Freezing copper as a noble metal–like catalyst for preliminary hydrogenation

Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction. The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 4; no. 12; p. eaau3275
Main Authors Sun, Jian, Yu, Jiafeng, Ma, Qingxiang, Meng, Fanqiong, Wei, Xiaoxuan, Sun, Yannan, Tsubaki, Noritatsu
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction. The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO 2 catalysts because of inevitable coexistence of Cu + and Cu 0 , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO 2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu 0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu + is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO 2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the “penetration effect” of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal–like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.
AbstractList The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.
Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction. The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO 2 catalysts because of inevitable coexistence of Cu + and Cu 0 , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO 2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu 0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu + is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO 2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the “penetration effect” of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal–like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.
The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO2 catalysts because of inevitable coexistence of Cu+ and Cu0, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu+ is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO2 catalysts because of inevitable coexistence of Cu+ and Cu0, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu+ is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.
Author Wei, Xiaoxuan
Ma, Qingxiang
Yu, Jiafeng
Sun, Yannan
Tsubaki, Noritatsu
Meng, Fanqiong
Sun, Jian
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-4191-578X
  surname: Sun
  fullname: Sun, Jian
  organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
– sequence: 2
  givenname: Jiafeng
  orcidid: 0000-0003-4314-1324
  surname: Yu
  fullname: Yu, Jiafeng
  organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
– sequence: 3
  givenname: Qingxiang
  surname: Ma
  fullname: Ma, Qingxiang
  organization: State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
– sequence: 4
  givenname: Fanqiong
  surname: Meng
  fullname: Meng, Fanqiong
  organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
– sequence: 5
  givenname: Xiaoxuan
  orcidid: 0000-0002-9384-4979
  surname: Wei
  fullname: Wei, Xiaoxuan
  organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, PR China
– sequence: 6
  givenname: Yannan
  surname: Sun
  fullname: Sun, Yannan
  organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China., School of Chemistry, Dalian University of Technology, Dalian 116023, PR China
– sequence: 7
  givenname: Noritatsu
  orcidid: 0000-0001-6786-5058
  surname: Tsubaki
  fullname: Tsubaki, Noritatsu
  organization: Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Toyama 930-8555, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30588490$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1PGzEQtSpQoSnXHpGPXJL6e3cvlRCCUilqL3C2HHs2GLz21t5ECqf-h_7D_hIWEhBF4jQzmnnvjd77hPZiioDQF0pmlDL1tVhv3HpmzIqzSn5Ah4xXcsqkqPde9QfoqJRbQggVSknafEQHnMi6Fg05RD8vMsC9j0tsU99DxqZgg2NaBMAdDCb8-_M3-DvA1ozDpgy4TRn3GYLvfDR5g282LqclRDP4FD-j_daEAke7OkHXF-dXZ5fT-a_vP85O51MrpBqmC-ZaW9PWMcVBNhXh0lLHFryRrTANuIaKppWEO0eUtVI4RoQiFSVAagsVn6BvW95-tejAWYhDNkH32XfjTzoZr__fRH-jl2mtFSecMj4SnOwIcvq9gjLozhcLIZgIaVU0o4qS0S32qHX8WutF5NnE8UBsD2xOpWRotfXDkx2jtA-aEv0Yl97GpXdxjbDZG9gz8zuAB8UvnI4
CitedBy_id crossref_primary_10_1134_S001814392307010X
crossref_primary_10_1002_advs_202000736
crossref_primary_10_1016_j_fuel_2020_117213
crossref_primary_10_1016_j_jechem_2022_02_039
crossref_primary_10_1016_j_apcatb_2020_119406
crossref_primary_10_1038_s41467_021_27557_1
crossref_primary_10_1021_acs_jpcc_4c01128
crossref_primary_10_1002_ange_202402684
crossref_primary_10_1002_anie_202319896
crossref_primary_10_1021_acscatal_9b05477
crossref_primary_10_1002_smll_202404142
crossref_primary_10_1021_acscatal_1c00339
crossref_primary_10_1039_D3SC06990G
crossref_primary_10_3390_catal13040737
crossref_primary_10_1021_acscatal_0c04371
crossref_primary_10_3390_catal9100796
crossref_primary_10_1016_j_mcat_2024_113898
crossref_primary_10_1002_smll_202008052
crossref_primary_10_1039_C9TA08297B
crossref_primary_10_3390_molecules30020225
crossref_primary_10_1039_D4GC00684D
crossref_primary_10_1039_D1NR07255B
crossref_primary_10_1016_j_apcatb_2023_122949
crossref_primary_10_1016_j_mcat_2024_114109
crossref_primary_10_1002_aenm_201901973
crossref_primary_10_1021_acscatal_2c05791
crossref_primary_10_1016_j_cej_2024_152350
crossref_primary_10_1021_acssuschemeng_2c05450
crossref_primary_10_1016_j_jcat_2022_01_004
crossref_primary_10_1016_j_fuel_2023_128866
crossref_primary_10_1002_adom_202402451
crossref_primary_10_1002_anie_202402684
crossref_primary_10_1021_acsami_3c16623
crossref_primary_10_1016_j_ces_2023_119176
crossref_primary_10_1021_acs_iecr_9b04864
crossref_primary_10_1039_D1SC01700D
crossref_primary_10_1038_s42004_019_0239_8
crossref_primary_10_1016_j_jcat_2024_115822
crossref_primary_10_1039_D0CS01003K
crossref_primary_10_1016_j_cattod_2023_114176
crossref_primary_10_1016_j_fuel_2022_124806
crossref_primary_10_1002_slct_202400184
crossref_primary_10_1016_j_ccr_2023_215602
crossref_primary_10_1021_acscatal_2c03327
crossref_primary_10_1021_acscatal_4c06219
crossref_primary_10_1039_D3CY01611K
crossref_primary_10_1002_ange_202319896
crossref_primary_10_1007_s12678_023_00840_z
crossref_primary_10_1016_j_mcat_2024_114736
crossref_primary_10_1016_j_mtsust_2022_100109
crossref_primary_10_1021_jacs_3c01638
crossref_primary_10_1126_science_adj1962
crossref_primary_10_1002_adfm_202105579
crossref_primary_10_1016_j_jcou_2023_102460
crossref_primary_10_1039_D3NR05847F
crossref_primary_10_1016_j_matchemphys_2022_127060
crossref_primary_10_1038_s41467_022_31078_w
crossref_primary_10_1016_j_chempr_2022_06_021
crossref_primary_10_1002_cctc_201901391
crossref_primary_10_1016_S1872_5813_21_60011_2
crossref_primary_10_1039_C9CY01198F
crossref_primary_10_1016_j_ensm_2025_104058
crossref_primary_10_1021_acsami_3c01400
crossref_primary_10_1134_S0018143921050039
crossref_primary_10_1109_ACCESS_2023_3288486
crossref_primary_10_1016_j_recm_2023_08_004
crossref_primary_10_1039_D3CY00319A
crossref_primary_10_1021_acs_accounts_3c00311
crossref_primary_10_1126_science_abm9257
crossref_primary_10_1002_advs_202204248
crossref_primary_10_1021_acsami_9b11703
crossref_primary_10_1021_acs_iecr_0c04525
crossref_primary_10_1021_acs_iecr_9b01214
crossref_primary_10_1016_j_surfin_2024_105494
crossref_primary_10_1021_acscatal_3c04740
crossref_primary_10_1021_acs_iecr_0c01619
crossref_primary_10_1038_s41467_023_36640_8
crossref_primary_10_1007_s10562_023_04365_4
Cites_doi 10.1103/PhysRevB.24.649
10.1002/cctc.201501055
10.1039/b817740f
10.1039/c3ta14936f
10.1016/j.jcat.2010.10.010
10.1007/s10653-013-9592-1
10.1038/ncomms3339
10.1016/j.apcatb.2011.08.013
10.1016/j.apcatb.2009.04.002
10.1016/j.apcatb.2014.07.023
10.1021/cr0680282
10.1021/cs4008842
10.1039/B514191E
10.1016/S0926-860X(99)00106-4
10.1021/ar4002697
10.1016/j.jcat.2012.09.023
10.1039/c3cy01091k
10.1039/c0cc00581a
10.1021/jp902688b
10.1039/C5RA04389A
10.1016/j.catcom.2017.05.007
10.1016/j.jcat.2012.10.004
10.1016/j.susc.2014.08.029
10.1021/ja01643a067
10.1016/j.apcata.2008.07.020
10.1103/PhysRevB.38.11322
10.1016/S0926-860X(99)00307-5
10.1039/c3cc40570b
10.1016/j.jcat.2008.04.021
10.1039/C5CY01965F
10.1021/cs400574v
10.1021/cs5009283
10.1016/j.apcatb.2010.10.013
10.1021/ja3034153
10.1016/j.catcom.2017.04.001
10.1016/j.apcata.2015.10.026
10.15407/ujpe58.03.0249
10.1016/S0368-2048(03)00126-9
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1126/sciadv.aau3275
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
EISSN 2375-2548
ExternalDocumentID PMC6303123
30588490
10_1126_sciadv_aau3275
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 2016-04
– fundername: ;
  grantid: 2018214
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
ADPDF
BCGUY
NPM
OVEED
7X8
5PM
ID FETCH-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 13:53:08 EDT 2025
Fri Jul 11 15:14:22 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Tue Jul 01 03:52:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-4314-1324
0000-0002-9384-4979
0000-0002-4191-578X
0000-0001-6786-5058
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aau3275
PMID 30588490
PQID 2161065127
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303123
proquest_miscellaneous_2161065127
pubmed_primary_30588490
crossref_citationtrail_10_1126_sciadv_aau3275
crossref_primary_10_1126_sciadv_aau3275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2018
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References Abe T. (e_1_3_2_18_2) 2009; 2
Zheng X. (e_1_3_2_7_2) 2013; 3
Poels E. K. (e_1_3_2_37_2) 2000; 191
Yano T. (e_1_3_2_27_2) 2003; 131
e_1_3_2_28_2
Gong J. (e_1_3_2_36_2) 2012; 134
Chen J. (e_1_3_2_2_2) 2014; 36
Yuan Z. (e_1_3_2_29_2) 2011; 101
Yu H.-S. (e_1_3_2_40_2) 2015; 26
Sun J. (e_1_3_2_20_2) 2014; 2
Messinger B. J. (e_1_3_2_35_2) 1981; 24
Zhao S. (e_1_3_2_5_2) 2013; 297
Yue H. (e_1_3_2_8_2) 2013; 4
Sun J. (e_1_3_2_19_2) 2014; 4
Chen Y. (e_1_3_2_39_2) 2017; 96
Zheng J. (e_1_3_2_13_2) 2013; 297
Yin A. (e_1_3_2_11_2) 2010; 46
Pauly N. (e_1_3_2_26_2) 2014; 630
Yin A. (e_1_3_2_9_2) 2009; 113
Yin A. (e_1_3_2_12_2) 2011; 108
Brands D. S. (e_1_3_2_17_2) 1999; 184
Ma X. (e_1_3_2_31_2) 2015; 5
Sun J. (e_1_3_2_25_2) 2014; 4
Dong X. (e_1_3_2_30_2) 2016; 6
Eustis S. (e_1_3_2_32_2) 2006; 35
Cui Y. (e_1_3_2_14_2) 2016; 8
Mikovksy R. J. (e_1_3_2_16_2) 1954; 76
e_1_3_2_33_2
Yue H. (e_1_3_2_3_2) 2014; 47
Di W. (e_1_3_2_4_2) 2016; 510
Chen L.-F. (e_1_3_2_21_2) 2008; 257
Yin A. (e_1_3_2_10_2) 2008; 349
Wen C. (e_1_3_2_6_2) 2013; 49
He Z. (e_1_3_2_23_2) 2011; 277
Yeshchenko O. A. (e_1_3_2_34_2) 2013; 58
Wen C. (e_1_3_2_15_2) 2015; 162
Bae J. W. (e_1_3_2_22_2) 2009; 90
Zhu Y. (e_1_3_2_24_2) 2014; 4
Liu Y. (e_1_3_2_38_2) 2017; 98
References_xml – volume: 24
  start-page: 649
  year: 1981
  ident: e_1_3_2_35_2
  article-title: Local fields at the surface of noble-metal microspheres
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.649
– volume: 8
  start-page: 527
  year: 2016
  ident: e_1_3_2_14_2
  article-title: Investigation of activated-carbon-supported copper catalysts with unique catalytic performance in the hydrogenation of dimethyl oxalate to methyl glycolate
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201501055
– volume: 2
  start-page: 315
  year: 2009
  ident: e_1_3_2_18_2
  article-title: CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b817740f
– volume: 2
  start-page: 8637
  year: 2014
  ident: e_1_3_2_20_2
  article-title: Fabrication of active Cu-Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta14936f
– volume: 277
  start-page: 54
  year: 2011
  ident: e_1_3_2_23_2
  article-title: Effect of boric oxide doping on the stability and activity of a Cu–SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.10.010
– volume: 36
  start-page: 735
  year: 2014
  ident: e_1_3_2_2_2
  article-title: Coal utilization in China: Environmental impacts and human health
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-013-9592-1
– volume: 4
  start-page: 2339
  year: 2013
  ident: e_1_3_2_8_2
  article-title: A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3339
– volume: 108
  start-page: 90
  year: 2011
  ident: e_1_3_2_12_2
  article-title: Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2011.08.013
– volume: 90
  start-page: 426
  year: 2009
  ident: e_1_3_2_22_2
  article-title: Synthesis of DME from syngas on the bifunctional Cu-ZnO-Al2O3/Zr-modified ferrierite: Effect of Zr content
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.04.002
– volume: 162
  start-page: 483
  year: 2015
  ident: e_1_3_2_15_2
  article-title: Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.07.023
– ident: e_1_3_2_33_2
  doi: 10.1021/cr0680282
– volume: 4
  start-page: 1
  year: 2014
  ident: e_1_3_2_19_2
  article-title: Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins
  publication-title: ACS Catal.
  doi: 10.1021/cs4008842
– volume: 35
  start-page: 209
  year: 2006
  ident: e_1_3_2_32_2
  article-title: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B514191E
– volume: 184
  start-page: 279
  year: 1999
  ident: e_1_3_2_17_2
  article-title: Ester hydrogenolysis over promoted Cu/SiO2 catalysts
  publication-title: Appl. Catal. A. Gen.
  doi: 10.1016/S0926-860X(99)00106-4
– volume: 47
  start-page: 1483
  year: 2014
  ident: e_1_3_2_3_2
  article-title: An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar4002697
– volume: 297
  start-page: 110
  year: 2013
  ident: e_1_3_2_13_2
  article-title: Efficient low-temperature selective hydrogenation of esters on bimetallic Au–Ag/SBA-15 catalyst
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.09.023
– volume: 4
  start-page: 1260
  year: 2014
  ident: e_1_3_2_25_2
  article-title: Combining wet impregnation and dry sputtering to prepare highly-active CoPd/H-ZSM5 ternary catalysts applied for tandem catalytic synthesis of isoparaffins
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy01091k
– volume: 46
  start-page: 4348
  year: 2010
  ident: e_1_3_2_11_2
  article-title: High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00581a
– volume: 113
  start-page: 11003
  year: 2009
  ident: e_1_3_2_9_2
  article-title: The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp902688b
– volume: 5
  start-page: 37581
  year: 2015
  ident: e_1_3_2_31_2
  article-title: Dynamic redox cycle of Cu0 and Cu+ over Cu/SiO2 catalyst in ester hydrogenation
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04389A
– volume: 98
  start-page: 43
  year: 2017
  ident: e_1_3_2_38_2
  article-title: Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.05.007
– volume: 297
  start-page: 142
  year: 2013
  ident: e_1_3_2_5_2
  article-title: Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.10.004
– volume: 630
  start-page: 294
  year: 2014
  ident: e_1_3_2_26_2
  article-title: LMM Auger primary excitation spectra of copper
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2014.08.029
– volume: 76
  start-page: 3814
  year: 1954
  ident: e_1_3_2_16_2
  article-title: Hydrogen-deuterium exchange on copper, silver, gold and alloy surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01643a067
– volume: 349
  start-page: 91
  year: 2008
  ident: e_1_3_2_10_2
  article-title: Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol
  publication-title: Appl. Catal. A. Gen.
  doi: 10.1016/j.apcata.2008.07.020
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevB.38.11322
– volume: 191
  start-page: 83
  year: 2000
  ident: e_1_3_2_37_2
  article-title: Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction
  publication-title: Appl. Catal. A. Gen.
  doi: 10.1016/S0926-860X(99)00307-5
– volume: 26
  start-page: 050102
  year: 2015
  ident: e_1_3_2_40_2
  article-title: The XAFS beamline of SSRF
  publication-title: Nucl. Sci. Tech.
– volume: 49
  start-page: 5195
  year: 2013
  ident: e_1_3_2_6_2
  article-title: Solvent feedstock effect: The insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40570b
– volume: 257
  start-page: 172
  year: 2008
  ident: e_1_3_2_21_2
  article-title: Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.04.021
– volume: 6
  start-page: 4151
  year: 2016
  ident: e_1_3_2_30_2
  article-title: Comparative study of silica-supported copper catalysts prepared by different methods: Formation and transition of copper phyllosilicate
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01965F
– volume: 3
  start-page: 2738
  year: 2013
  ident: e_1_3_2_7_2
  article-title: Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol
  publication-title: ACS Catal.
  doi: 10.1021/cs400574v
– volume: 4
  start-page: 3612
  year: 2014
  ident: e_1_3_2_24_2
  article-title: Cu nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation
  publication-title: ACS Catal.
  doi: 10.1021/cs5009283
– volume: 101
  start-page: 431
  year: 2011
  ident: e_1_3_2_29_2
  article-title: Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2010.10.013
– volume: 134
  start-page: 13922
  year: 2012
  ident: e_1_3_2_36_2
  article-title: Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3034153
– volume: 96
  start-page: 58
  year: 2017
  ident: e_1_3_2_39_2
  article-title: High-performance Ag-CuOx nanocomposite catalyst galvanically deposited onto a Ni-foam for gas-phase dimethyl oxalate hydrogenation to methyl glycolate
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.04.001
– volume: 510
  start-page: 244
  year: 2016
  ident: e_1_3_2_4_2
  article-title: Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol
  publication-title: Appl. Catal. A. Gen.
  doi: 10.1016/j.apcata.2015.10.026
– volume: 58
  start-page: 249
  year: 2013
  ident: e_1_3_2_34_2
  article-title: Temperature effects on the surface plasmon resonance in copper nanoparticles
  publication-title: Ukr. J. Phys.
  doi: 10.15407/ujpe58.03.0249
– volume: 131
  start-page: 133
  year: 2003
  ident: e_1_3_2_27_2
  article-title: Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/S0368-2048(03)00126-9
SSID ssj0001466519
Score 2.3880577
Snippet Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction. The control of product distribution...
The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eaau3275
SubjectTerms Chemical Physics
Chemistry
SciAdv r-articles
Title Freezing copper as a noble metal–like catalyst for preliminary hydrogenation
URI https://www.ncbi.nlm.nih.gov/pubmed/30588490
https://www.proquest.com/docview/2161065127
https://pubmed.ncbi.nlm.nih.gov/PMC6303123
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB4VKgEXxG8bCsiVKrU9LFrvj3f3gFCFSBESnBopt5Vjj0VEukl3E0Q48Q59wz5Jx7tOGgpcuOxlxz7M5_F8Ho9nAD6JlKMwZEiWrHqRDrgnjcxoM9TKR0E24tu3w5dX4rwTXXTj7r_8J6fA6tmjne0n1SkHR3e_pidk8McLD2Ckvj2SchIGSbwEb8krJdZILx3Vr-MtkRDEVlzdxqfD1mCFln6aRnZ3XnRRT3jn_-mTC_6ovQHrjkiybw3ym_AGiy1YPZ31b9uCTWe2Ffviakt_3Yardol4T-6KqeFohCWTFZOssE1l2E8kHfx5-D3o3yCrwzrTasyI1LJRiYO6-1c5ZddTXQ5p1dWI7kCnffbj9NxzLRU8RUxp7PUCbVTKjQ5EiASPH8aK66AXZrGJZIY6oxOTif1Qa18oFRN49uaUaAj6qcIk3IXlYljge2AZz1QsUGZCqyjjRqrQcBMbUiZiqsMWeDMt5srVG7dtLwZ5fe4IRN4AkDsAWvB5Lj9qKm28KPlxBkpOOrU3HLLA4aTKA-KvxKl4kLTgXQPSfK4Zui1IHsE3F7CFth__KfrXdcFtQX6ePPzeq0d-gDUiWmmTBrMPy-NyggdEZsa9wzoIQN_vXX5Yr9i_jez8hw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing+copper+as+a+noble+metal%E2%80%93like+catalyst+for+preliminary+hydrogenation&rft.jtitle=Science+advances&rft.au=Sun%2C+Jian&rft.au=Yu%2C+Jiafeng&rft.au=Ma%2C+Qingxiang&rft.au=Meng%2C+Fanqiong&rft.date=2018-12-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=4&rft.issue=12&rft_id=info:doi/10.1126%2Fsciadv.aau3275&rft_id=info%3Apmid%2F30588490&rft.externalDocID=PMC6303123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon