Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conforma...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 7; pp. 2951 - 2956 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.02.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α₂A-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by Gαq but not Gα₁₂. The compound inhibited thrombus formation in vivo following vascular injury with an IC₅₀ of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. |
---|---|
AbstractList | G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α₂ A -adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G αq but not Gα₁₂. The compound inhibited thrombus formation in vivo following vascular injury with an IC 50 of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α 2A -adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G αq but not G α12 . The compound inhibited thrombus formation in vivo following vascular injury with an IC 50 of ∼1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α(2A)-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G(αq) but not G(α12). The compound inhibited thrombus formation in vivo following vascular injury with an IC(50) of ∼1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α₂A-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by Gαq but not Gα₁₂. The compound inhibited thrombus formation in vivo following vascular injury with an IC₅₀ of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators associate with extracellular loops of GPCRs. The role of intracellular domains in mediating allosteric modulation is largely unknown. In screening a small-molecule library for inhibitors of platelet activation, we identified a family of compounds that modified PAR1-mediated granule secretion. The most potent inhibitory compound, termed JF5, also demonstrated noncompetitive inhibition of the α...-adrenergic receptor. Aggregation studies using a battery of platelet GPCR agonists demonstrated that sensitivity to JF5 was limited to GPCRs that possessed a constrained eighth helix, as defined by a C-terminal palmitoylation site and interactions with TM7 and the i1 loop. Inhibition by JF5 was overcome in a PAR1 mutant in which the eighth helix was deleted, confirming a role for helix 8 in JF5 activity. Evaluation of downstream signaling showed that JF5 was selective with regard to G protein coupling, blocking signaling mediated by G... but not G... The compound inhibited thrombus formation in vivo following vascular injury with an IC... of ~1 mg/kg. These results indicate a role for helix 8 in conferring sensitivity to small molecules, and show that this sensitivity can be exploited to control platelet activation during thrombus formation. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Koukos, Georgios Kuliopulos, Athan Dowal, Louisa Sim, Derek S Denker, Bradley M Flaumenhaft, Robert Blair, Price Dilks, James R Beaudry, Sarah |
Author_xml | – sequence: 1 fullname: Dowal, Louisa – sequence: 2 fullname: Sim, Derek S – sequence: 3 fullname: Dilks, James R – sequence: 4 fullname: Blair, Price – sequence: 5 fullname: Beaudry, Sarah – sequence: 6 fullname: Denker, Bradley M – sequence: 7 fullname: Koukos, Georgios – sequence: 8 fullname: Kuliopulos, Athan – sequence: 9 fullname: Flaumenhaft, Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21282664$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUU1r3DAQFSWl2Wx77qmt6d3N6NPSpRBCPwKBlja99CIkW15r8VpbSQ7Nv4_MppsUBBp4b96bmXeGTqYwOYReY_iAoaHn-8mkUmEmBcUgn6EVBoVrwRScoBUAaWrJCDtFZyltAUBxCS_QKcFEEiHYCv2-6tyUfe9bk32YqtBXZiov-zzEsLMh-7Yy4xhSdrGUu9DNo8khVnkwuTJtTtXCnDdDNbjR_63kovH94gd-iZ73Zkzu1cO_RjefP91cfq2vv325ury4rlvGRa5Ny1THoCN911vLsaXKgaSkEUZxyylxiivbSGixoNyKVoGwtGNGGiAK0zX6eJDdz3bnurasE82o99HvTLzTwXj9PzL5QW_CrabAMC6aa_T-QSCGP7NLWW_DHKcyspacNAwEW1zOD6Q2hpSi648GGPQShV6i0I9RlI63T-c68v_d_glh6XyUk7rRRPHF882BsE3l4EcGwyVXwmjB3x3w3gRtNtEn_esnAUwBKyYYl_QelDWkNQ |
CitedBy_id | crossref_primary_10_1016_j_jtha_2023_06_019 crossref_primary_10_1182_blood_2011_10_389247 crossref_primary_10_1038_nchembio_1583 crossref_primary_10_1146_annurev_pharmtox_011613_140016 crossref_primary_10_1016_j_isci_2021_103718 crossref_primary_10_1182_blood_2011_05_353078 crossref_primary_10_1016_j_thromres_2020_08_004 crossref_primary_10_1016_j_taap_2015_08_016 crossref_primary_10_1182_blood_2012_08_452169 crossref_primary_10_1021_ml2002696 crossref_primary_10_1182_blood_2014_09_599910 crossref_primary_10_1038_srep15453 crossref_primary_10_1111_jth_14643 crossref_primary_10_1080_09537104_2022_2026911 crossref_primary_10_1182_blood_2015_11_636472 crossref_primary_10_3390_ijms242417491 crossref_primary_10_3390_biom11111558 crossref_primary_10_1016_j_tips_2011_09_003 crossref_primary_10_1038_nchembio_962 crossref_primary_10_1177_1074248419899314 crossref_primary_10_1016_j_tips_2017_05_001 crossref_primary_10_1152_physrev_00044_2021 crossref_primary_10_1097_SHK_0000000000000675 crossref_primary_10_1080_09537104_2020_1859103 crossref_primary_10_1016_j_bmc_2019_06_043 crossref_primary_10_1074_jbc_M115_636316 crossref_primary_10_1074_jbc_M111_316463 crossref_primary_10_1038_nrd3615 crossref_primary_10_1074_jbc_M113_469866 crossref_primary_10_1111_j_1476_5381_2012_01974_x crossref_primary_10_1124_mol_116_106526 crossref_primary_10_1182_blood_2014_12_618744 crossref_primary_10_1016_j_pharmthera_2012_06_002 crossref_primary_10_3390_ph14030225 crossref_primary_10_1074_jbc_M112_438804 crossref_primary_10_1073_pnas_1718600115 crossref_primary_10_3390_ijms24076187 crossref_primary_10_1124_mol_114_093328 crossref_primary_10_1371_journal_pone_0097724 crossref_primary_10_1016_j_bmc_2018_04_016 crossref_primary_10_1021_acs_jproteome_7b00309 crossref_primary_10_1074_jbc_M111_256909 crossref_primary_10_1161_ATVBAHA_117_310068 crossref_primary_10_1182_blood_2015_01_623835 crossref_primary_10_1016_j_tips_2018_03_002 |
Cites_doi | 10.1182/blood-2003-04-1133 10.1073/pnas.022460899 10.1124/mol.107.044610 10.1074/jbc.C200240200 10.1146/annurev.pharmtox.47.120505.105159 10.1016/S0140-6736(09)60230-0 10.1182/blood-2009-03-210211 10.1016/0014-5793(81)81128-3 10.1038/29325 10.1073/pnas.0610188104 10.1016/S1074-5521(03)00127-3 10.1038/sj.bjp.0706624 10.1124/mol.107.039321 10.1021/bi901619r 10.1055/s-0037-1614133 10.1038/nature08144 10.1074/jbc.M509525200 10.1073/pnas.0510446103 10.1182/blood-2005-12-4835 10.1111/j.1476-5381.2009.00623.x 10.1073/pnas.0435715100 10.1016/S0076-6879(94)37051-6 |
ContentType | Journal Article |
Copyright | Copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 15, 2011 |
Copyright_xml | – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 15, 2011 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1014863108 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2956 |
ExternalDocumentID | 2270981091 10_1073_pnas_1014863108 21282664 108_7_2951 41002243 US201301946458 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM55223 – fundername: NHLBI NIH HHS grantid: R01 HL063250 – fundername: NHLBI NIH HHS grantid: RC2 HL101783 – fundername: NIGMS NIH HHS grantid: R01 GM055223 – fundername: NHLBI NIH HHS grantid: HL640701 – fundername: NHLBI NIH HHS grantid: HL87203 – fundername: NHLBI NIH HHS grantid: HL101783 – fundername: NHLBI NIH HHS grantid: P01 HL087203 – fundername: NHLBI NIH HHS grantid: HL63250 – fundername: NIGMS NIH HHS grantid: R29 GM055223 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ADACV AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c456t-ac49d40d2fdfbb51b39e083276a95b532e959b780c1635b6c906b3d4a8a02913 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:27:48 EDT 2024 Thu Oct 10 20:19:09 EDT 2024 Fri Dec 06 01:56:25 EST 2024 Sat Sep 28 07:50:30 EDT 2024 Wed Nov 11 00:30:58 EST 2020 Tue Dec 10 23:06:06 EST 2024 Wed Dec 27 19:15:43 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-ac49d40d2fdfbb51b39e083276a95b532e959b780c1635b6c906b3d4a8a02913 |
Notes | Author contributions: L.D., D.S.S., J.R.D., B.M.D., G.K., A.K., and R.F. designed research; L.D., D.S.S., J.R.D., P.B., S.B., G.K., and R.F. performed research; B.M.D. and A.K. contributed new reagents/analytic tools; L.D., D.S.S., J.R.D., P.B., B.M.D., G.K., A.K., and R.F. analyzed data; and L.D. and R.F. wrote the paper. Edited by Barry S. Coller, Rockefeller University, New York, NY, and approved January 7, 2011 (received for review October 5, 2010) |
OpenAccessLink | https://doi.org/10.1073/pnas.1014863108 |
PMID | 21282664 |
PQID | 852740641 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_108_7_2951 jstor_primary_41002243 proquest_journals_852740641 crossref_primary_10_1073_pnas_1014863108 fao_agris_US201301946458 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041116 pubmed_primary_21282664 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2011-02-15 |
PublicationDateYYYYMMDD | 2011-02-15 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences – name: National Acad Sciences |
References | 16402041 - Br J Pharmacol. 2006 Feb;147(4):422-9 12023272 - J Biol Chem. 2002 Jul 12;277(28):24855-8 19395672 - Blood. 2009 Jul 30;114(5):1083-90 9716134 - Nature. 1998 Aug 13;394(6694):690-4 12601165 - Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2290-5 11805322 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):643-8 11127873 - Thromb Haemost. 2000 Nov;84(5):891-6 2865672 - Mol Pharmacol. 1985 Nov;28(5):475-86 16354660 - J Biol Chem. 2006 Feb 17;281(7):4109-16 9862790 - J Pharmacol Exp Ther. 1999 Jan;288(1):358-70 14645013 - Blood. 2004 Mar 15;103(6):2127-34 20025243 - Biochemistry. 2010 Jan 26;49(3):502-11 16507775 - Blood. 2006 Jul 15;108(2):510-4 16835302 - Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11069-74 17009927 - Annu Rev Pharmacol Toxicol. 2007;47:1-51 20233217 - Br J Pharmacol. 2010 Apr;159(7):1429-39 19286091 - Lancet. 2009 Mar 14;373(9667):919-28 19458711 - Nature. 2009 May 21;459(7245):356-63 17190826 - Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):288-92 18042736 - Mol Pharmacol. 2008 Mar;73(3):855-67 7935012 - Methods Enzymol. 1994;237:38-44 6116620 - FEBS Lett. 1981 Aug 3;130(2):235-8 18676678 - Mol Pharmacol. 2008 Nov;74(5):1193-202 12837380 - Chem Biol. 2003 Jun;10(6):481-6 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_17_2 e_1_3_3_9_2 e_1_3_3_16_2 e_1_3_3_19_2 Kawabata A (e_1_3_3_24_2) 1999; 288 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_23_2 e_1_3_3_15_2 e_1_3_3_14_2 Neubig RR (e_1_3_3_22_2) 1985; 28 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_11_2 e_1_3_3_3_2 e_1_3_3_10_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_18_2 doi: 10.1182/blood-2003-04-1133 – volume: 28 start-page: 475 year: 1985 ident: e_1_3_3_22_2 article-title: Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry publication-title: Mol Pharmacol contributor: fullname: Neubig RR – ident: e_1_3_3_6_2 doi: 10.1073/pnas.022460899 – ident: e_1_3_3_4_2 doi: 10.1124/mol.107.044610 – ident: e_1_3_3_23_2 doi: 10.1074/jbc.C200240200 – ident: e_1_3_3_2_2 doi: 10.1146/annurev.pharmtox.47.120505.105159 – ident: e_1_3_3_17_2 doi: 10.1016/S0140-6736(09)60230-0 – ident: e_1_3_3_19_2 doi: 10.1182/blood-2009-03-210211 – ident: e_1_3_3_20_2 doi: 10.1016/0014-5793(81)81128-3 – ident: e_1_3_3_14_2 doi: 10.1038/29325 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.0610188104 – ident: e_1_3_3_7_2 doi: 10.1016/S1074-5521(03)00127-3 – ident: e_1_3_3_10_2 doi: 10.1038/sj.bjp.0706624 – ident: e_1_3_3_3_2 doi: 10.1124/mol.107.039321 – ident: e_1_3_3_15_2 doi: 10.1021/bi901619r – ident: e_1_3_3_11_2 doi: 10.1055/s-0037-1614133 – volume: 288 start-page: 358 year: 1999 ident: e_1_3_3_24_2 article-title: Evaluation of proteinase-activated receptor-1 (PAR1) agonists and antagonists using a cultured cell receptor desensitization assay: Activation of PAR2 by PAR1-targeted ligands publication-title: J Pharmacol Exp Ther contributor: fullname: Kawabata A – ident: e_1_3_3_1_2 doi: 10.1038/nature08144 – ident: e_1_3_3_8_2 doi: 10.1074/jbc.M509525200 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.0510446103 – ident: e_1_3_3_16_2 doi: 10.1182/blood-2005-12-4835 – ident: e_1_3_3_5_2 doi: 10.1111/j.1476-5381.2009.00623.x – ident: e_1_3_3_9_2 doi: 10.1073/pnas.0435715100 – ident: e_1_3_3_21_2 doi: 10.1016/S0076-6879(94)37051-6 |
SSID | ssj0009580 |
Score | 2.3158336 |
Snippet | G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2951 |
SubjectTerms | Aggregation Agonists Allosteric Regulation - physiology Amino acids Animals Antithrombins - metabolism Binding sites Biological Sciences Blood platelets Calcium - metabolism Cell Line Dogs Epinephrine Flow Cytometry Luciferases Modulated signal processing Molecules P-Selectin - metabolism Peptide Fragments - metabolism Platelet activation Platelet Aggregation Platelets Protein Structure, Secondary - physiology Proteins Receptor, PAR-1 - agonists Receptor, PAR-1 - metabolism Receptors Receptors, G-Protein-Coupled - metabolism Secretion Signal transduction Signal Transduction - physiology Thrombosis Thrombosis - metabolism |
Title | Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1 |
URI | https://www.jstor.org/stable/41002243 http://www.pnas.org/content/108/7/2951.abstract https://www.ncbi.nlm.nih.gov/pubmed/21282664 https://www.proquest.com/docview/852740641 https://pubmed.ncbi.nlm.nih.gov/PMC3041116 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZnHopTdo0bh7o0EN6cNZ62jqGkBAKKaFNIPQi9LC6C1l72XWhP78j2d5kS04FHwyyBjMz0nwjjT4h9NmWAcIE9bkKpM5jApFbC8kKTAsV49Iakkhcb7_Jmwf-9VE87iAxnoVJRfvOzs-bp8V5M5-l2srlwk3HOrHp3e0lpOAwROV0giYQfscUfcO0W_XnTihMv5zykc-nZNNlY9YxXeWVBFRTJSJgSDmk5FtRaRJMO5YnRs5T6PUa_vy3jPJFXLp-h94OgBJf9D--h3bqZh_tDUN2jc8GXukv79HP_lBuGFbpcBuwaeABf5mt2oVtQQKO-_CROwFeF62Pd3u1K9zNTIeN69Z4uNYHz-qn-R9cRRl3F9_JB3R_fXV_eZMPVyvkDhBTlxvHleeFp8EHawWxTNUAxmgpjRJWMForocBmhQO8Jqx0qpCWeW4qU1BF2AHabdqmPkQ4WM8AEjpQo-feeaN4ESDtIrV13EmbobNRs3rZE2jotPFdMh01q5_tkaFD0Lw2v2B60w8_aNxUJSpuvULTQTLHRgQnCX2wDH1MUp5FV7rUFHBjho5Gk-lhXK51JSALBxRGYr9kvE3P0RUyVG6ZdfNBJOLebgH_TITcgz9--u-eR-hNv1ZNcyKO0W63-l2fANjp7GkMNeI0ufhfiMj6zw |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALokBpKA8fOJRDuvEz8bGqqBboVhVspYqL5UfSXambrHZTqT-fsZNsWcQJKYdIjkfRzNj-xjP-jNAnm1ewTFCfqoqUaQggUmshWIFpoWBcWkMiievkUo6v-bcbcbODxHAWJhbtOzs_qe8WJ_V8Fmsrlws3GurERleTMwjBYYjK0S56IliuyBCkb7h2i-7kCYUJmFM-MPrkbLSszToErLyQgGuKSAUMQYeUfGtd2q1MMxQoBtZT6PUvBPp3IeUfK9P5C_S8h5T4tPv1fbRT1i_Rfj9o1_i4Z5b-_Ar96o7lVv0-HW4qbGp4wGNmq2ZhG5CAQyY-sCfA66Lx4XavZoXbmWmxce0a9xf74Fl5N3_ARZBxdfqDvEbT8y_Ts3HaX66QOsBMbWocV55nnla-slYQy1QJcIzm0ihhBaOlEgqsljlAbMJKpzJpmeemMBlVhB2gvbqpy0OEK-sZgEIHavTcO28UzyoIvEhpHXfSJuh40KxedhQaOqa-c6aDZvWjPRJ0CJrX5hYmOH39k4a0KlEh-QpNB9EcGxGcRPzBEvQmSnkUXehcU0COCToaTKb7kbnWhYA4HHAYCf2i8TY9B1dIUL5l1s0HgYp7uwU8NFJy9x759r97fkRPx9PJhb74evn9CD3rdq5pSsQ7tNeu7sv3AH1a-yE6-m_8Cv0- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXRIHSUB4-cCiHNPEjTnysCqvyaLWCVqq4WH7E3ZW6yWo3SPx8xk6y7SJOSDlEcmYUecb2N_b4G4Tem9LDMkFdKj2p0xBApMZAsALTQsW4MJpEEtfzC3F2xb9cF9f3Sn3FpH1r5sfN7eK4mc9ibuVyYbMxTyybnp9CCA5DVGRL57Md9LBg4GRjoL7h26362ycUJmFO-cjqU7Js2eh1CFp5JQDbVJEOGAIPIfjW2rTjdTsmKQbmU5D6Fwr9O5ny3uo0eYqeDLASn_S_v4ce1M0ztDcM3DU-GtilPzxHP_uruX7Yq8Otx7qBB7xmtmoXpgUNOJzGBwYFeF20LlT4ale4m-kOa9ut8VDcB8_q2_lvXAUd05Pv5AW6nHy6PD1LhwILqQXc1KXacul47qh33piCGCZrgGS0FFoWpmC0loUEy-UWUFthhJW5MMxxXemcSsL20W7TNvUBwt44BsDQQjc67qzTkucegi9SG8utMAk6GntWLXsaDRWPv0umQs-qO3sk6AB6XukbmOTU1Q8ajlaJDAew0LQfzbFRwUnEICxBL6OWO9WVKhUF9Jigw9Fkahida1UVEIsDFiNBLhpvIzm6QoLKLbNuPgh03Nst4KWRlnvwylf_LfkOPZp-nKhvny--HqLH_eY1TUnxGu12q1_1G0A_nXkb_fwPtp_-UQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+an+antithrombotic+allosteric+modulator+that+acts+through+helix+8+of+PAR1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dowal%2C+Louisa&rft.au=Sim%2C+Derek+S&rft.au=Dilks%2C+James+R&rft.au=Blair%2C+Price&rft.date=2011-02-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=7&rft.spage=2951&rft.epage=2956&rft_id=info:doi/10.1073%2Fpnas.1014863108&rft.externalDocID=US201301946458 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F7.cover.gif |