AGIM-net based subject-sensitive hashing algorithm for integrity authentication of HRRS images
The premise of effective use of high-resolution remote sensing (HRRS) images is that the data integrity and authenticity of HRRS images must be guaranteed. This paper proposes a new subject-sensitive hashing algorithm for the integrity authentication of HRRS images. This algorithm takes AGIM-net (At...
Saved in:
Published in | Geocarto international Vol. 38; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2023
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The premise of effective use of high-resolution remote sensing (HRRS) images is that the data integrity and authenticity of HRRS images must be guaranteed. This paper proposes a new subject-sensitive hashing algorithm for the integrity authentication of HRRS images. This algorithm takes AGIM-net (Attention Gate-based improved M-net) proposed in this paper to extract the subject-sensitive features of the HRRS images, and uses Principal Component Analysis (PCA) based method to compress and encode the extracted features. AGIM-net is an improved U-net based on attention mechanism, adding multi-scale input in the encoder stage to extract rich image features; adding multi-scale output in the decoder stage, and suppressing the features irrelevant to the subject through Attention Gate to improve the robustness of the algorithm. Experiments show that the proposed algorithm has improved robustness compared with existing algorithms, and the tamper sensitivity and security are basically equivalent to the existing algorithms. |
---|---|
AbstractList | The premise of effective use of high-resolution remote sensing (HRRS) images is that the data integrity and authenticity of HRRS images must be guaranteed. This paper proposes a new subject-sensitive hashing algorithm for the integrity authentication of HRRS images. This algorithm takes AGIM-net (Attention Gate-based improved M-net) proposed in this paper to extract the subject-sensitive features of the HRRS images, and uses Principal Component Analysis (PCA) based method to compress and encode the extracted features. AGIM-net is an improved U-net based on attention mechanism, adding multi-scale input in the encoder stage to extract rich image features; adding multi-scale output in the decoder stage, and suppressing the features irrelevant to the subject through Attention Gate to improve the robustness of the algorithm. Experiments show that the proposed algorithm has improved robustness compared with existing algorithms, and the tamper sensitivity and security are basically equivalent to the existing algorithms. |
Author | Yan, Xinyun Wang, Yingying Ding, Kaimeng Zeng, Yue Lv, Dong |
Author_xml | – sequence: 1 givenname: Kaimeng surname: Ding fullname: Ding, Kaimeng organization: Jiangsu AI Transportation Innovations & Applications Engineering Research Center – sequence: 2 givenname: Yue surname: Zeng fullname: Zeng, Yue organization: Jinling Institute of Technology – sequence: 3 givenname: Yingying surname: Wang fullname: Wang, Yingying organization: Jinling Institute of Technology – sequence: 4 givenname: Dong surname: Lv fullname: Lv, Dong organization: HeBei Branch of China National Geological Exploration Center of Building Material Industry – sequence: 5 givenname: Xinyun surname: Yan fullname: Yan, Xinyun organization: Jiangsu AI Transportation Innovations & Applications Engineering Research Center |
BookMark | eNqFkUtvEzEUhUeoSLSFn4DkJZsJfo09IzZUFbSRWiEV2GLdeK4njiZ2sZ2i_Hucpt10ASs_dM7x8f3OmpMQAzbNe0YXjPb0I6OMKiqHBadcLDhTPdXsVXPKdMdbqhU_qfuqaQ-iN81ZzhtKhe6VOG1-XVwtb9uAhawg40jybrVBW9qMIfviH5CsIa99mAjMU0y-rLfExUR8KDjV457ArqwxFG-h-BhIdOT67u478VuYML9tXjuYM757Ws-bn1-__Li8bm--XS0vL25aKztVWuiFHmnPHOsld6OwAIpbicB7kNBpBhq4FR0Ow6gQpRol9oePjorTfpDivFkec8cIG3Of6utpbyJ483gR02Qg1Y4zGroaV1zqETVoCYoOIB0wwa1znbCdq1kfjln3Kf7eYS5m67PFeYaAcZeNoLJOT8tBVOmno9SmmHNCZ6wvj3MoCfxsGDUHQuaZkDkQMk-Eqrt74X4u_j_f56PPh4piC39imkdTYD_H5BIE62vJf0f8BXAQqaE |
CitedBy_id | crossref_primary_10_3390_w15193511 crossref_primary_10_3390_rs15194860 crossref_primary_10_3390_ijgi13090336 |
Cites_doi | 10.1109/JIOT.2020.2995148 10.1109/TNNLS.2019.2957276 10.1109/CVPR.2018.00418 10.1016/S0030-4018(03)01261-6 10.1007/s11042-017-4809-4 10.3390/ijgi9080485 10.1016/j.knosys.2021.107807 10.3390/app9152972 10.1016/j.sigpro.2013.01.008 10.1049/iet-ipr.2013.0332 10.1007/978-3-319-24574-4_28 10.1007/s00034-018-0822-8 10.1109/TMI.2019.2903562 10.1016/j.jvcir.2012.03.005 10.1186/s13640-017-0179-0 10.1016/j.image.2019.115713 10.1016/j.dsp.2012.11.002 10.1109/TGRS.2022.3231215 10.1007/s11042-012-1188-8 10.1109/IGARSS47720.2021.9553872 10.1007/s11042-015-2851-7 10.1109/TCYB.2019.2914351 10.1007/s11042-018-5799-6 10.1109/ICMEW.2017.8026309 10.1186/s40064-016-3639-6 10.1109/TPAMI.2011.103 10.3390/ijgi9040254 10.1109/TGRS.2020.2994057 10.1109/TPAMI.2012.48 10.1109/TMI.2020.3010102 10.3390/rs13245109 10.1109/JSTSP.2019.2955012 10.1109/TGRS.2019.2907932 10.1016/j.neunet.2019.08.025 10.1088/1755-1315/440/3/032138 10.1109/TMI.2018.2791488 10.1109/ICSIDP47821.2019.9173237 10.1109/DDCLS49620.2020.9275068 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023 |
Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/10106049.2023.2168071 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Physics |
EISSN | 1752-0762 |
ExternalDocumentID | oai_doaj_org_article_0bdb247de7a74a609a4fa132cff53c5f 10_1080_10106049_2023_2168071 2168071 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41801303 |
GroupedDBID | .7F .QJ 0BK 0YH 30N 4.4 5GY 5VS AAENE AAHBH AAJMT ABCCY ABFIM ABHAV ABJNI ABPAQ ABPEM ABTAI ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GROUPED_DOAJ GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P RIG ROSJB S-T SJN SNACF TDBHL TFL TFT TFW TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ~02 ~S~ AAYXX AFRVT AIYEW CITATION NX~ 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-a837d081f1842fd3caa62c4ea28a4a571a7a2c35e99d6ee46d4e82168d6208943 |
IEDL.DBID | 0YH |
ISSN | 1010-6049 1752-0762 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Wed Jul 02 04:32:39 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Tue Jul 01 01:58:20 EDT 2025 Wed Dec 25 09:04:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-a837d081f1842fd3caa62c4ea28a4a571a7a2c35e99d6ee46d4e82168d6208943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10106049.2023.2168071 |
PQID | 3040377493 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3040377493 doaj_primary_oai_doaj_org_article_0bdb247de7a74a609a4fa132cff53c5f crossref_primary_10_1080_10106049_2023_2168071 crossref_citationtrail_10_1080_10106049_2023_2168071 informaworld_taylorfrancis_310_1080_10106049_2023_2168071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Geocarto international |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | Ji SP (e_1_3_3_17_1) 2019; 48 e_1_3_3_30_1 Adiga VS (e_1_3_3_2_1) 2019 Oktay O (e_1_3_3_27_1) 2018 Lin H (e_1_3_3_22_1) 2021; 47 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_19_1 Alom MZ (e_1_3_3_3_1) 2019; 6 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 Song W (e_1_3_3_32_1) 2022; 60 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_40_1 Niu XM (e_1_3_3_26_1) 2008; 36 e_1_3_3_41_1 Lin TY (e_1_3_3_21_1) 2017; 42 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_46_1 e_1_3_3_47_1 e_1_3_3_44_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_43_1 |
References_xml | – volume: 6 start-page: 014006 issue: 1 year: 2019 ident: e_1_3_3_3_1 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J Med Imaging (Bellingham) – ident: e_1_3_3_16_1 doi: 10.1109/JIOT.2020.2995148 – ident: e_1_3_3_42_1 doi: 10.1109/TNNLS.2019.2957276 – ident: e_1_3_3_40_1 doi: 10.1109/CVPR.2018.00418 – volume: 60 start-page: 1 year: 2022 ident: e_1_3_3_32_1 article-title: Asymmetric hash code learning for remote sensing image retrieval publication-title: IEEE Trans Geosci Remote Sens – ident: e_1_3_3_31_1 doi: 10.1016/S0030-4018(03)01261-6 – ident: e_1_3_3_28_1 doi: 10.1007/s11042-017-4809-4 – ident: e_1_3_3_6_1 doi: 10.3390/ijgi9080485 – ident: e_1_3_3_35_1 doi: 10.1016/j.knosys.2021.107807 – ident: e_1_3_3_7_1 doi: 10.3390/app9152972 – ident: e_1_3_3_37_1 doi: 10.1016/j.sigpro.2013.01.008 – ident: e_1_3_3_12_1 doi: 10.1049/iet-ipr.2013.0332 – ident: e_1_3_3_30_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_3_3_11_1 doi: 10.1007/s00034-018-0822-8 – ident: e_1_3_3_10_1 doi: 10.1109/TMI.2019.2903562 – ident: e_1_3_3_39_1 doi: 10.1016/j.jvcir.2012.03.005 – ident: e_1_3_3_18_1 doi: 10.1186/s13640-017-0179-0 – ident: e_1_3_3_8_1 doi: 10.1016/j.image.2019.115713 – ident: e_1_3_3_29_1 doi: 10.1016/j.dsp.2012.11.002 – ident: e_1_3_3_34_1 doi: 10.1109/TGRS.2022.3231215 – ident: e_1_3_3_36_1 doi: 10.1007/s11042-012-1188-8 – ident: e_1_3_3_15_1 doi: 10.1109/IGARSS47720.2021.9553872 – ident: e_1_3_3_4_1 doi: 10.1007/s11042-015-2851-7 – volume: 48 start-page: 448 year: 2019 ident: e_1_3_3_17_1 article-title: Building extraction via convolutional neural networks from an open remote sensing building dataset publication-title: Acta Geod Cartographica Sin – ident: e_1_3_3_24_1 doi: 10.1109/TCYB.2019.2914351 – volume: 36 start-page: 1405 issue: 7 year: 2008 ident: e_1_3_3_26_1 article-title: An overview of perceptual hashing publication-title: Acta Electronica Sinica – ident: e_1_3_3_20_1 doi: 10.1007/s11042-018-5799-6 – volume: 42 start-page: 2999 year: 2017 ident: e_1_3_3_21_1 article-title: Focal loss for dense object detection publication-title: IEEE Trans Pattern Anal Mach Intell – ident: e_1_3_3_25_1 doi: 10.1109/ICMEW.2017.8026309 – ident: e_1_3_3_19_1 doi: 10.1186/s40064-016-3639-6 – ident: e_1_3_3_33_1 doi: 10.1109/TPAMI.2011.103 – ident: e_1_3_3_43_1 doi: 10.3390/ijgi9040254 – ident: e_1_3_3_47_1 doi: 10.1109/TGRS.2020.2994057 – ident: e_1_3_3_38_1 doi: 10.1109/TPAMI.2012.48 – year: 2019 ident: e_1_3_3_2_1 article-title: FPD-M-net: fingerprint image denoising and inpainting using M-Net based convolutional neural networks publication-title: arXiv preprint arXiv:1812.10191. – ident: e_1_3_3_41_1 doi: 10.1109/TMI.2020.3010102 – volume: 47 start-page: 2226 issue: 9 year: 2021 ident: e_1_3_3_22_1 article-title: Unsupervised image-to-image translation with self-attention and relativistic discriminator adversarial networks publication-title: Acta Autom Sin – ident: e_1_3_3_5_1 doi: 10.3390/rs13245109 – year: 2018 ident: e_1_3_3_27_1 article-title: Attention u-net: learning where to look for the pancreas publication-title: arXiv preprint arXiv:1804.03999. – ident: e_1_3_3_44_1 doi: 10.1109/JSTSP.2019.2955012 – ident: e_1_3_3_23_1 doi: 10.1109/TGRS.2019.2907932 – ident: e_1_3_3_13_1 doi: 10.1016/j.neunet.2019.08.025 – ident: e_1_3_3_45_1 doi: 10.1088/1755-1315/440/3/032138 – ident: e_1_3_3_9_1 doi: 10.1109/TMI.2018.2791488 – ident: e_1_3_3_46_1 doi: 10.1109/ICSIDP47821.2019.9173237 – ident: e_1_3_3_14_1 doi: 10.1109/DDCLS49620.2020.9275068 |
SSID | ssj0037863 |
Score | 2.3174305 |
Snippet | The premise of effective use of high-resolution remote sensing (HRRS) images is that the data integrity and authenticity of HRRS images must be guaranteed.... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | algorithms attention gate Attention mechanism exhibitions extracts gates image analysis integrity authentication perceptual hashing principal component analysis remote sensing subject-sensitive hashing tampering U-net |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQUkUvVQutum1BrsQ1S2I7dnykCLqtRA88JE61JrHdRYJsxWYP_Htm4gRBOeylVytWRuPxvDL5Psb2TY23KLcm80pggSKBiNyVymotFboGH2OgfsfpLz27VD-vyqsnVF80E5bggZPiDvLa10IZHwwYBTq3oCJgCdXEWMqmjOR9MeaNxVTywdJUOo3Wo5fRmASP_-5U-QGt0dKUiMOnotBVbopnUakH7_8HuvSFq-7jz8lb9mZIHPlhEvgd2wjtNtsaOMzn99vsVT_M2Sx32O_D7z9OszZ0nGKU58tVTd2WbEnD6uTe-DxRKHG4-bO4u-7mtxxl4Ak6AtNyDjT33nZDP48vIp-dnZ3z61v0Psv37PLk-OJolg08ClmD6VGXARahHkN_xGpORC8bAC0aFUBUoKA0BRgQjSyDtV6HoLRXoSLFeC1ywmf_wDbbRRs-Mh68zLGcDjZgGmK1sL4orILcCh-wcFITpkY9umYAGSeuixtXDFiko_odqd8N6p-w6eO2vwllY92Gb3RIjw8TSHa_gKbjBtNx60xnwuzTI3Zd3yOJidDEyTUCfB3tweGFpK8s0IbFCvehW5SYVFv56X8I-Zm9pvcmbMkvbLO7W4VdzIO6eq83-QdbL_22 priority: 102 providerName: Directory of Open Access Journals |
Title | AGIM-net based subject-sensitive hashing algorithm for integrity authentication of HRRS images |
URI | https://www.tandfonline.com/doi/abs/10.1080/10106049.2023.2168071 https://www.proquest.com/docview/3040377493 https://doaj.org/article/0bdb247de7a74a609a4fa132cff53c5f |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELVQUQUXRAuIBbpyJa6pEttx1seC2G6RyqGwElywJrG9W6lNqk320L_vTOJUQFX1wClKFFvReOZ5ZjJ-w9jHokQrSk2ROCUwQJFAjdyVSkotFUKDC8FTvuPsm14s1def-VhN2MaySoqhw0AU0WM1GTeU7VgRh9eMKF_omImQRyLTs5ROkT8VpK2o0umvxQjGspjpocYe4YbGjId4Hprmr-2pZ_H_h8P0Hmb3G9H8JXsRPUh-PCz5Hnvi6332LDYzX9_ss92-qrNqX7HfxyenZ0ntO06blePttqS0S9JS1TrhHF8PvZQ4XK6azUW3vuL4DXzgkED_nAMVwNddTOzxJvDF-fl3fnGFMNS-Zsv5lx-fF0lsqJBU6Cd1CWA06tAHCBjWieBkBaBFpTyIGSjIiwwKEJXMvTFOe6-0U35GgnFapETU_obt1E3t3zLunUwxrvbGoz9itDAuy4yC1AjnMYJSE6ZGOdoqso1T04tLm0VS0lH8lsRvo_gn7Ohu2PVAt_HYgE-0SHcvE1t2_6DZrGw0PpuWrhSqcL6AQoFODagAGIZXIeSyysOEmT-X2HZ9siQMnU2sfOQDDkd9sGiZ9LsFat9scRzio0Tv2sh3_zH_e_acbgduyQ9sp9ts_QH6QV057TV92mcRbgFN8fo7 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQESqXUgqI5WkkrlkltmOvjwXRbqG7h9JKPWE5fnQr2qTazR7g1zMTJ1UpQj30FCmJo4wz83lmMv6GkI-qAivKtcq8YBCgcIuN3IXIKskFQIOPMWC-YzaX0xPx9bQ8vbEXBssqMYaOiSiiw2o0bkxGDyVxcCyQ8wX3mTA-ZoWc5LiN_GGppcIuBjyfD2jM1USmInvAGxwz7OL532P-Wp86Gv9bJKb_gHa3Eu09IW6QIRWg_Byv22rsft-id7yfkNtkq3dU6W7SrKfkQah3yGbfM33xa4c86opH3eoZ-bG7fzDL6tBSXBM9Xa0rzO5kKyyORzili9SyidqLs2Z53i4uKUhKE1UFhAHUYp193fb5Q9pEOj06-k7PLwHtVs_Jyd6X48_TrO_bkDlwx9rMQtDrwdWIED2y6LmzVjIngmUTK2ypCqssc7wMWnsZgpBehAkK6CXLkQ_-Bdmomzq8JDR4nkP4HnQAt0dLpn1RaGFzzXyAQE2MiBi-lnE9qTn21rgwRc99OkyjwWk0_TSOyPh62FVi9bhrwCdUheubkZS7O9Esz0xv4yavfMWE8kFZJazMtRXRQrTvYiy5K-OI6JuKZNouJxNTAxXD73iBD4PWGQAA_Ktj69CsYRzAMAcnXvNX93j-e7I5PZ4dmsOD-bfX5DFeSnSWb8hGu1yHt-B6tdW7zrb-AGytHMI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEY8Lj0LF8jQS16wS23HWx_JYtkBXqFCJE5bjR7eiTapN9gC_npnYqaAI9dBTpCQTZZyZ8cxk5htCXlU1aFGuqswJBgEKNzjIXYisllyAaXAheMx37C_l4lB8-FaO1YRdKqvEGDpEoIjBVqNyn7kwVsTBsUDIF2wzYXzKCjnLsYv8ukTwcOziyJejMebVTMYaezA3SDM28fzvMX9tTwOK_wUM039s9rARze-SemQh1p_8mG76emp_XUB3vBKP98id5KbS3ShX98k132yTW2li-urnNrkxlI7a7gH5vvt-bz9rfE9xR3S029SY28k6LI1HY0pXcWATNSdH7fq4X51SYJRGoAoIAqjBKvumT9lD2ga6ODj4Qo9PwdZ1D8nh_N3XN4ssTW3ILDhjfWYg5HXgaASIHVlw3BojmRXesJkRpqwKUxlmeemVctJ7IZ3wM2TQSZYjGvwO2Wraxj8i1DueQ_DulQenR0mmXFEoYXLFnIcwTUyIGD-WtgnSHCdrnOgiIZ-Oy6hxGXVaxgmZnpOdRUyPywheoySc34yQ3MOJdn2kk4brvHY1E5XzlamEkbkyIhiI9W0IJbdlmBD1pxzpfsjIhDg-RfNLXuDlKHQa1B__6ZjGtxugAyPMwYVX_PEVnv-C3Pz8dq4_7S0_PiG38UrEsnxKtvr1xj8Dv6uvnw-a9RvCnRtm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AGIM-net+based+subject-sensitive+hashing+algorithm+for+integrity+authentication+of+HRRS+images&rft.jtitle=Geocarto+international&rft.au=Ding%2C+Kaimeng&rft.au=Zeng%2C+Yue&rft.au=Wang%2C+Yingying&rft.au=Lv%2C+Dong&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=38&rft.issue=1&rft_id=info:doi/10.1080%2F10106049.2023.2168071&rft.externalDBID=0YH&rft.externalDocID=2168071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon |