MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries

The C–ZnCo 2 O 4 –ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo 2 O 4 –ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-de...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 52; no. 13; pp. 7768 - 7780
Main Authors Gan, Qingmeng, Zhao, Kuangmin, Liu, Suqin, He, Zhen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The C–ZnCo 2 O 4 –ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo 2 O 4 –ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo 2 O 4 –ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo 2 O 4 –ZnO NRAs show high reversible capacity of 1318 mA h g −1 at 0.2 A g −1 after 150 charge–discharge cycles. Furthermore, C–ZnCo 2 O 4 –ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g −1 at 0.5, 1, 2 and 5 A g −1 , respectively. The outstanding lithium storage performance of C–ZnCo 2 O 4 –ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon.
AbstractList The C–ZnCo₂O₄–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo₂O₄–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo₂O₄–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo₂O₄–ZnO NRAs show high reversible capacity of 1318 mA h g⁻¹ at 0.2 A g⁻¹ after 150 charge–discharge cycles. Furthermore, C–ZnCo₂O₄–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g⁻¹ at 0.5, 1, 2 and 5 A g⁻¹, respectively. The outstanding lithium storage performance of C–ZnCo₂O₄–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon.
The C–ZnCo 2 O 4 –ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo 2 O 4 –ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo 2 O 4 –ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo 2 O 4 –ZnO NRAs show high reversible capacity of 1318 mA h g −1 at 0.2 A g −1 after 150 charge–discharge cycles. Furthermore, C–ZnCo 2 O 4 –ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g −1 at 0.5, 1, 2 and 5 A g −1 , respectively. The outstanding lithium storage performance of C–ZnCo 2 O 4 –ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon.
The C–ZnCo2O4–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo2O4–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo2O4–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo2O4–ZnO NRAs show high reversible capacity of 1318 mA h g−1 at 0.2 A g−1 after 150 charge–discharge cycles. Furthermore, C–ZnCo2O4–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g−1 at 0.5, 1, 2 and 5 A g−1, respectively. The outstanding lithium storage performance of C–ZnCo2O4–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon.
Author Gan, Qingmeng
He, Zhen
Zhao, Kuangmin
Liu, Suqin
Author_xml – sequence: 1
  givenname: Qingmeng
  surname: Gan
  fullname: Gan, Qingmeng
  organization: College of Chemistry and Chemical Engineering, Central South University
– sequence: 2
  givenname: Kuangmin
  surname: Zhao
  fullname: Zhao, Kuangmin
  organization: College of Chemistry and Chemical Engineering, Central South University
– sequence: 3
  givenname: Suqin
  surname: Liu
  fullname: Liu, Suqin
  email: sqliu2003@126.com
  organization: College of Chemistry and Chemical Engineering, Central South University
– sequence: 4
  givenname: Zhen
  surname: He
  fullname: He, Zhen
  email: zhenhe@csu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Central South University
BookMark eNp9kU1qHDEQhYVxwGM7B_BO4E02SvTfPcswxE7AYTbxxhuhVlfPyPRIHUlt8MLgO-SGOUk0jMFgiBdCVfC9V0W9U3QcYgCELhj9zChtvmRGWyUIZQ1hVAoij9CCqaYWLRXHaEEp54RLzU7Qac73lFLVcLZATz_XV6SH5B-gx86mLgbsoi0-bHAtM4wDyfM0xVQqcBdWka_l3-c_d2GNgw0xxR7blOxjxjbjrd9syQRpiGlngwNciR5wbfHoy9bPO-Kra2dLqSMhn6MPgx0zfHz5z9Dt1bdfq-_kZn39Y_X1hjipdCGdGHpNBy06C01ru0FJqrRjjikQrodlZ5VQbtlI1ze8s51ewgDAWlCM0V6IM_Tp4Dul-HuGXMzOZwfjaAPEORte7yF1fbKil2_Q-zinULcznKullqzVqlLsQLkUc04wmCn5nU2PhlGzD8QcAjE1ELMPxOydmzca50u9dAwlWT--q-QHZa5TwgbS607_F_0DLnmjjg
CitedBy_id crossref_primary_10_1002_asia_202201034
crossref_primary_10_1016_j_electacta_2017_08_075
crossref_primary_10_1002_smll_201704435
crossref_primary_10_1021_acs_iecr_2c01676
crossref_primary_10_1016_j_jssc_2022_122947
crossref_primary_10_1007_s10853_018_2550_7
crossref_primary_10_1016_j_ceramint_2018_06_002
crossref_primary_10_1002_ejic_201900439
crossref_primary_10_1002_adfm_202303121
crossref_primary_10_1016_j_ica_2022_120890
crossref_primary_10_1039_C8NJ06362A
crossref_primary_10_1007_s11581_019_03355_0
crossref_primary_10_1007_s41918_019_00056_0
crossref_primary_10_1016_j_electacta_2018_02_010
crossref_primary_10_1016_j_jpowsour_2018_02_073
crossref_primary_10_1002_cplu_201900216
crossref_primary_10_1002_smll_202305778
crossref_primary_10_1088_2399_1984_abb09d
crossref_primary_10_1002_aenm_201800716
crossref_primary_10_1016_j_est_2023_108708
crossref_primary_10_1016_j_jpowsour_2018_09_052
crossref_primary_10_1007_s10853_018_2003_3
crossref_primary_10_1021_acs_chemmater_8b00836
crossref_primary_10_1016_j_matpr_2020_12_1231
crossref_primary_10_3390_jcs8010013
crossref_primary_10_1007_s10854_018_8742_8
crossref_primary_10_1039_D0QM00936A
crossref_primary_10_1016_j_apsusc_2019_144918
crossref_primary_10_1016_j_apsusc_2022_153202
crossref_primary_10_1002_pssa_201800719
crossref_primary_10_1039_C9CS00806C
crossref_primary_10_1039_D1RA05073G
Cites_doi 10.1021/nn501783n
10.1039/C5TA06949A
10.1021/ja301266w
10.1021/acsami.5b10862
10.1016/j.carbon.2014.12.064
10.1039/c3ta14317a
10.1039/c2jm35607d
10.1016/j.electacta.2016.03.190
10.1021/ja311085e
10.1016/j.jpowsour.2016.04.107
10.1021/nl300794f
10.1002/advs.201400014
10.1002/anie.200702505
10.1021/nn300098m
10.1039/C6TA00723F
10.1039/C5TA07439H
10.1021/am405271q
10.1021/cm4040903
10.1039/C4TA06415A
10.1039/C6TA03644A
10.1039/C2TA00278G
10.1039/c3ta01498c
10.1039/C5TA05733G
10.1002/adfm.200600997
10.1039/c3ta10559h
10.1021/ja7106146
10.1021/nl5004174
10.1002/anie.201201463
10.1039/c0ee00620c
10.1007/s12274-010-0063-z
10.1039/C3TA13584E
10.1039/C1EE01263K
10.1039/c3ee00066d
10.1039/C2TA00284A
10.1039/C6TC03496A
10.1002/adma.201405222
10.1021/am400696x
10.1039/c4ta00200h
10.1016/j.nanoen.2015.10.033
10.1039/C5CC06160A
10.1002/anie.201303971
10.1039/c0jm00101e
10.1039/c3ta11538k
10.1016/j.electacta.2011.03.129
10.1002/adfm.201303442
10.1039/C5TA00808E
10.1021/am405238a
10.1039/c2jm00094f
10.1039/C5TA00830A
10.1039/C5NR08570E
10.1002/adfm.200601186
10.1039/c4ta00257a
10.1021/am5036913
10.1039/C4TA00257A
10.1039/c6tc03496a
10.1039/c2ta00284a
10.1039/C3EE00066D
10.1039/c5cc06160a
10.1039/c5ta07439h
10.1039/c1ee01263k
10.1039/c2ta00278g
10.1039/c5ta00830a
10.1039/c5ta05733g
10.1039/c5ta00808e
10.1039/c6ta00723f
10.1039/C2JM00094F
10.1039/c6ta03644a
10.1002/adfm.201470131
10.1039/c5ta06949a
10.1039/C0EE00620C
10.1039/c5nr08570e
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s10853-017-1043-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 7780
ExternalDocumentID 10_1007_s10853_017_1043_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51372278; 21303270
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c456t-b3fd60f63bae78abf54056c1c15e3cde9ba535c974cd72bab69efee18e5110d33
IEDL.DBID U2A
ISSN 0022-2461
IngestDate Fri Jul 11 12:11:24 EDT 2025
Fri Jul 25 09:17:44 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 01:25:54 EDT 2025
Fri Feb 21 02:45:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Solid Electrolyte Interphase
Discharge Capacity
Nanorod Array
Electrochemical Performance
Co3O4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-b3fd60f63bae78abf54056c1c15e3cde9ba535c974cd72bab69efee18e5110d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2259641865
PQPubID 2043599
PageCount 13
ParticipantIDs proquest_miscellaneous_2000460044
proquest_journals_2259641865
crossref_primary_10_1007_s10853_017_1043_4
crossref_citationtrail_10_1007_s10853_017_1043_4
springer_journals_10_1007_s10853_017_1043_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Full Set - Includes `Journal of Materials Science Letters
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhan, Kuang, Zhou, Kong, Xie, Zheng (CR34) 2013; 135
Wang, Gu, Guo (CR20) 2012; 134
Worrall, Bissett, Hirunpinyopas, Attfield, Dryfe (CR21) 2016; 4
Zhu, Guo, Wu, Cao, Tao, Wu (CR51) 2014; 2
Bruce, Scrosati, Tarascon (CR49) 2008; 47
Zhu, Cao, Zhang, Xu (CR6) 2015; 3
Feng, Zou, Xia, Liu, Wang (CR23) 2013; 1
Liu, Chang, Luo (CR35) 2014; 26
Li, Xiong, Li, Qian (CR47) 2012; 22
Zhou, Wang, Yin, Li, Li, Cheng (CR52) 2012; 6
Zhang, Chen, Xie, Guo (CR26) 2014; 2
Liu, Shioyama, Akita, Xu (CR29) 2008; 130
Bai, Li, Liu, Qian, Xiong (CR42) 2014; 24
Zhang, Hou, Zhang (CR28) 2015; 27
Menezes, Indra, Bergmann (CR36) 2016; 4
Deng, Lv, Gao (CR44) 2013; 6
Li, Lu, Xu, Tong, Li (CR16) 2014; 6
Wang, Yan, Liu (CR2) 2013; 1
Wang, Ke, Zhang, Huang (CR7) 2015; 3
Quartarone, Dall’Asta, Resmini (CR22) 2016; 320
Li, Yin (CR14) 2015; 3
Chaikittisilp, Ariga, Yamauchi (CR30) 2013; 1
Huang, Xia, Yuan, Zhou (CR39) 2011; 56
Lv, Deng, Wang, Zhong, Sun (CR45) 2015; 3
Luo, Hu, Sun, Huang (CR13) 2012; 22
Liu, Song, van Aken, Maier, Yu (CR17) 2014; 14
Wang, Sun (CR33) 2012; 5
Tang, Dou, Kaun, Kuang, Yang (CR50) 2014; 2
Gao, Wu, Dong, Ding, Lou (CR40) 2015; 2
Zhong, Zhan, Cao (CR31) 2015; 85
Geng, Ang, Ding (CR25) 2016; 8
Sun, Li, Xia (CR5) 2015; 51
Jung, Myung, Chong (CR19) 2011; 4
Mondal, Su, Chen, Xie, Wang (CR46) 2014; 6
Qu, Hu, Li, Wang, Chen, Wang (CR41) 2014; 6
Xu, Cao, Wang, Jiao (CR11) 2016; 4
Niu, Yang, Jiang (CR38) 2015; 3
Qiu, Yang, Deng, Jin, Li (CR4) 2010; 20
Cheng, Lu, Deng, Chung, Zhang, Li (CR15) 2010; 3
Feckl, Fominykh, Döblinger (CR18) 2012; 51
Park, Kim, Choi, Song, Lee (CR10) 2016; 8
Yuan, Wu, Xie, Lou (CR24) 2014; 53
Bissett, Worrall, Kinloch, Dryfe (CR48) 2016; 201
Zhuo, Wu, Ming (CR3) 2013; 1
Sharma, Sharma, Subba Rao, Chowdari (CR8) 2007; 17
Cheng, Li, Zhu, Zhang, Lu (CR32) 2016; 19
Guo, Ru, Song, Hu, Mo (CR37) 2015; 3
Wu, Qian, Zhou, Wei, Lou, Ajayan (CR9) 2014; 8
Liu, Zhang, Wang (CR12) 2012; 12
Xie, Li, Guo (CR43) 2013; 5
Reddy, Yu, Sow (CR53) 2007; 17
Pan, Zhao, Shen, Dong, Xu (CR1) 2013; 1
Huang, Zhang, Zhang, Du, Wang, Wang (CR27) 2014; 2
J Bai (1043_CR42) 2014; 24
J Sun (1043_CR5) 2015; 51
H Tang (1043_CR50) 2014; 2
PW Menezes (1043_CR36) 2016; 4
Y Sharma (1043_CR8) 2007; 17
W Chaikittisilp (1043_CR30) 2013; 1
X Liu (1043_CR35) 2014; 26
G Huang (1043_CR27) 2014; 2
JM Feckl (1043_CR18) 2012; 51
G Zhang (1043_CR28) 2015; 27
MA Bissett (1043_CR48) 2016; 201
J Liu (1043_CR17) 2014; 14
X Xu (1043_CR11) 2016; 4
L Pan (1043_CR1) 2013; 1
R Wu (1043_CR9) 2014; 8
PG Bruce (1043_CR49) 2008; 47
G Gao (1043_CR40) 2015; 2
B Qu (1043_CR41) 2014; 6
MV Reddy (1043_CR53) 2007; 17
W Luo (1043_CR13) 2012; 22
AK Mondal (1043_CR46) 2014; 6
SD Worrall (1043_CR21) 2016; 4
HJ Park (1043_CR10) 2016; 8
G Zhou (1043_CR52) 2012; 6
F Cheng (1043_CR32) 2016; 19
L Guo (1043_CR37) 2015; 3
X Zhang (1043_CR26) 2014; 2
WW Zhan (1043_CR34) 2013; 135
Y Wang (1043_CR7) 2015; 3
S Zhong (1043_CR31) 2015; 85
X Lv (1043_CR45) 2015; 3
Y Feng (1043_CR23) 2013; 1
J Li (1043_CR47) 2012; 22
YQ Wang (1043_CR20) 2012; 134
L Zhuo (1043_CR3) 2013; 1
B Liu (1043_CR29) 2008; 130
Y Qiu (1043_CR4) 2010; 20
HG Jung (1043_CR19) 2011; 4
J Wang (1043_CR33) 2012; 5
E Quartarone (1043_CR22) 2016; 320
Q Li (1043_CR16) 2014; 6
H Geng (1043_CR25) 2016; 8
Q Xie (1043_CR43) 2013; 5
C Yuan (1043_CR24) 2014; 53
H Cheng (1043_CR15) 2010; 3
Y Wang (1043_CR2) 2013; 1
H Niu (1043_CR38) 2015; 3
XH Huang (1043_CR39) 2011; 56
Y Zhu (1043_CR6) 2015; 3
B Liu (1043_CR12) 2012; 12
Z Li (1043_CR14) 2015; 3
J Deng (1043_CR44) 2013; 6
Y Zhu (1043_CR51) 2014; 2
References_xml – volume: 8
  start-page: 6297
  year: 2014
  end-page: 6303
  ident: CR9
  article-title: Porous spinel Zn Co O hollow polyhedra templated for high-rate lithium-ion batteries
  publication-title: Acs Nano
  doi: 10.1021/nn501783n
– volume: 3
  start-page: 24303
  year: 2015
  end-page: 24308
  ident: CR7
  article-title: Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo O anode materials for high-performance lithium-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA06949A
– volume: 134
  start-page: 7874
  year: 2012
  end-page: 7879
  ident: CR20
  article-title: Rutile-TiO nanocoating for a high-rate Li Ti O anode of a lithium-ion battery
  publication-title: J Am Chem Soc
  doi: 10.1021/ja301266w
– volume: 8
  start-page: 3233
  year: 2016
  end-page: 3240
  ident: CR10
  article-title: Nonstoichiometric Co-rich ZnCo O hollow nanospheres for high performance formaldehyde detection at ppb levels
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/acsami.5b10862
– volume: 85
  start-page: 51
  year: 2015
  end-page: 59
  ident: CR31
  article-title: Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.12.064
– volume: 2
  start-page: 3912
  year: 2014
  end-page: 3918
  ident: CR26
  article-title: Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe O @TiO core–shell nanorods
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta14317a
– volume: 22
  start-page: 23254
  year: 2012
  end-page: 23259
  ident: CR47
  article-title: Spinel Mn Co O core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity
  publication-title: J Mater Chem
  doi: 10.1039/c2jm35607d
– volume: 201
  start-page: 30
  year: 2016
  end-page: 37
  ident: CR48
  article-title: Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.03.190
– volume: 135
  start-page: 1926
  year: 2013
  end-page: 1933
  ident: CR34
  article-title: Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response
  publication-title: J Am Chem Soc
  doi: 10.1021/ja311085e
– volume: 320
  start-page: 314
  year: 2016
  end-page: 321
  ident: CR22
  article-title: Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.04.107
– volume: 12
  start-page: 3005
  year: 2012
  end-page: 3011
  ident: CR12
  article-title: Hierarchical three-dimensional ZnCo O nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries
  publication-title: Nano Lett
  doi: 10.1021/nl300794f
– volume: 2
  start-page: 1400014
  year: 2015
  ident: CR40
  article-title: Growth of ultrathin ZnCo O nanosheets on reduced graphene oxide with enhanced lithium storage properties
  publication-title: Adv Sci
  doi: 10.1002/advs.201400014
– volume: 47
  start-page: 2930
  year: 2008
  end-page: 2946
  ident: CR49
  article-title: Nanomaterials for rechargeable lithium batteries
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200702505
– volume: 6
  start-page: 3214
  year: 2012
  end-page: 3223
  ident: CR52
  article-title: Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage
  publication-title: Acs Nano
  doi: 10.1021/nn300098m
– volume: 4
  start-page: 6042
  year: 2016
  end-page: 6047
  ident: CR11
  article-title: 3D hierarchical porous ZnO/ZnCo O nanosheets as high-rate anode material for lithium-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA00723F
– volume: 3
  start-page: 24082
  year: 2015
  end-page: 24094
  ident: CR38
  article-title: Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo O nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA07439H
– volume: 6
  start-page: 2726
  year: 2014
  end-page: 2733
  ident: CR16
  article-title: Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am405271q
– volume: 26
  start-page: 1889
  year: 2014
  end-page: 1895
  ident: CR35
  article-title: Hierarchical Zn Co O nanoarrays with high activity for electrocatalytic oxygen evolution
  publication-title: Chem Mater
  doi: 10.1021/cm4040903
– volume: 3
  start-page: 5183
  year: 2015
  end-page: 5188
  ident: CR45
  article-title: Carbon-coated a-Fe O nanostructures for efficient anode of Li-ion battery
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA06415A
– volume: 4
  start-page: 10014
  year: 2016
  end-page: 10022
  ident: CR36
  article-title: Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA03644A
– volume: 1
  start-page: 14
  year: 2013
  end-page: 19
  ident: CR30
  article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00278G
– volume: 1
  start-page: 7159
  year: 2013
  end-page: 7166
  ident: CR1
  article-title: Surfactant-assisted synthesis of a Co O /reduced graphene oxide composite as a superior anode material for Li-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta01498c
– volume: 3
  start-page: 21569
  year: 2015
  end-page: 21577
  ident: CR14
  article-title: Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo O –ZnO–C on nickel foam as anodes for high performance lithium ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA05733G
– volume: 17
  start-page: 2855
  year: 2007
  end-page: 2861
  ident: CR8
  article-title: Nanophase ZnCo O as a high performance anode material for Li-ion batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200600997
– volume: 1
  start-page: 5212
  year: 2013
  end-page: 5216
  ident: CR2
  article-title: Onion-like carbon matrix supported Co O nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta10559h
– volume: 130
  start-page: 5390
  year: 2008
  end-page: 5391
  ident: CR29
  article-title: Metal–organic framework as a template for porous carbon synthesis
  publication-title: J Am Chem Soc
  doi: 10.1021/ja7106146
– volume: 14
  start-page: 2597
  year: 2014
  end-page: 2603
  ident: CR17
  article-title: Self-supported Li Ti O –C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries
  publication-title: Nano Lett
  doi: 10.1021/nl5004174
– volume: 51
  start-page: 7459
  year: 2012
  end-page: 7463
  ident: CR18
  article-title: Nanoscale porous framework of lithium titanate for ultrafast lithium insertion
  publication-title: Angew Chem Int
  doi: 10.1002/anie.201201463
– volume: 4
  start-page: 1345
  year: 2011
  end-page: 1351
  ident: CR19
  article-title: Microscale spherical carbon-coated Li Ti O as ultra high power anode material for lithium batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/c0ee00620c
– volume: 3
  start-page: 895
  year: 2010
  end-page: 901
  ident: CR15
  article-title: A facile method to improve the high rate capability of Co O nanowire array electrodes
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0063-z
– volume: 2
  start-page: 360
  year: 2014
  end-page: 364
  ident: CR50
  article-title: MoSe nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA13584E
– volume: 5
  start-page: 5163
  year: 2012
  end-page: 5185
  ident: CR33
  article-title: Understanding and recent development of carbon coating on LiFePO cathode materials for lithium-ion batteries
  publication-title: Energy Environ Sci
  doi: 10.1039/C1EE01263K
– volume: 6
  start-page: 1965
  year: 2013
  end-page: 1970
  ident: CR44
  article-title: Facile synthesis of carbon-coated hematite nanostructures for solar water splitting
  publication-title: Energy Environ Sci
  doi: 10.1039/c3ee00066d
– volume: 1
  start-page: 1141
  year: 2013
  end-page: 1147
  ident: CR3
  article-title: Facile synthesis of a Co O -carbon nanotube composite and its superior performance as an anode material for Li-ion batteries
  publication-title: J Mater Chem A
  doi: 10.1039/C2TA00284A
– volume: 4
  start-page: 8687
  year: 2016
  end-page: 8695
  ident: CR21
  article-title: Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices
  publication-title: J Mater Chem C
  doi: 10.1039/C6TC03496A
– volume: 27
  start-page: 2400
  year: 2015
  end-page: 2405
  ident: CR28
  article-title: High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode
  publication-title: Adv Mater
  doi: 10.1002/adma.201405222
– volume: 5
  start-page: 5508
  year: 2013
  end-page: 5517
  ident: CR43
  article-title: Template-free synthesis of amorphous double-shelled zinc-cobalt citrate hollow microspheres and their transformation to crystalline ZnCo O microspheres
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am400696x
– volume: 2
  start-page: 8048
  year: 2014
  end-page: 8053
  ident: CR27
  article-title: Hierarchical NiFe O /Fe O nanotubes derived from metal organic frameworks for superior lithium ion battery anodes
  publication-title: J Mater Chem A
  doi: 10.1039/c4ta00200h
– volume: 19
  start-page: 486
  year: 2016
  end-page: 494
  ident: CR32
  article-title: Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in situ growth of crystalline ZIF-8 on a binary metal oxide
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.033
– volume: 51
  start-page: 16267
  year: 2015
  end-page: 16270
  ident: CR5
  article-title: Co O nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage
  publication-title: Chem Commun (Camb)
  doi: 10.1039/C5CC06160A
– volume: 53
  start-page: 1488
  year: 2014
  end-page: 1504
  ident: CR24
  article-title: Mixed transition-metal oxides: design, synthesis, and energy-related applications
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201303971
– volume: 20
  start-page: 4439
  year: 2010
  end-page: 4444
  ident: CR4
  article-title: A novel nanostructured spinel ZnCo O electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries
  publication-title: J Mater Chem
  doi: 10.1039/c0jm00101e
– volume: 1
  start-page: 9654
  year: 2013
  end-page: 9658
  ident: CR23
  article-title: Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta11538k
– volume: 56
  start-page: 4960
  year: 2011
  end-page: 4965
  ident: CR39
  article-title: Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.03.129
– volume: 24
  start-page: 3012
  year: 2014
  end-page: 3020
  ident: CR42
  article-title: Anodes: unusual formation of ZnCo O 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material (Adv Funct Mater 20/2014)
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201303442
– volume: 3
  start-page: 9556
  year: 2015
  end-page: 9564
  ident: CR6
  article-title: Two-dimensional ultrathin ZnCo O nanosheets: general formation and lithium storage application
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA00808E
– volume: 6
  start-page: 731
  year: 2014
  end-page: 736
  ident: CR41
  article-title: High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo O nanostructures on current collectors
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am405238a
– volume: 22
  start-page: 8916
  year: 2012
  end-page: 8921
  ident: CR13
  article-title: Electrospun porous ZnCo O nanotubes as a high-performance anode material for lithium-ion batteries
  publication-title: J Mater Chem
  doi: 10.1039/c2jm00094f
– volume: 3
  start-page: 8683
  year: 2015
  end-page: 8692
  ident: CR37
  article-title: Pineapple-shaped ZnCo O microspheres as anode materials for lithium ion batteries with prominent rate performance
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA00830A
– volume: 8
  start-page: 2967
  year: 2016
  end-page: 2973
  ident: CR25
  article-title: Metal coordination polymer derived mesoporous Co O nanorods with uniform TiO coating as advanced anodes for lithium ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C5NR08570E
– volume: 17
  start-page: 2792
  year: 2007
  end-page: 2799
  ident: CR53
  article-title: α-FeOnanoflakes as an anode material for Li-ion batteries
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200601186
– volume: 6
  start-page: 14827
  year: 2014
  end-page: 14835
  ident: CR46
  article-title: Highly porous NiCo O Nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability
  publication-title: Acs Appl Mater Interfaces
– volume: 2
  start-page: 7904
  year: 2014
  end-page: 7911
  ident: CR51
  article-title: Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets
  publication-title: J Mater Chem A
  doi: 10.1039/c4ta00257a
– volume: 12
  start-page: 3005
  year: 2012
  ident: 1043_CR12
  publication-title: Nano Lett
  doi: 10.1021/nl300794f
– volume: 6
  start-page: 14827
  year: 2014
  ident: 1043_CR46
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am5036913
– volume: 2
  start-page: 7904
  year: 2014
  ident: 1043_CR51
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA00257A
– volume: 85
  start-page: 51
  year: 2015
  ident: 1043_CR31
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.12.064
– volume: 4
  start-page: 8687
  year: 2016
  ident: 1043_CR21
  publication-title: J Mater Chem C
  doi: 10.1039/c6tc03496a
– volume: 1
  start-page: 1141
  year: 2013
  ident: 1043_CR3
  publication-title: J Mater Chem A
  doi: 10.1039/c2ta00284a
– volume: 130
  start-page: 5390
  year: 2008
  ident: 1043_CR29
  publication-title: J Am Chem Soc
  doi: 10.1021/ja7106146
– volume: 17
  start-page: 2792
  year: 2007
  ident: 1043_CR53
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200601186
– volume: 26
  start-page: 1889
  year: 2014
  ident: 1043_CR35
  publication-title: Chem Mater
  doi: 10.1021/cm4040903
– volume: 6
  start-page: 1965
  year: 2013
  ident: 1043_CR44
  publication-title: Energy Environ Sci
  doi: 10.1039/C3EE00066D
– volume: 8
  start-page: 6297
  year: 2014
  ident: 1043_CR9
  publication-title: Acs Nano
  doi: 10.1021/nn501783n
– volume: 51
  start-page: 16267
  year: 2015
  ident: 1043_CR5
  publication-title: Chem Commun (Camb)
  doi: 10.1039/c5cc06160a
– volume: 6
  start-page: 2726
  year: 2014
  ident: 1043_CR16
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am405271q
– volume: 2
  start-page: 3912
  year: 2014
  ident: 1043_CR26
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta14317a
– volume: 3
  start-page: 24082
  year: 2015
  ident: 1043_CR38
  publication-title: J Mater Chem A
  doi: 10.1039/c5ta07439h
– volume: 6
  start-page: 731
  year: 2014
  ident: 1043_CR41
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am405238a
– volume: 22
  start-page: 23254
  year: 2012
  ident: 1043_CR47
  publication-title: J Mater Chem
  doi: 10.1039/c2jm35607d
– volume: 2
  start-page: 1400014
  year: 2015
  ident: 1043_CR40
  publication-title: Adv Sci
  doi: 10.1002/advs.201400014
– volume: 5
  start-page: 5163
  year: 2012
  ident: 1043_CR33
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee01263k
– volume: 1
  start-page: 14
  year: 2013
  ident: 1043_CR30
  publication-title: J Mater Chem A
  doi: 10.1039/c2ta00278g
– volume: 134
  start-page: 7874
  year: 2012
  ident: 1043_CR20
  publication-title: J Am Chem Soc
  doi: 10.1021/ja301266w
– volume: 320
  start-page: 314
  year: 2016
  ident: 1043_CR22
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.04.107
– volume: 5
  start-page: 5508
  year: 2013
  ident: 1043_CR43
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/am400696x
– volume: 135
  start-page: 1926
  year: 2013
  ident: 1043_CR34
  publication-title: J Am Chem Soc
  doi: 10.1021/ja311085e
– volume: 3
  start-page: 8683
  year: 2015
  ident: 1043_CR37
  publication-title: J Mater Chem A
  doi: 10.1039/c5ta00830a
– volume: 3
  start-page: 895
  year: 2010
  ident: 1043_CR15
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0063-z
– volume: 14
  start-page: 2597
  year: 2014
  ident: 1043_CR17
  publication-title: Nano Lett
  doi: 10.1021/nl5004174
– volume: 3
  start-page: 21569
  year: 2015
  ident: 1043_CR14
  publication-title: J Mater Chem A
  doi: 10.1039/c5ta05733g
– volume: 3
  start-page: 9556
  year: 2015
  ident: 1043_CR6
  publication-title: J Mater Chem A
  doi: 10.1039/c5ta00808e
– volume: 4
  start-page: 6042
  year: 2016
  ident: 1043_CR11
  publication-title: J Mater Chem A
  doi: 10.1039/c6ta00723f
– volume: 1
  start-page: 9654
  year: 2013
  ident: 1043_CR23
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta11538k
– volume: 201
  start-page: 30
  year: 2016
  ident: 1043_CR48
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.03.190
– volume: 22
  start-page: 8916
  year: 2012
  ident: 1043_CR13
  publication-title: J Mater Chem
  doi: 10.1039/C2JM00094F
– volume: 2
  start-page: 8048
  year: 2014
  ident: 1043_CR27
  publication-title: J Mater Chem A
  doi: 10.1039/c4ta00200h
– volume: 20
  start-page: 4439
  year: 2010
  ident: 1043_CR4
  publication-title: J Mater Chem
  doi: 10.1039/c0jm00101e
– volume: 4
  start-page: 10014
  year: 2016
  ident: 1043_CR36
  publication-title: J Mater Chem A
  doi: 10.1039/c6ta03644a
– volume: 19
  start-page: 486
  year: 2016
  ident: 1043_CR32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.033
– volume: 24
  start-page: 3012
  year: 2014
  ident: 1043_CR42
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201470131
– volume: 47
  start-page: 2930
  year: 2008
  ident: 1043_CR49
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200702505
– volume: 17
  start-page: 2855
  year: 2007
  ident: 1043_CR8
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200600997
– volume: 56
  start-page: 4960
  year: 2011
  ident: 1043_CR39
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.03.129
– volume: 1
  start-page: 7159
  year: 2013
  ident: 1043_CR1
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta01498c
– volume: 1
  start-page: 5212
  year: 2013
  ident: 1043_CR2
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta10559h
– volume: 51
  start-page: 7459
  year: 2012
  ident: 1043_CR18
  publication-title: Angew Chem Int
  doi: 10.1002/anie.201201463
– volume: 53
  start-page: 1488
  year: 2014
  ident: 1043_CR24
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201303971
– volume: 8
  start-page: 3233
  year: 2016
  ident: 1043_CR10
  publication-title: Acs Appl Mater Interfaces
  doi: 10.1021/acsami.5b10862
– volume: 2
  start-page: 360
  year: 2014
  ident: 1043_CR50
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA13584E
– volume: 6
  start-page: 3214
  year: 2012
  ident: 1043_CR52
  publication-title: Acs Nano
  doi: 10.1021/nn300098m
– volume: 3
  start-page: 5183
  year: 2015
  ident: 1043_CR45
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA06415A
– volume: 27
  start-page: 2400
  year: 2015
  ident: 1043_CR28
  publication-title: Adv Mater
  doi: 10.1002/adma.201405222
– volume: 3
  start-page: 24303
  year: 2015
  ident: 1043_CR7
  publication-title: J Mater Chem A
  doi: 10.1039/c5ta06949a
– volume: 4
  start-page: 1345
  year: 2011
  ident: 1043_CR19
  publication-title: Energy Environ Sci
  doi: 10.1039/C0EE00620C
– volume: 8
  start-page: 2967
  year: 2016
  ident: 1043_CR25
  publication-title: Nanoscale
  doi: 10.1039/c5nr08570e
SSID ssj0005721
Score 2.3825612
Snippet The C–ZnCo 2 O 4 –ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo 2 O 4 –ZnO NRAs, are rational designed and synthesized via a...
The C–ZnCo2O4–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo2O4–ZnO NRAs, are rational designed and synthesized via a facile...
The C–ZnCo₂O₄–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo₂O₄–ZnO NRAs, are rational designed and synthesized via a facile...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7768
SubjectTerms Anodes
Arrays
Buffer layers
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
coatings
Crystallography and Scattering Methods
Diffusion coating
Discharge
electron transfer
Electron transport
Energy Materials
foil
Foils
Ion diffusion
Lithium
lithium batteries
Lithium-ion batteries
Materials Science
Nanorods
Polymer Sciences
Rechargeable batteries
Solid Mechanics
Substrates
Zinc oxide
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatwwEBZtcmkPpW1Sum1aVMipQdSybHl9KknIEgrJhpJAyMXoZ0QDqbxd7xZ6KOQd8oZ5ksx47bgtNDcLyxL4G41mNKNvGNsubEh0SJ2QqXYiMwqEUc6LHBIZUKCgaGsdHh3rw7Psy3l-3h24NV1aZa8TW0Xta0dn5J9Q7kqdybHOP89-CKoaRdHVroTGY7aOKniMztf63sHxydchyaNIZc8XTsxpfVxzdXkOtypBWlpSCDr7e2cazM1_IqTtxjN5zp51FiPfXUH8gj2C-JI9_YNHcIP9PppOhMfGT_DcmbmtI3e1oYxmjo8NXAXRLGcth7nnF3G_TqfZ7fXNRZzyaGKNSpSb-dz8arhpODEYi9lwoYBjDw8cmxxt9m-Xy-8CweS2ZeZER3uTnU0OTvcPRVdXQTg0lxbCquB1ErSyBoqxsYGsNu2kkzkgTlBak6vcoafhfJFaY3UJAUCOAa2zxCv1iq3FOsJrxlXpWx8mBKOIug2RL73WQZUBRzVyxJL-n1auIx2n2hdX1UCXTDBUCENFMFTZiH28_2S2Ytx4qPNWD1TVLb6mGkRlxD7cv8ZlQ7EQE6FeNlR9k0LCSYZD7PQAD0P8d8I3D0_4lj1JSaLafN4ttraYL-EdWi0L-74TzTs66era
  priority: 102
  providerName: ProQuest
Title MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries
URI https://link.springer.com/article/10.1007/s10853-017-1043-4
https://www.proquest.com/docview/2259641865
https://www.proquest.com/docview/2000460044
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELb6c4EDggJiS7syEieQpThOnM1xaXdbQbeLgJVKL5F_xgKpdVabXSQOlfoOfcM-CeM0aQoCpJ4SK85Eyjcez2jG3xDyOtMuki42jMfSsEQJYEoYy1KIuEOFgqzudTg5loez5P1JetKc467aavc2JVlb6juH3XBrYcGq8pAyTtbJZhpCd1TiWTzs6jqymLcU4YEsrU1l_k3E75tR52H-kRSt95rxY_KocRLp8AbVJ2QN_BZ5eIc68Cm5mEzHzOLgB1hq1EKXnppShSJmircVnDlWreY1bbmlp36vjKfJ9eXVqZ9Sr3yJdpOqxUL9rKiqaCAtZvPuDAHFGRYoDim66d--r84Z4kd1TcaJsfUzMhuPvuwdsqaVAjPoIS2ZFs7KyEmhFWQDpV1w1KThhqeA0ECuVSpSg8GFsVmslZY5OAA-AHTIIivEc7LhSw8vCBW5rcMW55QIbG0Idm6ldCJ3KFXxHonaf1qYhmc8tLs4KzqG5ABDgTAUAYYi6ZE3t6_Mb0g2_jd5pwWqaNZbVaBVymXCBzLtkVe3j3GlhPSH8lCuqtBwM2SBowRFvG0B7kT884Pb95r9kjyIg4LVFb07ZGO5WMEu-i1L3Sfrg_FBn2wO9ydHn8P14OuHEV7fjY4_furXWvwLgbnriQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaq9gAcUPkTSwsYCS4gizhOnM0BIVRYtrTbvbRS1Uvwz1hFKsl2s9uqByTegffgoXgSZrKbBpDorbdYcezI88147LG_Yex5ZkOkQ-yEjLUTiVEgjHJepBDJgICCrMl1ONrTw4Pk02F6uMJ-tndh6FhlaxMbQ-0rR3vkrxF3uU5kX6dvJ6eCskZRdLVNobGAxQ5cnOOSrX6z_R7l-yKOBx_2t4ZimVVAOHQWZsKq4HUUtLIGsr6xgXwW7aSTKeBfQm5NqlKHfrbzWWyN1TkEANkH9E0iTxugaPLXEqVy0qj-4GN3pCSLZctOTjxtbRR1cVUPJ0ZBc4KkgHfy9zzYObf_xGObaW6wzm4v_VP-bgGoO2wFyrvs1h-shffYt9F4IDwWzsBzZ6a2KrmrDJ2f5vhYw0kQ9XzSMKZ7flRuVfE4-fX9x1E55qUpKzTZ3Eyn5qLmpubElywm3fUFjjU8cCxyXCEcf5l_FQgdbhseUFzW32cH1zLeD9hqWZXwkHGV-2bFFIJRRBSHOMu91kHlAVs1sseidkwLt6Q4p0wbJ0VHzkxiKFAMBYmhSHrs5eUnkwW_x1WVN1tBFUtVr4sOmD327PI1KilFXkwJ1bymXJ8UgI4SbOJVK-Cuif92-OjqDp-yG8P90W6xu723s8FuxoSu5iTxJludTefwGP2lmX3SgJSzz9etFb8BGEkoZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEF5aBWkfRFuLp7ZuoU-VxWw22VwexXporV4feiC-hP0xi4LdHJc7oQ8F_wf_w_4lnc0lxooWfEvIZgL5Zme_ZWa_IeRTpl0kXWwYj6VhiRLAlDCWpRBxhw4FWd3r8ORUHo6Sr2fpWdPntGqr3duU5PxMQ1Bp8tPdsXW79w6-4TLDQoTlIX2cvCSLGI15cOtRvNfVeGQxb-XCg3Bam9Z8zMS_C1PHNh8kSOt1Z7BClhvCSPfmCK-SF-DfkNf3ZATfkt8nwwGzeHMNlho10aWnplShoJniZQVXjlWzcS1hbum53y_jYfLn5vbcD6lXvsQYStVkon5VVFU0CBizcXeegOIICxRvKVL2i8vZT4ZYUl0Lc-I-e42MBgc_9g9Z01aBGWRLU6aFszJyUmgFWV9pF0ibNNzwFBAmyLVKRWpwo2FsFmulZQ4OgPcByVlkhXhHFnzpYZ1Qkdt6C-OcEkG5DYHPrZRO5A6tKt4jUftPC9NojofWF1dFp5YcYCgQhiLAUCQ98vnulfFccON_g7daoIpm7lUFRqhcJrwv0x75ePcYZ01IhSgP5awKzTdDRjhK0MROC3Bn4skPbjxr9DZZ-v5lUHw7Oj3eJK_i4Gt1oe8WWZhOZvAe6cxUf6hd9i-Ybu0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOF-derived+carbon+coating+on+self-supported+ZnCo2O4%E2%80%93ZnO+nanorod+arrays+as+high-performance+anode+for+lithium-ion+batteries&rft.jtitle=Journal+of+materials+science&rft.au=Gan%2C+Qingmeng&rft.au=Zhao%2C+Kuangmin&rft.au=Liu%2C+Suqin&rft.au=He%2C+Zhen&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=52&rft.issue=13&rft.spage=7768&rft.epage=7780&rft_id=info:doi/10.1007%2Fs10853-017-1043-4&rft.externalDocID=10_1007_s10853_017_1043_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon