Freezing copper as a noble metal–like catalyst for preliminary hydrogenation
Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction. The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is...
Saved in:
Published in | Science advances Vol. 4; no. 12; p. eaau3275 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction.
The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO
2
catalysts because of inevitable coexistence of Cu
+
and Cu
0
, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO
2
catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu
0
is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu
+
is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO
2
from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the “penetration effect” of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal–like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts. |
---|---|
AbstractList | The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO
catalysts because of inevitable coexistence of Cu
and Cu
, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO
catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu
is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu
is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO
from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts. Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction. The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO 2 catalysts because of inevitable coexistence of Cu + and Cu 0 , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO 2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu 0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu + is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO 2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the “penetration effect” of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal–like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts. The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO2 catalysts because of inevitable coexistence of Cu+ and Cu0, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu+ is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO2 catalysts because of inevitable coexistence of Cu+ and Cu0, leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO2 catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu0 is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu+ is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO2 from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts. |
Author | Wei, Xiaoxuan Ma, Qingxiang Yu, Jiafeng Sun, Yannan Tsubaki, Noritatsu Meng, Fanqiong Sun, Jian |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-4191-578X surname: Sun fullname: Sun, Jian organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China – sequence: 2 givenname: Jiafeng orcidid: 0000-0003-4314-1324 surname: Yu fullname: Yu, Jiafeng organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China – sequence: 3 givenname: Qingxiang surname: Ma fullname: Ma, Qingxiang organization: State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China – sequence: 4 givenname: Fanqiong surname: Meng fullname: Meng, Fanqiong organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China – sequence: 5 givenname: Xiaoxuan orcidid: 0000-0002-9384-4979 surname: Wei fullname: Wei, Xiaoxuan organization: College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, PR China – sequence: 6 givenname: Yannan surname: Sun fullname: Sun, Yannan organization: Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China., School of Chemistry, Dalian University of Technology, Dalian 116023, PR China – sequence: 7 givenname: Noritatsu orcidid: 0000-0001-6786-5058 surname: Tsubaki fullname: Tsubaki, Noritatsu organization: Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Toyama 930-8555, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30588490$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1PGzEQtSpQoSnXHpGPXJL6e3cvlRCCUilqL3C2HHs2GLz21t5ECqf-h_7D_hIWEhBF4jQzmnnvjd77hPZiioDQF0pmlDL1tVhv3HpmzIqzSn5Ah4xXcsqkqPde9QfoqJRbQggVSknafEQHnMi6Fg05RD8vMsC9j0tsU99DxqZgg2NaBMAdDCb8-_M3-DvA1ozDpgy4TRn3GYLvfDR5g282LqclRDP4FD-j_daEAke7OkHXF-dXZ5fT-a_vP85O51MrpBqmC-ZaW9PWMcVBNhXh0lLHFryRrTANuIaKppWEO0eUtVI4RoQiFSVAagsVn6BvW95-tejAWYhDNkH32XfjTzoZr__fRH-jl2mtFSecMj4SnOwIcvq9gjLozhcLIZgIaVU0o4qS0S32qHX8WutF5NnE8UBsD2xOpWRotfXDkx2jtA-aEv0Yl97GpXdxjbDZG9gz8zuAB8UvnI4 |
CitedBy_id | crossref_primary_10_1134_S001814392307010X crossref_primary_10_1002_advs_202000736 crossref_primary_10_1016_j_fuel_2020_117213 crossref_primary_10_1016_j_jechem_2022_02_039 crossref_primary_10_1016_j_apcatb_2020_119406 crossref_primary_10_1038_s41467_021_27557_1 crossref_primary_10_1021_acs_jpcc_4c01128 crossref_primary_10_1002_ange_202402684 crossref_primary_10_1002_anie_202319896 crossref_primary_10_1021_acscatal_9b05477 crossref_primary_10_1002_smll_202404142 crossref_primary_10_1021_acscatal_1c00339 crossref_primary_10_1039_D3SC06990G crossref_primary_10_3390_catal13040737 crossref_primary_10_1021_acscatal_0c04371 crossref_primary_10_3390_catal9100796 crossref_primary_10_1016_j_mcat_2024_113898 crossref_primary_10_1002_smll_202008052 crossref_primary_10_1039_C9TA08297B crossref_primary_10_3390_molecules30020225 crossref_primary_10_1039_D4GC00684D crossref_primary_10_1039_D1NR07255B crossref_primary_10_1016_j_apcatb_2023_122949 crossref_primary_10_1016_j_mcat_2024_114109 crossref_primary_10_1002_aenm_201901973 crossref_primary_10_1021_acscatal_2c05791 crossref_primary_10_1016_j_cej_2024_152350 crossref_primary_10_1021_acssuschemeng_2c05450 crossref_primary_10_1016_j_jcat_2022_01_004 crossref_primary_10_1016_j_fuel_2023_128866 crossref_primary_10_1002_adom_202402451 crossref_primary_10_1002_anie_202402684 crossref_primary_10_1021_acsami_3c16623 crossref_primary_10_1016_j_ces_2023_119176 crossref_primary_10_1021_acs_iecr_9b04864 crossref_primary_10_1039_D1SC01700D crossref_primary_10_1038_s42004_019_0239_8 crossref_primary_10_1016_j_jcat_2024_115822 crossref_primary_10_1039_D0CS01003K crossref_primary_10_1016_j_cattod_2023_114176 crossref_primary_10_1016_j_fuel_2022_124806 crossref_primary_10_1002_slct_202400184 crossref_primary_10_1016_j_ccr_2023_215602 crossref_primary_10_1021_acscatal_2c03327 crossref_primary_10_1021_acscatal_4c06219 crossref_primary_10_1039_D3CY01611K crossref_primary_10_1002_ange_202319896 crossref_primary_10_1007_s12678_023_00840_z crossref_primary_10_1016_j_mcat_2024_114736 crossref_primary_10_1016_j_mtsust_2022_100109 crossref_primary_10_1021_jacs_3c01638 crossref_primary_10_1126_science_adj1962 crossref_primary_10_1002_adfm_202105579 crossref_primary_10_1016_j_jcou_2023_102460 crossref_primary_10_1039_D3NR05847F crossref_primary_10_1016_j_matchemphys_2022_127060 crossref_primary_10_1038_s41467_022_31078_w crossref_primary_10_1016_j_chempr_2022_06_021 crossref_primary_10_1002_cctc_201901391 crossref_primary_10_1016_S1872_5813_21_60011_2 crossref_primary_10_1039_C9CY01198F crossref_primary_10_1016_j_ensm_2025_104058 crossref_primary_10_1021_acsami_3c01400 crossref_primary_10_1134_S0018143921050039 crossref_primary_10_1109_ACCESS_2023_3288486 crossref_primary_10_1016_j_recm_2023_08_004 crossref_primary_10_1039_D3CY00319A crossref_primary_10_1021_acs_accounts_3c00311 crossref_primary_10_1126_science_abm9257 crossref_primary_10_1002_advs_202204248 crossref_primary_10_1021_acsami_9b11703 crossref_primary_10_1021_acs_iecr_0c04525 crossref_primary_10_1021_acs_iecr_9b01214 crossref_primary_10_1016_j_surfin_2024_105494 crossref_primary_10_1021_acscatal_3c04740 crossref_primary_10_1021_acs_iecr_0c01619 crossref_primary_10_1038_s41467_023_36640_8 crossref_primary_10_1007_s10562_023_04365_4 |
Cites_doi | 10.1103/PhysRevB.24.649 10.1002/cctc.201501055 10.1039/b817740f 10.1039/c3ta14936f 10.1016/j.jcat.2010.10.010 10.1007/s10653-013-9592-1 10.1038/ncomms3339 10.1016/j.apcatb.2011.08.013 10.1016/j.apcatb.2009.04.002 10.1016/j.apcatb.2014.07.023 10.1021/cr0680282 10.1021/cs4008842 10.1039/B514191E 10.1016/S0926-860X(99)00106-4 10.1021/ar4002697 10.1016/j.jcat.2012.09.023 10.1039/c3cy01091k 10.1039/c0cc00581a 10.1021/jp902688b 10.1039/C5RA04389A 10.1016/j.catcom.2017.05.007 10.1016/j.jcat.2012.10.004 10.1016/j.susc.2014.08.029 10.1021/ja01643a067 10.1016/j.apcata.2008.07.020 10.1103/PhysRevB.38.11322 10.1016/S0926-860X(99)00307-5 10.1039/c3cc40570b 10.1016/j.jcat.2008.04.021 10.1039/C5CY01965F 10.1021/cs400574v 10.1021/cs5009283 10.1016/j.apcatb.2010.10.013 10.1021/ja3034153 10.1016/j.catcom.2017.04.001 10.1016/j.apcata.2015.10.026 10.15407/ujpe58.03.0249 10.1016/S0368-2048(03)00126-9 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1126/sciadv.aau3275 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry |
EISSN | 2375-2548 |
ExternalDocumentID | PMC6303123 30588490 10_1126_sciadv_aau3275 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 2016-04 – fundername: ; grantid: 2018214 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADRAZ AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI ADPDF BCGUY NPM OVEED 7X8 5PM |
ID | FETCH-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 13:53:08 EDT 2025 Fri Jul 11 15:14:22 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Tue Jul 01 03:52:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-4314-1324 0000-0002-9384-4979 0000-0002-4191-578X 0000-0001-6786-5058 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.aau3275 |
PMID | 30588490 |
PQID | 2161065127 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303123 proquest_miscellaneous_2161065127 pubmed_primary_30588490 crossref_citationtrail_10_1126_sciadv_aau3275 crossref_primary_10_1126_sciadv_aau3275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2018 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | Abe T. (e_1_3_2_18_2) 2009; 2 Zheng X. (e_1_3_2_7_2) 2013; 3 Poels E. K. (e_1_3_2_37_2) 2000; 191 Yano T. (e_1_3_2_27_2) 2003; 131 e_1_3_2_28_2 Gong J. (e_1_3_2_36_2) 2012; 134 Chen J. (e_1_3_2_2_2) 2014; 36 Yuan Z. (e_1_3_2_29_2) 2011; 101 Yu H.-S. (e_1_3_2_40_2) 2015; 26 Sun J. (e_1_3_2_20_2) 2014; 2 Messinger B. J. (e_1_3_2_35_2) 1981; 24 Zhao S. (e_1_3_2_5_2) 2013; 297 Yue H. (e_1_3_2_8_2) 2013; 4 Sun J. (e_1_3_2_19_2) 2014; 4 Chen Y. (e_1_3_2_39_2) 2017; 96 Zheng J. (e_1_3_2_13_2) 2013; 297 Yin A. (e_1_3_2_11_2) 2010; 46 Pauly N. (e_1_3_2_26_2) 2014; 630 Yin A. (e_1_3_2_9_2) 2009; 113 Yin A. (e_1_3_2_12_2) 2011; 108 Brands D. S. (e_1_3_2_17_2) 1999; 184 Ma X. (e_1_3_2_31_2) 2015; 5 Sun J. (e_1_3_2_25_2) 2014; 4 Dong X. (e_1_3_2_30_2) 2016; 6 Eustis S. (e_1_3_2_32_2) 2006; 35 Cui Y. (e_1_3_2_14_2) 2016; 8 Mikovksy R. J. (e_1_3_2_16_2) 1954; 76 e_1_3_2_33_2 Yue H. (e_1_3_2_3_2) 2014; 47 Di W. (e_1_3_2_4_2) 2016; 510 Chen L.-F. (e_1_3_2_21_2) 2008; 257 Yin A. (e_1_3_2_10_2) 2008; 349 Wen C. (e_1_3_2_6_2) 2013; 49 He Z. (e_1_3_2_23_2) 2011; 277 Yeshchenko O. A. (e_1_3_2_34_2) 2013; 58 Wen C. (e_1_3_2_15_2) 2015; 162 Bae J. W. (e_1_3_2_22_2) 2009; 90 Zhu Y. (e_1_3_2_24_2) 2014; 4 Liu Y. (e_1_3_2_38_2) 2017; 98 |
References_xml | – volume: 24 start-page: 649 year: 1981 ident: e_1_3_2_35_2 article-title: Local fields at the surface of noble-metal microspheres publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.649 – volume: 8 start-page: 527 year: 2016 ident: e_1_3_2_14_2 article-title: Investigation of activated-carbon-supported copper catalysts with unique catalytic performance in the hydrogenation of dimethyl oxalate to methyl glycolate publication-title: ChemCatChem doi: 10.1002/cctc.201501055 – volume: 2 start-page: 315 year: 2009 ident: e_1_3_2_18_2 article-title: CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method publication-title: Energy Environ. Sci. doi: 10.1039/b817740f – volume: 2 start-page: 8637 year: 2014 ident: e_1_3_2_20_2 article-title: Fabrication of active Cu-Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas publication-title: J. Mater. Chem. A doi: 10.1039/c3ta14936f – volume: 277 start-page: 54 year: 2011 ident: e_1_3_2_23_2 article-title: Effect of boric oxide doping on the stability and activity of a Cu–SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol publication-title: J. Catal. doi: 10.1016/j.jcat.2010.10.010 – volume: 36 start-page: 735 year: 2014 ident: e_1_3_2_2_2 article-title: Coal utilization in China: Environmental impacts and human health publication-title: Environ. Geochem. Health doi: 10.1007/s10653-013-9592-1 – volume: 4 start-page: 2339 year: 2013 ident: e_1_3_2_8_2 article-title: A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions publication-title: Nat. Commun. doi: 10.1038/ncomms3339 – volume: 108 start-page: 90 year: 2011 ident: e_1_3_2_12_2 article-title: Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2011.08.013 – volume: 90 start-page: 426 year: 2009 ident: e_1_3_2_22_2 article-title: Synthesis of DME from syngas on the bifunctional Cu-ZnO-Al2O3/Zr-modified ferrierite: Effect of Zr content publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.04.002 – volume: 162 start-page: 483 year: 2015 ident: e_1_3_2_15_2 article-title: Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.07.023 – ident: e_1_3_2_33_2 doi: 10.1021/cr0680282 – volume: 4 start-page: 1 year: 2014 ident: e_1_3_2_19_2 article-title: Highly-dispersed metallic Ru nanoparticles sputtered on H-beta zeolite for directly converting syngas to middle isoparaffins publication-title: ACS Catal. doi: 10.1021/cs4008842 – volume: 35 start-page: 209 year: 2006 ident: e_1_3_2_32_2 article-title: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes publication-title: Chem. Soc. Rev. doi: 10.1039/B514191E – volume: 184 start-page: 279 year: 1999 ident: e_1_3_2_17_2 article-title: Ester hydrogenolysis over promoted Cu/SiO2 catalysts publication-title: Appl. Catal. A. Gen. doi: 10.1016/S0926-860X(99)00106-4 – volume: 47 start-page: 1483 year: 2014 ident: e_1_3_2_3_2 article-title: An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol publication-title: Acc. Chem. Res. doi: 10.1021/ar4002697 – volume: 297 start-page: 110 year: 2013 ident: e_1_3_2_13_2 article-title: Efficient low-temperature selective hydrogenation of esters on bimetallic Au–Ag/SBA-15 catalyst publication-title: J. Catal. doi: 10.1016/j.jcat.2012.09.023 – volume: 4 start-page: 1260 year: 2014 ident: e_1_3_2_25_2 article-title: Combining wet impregnation and dry sputtering to prepare highly-active CoPd/H-ZSM5 ternary catalysts applied for tandem catalytic synthesis of isoparaffins publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy01091k – volume: 46 start-page: 4348 year: 2010 ident: e_1_3_2_11_2 article-title: High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate publication-title: Chem. Commun. doi: 10.1039/c0cc00581a – volume: 113 start-page: 11003 year: 2009 ident: e_1_3_2_9_2 article-title: The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+ publication-title: J. Phys. Chem. C doi: 10.1021/jp902688b – volume: 5 start-page: 37581 year: 2015 ident: e_1_3_2_31_2 article-title: Dynamic redox cycle of Cu0 and Cu+ over Cu/SiO2 catalyst in ester hydrogenation publication-title: RSC Adv. doi: 10.1039/C5RA04389A – volume: 98 start-page: 43 year: 2017 ident: e_1_3_2_38_2 article-title: Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.05.007 – volume: 297 start-page: 142 year: 2013 ident: e_1_3_2_5_2 article-title: Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant publication-title: J. Catal. doi: 10.1016/j.jcat.2012.10.004 – volume: 630 start-page: 294 year: 2014 ident: e_1_3_2_26_2 article-title: LMM Auger primary excitation spectra of copper publication-title: Surf. Sci. doi: 10.1016/j.susc.2014.08.029 – volume: 76 start-page: 3814 year: 1954 ident: e_1_3_2_16_2 article-title: Hydrogen-deuterium exchange on copper, silver, gold and alloy surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01643a067 – volume: 349 start-page: 91 year: 2008 ident: e_1_3_2_10_2 article-title: Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol publication-title: Appl. Catal. A. Gen. doi: 10.1016/j.apcata.2008.07.020 – ident: e_1_3_2_28_2 doi: 10.1103/PhysRevB.38.11322 – volume: 191 start-page: 83 year: 2000 ident: e_1_3_2_37_2 article-title: Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction publication-title: Appl. Catal. A. Gen. doi: 10.1016/S0926-860X(99)00307-5 – volume: 26 start-page: 050102 year: 2015 ident: e_1_3_2_40_2 article-title: The XAFS beamline of SSRF publication-title: Nucl. Sci. Tech. – volume: 49 start-page: 5195 year: 2013 ident: e_1_3_2_6_2 article-title: Solvent feedstock effect: The insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol publication-title: Chem. Commun. doi: 10.1039/c3cc40570b – volume: 257 start-page: 172 year: 2008 ident: e_1_3_2_21_2 article-title: Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol publication-title: J. Catal. doi: 10.1016/j.jcat.2008.04.021 – volume: 6 start-page: 4151 year: 2016 ident: e_1_3_2_30_2 article-title: Comparative study of silica-supported copper catalysts prepared by different methods: Formation and transition of copper phyllosilicate publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01965F – volume: 3 start-page: 2738 year: 2013 ident: e_1_3_2_7_2 article-title: Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol publication-title: ACS Catal. doi: 10.1021/cs400574v – volume: 4 start-page: 3612 year: 2014 ident: e_1_3_2_24_2 article-title: Cu nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation publication-title: ACS Catal. doi: 10.1021/cs5009283 – volume: 101 start-page: 431 year: 2011 ident: e_1_3_2_29_2 article-title: Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.10.013 – volume: 134 start-page: 13922 year: 2012 ident: e_1_3_2_36_2 article-title: Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3034153 – volume: 96 start-page: 58 year: 2017 ident: e_1_3_2_39_2 article-title: High-performance Ag-CuOx nanocomposite catalyst galvanically deposited onto a Ni-foam for gas-phase dimethyl oxalate hydrogenation to methyl glycolate publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.04.001 – volume: 510 start-page: 244 year: 2016 ident: e_1_3_2_4_2 article-title: Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol publication-title: Appl. Catal. A. Gen. doi: 10.1016/j.apcata.2015.10.026 – volume: 58 start-page: 249 year: 2013 ident: e_1_3_2_34_2 article-title: Temperature effects on the surface plasmon resonance in copper nanoparticles publication-title: Ukr. J. Phys. doi: 10.15407/ujpe58.03.0249 – volume: 131 start-page: 133 year: 2003 ident: e_1_3_2_27_2 article-title: Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/S0368-2048(03)00126-9 |
SSID | ssj0001466519 |
Score | 2.3880577 |
Snippet | Copper is “frozen” into a metallic state as a noble metal–like catalyst for controlling the product in a chemical reaction.
The control of product distribution... The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eaau3275 |
SubjectTerms | Chemical Physics Chemistry SciAdv r-articles |
Title | Freezing copper as a noble metal–like catalyst for preliminary hydrogenation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30588490 https://www.proquest.com/docview/2161065127 https://pubmed.ncbi.nlm.nih.gov/PMC6303123 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NThsxEB4VKgEXxG8bCsiVKrU9LFrvj3f3gFCFSBESnBopt5Vjj0VEukl3E0Q48Q59wz5Jx7tOGgpcuOxlxz7M5_F8Ho9nAD6JlKMwZEiWrHqRDrgnjcxoM9TKR0E24tu3w5dX4rwTXXTj7r_8J6fA6tmjne0n1SkHR3e_pidk8McLD2Ckvj2SchIGSbwEb8krJdZILx3Vr-MtkRDEVlzdxqfD1mCFln6aRnZ3XnRRT3jn_-mTC_6ovQHrjkiybw3ym_AGiy1YPZ31b9uCTWe2Ffviakt_3Yardol4T-6KqeFohCWTFZOssE1l2E8kHfx5-D3o3yCrwzrTasyI1LJRiYO6-1c5ZddTXQ5p1dWI7kCnffbj9NxzLRU8RUxp7PUCbVTKjQ5EiASPH8aK66AXZrGJZIY6oxOTif1Qa18oFRN49uaUaAj6qcIk3IXlYljge2AZz1QsUGZCqyjjRqrQcBMbUiZiqsMWeDMt5srVG7dtLwZ5fe4IRN4AkDsAWvB5Lj9qKm28KPlxBkpOOrU3HLLA4aTKA-KvxKl4kLTgXQPSfK4Zui1IHsE3F7CFth__KfrXdcFtQX6ePPzeq0d-gDUiWmmTBrMPy-NyggdEZsa9wzoIQN_vXX5Yr9i_jez8hw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freezing+copper+as+a+noble+metal%E2%80%93like+catalyst+for+preliminary+hydrogenation&rft.jtitle=Science+advances&rft.au=Sun%2C+Jian&rft.au=Yu%2C+Jiafeng&rft.au=Ma%2C+Qingxiang&rft.au=Meng%2C+Fanqiong&rft.date=2018-12-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=4&rft.issue=12&rft_id=info:doi/10.1126%2Fsciadv.aau3275&rft_id=info%3Apmid%2F30588490&rft.externalDocID=PMC6303123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |