MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries
The C–ZnCo 2 O 4 –ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo 2 O 4 –ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-de...
Saved in:
Published in | Journal of materials science Vol. 52; no. 13; pp. 7768 - 7780 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The C–ZnCo
2
O
4
–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo
2
O
4
–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo
2
O
4
–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo
2
O
4
–ZnO NRAs show high reversible capacity of 1318 mA h g
−1
at 0.2 A g
−1
after 150 charge–discharge cycles. Furthermore, C–ZnCo
2
O
4
–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g
−1
at 0.5, 1, 2 and 5 A g
−1
, respectively. The outstanding lithium storage performance of C–ZnCo
2
O
4
–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon. |
---|---|
AbstractList | The C–ZnCo₂O₄–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo₂O₄–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo₂O₄–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo₂O₄–ZnO NRAs show high reversible capacity of 1318 mA h g⁻¹ at 0.2 A g⁻¹ after 150 charge–discharge cycles. Furthermore, C–ZnCo₂O₄–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g⁻¹ at 0.5, 1, 2 and 5 A g⁻¹, respectively. The outstanding lithium storage performance of C–ZnCo₂O₄–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon. The C–ZnCo 2 O 4 –ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo 2 O 4 –ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo 2 O 4 –ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo 2 O 4 –ZnO NRAs show high reversible capacity of 1318 mA h g −1 at 0.2 A g −1 after 150 charge–discharge cycles. Furthermore, C–ZnCo 2 O 4 –ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g −1 at 0.5, 1, 2 and 5 A g −1 , respectively. The outstanding lithium storage performance of C–ZnCo 2 O 4 –ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon. The C–ZnCo2O4–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo2O4–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo2O4–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo2O4–ZnO NRAs show high reversible capacity of 1318 mA h g−1 at 0.2 A g−1 after 150 charge–discharge cycles. Furthermore, C–ZnCo2O4–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g−1 at 0.5, 1, 2 and 5 A g−1, respectively. The outstanding lithium storage performance of C–ZnCo2O4–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon. |
Author | Gan, Qingmeng He, Zhen Zhao, Kuangmin Liu, Suqin |
Author_xml | – sequence: 1 givenname: Qingmeng surname: Gan fullname: Gan, Qingmeng organization: College of Chemistry and Chemical Engineering, Central South University – sequence: 2 givenname: Kuangmin surname: Zhao fullname: Zhao, Kuangmin organization: College of Chemistry and Chemical Engineering, Central South University – sequence: 3 givenname: Suqin surname: Liu fullname: Liu, Suqin email: sqliu2003@126.com organization: College of Chemistry and Chemical Engineering, Central South University – sequence: 4 givenname: Zhen surname: He fullname: He, Zhen email: zhenhe@csu.edu.cn organization: College of Chemistry and Chemical Engineering, Central South University |
BookMark | eNp9kU1qHDEQhYVxwGM7B_BO4E02SvTfPcswxE7AYTbxxhuhVlfPyPRIHUlt8MLgO-SGOUk0jMFgiBdCVfC9V0W9U3QcYgCELhj9zChtvmRGWyUIZQ1hVAoij9CCqaYWLRXHaEEp54RLzU7Qac73lFLVcLZATz_XV6SH5B-gx86mLgbsoi0-bHAtM4wDyfM0xVQqcBdWka_l3-c_d2GNgw0xxR7blOxjxjbjrd9syQRpiGlngwNciR5wbfHoy9bPO-Kra2dLqSMhn6MPgx0zfHz5z9Dt1bdfq-_kZn39Y_X1hjipdCGdGHpNBy06C01ru0FJqrRjjikQrodlZ5VQbtlI1ze8s51ewgDAWlCM0V6IM_Tp4Dul-HuGXMzOZwfjaAPEORte7yF1fbKil2_Q-zinULcznKullqzVqlLsQLkUc04wmCn5nU2PhlGzD8QcAjE1ELMPxOydmzca50u9dAwlWT--q-QHZa5TwgbS607_F_0DLnmjjg |
CitedBy_id | crossref_primary_10_1002_asia_202201034 crossref_primary_10_1016_j_electacta_2017_08_075 crossref_primary_10_1002_smll_201704435 crossref_primary_10_1021_acs_iecr_2c01676 crossref_primary_10_1016_j_jssc_2022_122947 crossref_primary_10_1007_s10853_018_2550_7 crossref_primary_10_1016_j_ceramint_2018_06_002 crossref_primary_10_1002_ejic_201900439 crossref_primary_10_1002_adfm_202303121 crossref_primary_10_1016_j_ica_2022_120890 crossref_primary_10_1039_C8NJ06362A crossref_primary_10_1007_s11581_019_03355_0 crossref_primary_10_1007_s41918_019_00056_0 crossref_primary_10_1016_j_electacta_2018_02_010 crossref_primary_10_1016_j_jpowsour_2018_02_073 crossref_primary_10_1002_cplu_201900216 crossref_primary_10_1002_smll_202305778 crossref_primary_10_1088_2399_1984_abb09d crossref_primary_10_1002_aenm_201800716 crossref_primary_10_1016_j_est_2023_108708 crossref_primary_10_1016_j_jpowsour_2018_09_052 crossref_primary_10_1007_s10853_018_2003_3 crossref_primary_10_1021_acs_chemmater_8b00836 crossref_primary_10_1016_j_matpr_2020_12_1231 crossref_primary_10_3390_jcs8010013 crossref_primary_10_1007_s10854_018_8742_8 crossref_primary_10_1039_D0QM00936A crossref_primary_10_1016_j_apsusc_2019_144918 crossref_primary_10_1016_j_apsusc_2022_153202 crossref_primary_10_1002_pssa_201800719 crossref_primary_10_1039_C9CS00806C crossref_primary_10_1039_D1RA05073G |
Cites_doi | 10.1021/nn501783n 10.1039/C5TA06949A 10.1021/ja301266w 10.1021/acsami.5b10862 10.1016/j.carbon.2014.12.064 10.1039/c3ta14317a 10.1039/c2jm35607d 10.1016/j.electacta.2016.03.190 10.1021/ja311085e 10.1016/j.jpowsour.2016.04.107 10.1021/nl300794f 10.1002/advs.201400014 10.1002/anie.200702505 10.1021/nn300098m 10.1039/C6TA00723F 10.1039/C5TA07439H 10.1021/am405271q 10.1021/cm4040903 10.1039/C4TA06415A 10.1039/C6TA03644A 10.1039/C2TA00278G 10.1039/c3ta01498c 10.1039/C5TA05733G 10.1002/adfm.200600997 10.1039/c3ta10559h 10.1021/ja7106146 10.1021/nl5004174 10.1002/anie.201201463 10.1039/c0ee00620c 10.1007/s12274-010-0063-z 10.1039/C3TA13584E 10.1039/C1EE01263K 10.1039/c3ee00066d 10.1039/C2TA00284A 10.1039/C6TC03496A 10.1002/adma.201405222 10.1021/am400696x 10.1039/c4ta00200h 10.1016/j.nanoen.2015.10.033 10.1039/C5CC06160A 10.1002/anie.201303971 10.1039/c0jm00101e 10.1039/c3ta11538k 10.1016/j.electacta.2011.03.129 10.1002/adfm.201303442 10.1039/C5TA00808E 10.1021/am405238a 10.1039/c2jm00094f 10.1039/C5TA00830A 10.1039/C5NR08570E 10.1002/adfm.200601186 10.1039/c4ta00257a 10.1021/am5036913 10.1039/C4TA00257A 10.1039/c6tc03496a 10.1039/c2ta00284a 10.1039/C3EE00066D 10.1039/c5cc06160a 10.1039/c5ta07439h 10.1039/c1ee01263k 10.1039/c2ta00278g 10.1039/c5ta00830a 10.1039/c5ta05733g 10.1039/c5ta00808e 10.1039/c6ta00723f 10.1039/C2JM00094F 10.1039/c6ta03644a 10.1002/adfm.201470131 10.1039/c5ta06949a 10.1039/C0EE00620C 10.1039/c5nr08570e |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
DOI | 10.1007/s10853-017-1043-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 7780 |
ExternalDocumentID | 10_1007_s10853_017_1043_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51372278; 21303270 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Y -58 -5G -BR -EM -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PKN PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z91 Z92 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-b3fd60f63bae78abf54056c1c15e3cde9ba535c974cd72bab69efee18e5110d33 |
IEDL.DBID | U2A |
ISSN | 0022-2461 |
IngestDate | Fri Jul 11 12:11:24 EDT 2025 Fri Jul 25 09:17:44 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 01:25:54 EDT 2025 Fri Feb 21 02:45:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Solid Electrolyte Interphase Discharge Capacity Nanorod Array Electrochemical Performance Co3O4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-b3fd60f63bae78abf54056c1c15e3cde9ba535c974cd72bab69efee18e5110d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2259641865 |
PQPubID | 2043599 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000460044 proquest_journals_2259641865 crossref_primary_10_1007_s10853_017_1043_4 crossref_citationtrail_10_1007_s10853_017_1043_4 springer_journals_10_1007_s10853_017_1043_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Full Set - Includes `Journal of Materials Science Letters |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Zhan, Kuang, Zhou, Kong, Xie, Zheng (CR34) 2013; 135 Wang, Gu, Guo (CR20) 2012; 134 Worrall, Bissett, Hirunpinyopas, Attfield, Dryfe (CR21) 2016; 4 Zhu, Guo, Wu, Cao, Tao, Wu (CR51) 2014; 2 Bruce, Scrosati, Tarascon (CR49) 2008; 47 Zhu, Cao, Zhang, Xu (CR6) 2015; 3 Feng, Zou, Xia, Liu, Wang (CR23) 2013; 1 Liu, Chang, Luo (CR35) 2014; 26 Li, Xiong, Li, Qian (CR47) 2012; 22 Zhou, Wang, Yin, Li, Li, Cheng (CR52) 2012; 6 Zhang, Chen, Xie, Guo (CR26) 2014; 2 Liu, Shioyama, Akita, Xu (CR29) 2008; 130 Bai, Li, Liu, Qian, Xiong (CR42) 2014; 24 Zhang, Hou, Zhang (CR28) 2015; 27 Menezes, Indra, Bergmann (CR36) 2016; 4 Deng, Lv, Gao (CR44) 2013; 6 Li, Lu, Xu, Tong, Li (CR16) 2014; 6 Wang, Yan, Liu (CR2) 2013; 1 Wang, Ke, Zhang, Huang (CR7) 2015; 3 Quartarone, Dall’Asta, Resmini (CR22) 2016; 320 Li, Yin (CR14) 2015; 3 Chaikittisilp, Ariga, Yamauchi (CR30) 2013; 1 Huang, Xia, Yuan, Zhou (CR39) 2011; 56 Lv, Deng, Wang, Zhong, Sun (CR45) 2015; 3 Luo, Hu, Sun, Huang (CR13) 2012; 22 Liu, Song, van Aken, Maier, Yu (CR17) 2014; 14 Wang, Sun (CR33) 2012; 5 Tang, Dou, Kaun, Kuang, Yang (CR50) 2014; 2 Gao, Wu, Dong, Ding, Lou (CR40) 2015; 2 Zhong, Zhan, Cao (CR31) 2015; 85 Geng, Ang, Ding (CR25) 2016; 8 Sun, Li, Xia (CR5) 2015; 51 Jung, Myung, Chong (CR19) 2011; 4 Mondal, Su, Chen, Xie, Wang (CR46) 2014; 6 Qu, Hu, Li, Wang, Chen, Wang (CR41) 2014; 6 Xu, Cao, Wang, Jiao (CR11) 2016; 4 Niu, Yang, Jiang (CR38) 2015; 3 Qiu, Yang, Deng, Jin, Li (CR4) 2010; 20 Cheng, Lu, Deng, Chung, Zhang, Li (CR15) 2010; 3 Feckl, Fominykh, Döblinger (CR18) 2012; 51 Park, Kim, Choi, Song, Lee (CR10) 2016; 8 Yuan, Wu, Xie, Lou (CR24) 2014; 53 Bissett, Worrall, Kinloch, Dryfe (CR48) 2016; 201 Zhuo, Wu, Ming (CR3) 2013; 1 Sharma, Sharma, Subba Rao, Chowdari (CR8) 2007; 17 Cheng, Li, Zhu, Zhang, Lu (CR32) 2016; 19 Guo, Ru, Song, Hu, Mo (CR37) 2015; 3 Wu, Qian, Zhou, Wei, Lou, Ajayan (CR9) 2014; 8 Liu, Zhang, Wang (CR12) 2012; 12 Xie, Li, Guo (CR43) 2013; 5 Reddy, Yu, Sow (CR53) 2007; 17 Pan, Zhao, Shen, Dong, Xu (CR1) 2013; 1 Huang, Zhang, Zhang, Du, Wang, Wang (CR27) 2014; 2 J Bai (1043_CR42) 2014; 24 J Sun (1043_CR5) 2015; 51 H Tang (1043_CR50) 2014; 2 PW Menezes (1043_CR36) 2016; 4 Y Sharma (1043_CR8) 2007; 17 W Chaikittisilp (1043_CR30) 2013; 1 X Liu (1043_CR35) 2014; 26 G Huang (1043_CR27) 2014; 2 JM Feckl (1043_CR18) 2012; 51 G Zhang (1043_CR28) 2015; 27 MA Bissett (1043_CR48) 2016; 201 J Liu (1043_CR17) 2014; 14 X Xu (1043_CR11) 2016; 4 L Pan (1043_CR1) 2013; 1 R Wu (1043_CR9) 2014; 8 PG Bruce (1043_CR49) 2008; 47 G Gao (1043_CR40) 2015; 2 B Qu (1043_CR41) 2014; 6 MV Reddy (1043_CR53) 2007; 17 W Luo (1043_CR13) 2012; 22 AK Mondal (1043_CR46) 2014; 6 SD Worrall (1043_CR21) 2016; 4 HJ Park (1043_CR10) 2016; 8 G Zhou (1043_CR52) 2012; 6 F Cheng (1043_CR32) 2016; 19 L Guo (1043_CR37) 2015; 3 X Zhang (1043_CR26) 2014; 2 WW Zhan (1043_CR34) 2013; 135 Y Wang (1043_CR7) 2015; 3 S Zhong (1043_CR31) 2015; 85 X Lv (1043_CR45) 2015; 3 Y Feng (1043_CR23) 2013; 1 J Li (1043_CR47) 2012; 22 YQ Wang (1043_CR20) 2012; 134 L Zhuo (1043_CR3) 2013; 1 B Liu (1043_CR29) 2008; 130 Y Qiu (1043_CR4) 2010; 20 HG Jung (1043_CR19) 2011; 4 J Wang (1043_CR33) 2012; 5 E Quartarone (1043_CR22) 2016; 320 Q Li (1043_CR16) 2014; 6 H Geng (1043_CR25) 2016; 8 Q Xie (1043_CR43) 2013; 5 C Yuan (1043_CR24) 2014; 53 H Cheng (1043_CR15) 2010; 3 Y Wang (1043_CR2) 2013; 1 H Niu (1043_CR38) 2015; 3 XH Huang (1043_CR39) 2011; 56 Y Zhu (1043_CR6) 2015; 3 B Liu (1043_CR12) 2012; 12 Z Li (1043_CR14) 2015; 3 J Deng (1043_CR44) 2013; 6 Y Zhu (1043_CR51) 2014; 2 |
References_xml | – volume: 8 start-page: 6297 year: 2014 end-page: 6303 ident: CR9 article-title: Porous spinel Zn Co O hollow polyhedra templated for high-rate lithium-ion batteries publication-title: Acs Nano doi: 10.1021/nn501783n – volume: 3 start-page: 24303 year: 2015 end-page: 24308 ident: CR7 article-title: Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo O anode materials for high-performance lithium-ion batteries publication-title: J Mater Chem A doi: 10.1039/C5TA06949A – volume: 134 start-page: 7874 year: 2012 end-page: 7879 ident: CR20 article-title: Rutile-TiO nanocoating for a high-rate Li Ti O anode of a lithium-ion battery publication-title: J Am Chem Soc doi: 10.1021/ja301266w – volume: 8 start-page: 3233 year: 2016 end-page: 3240 ident: CR10 article-title: Nonstoichiometric Co-rich ZnCo O hollow nanospheres for high performance formaldehyde detection at ppb levels publication-title: Acs Appl Mater Interfaces doi: 10.1021/acsami.5b10862 – volume: 85 start-page: 51 year: 2015 end-page: 59 ident: CR31 article-title: Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials publication-title: Carbon doi: 10.1016/j.carbon.2014.12.064 – volume: 2 start-page: 3912 year: 2014 end-page: 3918 ident: CR26 article-title: Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe O @TiO core–shell nanorods publication-title: J Mater Chem A doi: 10.1039/c3ta14317a – volume: 22 start-page: 23254 year: 2012 end-page: 23259 ident: CR47 article-title: Spinel Mn Co O core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity publication-title: J Mater Chem doi: 10.1039/c2jm35607d – volume: 201 start-page: 30 year: 2016 end-page: 37 ident: CR48 article-title: Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.03.190 – volume: 135 start-page: 1926 year: 2013 end-page: 1933 ident: CR34 article-title: Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response publication-title: J Am Chem Soc doi: 10.1021/ja311085e – volume: 320 start-page: 314 year: 2016 end-page: 321 ident: CR22 article-title: Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.04.107 – volume: 12 start-page: 3005 year: 2012 end-page: 3011 ident: CR12 article-title: Hierarchical three-dimensional ZnCo O nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries publication-title: Nano Lett doi: 10.1021/nl300794f – volume: 2 start-page: 1400014 year: 2015 ident: CR40 article-title: Growth of ultrathin ZnCo O nanosheets on reduced graphene oxide with enhanced lithium storage properties publication-title: Adv Sci doi: 10.1002/advs.201400014 – volume: 47 start-page: 2930 year: 2008 end-page: 2946 ident: CR49 article-title: Nanomaterials for rechargeable lithium batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.200702505 – volume: 6 start-page: 3214 year: 2012 end-page: 3223 ident: CR52 article-title: Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage publication-title: Acs Nano doi: 10.1021/nn300098m – volume: 4 start-page: 6042 year: 2016 end-page: 6047 ident: CR11 article-title: 3D hierarchical porous ZnO/ZnCo O nanosheets as high-rate anode material for lithium-ion batteries publication-title: J Mater Chem A doi: 10.1039/C6TA00723F – volume: 3 start-page: 24082 year: 2015 end-page: 24094 ident: CR38 article-title: Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo O nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors publication-title: J Mater Chem A doi: 10.1039/C5TA07439H – volume: 6 start-page: 2726 year: 2014 end-page: 2733 ident: CR16 article-title: Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors publication-title: Acs Appl Mater Interfaces doi: 10.1021/am405271q – volume: 26 start-page: 1889 year: 2014 end-page: 1895 ident: CR35 article-title: Hierarchical Zn Co O nanoarrays with high activity for electrocatalytic oxygen evolution publication-title: Chem Mater doi: 10.1021/cm4040903 – volume: 3 start-page: 5183 year: 2015 end-page: 5188 ident: CR45 article-title: Carbon-coated a-Fe O nanostructures for efficient anode of Li-ion battery publication-title: J Mater Chem A doi: 10.1039/C4TA06415A – volume: 4 start-page: 10014 year: 2016 end-page: 10022 ident: CR36 article-title: Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water publication-title: J Mater Chem A doi: 10.1039/C6TA03644A – volume: 1 start-page: 14 year: 2013 end-page: 19 ident: CR30 article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications publication-title: J Mater Chem A doi: 10.1039/C2TA00278G – volume: 1 start-page: 7159 year: 2013 end-page: 7166 ident: CR1 article-title: Surfactant-assisted synthesis of a Co O /reduced graphene oxide composite as a superior anode material for Li-ion batteries publication-title: J Mater Chem A doi: 10.1039/c3ta01498c – volume: 3 start-page: 21569 year: 2015 end-page: 21577 ident: CR14 article-title: Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo O –ZnO–C on nickel foam as anodes for high performance lithium ion batteries publication-title: J Mater Chem A doi: 10.1039/C5TA05733G – volume: 17 start-page: 2855 year: 2007 end-page: 2861 ident: CR8 article-title: Nanophase ZnCo O as a high performance anode material for Li-ion batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.200600997 – volume: 1 start-page: 5212 year: 2013 end-page: 5216 ident: CR2 article-title: Onion-like carbon matrix supported Co O nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability publication-title: J Mater Chem A doi: 10.1039/c3ta10559h – volume: 130 start-page: 5390 year: 2008 end-page: 5391 ident: CR29 article-title: Metal–organic framework as a template for porous carbon synthesis publication-title: J Am Chem Soc doi: 10.1021/ja7106146 – volume: 14 start-page: 2597 year: 2014 end-page: 2603 ident: CR17 article-title: Self-supported Li Ti O –C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries publication-title: Nano Lett doi: 10.1021/nl5004174 – volume: 51 start-page: 7459 year: 2012 end-page: 7463 ident: CR18 article-title: Nanoscale porous framework of lithium titanate for ultrafast lithium insertion publication-title: Angew Chem Int doi: 10.1002/anie.201201463 – volume: 4 start-page: 1345 year: 2011 end-page: 1351 ident: CR19 article-title: Microscale spherical carbon-coated Li Ti O as ultra high power anode material for lithium batteries publication-title: Energy Environ Sci doi: 10.1039/c0ee00620c – volume: 3 start-page: 895 year: 2010 end-page: 901 ident: CR15 article-title: A facile method to improve the high rate capability of Co O nanowire array electrodes publication-title: Nano Res. doi: 10.1007/s12274-010-0063-z – volume: 2 start-page: 360 year: 2014 end-page: 364 ident: CR50 article-title: MoSe nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies publication-title: J Mater Chem A doi: 10.1039/C3TA13584E – volume: 5 start-page: 5163 year: 2012 end-page: 5185 ident: CR33 article-title: Understanding and recent development of carbon coating on LiFePO cathode materials for lithium-ion batteries publication-title: Energy Environ Sci doi: 10.1039/C1EE01263K – volume: 6 start-page: 1965 year: 2013 end-page: 1970 ident: CR44 article-title: Facile synthesis of carbon-coated hematite nanostructures for solar water splitting publication-title: Energy Environ Sci doi: 10.1039/c3ee00066d – volume: 1 start-page: 1141 year: 2013 end-page: 1147 ident: CR3 article-title: Facile synthesis of a Co O -carbon nanotube composite and its superior performance as an anode material for Li-ion batteries publication-title: J Mater Chem A doi: 10.1039/C2TA00284A – volume: 4 start-page: 8687 year: 2016 end-page: 8695 ident: CR21 article-title: Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices publication-title: J Mater Chem C doi: 10.1039/C6TC03496A – volume: 27 start-page: 2400 year: 2015 end-page: 2405 ident: CR28 article-title: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode publication-title: Adv Mater doi: 10.1002/adma.201405222 – volume: 5 start-page: 5508 year: 2013 end-page: 5517 ident: CR43 article-title: Template-free synthesis of amorphous double-shelled zinc-cobalt citrate hollow microspheres and their transformation to crystalline ZnCo O microspheres publication-title: Acs Appl Mater Interfaces doi: 10.1021/am400696x – volume: 2 start-page: 8048 year: 2014 end-page: 8053 ident: CR27 article-title: Hierarchical NiFe O /Fe O nanotubes derived from metal organic frameworks for superior lithium ion battery anodes publication-title: J Mater Chem A doi: 10.1039/c4ta00200h – volume: 19 start-page: 486 year: 2016 end-page: 494 ident: CR32 article-title: Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in situ growth of crystalline ZIF-8 on a binary metal oxide publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.033 – volume: 51 start-page: 16267 year: 2015 end-page: 16270 ident: CR5 article-title: Co O nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage publication-title: Chem Commun (Camb) doi: 10.1039/C5CC06160A – volume: 53 start-page: 1488 year: 2014 end-page: 1504 ident: CR24 article-title: Mixed transition-metal oxides: design, synthesis, and energy-related applications publication-title: Angew Chem Int Ed doi: 10.1002/anie.201303971 – volume: 20 start-page: 4439 year: 2010 end-page: 4444 ident: CR4 article-title: A novel nanostructured spinel ZnCo O electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries publication-title: J Mater Chem doi: 10.1039/c0jm00101e – volume: 1 start-page: 9654 year: 2013 end-page: 9658 ident: CR23 article-title: Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials publication-title: J Mater Chem A doi: 10.1039/c3ta11538k – volume: 56 start-page: 4960 year: 2011 end-page: 4965 ident: CR39 article-title: Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.03.129 – volume: 24 start-page: 3012 year: 2014 end-page: 3020 ident: CR42 article-title: Anodes: unusual formation of ZnCo O 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material (Adv Funct Mater 20/2014) publication-title: Adv Funct Mater doi: 10.1002/adfm.201303442 – volume: 3 start-page: 9556 year: 2015 end-page: 9564 ident: CR6 article-title: Two-dimensional ultrathin ZnCo O nanosheets: general formation and lithium storage application publication-title: J Mater Chem A doi: 10.1039/C5TA00808E – volume: 6 start-page: 731 year: 2014 end-page: 736 ident: CR41 article-title: High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo O nanostructures on current collectors publication-title: Acs Appl Mater Interfaces doi: 10.1021/am405238a – volume: 22 start-page: 8916 year: 2012 end-page: 8921 ident: CR13 article-title: Electrospun porous ZnCo O nanotubes as a high-performance anode material for lithium-ion batteries publication-title: J Mater Chem doi: 10.1039/c2jm00094f – volume: 3 start-page: 8683 year: 2015 end-page: 8692 ident: CR37 article-title: Pineapple-shaped ZnCo O microspheres as anode materials for lithium ion batteries with prominent rate performance publication-title: J Mater Chem A doi: 10.1039/C5TA00830A – volume: 8 start-page: 2967 year: 2016 end-page: 2973 ident: CR25 article-title: Metal coordination polymer derived mesoporous Co O nanorods with uniform TiO coating as advanced anodes for lithium ion batteries publication-title: Nanoscale doi: 10.1039/C5NR08570E – volume: 17 start-page: 2792 year: 2007 end-page: 2799 ident: CR53 article-title: α-FeOnanoflakes as an anode material for Li-ion batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.200601186 – volume: 6 start-page: 14827 year: 2014 end-page: 14835 ident: CR46 article-title: Highly porous NiCo O Nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability publication-title: Acs Appl Mater Interfaces – volume: 2 start-page: 7904 year: 2014 end-page: 7911 ident: CR51 article-title: Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets publication-title: J Mater Chem A doi: 10.1039/c4ta00257a – volume: 12 start-page: 3005 year: 2012 ident: 1043_CR12 publication-title: Nano Lett doi: 10.1021/nl300794f – volume: 6 start-page: 14827 year: 2014 ident: 1043_CR46 publication-title: Acs Appl Mater Interfaces doi: 10.1021/am5036913 – volume: 2 start-page: 7904 year: 2014 ident: 1043_CR51 publication-title: J Mater Chem A doi: 10.1039/C4TA00257A – volume: 85 start-page: 51 year: 2015 ident: 1043_CR31 publication-title: Carbon doi: 10.1016/j.carbon.2014.12.064 – volume: 4 start-page: 8687 year: 2016 ident: 1043_CR21 publication-title: J Mater Chem C doi: 10.1039/c6tc03496a – volume: 1 start-page: 1141 year: 2013 ident: 1043_CR3 publication-title: J Mater Chem A doi: 10.1039/c2ta00284a – volume: 130 start-page: 5390 year: 2008 ident: 1043_CR29 publication-title: J Am Chem Soc doi: 10.1021/ja7106146 – volume: 17 start-page: 2792 year: 2007 ident: 1043_CR53 publication-title: Adv Funct Mater doi: 10.1002/adfm.200601186 – volume: 26 start-page: 1889 year: 2014 ident: 1043_CR35 publication-title: Chem Mater doi: 10.1021/cm4040903 – volume: 6 start-page: 1965 year: 2013 ident: 1043_CR44 publication-title: Energy Environ Sci doi: 10.1039/C3EE00066D – volume: 8 start-page: 6297 year: 2014 ident: 1043_CR9 publication-title: Acs Nano doi: 10.1021/nn501783n – volume: 51 start-page: 16267 year: 2015 ident: 1043_CR5 publication-title: Chem Commun (Camb) doi: 10.1039/c5cc06160a – volume: 6 start-page: 2726 year: 2014 ident: 1043_CR16 publication-title: Acs Appl Mater Interfaces doi: 10.1021/am405271q – volume: 2 start-page: 3912 year: 2014 ident: 1043_CR26 publication-title: J Mater Chem A doi: 10.1039/c3ta14317a – volume: 3 start-page: 24082 year: 2015 ident: 1043_CR38 publication-title: J Mater Chem A doi: 10.1039/c5ta07439h – volume: 6 start-page: 731 year: 2014 ident: 1043_CR41 publication-title: Acs Appl Mater Interfaces doi: 10.1021/am405238a – volume: 22 start-page: 23254 year: 2012 ident: 1043_CR47 publication-title: J Mater Chem doi: 10.1039/c2jm35607d – volume: 2 start-page: 1400014 year: 2015 ident: 1043_CR40 publication-title: Adv Sci doi: 10.1002/advs.201400014 – volume: 5 start-page: 5163 year: 2012 ident: 1043_CR33 publication-title: Energy Environ Sci doi: 10.1039/c1ee01263k – volume: 1 start-page: 14 year: 2013 ident: 1043_CR30 publication-title: J Mater Chem A doi: 10.1039/c2ta00278g – volume: 134 start-page: 7874 year: 2012 ident: 1043_CR20 publication-title: J Am Chem Soc doi: 10.1021/ja301266w – volume: 320 start-page: 314 year: 2016 ident: 1043_CR22 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.04.107 – volume: 5 start-page: 5508 year: 2013 ident: 1043_CR43 publication-title: Acs Appl Mater Interfaces doi: 10.1021/am400696x – volume: 135 start-page: 1926 year: 2013 ident: 1043_CR34 publication-title: J Am Chem Soc doi: 10.1021/ja311085e – volume: 3 start-page: 8683 year: 2015 ident: 1043_CR37 publication-title: J Mater Chem A doi: 10.1039/c5ta00830a – volume: 3 start-page: 895 year: 2010 ident: 1043_CR15 publication-title: Nano Res. doi: 10.1007/s12274-010-0063-z – volume: 14 start-page: 2597 year: 2014 ident: 1043_CR17 publication-title: Nano Lett doi: 10.1021/nl5004174 – volume: 3 start-page: 21569 year: 2015 ident: 1043_CR14 publication-title: J Mater Chem A doi: 10.1039/c5ta05733g – volume: 3 start-page: 9556 year: 2015 ident: 1043_CR6 publication-title: J Mater Chem A doi: 10.1039/c5ta00808e – volume: 4 start-page: 6042 year: 2016 ident: 1043_CR11 publication-title: J Mater Chem A doi: 10.1039/c6ta00723f – volume: 1 start-page: 9654 year: 2013 ident: 1043_CR23 publication-title: J Mater Chem A doi: 10.1039/c3ta11538k – volume: 201 start-page: 30 year: 2016 ident: 1043_CR48 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.03.190 – volume: 22 start-page: 8916 year: 2012 ident: 1043_CR13 publication-title: J Mater Chem doi: 10.1039/C2JM00094F – volume: 2 start-page: 8048 year: 2014 ident: 1043_CR27 publication-title: J Mater Chem A doi: 10.1039/c4ta00200h – volume: 20 start-page: 4439 year: 2010 ident: 1043_CR4 publication-title: J Mater Chem doi: 10.1039/c0jm00101e – volume: 4 start-page: 10014 year: 2016 ident: 1043_CR36 publication-title: J Mater Chem A doi: 10.1039/c6ta03644a – volume: 19 start-page: 486 year: 2016 ident: 1043_CR32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.033 – volume: 24 start-page: 3012 year: 2014 ident: 1043_CR42 publication-title: Adv Funct Mater doi: 10.1002/adfm.201470131 – volume: 47 start-page: 2930 year: 2008 ident: 1043_CR49 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200702505 – volume: 17 start-page: 2855 year: 2007 ident: 1043_CR8 publication-title: Adv Funct Mater doi: 10.1002/adfm.200600997 – volume: 56 start-page: 4960 year: 2011 ident: 1043_CR39 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.03.129 – volume: 1 start-page: 7159 year: 2013 ident: 1043_CR1 publication-title: J Mater Chem A doi: 10.1039/c3ta01498c – volume: 1 start-page: 5212 year: 2013 ident: 1043_CR2 publication-title: J Mater Chem A doi: 10.1039/c3ta10559h – volume: 51 start-page: 7459 year: 2012 ident: 1043_CR18 publication-title: Angew Chem Int doi: 10.1002/anie.201201463 – volume: 53 start-page: 1488 year: 2014 ident: 1043_CR24 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201303971 – volume: 8 start-page: 3233 year: 2016 ident: 1043_CR10 publication-title: Acs Appl Mater Interfaces doi: 10.1021/acsami.5b10862 – volume: 2 start-page: 360 year: 2014 ident: 1043_CR50 publication-title: J Mater Chem A doi: 10.1039/C3TA13584E – volume: 6 start-page: 3214 year: 2012 ident: 1043_CR52 publication-title: Acs Nano doi: 10.1021/nn300098m – volume: 3 start-page: 5183 year: 2015 ident: 1043_CR45 publication-title: J Mater Chem A doi: 10.1039/C4TA06415A – volume: 27 start-page: 2400 year: 2015 ident: 1043_CR28 publication-title: Adv Mater doi: 10.1002/adma.201405222 – volume: 3 start-page: 24303 year: 2015 ident: 1043_CR7 publication-title: J Mater Chem A doi: 10.1039/c5ta06949a – volume: 4 start-page: 1345 year: 2011 ident: 1043_CR19 publication-title: Energy Environ Sci doi: 10.1039/C0EE00620C – volume: 8 start-page: 2967 year: 2016 ident: 1043_CR25 publication-title: Nanoscale doi: 10.1039/c5nr08570e |
SSID | ssj0005721 |
Score | 2.3825612 |
Snippet | The C–ZnCo
2
O
4
–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo
2
O
4
–ZnO NRAs, are rational designed and synthesized via a... The C–ZnCo2O4–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo2O4–ZnO NRAs, are rational designed and synthesized via a facile... The C–ZnCo₂O₄–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo₂O₄–ZnO NRAs, are rational designed and synthesized via a facile... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7768 |
SubjectTerms | Anodes Arrays Buffer layers Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics coatings Crystallography and Scattering Methods Diffusion coating Discharge electron transfer Electron transport Energy Materials foil Foils Ion diffusion Lithium lithium batteries Lithium-ion batteries Materials Science Nanorods Polymer Sciences Rechargeable batteries Solid Mechanics Substrates Zinc oxide |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEBZtcmkPpW1Sum1aVMipQdSybHl9KknIEgrJhpJAyMXoZ0QDqbxd7xZ6KOQd8oZ5ksx47bgtNDcLyxL4G41mNKNvGNsubEh0SJ2QqXYiMwqEUc6LHBIZUKCgaGsdHh3rw7Psy3l-3h24NV1aZa8TW0Xta0dn5J9Q7kqdybHOP89-CKoaRdHVroTGY7aOKniMztf63sHxydchyaNIZc8XTsxpfVxzdXkOtypBWlpSCDr7e2cazM1_IqTtxjN5zp51FiPfXUH8gj2C-JI9_YNHcIP9PppOhMfGT_DcmbmtI3e1oYxmjo8NXAXRLGcth7nnF3G_TqfZ7fXNRZzyaGKNSpSb-dz8arhpODEYi9lwoYBjDw8cmxxt9m-Xy-8CweS2ZeZER3uTnU0OTvcPRVdXQTg0lxbCquB1ErSyBoqxsYGsNu2kkzkgTlBak6vcoafhfJFaY3UJAUCOAa2zxCv1iq3FOsJrxlXpWx8mBKOIug2RL73WQZUBRzVyxJL-n1auIx2n2hdX1UCXTDBUCENFMFTZiH28_2S2Ytx4qPNWD1TVLb6mGkRlxD7cv8ZlQ7EQE6FeNlR9k0LCSYZD7PQAD0P8d8I3D0_4lj1JSaLafN4ttraYL-EdWi0L-74TzTs66era priority: 102 providerName: ProQuest |
Title | MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries |
URI | https://link.springer.com/article/10.1007/s10853-017-1043-4 https://www.proquest.com/docview/2259641865 https://www.proquest.com/docview/2000460044 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELb6c4EDggJiS7syEieQpThOnM1xaXdbQbeLgJVKL5F_xgKpdVabXSQOlfoOfcM-CeM0aQoCpJ4SK85Eyjcez2jG3xDyOtMuki42jMfSsEQJYEoYy1KIuEOFgqzudTg5loez5P1JetKc467aavc2JVlb6juH3XBrYcGq8pAyTtbJZhpCd1TiWTzs6jqymLcU4YEsrU1l_k3E75tR52H-kRSt95rxY_KocRLp8AbVJ2QN_BZ5eIc68Cm5mEzHzOLgB1hq1EKXnppShSJmircVnDlWreY1bbmlp36vjKfJ9eXVqZ9Sr3yJdpOqxUL9rKiqaCAtZvPuDAHFGRYoDim66d--r84Z4kd1TcaJsfUzMhuPvuwdsqaVAjPoIS2ZFs7KyEmhFWQDpV1w1KThhqeA0ECuVSpSg8GFsVmslZY5OAA-AHTIIivEc7LhSw8vCBW5rcMW55QIbG0Idm6ldCJ3KFXxHonaf1qYhmc8tLs4KzqG5ABDgTAUAYYi6ZE3t6_Mb0g2_jd5pwWqaNZbVaBVymXCBzLtkVe3j3GlhPSH8lCuqtBwM2SBowRFvG0B7kT884Pb95r9kjyIg4LVFb07ZGO5WMEu-i1L3Sfrg_FBn2wO9ydHn8P14OuHEV7fjY4_furXWvwLgbnriQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9gAcUPkTSwsYCS4gizhOnM0BIVRYtrTbvbRS1Uvwz1hFKsl2s9uqByTegffgoXgSZrKbBpDorbdYcezI88147LG_Yex5ZkOkQ-yEjLUTiVEgjHJepBDJgICCrMl1ONrTw4Pk02F6uMJ-tndh6FhlaxMbQ-0rR3vkrxF3uU5kX6dvJ6eCskZRdLVNobGAxQ5cnOOSrX6z_R7l-yKOBx_2t4ZimVVAOHQWZsKq4HUUtLIGsr6xgXwW7aSTKeBfQm5NqlKHfrbzWWyN1TkEANkH9E0iTxugaPLXEqVy0qj-4GN3pCSLZctOTjxtbRR1cVUPJ0ZBc4KkgHfy9zzYObf_xGObaW6wzm4v_VP-bgGoO2wFyrvs1h-shffYt9F4IDwWzsBzZ6a2KrmrDJ2f5vhYw0kQ9XzSMKZ7flRuVfE4-fX9x1E55qUpKzTZ3Eyn5qLmpubElywm3fUFjjU8cCxyXCEcf5l_FQgdbhseUFzW32cH1zLeD9hqWZXwkHGV-2bFFIJRRBSHOMu91kHlAVs1sseidkwLt6Q4p0wbJ0VHzkxiKFAMBYmhSHrs5eUnkwW_x1WVN1tBFUtVr4sOmD327PI1KilFXkwJ1bymXJ8UgI4SbOJVK-Cuif92-OjqDp-yG8P90W6xu723s8FuxoSu5iTxJludTefwGP2lmX3SgJSzz9etFb8BGEkoZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEF5aBWkfRFuLp7ZuoU-VxWw22VwexXporV4feiC-hP0xi4LdHJc7oQ8F_wf_w_4lnc0lxooWfEvIZgL5Zme_ZWa_IeRTpl0kXWwYj6VhiRLAlDCWpRBxhw4FWd3r8ORUHo6Sr2fpWdPntGqr3duU5PxMQ1Bp8tPdsXW79w6-4TLDQoTlIX2cvCSLGI15cOtRvNfVeGQxb-XCg3Bam9Z8zMS_C1PHNh8kSOt1Z7BClhvCSPfmCK-SF-DfkNf3ZATfkt8nwwGzeHMNlho10aWnplShoJniZQVXjlWzcS1hbum53y_jYfLn5vbcD6lXvsQYStVkon5VVFU0CBizcXeegOIICxRvKVL2i8vZT4ZYUl0Lc-I-e42MBgc_9g9Z01aBGWRLU6aFszJyUmgFWV9pF0ibNNzwFBAmyLVKRWpwo2FsFmulZQ4OgPcByVlkhXhHFnzpYZ1Qkdt6C-OcEkG5DYHPrZRO5A6tKt4jUftPC9NojofWF1dFp5YcYCgQhiLAUCQ98vnulfFccON_g7daoIpm7lUFRqhcJrwv0x75ePcYZ01IhSgP5awKzTdDRjhK0MROC3Bn4skPbjxr9DZZ-v5lUHw7Oj3eJK_i4Gt1oe8WWZhOZvAe6cxUf6hd9i-Ybu0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-derived+carbon+coating+on+self-supported+ZnCo2O4%E2%80%93ZnO+nanorod+arrays+as+high-performance+anode+for+lithium-ion+batteries&rft.jtitle=Journal+of+materials+science&rft.au=Gan%2C+Qingmeng&rft.au=Zhao%2C+Kuangmin&rft.au=Liu%2C+Suqin&rft.au=He%2C+Zhen&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=52&rft.issue=13&rft.spage=7768&rft.epage=7780&rft_id=info:doi/10.1007%2Fs10853-017-1043-4&rft.externalDocID=10_1007_s10853_017_1043_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |