Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1

G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conforma...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 7; pp. 2951 - 2956
Main Authors Dowal, Louisa, Sim, Derek S, Dilks, James R, Blair, Price, Beaudry, Sarah, Denker, Bradley M, Koukos, Georgios, Kuliopulos, Athan, Flaumenhaft, Robert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.02.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α₂A-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by Gαq but not Gα₁₂. The compound inhibited thrombus formation in vivo following vascular injury with an IC₅₀ of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation.
AbstractList G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α₂ A -adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G αq but not Gα₁₂. The compound inhibited thrombus formation in vivo following vascular injury with an IC 50 of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation.
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α 2A -adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G αq but not G α12 . The compound inhibited thrombus formation in vivo following vascular injury with an IC 50 of ∼1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation.
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α(2A)-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G(αq) but not G(α12). The compound inhibited thrombus formation in vivo following vascular injury with an IC(50) of ∼1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation.
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α₂A-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by Gαq but not Gα₁₂. The compound inhibited thrombus formation in vivo following vascular injury with an IC₅₀ of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation.
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α...-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G... but not G... The compound inhibited thrombus formation in vivo following vascular injury with an IC... of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. (ProQuest: ... denotes formulae/symbols omitted.)
Author Koukos, Georgios
Kuliopulos, Athan
Dowal, Louisa
Sim, Derek S
Denker, Bradley M
Flaumenhaft, Robert
Blair, Price
Dilks, James R
Beaudry, Sarah
Author_xml – sequence: 1
  fullname: Dowal, Louisa
– sequence: 2
  fullname: Sim, Derek S
– sequence: 3
  fullname: Dilks, James R
– sequence: 4
  fullname: Blair, Price
– sequence: 5
  fullname: Beaudry, Sarah
– sequence: 6
  fullname: Denker, Bradley M
– sequence: 7
  fullname: Koukos, Georgios
– sequence: 8
  fullname: Kuliopulos, Athan
– sequence: 9
  fullname: Flaumenhaft, Robert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21282664$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1r3DAQFSWl2Wx77qmt6d3N6NPSpRBCPwKBlja99CIkW15r8VpbSQ7Nv4_MppsUBBp4b96bmXeGTqYwOYReY_iAoaHn-8mkUmEmBcUgn6EVBoVrwRScoBUAaWrJCDtFZyltAUBxCS_QKcFEEiHYCv2-6tyUfe9bk32YqtBXZiov-zzEsLMh-7Yy4xhSdrGUu9DNo8khVnkwuTJtTtXCnDdDNbjR_63kovH94gd-iZ73Zkzu1cO_RjefP91cfq2vv325ury4rlvGRa5Ny1THoCN911vLsaXKgaSkEUZxyylxiivbSGixoNyKVoGwtGNGGiAK0zX6eJDdz3bnurasE82o99HvTLzTwXj9PzL5QW_CrabAMC6aa_T-QSCGP7NLWW_DHKcyspacNAwEW1zOD6Q2hpSi648GGPQShV6i0I9RlI63T-c68v_d_glh6XyUk7rRRPHF882BsE3l4EcGwyVXwmjB3x3w3gRtNtEn_esnAUwBKyYYl_QelDWkNQ
CitedBy_id crossref_primary_10_1016_j_jtha_2023_06_019
crossref_primary_10_1182_blood_2011_10_389247
crossref_primary_10_1038_nchembio_1583
crossref_primary_10_1146_annurev_pharmtox_011613_140016
crossref_primary_10_1016_j_isci_2021_103718
crossref_primary_10_1182_blood_2011_05_353078
crossref_primary_10_1016_j_thromres_2020_08_004
crossref_primary_10_1016_j_taap_2015_08_016
crossref_primary_10_1182_blood_2012_08_452169
crossref_primary_10_1021_ml2002696
crossref_primary_10_1182_blood_2014_09_599910
crossref_primary_10_1038_srep15453
crossref_primary_10_1111_jth_14643
crossref_primary_10_1080_09537104_2022_2026911
crossref_primary_10_1182_blood_2015_11_636472
crossref_primary_10_3390_ijms242417491
crossref_primary_10_3390_biom11111558
crossref_primary_10_1016_j_tips_2011_09_003
crossref_primary_10_1038_nchembio_962
crossref_primary_10_1177_1074248419899314
crossref_primary_10_1016_j_tips_2017_05_001
crossref_primary_10_1152_physrev_00044_2021
crossref_primary_10_1097_SHK_0000000000000675
crossref_primary_10_1080_09537104_2020_1859103
crossref_primary_10_1016_j_bmc_2019_06_043
crossref_primary_10_1074_jbc_M115_636316
crossref_primary_10_1074_jbc_M111_316463
crossref_primary_10_1038_nrd3615
crossref_primary_10_1074_jbc_M113_469866
crossref_primary_10_1111_j_1476_5381_2012_01974_x
crossref_primary_10_1124_mol_116_106526
crossref_primary_10_1182_blood_2014_12_618744
crossref_primary_10_1016_j_pharmthera_2012_06_002
crossref_primary_10_3390_ph14030225
crossref_primary_10_1074_jbc_M112_438804
crossref_primary_10_1073_pnas_1718600115
crossref_primary_10_3390_ijms24076187
crossref_primary_10_1124_mol_114_093328
crossref_primary_10_1371_journal_pone_0097724
crossref_primary_10_1016_j_bmc_2018_04_016
crossref_primary_10_1021_acs_jproteome_7b00309
crossref_primary_10_1074_jbc_M111_256909
crossref_primary_10_1161_ATVBAHA_117_310068
crossref_primary_10_1182_blood_2015_01_623835
crossref_primary_10_1016_j_tips_2018_03_002
Cites_doi 10.1182/blood-2003-04-1133
10.1073/pnas.022460899
10.1124/mol.107.044610
10.1074/jbc.C200240200
10.1146/annurev.pharmtox.47.120505.105159
10.1016/S0140-6736(09)60230-0
10.1182/blood-2009-03-210211
10.1016/0014-5793(81)81128-3
10.1038/29325
10.1073/pnas.0610188104
10.1016/S1074-5521(03)00127-3
10.1038/sj.bjp.0706624
10.1124/mol.107.039321
10.1021/bi901619r
10.1055/s-0037-1614133
10.1038/nature08144
10.1074/jbc.M509525200
10.1073/pnas.0510446103
10.1182/blood-2005-12-4835
10.1111/j.1476-5381.2009.00623.x
10.1073/pnas.0435715100
10.1016/S0076-6879(94)37051-6
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 15, 2011
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 15, 2011
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1014863108
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList

MEDLINE
CrossRef

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2956
ExternalDocumentID 2270981091
10_1073_pnas_1014863108
21282664
108_7_2951
41002243
US201301946458
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM55223
– fundername: NHLBI NIH HHS
  grantid: R01 HL063250
– fundername: NHLBI NIH HHS
  grantid: RC2 HL101783
– fundername: NIGMS NIH HHS
  grantid: R01 GM055223
– fundername: NHLBI NIH HHS
  grantid: HL640701
– fundername: NHLBI NIH HHS
  grantid: HL87203
– fundername: NHLBI NIH HHS
  grantid: HL101783
– fundername: NHLBI NIH HHS
  grantid: P01 HL087203
– fundername: NHLBI NIH HHS
  grantid: HL63250
– fundername: NIGMS NIH HHS
  grantid: R29 GM055223
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ADACV
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c456t-ac49d40d2fdfbb51b39e083276a95b532e959b780c1635b6c906b3d4a8a02913
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:27:48 EDT 2024
Thu Oct 10 20:19:09 EDT 2024
Fri Dec 06 01:56:25 EST 2024
Sat Sep 28 07:50:30 EDT 2024
Wed Nov 11 00:30:58 EST 2020
Tue Dec 10 23:06:06 EST 2024
Wed Dec 27 19:15:43 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-ac49d40d2fdfbb51b39e083276a95b532e959b780c1635b6c906b3d4a8a02913
Notes Author contributions: L.D., D.S.S., J.R.D., B.M.D., G.K., A.K., and R.F. designed research; L.D., D.S.S., J.R.D., P.B., S.B., G.K., and R.F. performed research; B.M.D. and A.K. contributed new reagents/analytic tools; L.D., D.S.S., J.R.D., P.B., B.M.D., G.K., A.K., and R.F. analyzed data; and L.D. and R.F. wrote the paper.
Edited by Barry S. Coller, Rockefeller University, New York, NY, and approved January 7, 2011 (received for review October 5, 2010)
OpenAccessLink https://doi.org/10.1073/pnas.1014863108
PMID 21282664
PQID 852740641
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_108_7_2951
jstor_primary_41002243
proquest_journals_852740641
crossref_primary_10_1073_pnas_1014863108
fao_agris_US201301946458
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041116
pubmed_primary_21282664
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2011-02-15
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
– name: National Acad Sciences
References 16402041 - Br J Pharmacol. 2006 Feb;147(4):422-9
12023272 - J Biol Chem. 2002 Jul 12;277(28):24855-8
19395672 - Blood. 2009 Jul 30;114(5):1083-90
9716134 - Nature. 1998 Aug 13;394(6694):690-4
12601165 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2290-5
11805322 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):643-8
11127873 - Thromb Haemost. 2000 Nov;84(5):891-6
2865672 - Mol Pharmacol. 1985 Nov;28(5):475-86
16354660 - J Biol Chem. 2006 Feb 17;281(7):4109-16
9862790 - J Pharmacol Exp Ther. 1999 Jan;288(1):358-70
14645013 - Blood. 2004 Mar 15;103(6):2127-34
20025243 - Biochemistry. 2010 Jan 26;49(3):502-11
16507775 - Blood. 2006 Jul 15;108(2):510-4
16835302 - Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11069-74
17009927 - Annu Rev Pharmacol Toxicol. 2007;47:1-51
20233217 - Br J Pharmacol. 2010 Apr;159(7):1429-39
19286091 - Lancet. 2009 Mar 14;373(9667):919-28
19458711 - Nature. 2009 May 21;459(7245):356-63
17190826 - Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):288-92
18042736 - Mol Pharmacol. 2008 Mar;73(3):855-67
7935012 - Methods Enzymol. 1994;237:38-44
6116620 - FEBS Lett. 1981 Aug 3;130(2):235-8
18676678 - Mol Pharmacol. 2008 Nov;74(5):1193-202
12837380 - Chem Biol. 2003 Jun;10(6):481-6
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_17_2
e_1_3_3_9_2
e_1_3_3_16_2
e_1_3_3_19_2
Kawabata A (e_1_3_3_24_2) 1999; 288
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_23_2
e_1_3_3_15_2
e_1_3_3_14_2
Neubig RR (e_1_3_3_22_2) 1985; 28
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_11_2
e_1_3_3_3_2
e_1_3_3_10_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_18_2
  doi: 10.1182/blood-2003-04-1133
– volume: 28
  start-page: 475
  year: 1985
  ident: e_1_3_3_22_2
  article-title: Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry
  publication-title: Mol Pharmacol
  contributor:
    fullname: Neubig RR
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.022460899
– ident: e_1_3_3_4_2
  doi: 10.1124/mol.107.044610
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.C200240200
– ident: e_1_3_3_2_2
  doi: 10.1146/annurev.pharmtox.47.120505.105159
– ident: e_1_3_3_17_2
  doi: 10.1016/S0140-6736(09)60230-0
– ident: e_1_3_3_19_2
  doi: 10.1182/blood-2009-03-210211
– ident: e_1_3_3_20_2
  doi: 10.1016/0014-5793(81)81128-3
– ident: e_1_3_3_14_2
  doi: 10.1038/29325
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.0610188104
– ident: e_1_3_3_7_2
  doi: 10.1016/S1074-5521(03)00127-3
– ident: e_1_3_3_10_2
  doi: 10.1038/sj.bjp.0706624
– ident: e_1_3_3_3_2
  doi: 10.1124/mol.107.039321
– ident: e_1_3_3_15_2
  doi: 10.1021/bi901619r
– ident: e_1_3_3_11_2
  doi: 10.1055/s-0037-1614133
– volume: 288
  start-page: 358
  year: 1999
  ident: e_1_3_3_24_2
  article-title: Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: Activation of PAR2 by PAR1-targeted ligands
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Kawabata A
– ident: e_1_3_3_1_2
  doi: 10.1038/nature08144
– ident: e_1_3_3_8_2
  doi: 10.1074/jbc.M509525200
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.0510446103
– ident: e_1_3_3_16_2
  doi: 10.1182/blood-2005-12-4835
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1476-5381.2009.00623.x
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.0435715100
– ident: e_1_3_3_21_2
  doi: 10.1016/S0076-6879(94)37051-6
SSID ssj0009580
Score 2.3158336
Snippet G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2951
SubjectTerms Aggregation
Agonists
Allosteric Regulation - physiology
Amino acids
Animals
Antithrombins - metabolism
Binding sites
Biological Sciences
Blood platelets
Calcium - metabolism
Cell Line
Dogs
Epinephrine
Flow Cytometry
Luciferases
Modulated signal processing
Molecules
P-Selectin - metabolism
Peptide Fragments - metabolism
Platelet activation
Platelet Aggregation
Platelets
Protein Structure, Secondary - physiology
Proteins
Receptor, PAR-1 - agonists
Receptor, PAR-1 - metabolism
Receptors
Receptors, G-Protein-Coupled - metabolism
Secretion
Signal transduction
Signal Transduction - physiology
Thrombosis
Thrombosis - metabolism
Title Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1
URI https://www.jstor.org/stable/41002243
http://www.pnas.org/content/108/7/2951.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21282664
https://www.proquest.com/docview/852740641
https://pubmed.ncbi.nlm.nih.gov/PMC3041116
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZnHopTdo0bh7o0EN6cNZ62jqGkBAKKaFNIPQi9LC6C1l72XWhP78j2d5kS04FHwyyBjMz0nwjjT4h9NmWAcIE9bkKpM5jApFbC8kKTAsV49Iakkhcb7_Jmwf-9VE87iAxnoVJRfvOzs-bp8V5M5-l2srlwk3HOrHp3e0lpOAwROV0giYQfscUfcO0W_XnTihMv5zykc-nZNNlY9YxXeWVBFRTJSJgSDmk5FtRaRJMO5YnRs5T6PUa_vy3jPJFXLp-h94OgBJf9D--h3bqZh_tDUN2jc8GXukv79HP_lBuGFbpcBuwaeABf5mt2oVtQQKO-_CROwFeF62Pd3u1K9zNTIeN69Z4uNYHz-qn-R9cRRl3F9_JB3R_fXV_eZMPVyvkDhBTlxvHleeFp8EHawWxTNUAxmgpjRJWMForocBmhQO8Jqx0qpCWeW4qU1BF2AHabdqmPkQ4WM8AEjpQo-feeaN4ESDtIrV13EmbobNRs3rZE2jotPFdMh01q5_tkaFD0Lw2v2B60w8_aNxUJSpuvULTQTLHRgQnCX2wDH1MUp5FV7rUFHBjho5Gk-lhXK51JSALBxRGYr9kvE3P0RUyVG6ZdfNBJOLebgH_TITcgz9--u-eR-hNv1ZNcyKO0W63-l2fANjp7GkMNeI0ufhfiMj6zw
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALokBpKA8fOJRDuvEz8bGqqBboVhVspYqL5UfSXambrHZTqT-fsZNsWcQJKYdIjkfRzNj-xjP-jNAnm1ewTFCfqoqUaQggUmshWIFpoWBcWkMiievkUo6v-bcbcbODxHAWJhbtOzs_qe8WJ_V8Fmsrlws3GurERleTMwjBYYjK0S56IliuyBCkb7h2i-7kCYUJmFM-MPrkbLSszToErLyQgGuKSAUMQYeUfGtd2q1MMxQoBtZT6PUvBPp3IeUfK9P5C_S8h5T4tPv1fbRT1i_Rfj9o1_i4Z5b-_Ar96o7lVv0-HW4qbGp4wGNmq2ZhG5CAQyY-sCfA66Lx4XavZoXbmWmxce0a9xf74Fl5N3_ARZBxdfqDvEbT8y_Ts3HaX66QOsBMbWocV55nnla-slYQy1QJcIzm0ihhBaOlEgqsljlAbMJKpzJpmeemMBlVhB2gvbqpy0OEK-sZgEIHavTcO28UzyoIvEhpHXfSJuh40KxedhQaOqa-c6aDZvWjPRJ0CJrX5hYmOH39k4a0KlEh-QpNB9EcGxGcRPzBEvQmSnkUXehcU0COCToaTKb7kbnWhYA4HHAYCf2i8TY9B1dIUL5l1s0HgYp7uwU8NFJy9x759r97fkRPx9PJhb74evn9CD3rdq5pSsQ7tNeu7sv3AH1a-yE6-m_8Cv0-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRIHSUB4-cCiHNPEjTnysCqvyaLWCVqq4WH7E3ZW6yWo3SPx8xk6y7SJOSDlEcmYUecb2N_b4G4Tem9LDMkFdKj2p0xBApMZAsALTQsW4MJpEEtfzC3F2xb9cF9f3Sn3FpH1r5sfN7eK4mc9ibuVyYbMxTyybnp9CCA5DVGRL57Md9LBg4GRjoL7h26362ycUJmFO-cjqU7Js2eh1CFp5JQDbVJEOGAIPIfjW2rTjdTsmKQbmU5D6Fwr9O5ny3uo0eYqeDLASn_S_v4ce1M0ztDcM3DU-GtilPzxHP_uruX7Yq8Otx7qBB7xmtmoXpgUNOJzGBwYFeF20LlT4ale4m-kOa9ut8VDcB8_q2_lvXAUd05Pv5AW6nHy6PD1LhwILqQXc1KXacul47qh33piCGCZrgGS0FFoWpmC0loUEy-UWUFthhJW5MMxxXemcSsL20W7TNvUBwt44BsDQQjc67qzTkucegi9SG8utMAk6GntWLXsaDRWPv0umQs-qO3sk6AB6XukbmOTU1Q8ajlaJDAew0LQfzbFRwUnEICxBL6OWO9WVKhUF9Jigw9Fkahida1UVEIsDFiNBLhpvIzm6QoLKLbNuPgh03Nst4KWRlnvwylf_LfkOPZp-nKhvny--HqLH_eY1TUnxGu12q1_1G0A_nXkb_fwPtp_-UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+an+antithrombotic+allosteric+modulator+that+acts+through+helix+8+of+PAR1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dowal%2C+Louisa&rft.au=Sim%2C+Derek+S&rft.au=Dilks%2C+James+R&rft.au=Blair%2C+Price&rft.date=2011-02-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=7&rft.spage=2951&rft.epage=2956&rft_id=info:doi/10.1073%2Fpnas.1014863108&rft.externalDocID=US201301946458
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F7.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F7.cover.gif