiG_DzJlkcnIm5zs5lyD0TMaS4tZKwoWxpK5aTmwVPLHOKUd58CFlyH34KKYn9bvTyekOer3JhVksy9I_gstcKDizsATEyTHjghEhajY2pnHVZICucQmKM2bvfTreuBBAVssGC5hJoIiKj_JvLVzSSYOzGBE5gN4Br86i53pL4RzdQl_Wn5rjTL6PVr0duV9_VHH8z7HcRjcLEMWHmfQO2vHzfbS3VZ5wH11P4aGuu4t-HJ-BtiM5SxgDyM1yiwHx4vliTmCNgxmewaMYuPsTtz4tQK9wzF7B_Xr7PgoEduvjWzrcL7baKoPASRK6e-jk6O3nN1NSDmsgDjBYT-xEWSOCaSyoO6-kCVQFxeuJCk4JA2aOqVoavAALysS6ao62QOIUdY1j1vL7aBc-2B8gDNY6C4ArTDRWGbXWA2yiLW9qwyQNYYjG6-nSrlQyjwdqzHTyqEupI1t1ZKvObB2iF5s3lrmKxxW0T4EPG7JYfnt6-F7HezSVx2voBRui5zCluvzv3RWN4Ut0XddrzjXT0WFMK71sYTQvk5Tpxbn9pi-q1GO6Xs2-auO09RowstQAzmqhHvxjzw_RDcB2Mu8WPUK7_fnKPwb81Nsn6T_5DcSHEdg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6RIhAceJQiwtNCcEDCib3eJ7cKiAKUkgOVenNtr90ioiR0N5XaX8_Y60QpQhUSt9XurNcez3q-8TwM8Kr0JcW1LqnIlaZpUguqE2epNqYyTDjrQobc1_18fJB-PswO4zmnIRdmvohL_wAvu0LBHQtjQFw55CLnNM9TPlSqMEk2XNSuB9czgbrTZ_B9m6zdCCivcZMFTSVURtFP-bdWLuml3omPiuxhDxCzTr33ekPpjO7C0aq7XazJz8Gy1QNz8Uclx_8Yzz24EwEp2e3I78M1O9uG2xtlCrfhRggTNc0D-DU5Qa1Hu2xhgmC3k1-CyJfM5jOKax3O9BQf-QDec1LbsBC9Iz6LhbSrbXwvGMSsjnFpSDvfaCsOhASJaHbgYPTx-_sxjYc2UINYrKU6q7TKnSo0qj1blcqxylUizSpnqlyhuaOSmjmboyWlfH01w2okMRUzheFai4ewhR22j4Cg1c4d4gvljVbOtLYIn1gtilTxkjnXh-FqyqSJFc39wRpTGTzrZSk9a6VnrexY24c36zcWXTWPK2hfIh_WZL4M93h3T_p7LJTJK9gZ78NrnFYZ__vmisbIJbqmaaUQkkvvOGaJxCnvw9sgaXJ-qn_IsyR8MVwvp8dSGamtRKxcSgRpaV49_scvv4Cbkw8jufdp_8sTuIVwr-w2kJ7CVnu6tM8QUrX6efhtfgOVVhc8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-change+materials+for+non-volatile+memory+devices%3A+from+technological+challenges+to+materials+science+issues&rft.jtitle=Semiconductor+science+and+technology&rft.au=No%C3%A9%2C+Pierre&rft.au=Vall%C3%A9e%2C+Christophe&rft.au=Hippert%2C+Fran%C3%A7oise&rft.au=Fillot%2C+Fr%C3%A9d%C3%A9ric&rft.date=2018-01-01&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=33&rft.issue=1&rft.spage=13002&rft_id=info:doi/10.1088%2F1361-6641%2Faa7c25&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_aa7c25 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon |