Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data
This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT...
Saved in:
Published in | Medical image analysis Vol. 14; no. 6; pp. 723 - 737 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs.
To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin).
We extensively evaluate the proposed registration method, using 26
non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using
contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired
in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47
±
0.08 for the kidneys and 0.73
±
0.04 for the brain. These experiments demonstrate the method’s effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in
in vivo Micro-CT data without requiring user initialization. |
---|---|
AbstractList | This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs. To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin). We extensively evaluate the proposed registration method, using 26 non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47+/-0.08 for the kidneys and 0.73+/-0.04 for the brain. These experiments demonstrate the method's effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in in vivo Micro-CT data without requiring user initialization.This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs. To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin). We extensively evaluate the proposed registration method, using 26 non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47+/-0.08 for the kidneys and 0.73+/-0.04 for the brain. These experiments demonstrate the method's effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in in vivo Micro-CT data without requiring user initialization. This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs. To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin). We extensively evaluate the proposed registration method, using 26 non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47 ± 0.08 for the kidneys and 0.73 ± 0.04 for the brain. These experiments demonstrate the method’s effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in in vivo Micro-CT data without requiring user initialization. This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture of mice in such studies may vary to a large extent, complicating data comparison in cross-sectional and follow-up studies. Moreover, Micro-CT typically yields only poor soft-tissue contrast for abdominal organs. To overcome these challenges, we propose a method that divides the problem into an atlas constrained registration based on high-contrast organs in Micro-CT (skeleton, lungs and skin), and a soft tissue approximation step for low-contrast organs. We first present a modification of the MOBY mouse atlas (Segars et al., 2004) by partitioning the skeleton into individual bones, by adding anatomically realistic joint types and by defining a hierarchical atlas tree description. The individual bones as well as the lungs of this adapted MOBY atlas are then registered one by one traversing the model tree hierarchy. To this end, we employ the Iterative Closest Point method and constrain the Degrees of Freedom of the local registration, dependent on the joint type and motion range. This atlas-based strategy renders the method highly robust to exceptionally large postural differences among scans and to moderate pathological bone deformations. The skin of the torso is registered by employing a novel method for matching distributions of geodesic distances locally, constrained by the registered skeleton. Because of the absence of image contrast between abdominal organs, they are interpolated from the atlas to the subject domain using Thin-Plate-Spline approximation, defined by correspondences on the already established registration of high-contrast structures (bones, lungs and skin). We extensively evaluate the proposed registration method, using 26 non-contrast-enhanced Micro-CT datasets of mice, and the skin registration and organ interpolation, using contrast-enhanced Micro-CT datasets of 15 mice. The posture and shape varied significantly among the animals and the data was acquired in vivo. After registration, the mean Euclidean distance was less than two voxel dimensions for the skeleton and the lungs respectively and less than one voxel dimension for the skin. Dice coefficients of volume overlap between manually segmented and interpolated skeleton and organs vary between 0.47+/-0.08 for the kidneys and 0.73+/-0.04 for the brain. These experiments demonstrate the method's effectiveness for overcoming exceptionally large variations in posture, yielding acceptable approximation accuracy even in the absence of soft-tissue contrast in in vivo Micro-CT data without requiring user initialization. |
Author | Que, Ivo Weber, Axel W. Milles, Julien Henning, Tobias D. Dijkstra, Jouke Löwik, Clemens W.G.M. Kaijzel, Eric L. Lelieveldt, Boudewijn P.F. Baiker, Martin Reiber, Johan H.C. |
Author_xml | – sequence: 1 givenname: Martin surname: Baiker fullname: Baiker, Martin organization: Div. of Image Processing, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 2 givenname: Julien surname: Milles fullname: Milles, Julien organization: Div. of Image Processing, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 3 givenname: Jouke surname: Dijkstra fullname: Dijkstra, Jouke organization: Div. of Image Processing, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 4 givenname: Tobias D. surname: Henning fullname: Henning, Tobias D. organization: University of California, San Francisco, USA – sequence: 5 givenname: Axel W. surname: Weber fullname: Weber, Axel W. organization: Dept. of Nuclear Medicine, TU München, Munich, Germany – sequence: 6 givenname: Ivo surname: Que fullname: Que, Ivo organization: Dept. of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 7 givenname: Eric L. surname: Kaijzel fullname: Kaijzel, Eric L. organization: Dept. of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 8 givenname: Clemens W.G.M. surname: Löwik fullname: Löwik, Clemens W.G.M. organization: Dept. of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 9 givenname: Johan H.C. surname: Reiber fullname: Reiber, Johan H.C. organization: Div. of Image Processing, Leiden University Medical Center, 2300 Leiden, The Netherlands – sequence: 10 givenname: Boudewijn P.F. surname: Lelieveldt fullname: Lelieveldt, Boudewijn P.F. email: b.p.f.lelieveldt@lumc.nl organization: Div. of Image Processing, Leiden University Medical Center, 2300 Leiden, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20576463$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi0EYlngF1SqcuOU7Tj-SHLggFa0oIK4wNly7An1Komp7QXtv8ew0EMPy2ms0fOM5Pedk_3JT0jINwoLClT-WC1GtE4vKsgb4AuAZo8cUSZp2fCK7f97UzEj8xhXAFBzDodkVoGoJZfsiPy-SIOOZacj2uLljx-w7LzdFBEfR5ySTs5Phe-L0Rks-uDHYvAvpfFTCjqm4taZ4MvlfWF10ifkoNdDxNOPeUwefl7eL6_Km7tf18uLm9JwIVOpq0qwrtdGsrqprWSMYU0pNcLWlpuu5cJIC01DaYudMJngojKtbJhuK2zZMTnb3n0K_u8aY1KjiwaHQU_o11HVgr_L_GuScYAMQya_f5DrLseqnoIbddioz6Qy0G6B_OEYA_bKuG08OQk3KArqrRW1Uu-tqLdWFHCVW8ku-8_9PL_bOt9amLN8dhhUNA4nk8GAJinr3U7_FTevpPo |
CitedBy_id | crossref_primary_10_1038_srep27940 crossref_primary_10_1038_s41467_018_06288_w crossref_primary_10_1152_japplphysiol_00465_2019 crossref_primary_10_1038_s41467_020_19449_7 crossref_primary_10_1155_2019_2054262 crossref_primary_10_1088_1361_6560_aaa730 crossref_primary_10_1038_s43586_021_00080_9 crossref_primary_10_4236_ojrad_2011_12005 crossref_primary_10_1118_1_4937598 crossref_primary_10_1016_j_compmedimag_2016_03_005 crossref_primary_10_1364_BOE_9_003544 crossref_primary_10_3390_cancers13184585 crossref_primary_10_1007_s10439_017_1799_3 crossref_primary_10_1016_j_bprint_2021_e00146 crossref_primary_10_1021_ac4038812 crossref_primary_10_1148_ryai_210095 crossref_primary_10_1371_journal_pone_0169424 crossref_primary_10_1038_s41467_022_32586_5 crossref_primary_10_1038_bonekey_2012_79 crossref_primary_10_1088_0031_9155_59_6_1485 crossref_primary_10_1109_TMI_2011_2165294 crossref_primary_10_1259_bjr_20180364 crossref_primary_10_1007_s11307_014_0767_7 crossref_primary_10_1016_j_media_2014_04_003 crossref_primary_10_1007_s11307_010_0386_x crossref_primary_10_1016_j_media_2012_11_002 crossref_primary_10_1007_s11307_011_0519_x crossref_primary_10_1371_journal_pone_0280765 crossref_primary_10_1109_TMI_2015_2471075 crossref_primary_10_1016_j_compag_2016_08_003 crossref_primary_10_1088_1361_6560_aa6055 crossref_primary_10_1038_sdata_2018_294 crossref_primary_10_3390_bioengineering11121255 crossref_primary_10_3390_ijms22010158 crossref_primary_10_1186_2191_219X_1_11 crossref_primary_10_1088_1361_6560_ac4da3 crossref_primary_10_1371_journal_pone_0048976 crossref_primary_10_1016_j_media_2013_02_009 crossref_primary_10_1109_TMI_2011_2174159 crossref_primary_10_1088_1361_6560_ab59a4 crossref_primary_10_1016_j_media_2019_101601 crossref_primary_10_1109_ACCESS_2018_2861418 crossref_primary_10_1242_bio_059698 crossref_primary_10_1364_BOE_448862 crossref_primary_10_1111_vru_12342 crossref_primary_10_1007_s00259_012_2188_7 crossref_primary_10_1007_s11307_017_1126_2 crossref_primary_10_1371_journal_pone_0108730 crossref_primary_10_1016_j_jbiomech_2012_05_019 crossref_primary_10_1021_acsami_6b16505 crossref_primary_10_1007_s11307_024_01927_9 crossref_primary_10_1088_0031_9155_59_6_1501 crossref_primary_10_1007_s11548_021_02318_z crossref_primary_10_1007_s11517_015_1386_4 crossref_primary_10_31146_1682_8658_ecg_217_9_131_137 crossref_primary_10_1007_s11307_011_0522_2 crossref_primary_10_1088_0031_9155_56_3_001 crossref_primary_10_1016_j_compag_2015_12_002 crossref_primary_10_1016_j_bone_2020_115417 crossref_primary_10_1109_TVCG_2010_134 crossref_primary_10_1016_j_addr_2010_08_004 |
Cites_doi | 10.1101/gad.1047403 10.1109/34.24792 10.1016/S1361-8415(01)80026-8 10.1016/S0262-8856(03)00137-9 10.1109/SMI.2005.13 10.1117/12.710197 10.1016/j.acra.2007.10.007 10.1088/0031-9155/50/17/021 10.1177/25.7.70454 10.1109/ICIP.2005.1529677 10.1148/radiology.219.2.r01ma19316 10.1007/s10851-008-0135-9 10.1109/TMI.2002.806424 10.1016/j.cad.2007.02.009 10.1117/12.711117 10.1007/11566489_113 10.1007/978-3-540-39903-2_106 10.1109/34.993558 10.1088/0031-9155/46/3/201 10.1016/j.media.2008.01.002 10.1016/j.resp.2004.02.003 10.1117/1.3258836 10.1118/1.2889758 10.1109/TPAMI.2003.1233902 10.1137/0806023 10.1109/34.121791 10.1088/0031-9155/51/8/006 10.2307/1932409 10.1117/12.595133 10.1016/j.mibio.2004.03.002 10.1109/ISBI.2008.4541234 10.1007/s10585-008-9217-8 10.1073/pnas.95.15.8431 10.1016/S1077-3142(03)00009-2 10.1109/ISBI.2007.356955 10.1016/j.media.2006.09.002 10.1109/TMI.2003.814791 10.1145/37401.37422 10.1109/TSMC.1978.4310039 10.1088/0031-9155/52/3/003 10.1158/1078-0432.CCR-07-0402 10.1109/TMI.2007.904691 10.1016/S1077-3142(03)00015-8 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. Copyright 2010 Elsevier B.V. All rights reserved. Copyright 2010 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: Copyright 2010 Elsevier B.V. All rights reserved. – notice: Copyright 2010 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 7TK 8FD FR3 P64 |
DOI | 10.1016/j.media.2010.04.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 737 |
ExternalDocumentID | 20576463 10_1016_j_media_2010_04_008 S1361841510000447 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QO 7QP 7TK 8FD FR3 P64 |
ID | FETCH-LOGICAL-c456t-a2253bfac63787d6333e7111c5d7d4cb945c6d088119eb5cd63452c9683a92e93 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Sun Aug 24 04:00:55 EDT 2025 Fri Jul 11 11:32:17 EDT 2025 Mon Jul 21 05:55:57 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Tue Jul 01 05:30:40 EDT 2025 Fri Feb 23 02:28:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Micro-CT Atlas-based whole-body segmentation Articulated registration In vivo small animal imaging |
Language | English |
License | Copyright 2010 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-a2253bfac63787d6333e7111c5d7d4cb945c6d088119eb5cd63452c9683a92e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20576463 |
PQID | 734004880 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_754881194 proquest_miscellaneous_734004880 pubmed_primary_20576463 crossref_citationtrail_10_1016_j_media_2010_04_008 crossref_primary_10_1016_j_media_2010_04_008 elsevier_sciencedirect_doi_10_1016_j_media_2010_04_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2010 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaijzel, van der Pluijm, Löwik (bib26) 2007; 13 Cheers (bib11) 2004 Hill, Batchelor, Holden, Hawkes (bib23) 2001; 46 Besl, McKay (bib8) 1992; 14 Coleman, Li (bib13) 1996; 6 Cook (bib15) 1965 Henning, Weber, Bauer, Meier, Carlsen, Sutton, Prevrhal, Ziegler, Feussner, Daldrup-Link, Rummeny (bib22) 2008; 15 Arsigny, Commowick, Ayache, Pennec (bib3) 2009; 33 Maintz, Viergever (bib34) 1998; 2 Krücker, LeCarpentier, Fowlkes, Carson (bib31) 2002; 21 Kimmel, Sethian (bib28) 1998; 95 Martín-Fernández, M.A., Mu noz Moreno, E., Martín-Fernández, M., Alberola-López, C., 2005. Articulated registration: elastic registration based on a wire model. In: Proceedings of the SPIE Medical Imaging, vol. 5747, pp. 182–191. Gatzke, T., Grimm, C., 2005. Curvature maps for local shape comparison. In: Shape Modeling International, pp. 244–256. Chui, Rangarajan (bib12) 2003; 89 Garland, Shaffer (bib20) 2002 Papademetris, X., Dione, D.P., Dobrucki, L.W., Staib, L., Sinusas, A.J., 2005. Articulated rigid registration for serial lower-limb mouse imaging. In: Proceedings of the MICCAI, pp. 919–926. Chaudhari, A.J., Joshi, A.A., Darvas, F., Leahy, R.M., 2007. A method for atlas-based volumetric registration with surface constraints for optical bioluminescence tomography in small animal imaging. In: Proceedings of the SPIE Medical Imaging, vol. 6510, pp. 651024-1–651024-10. Jain, Zhang (bib25) 2007; 39 Li, Yankeelov, Peterson, Gore, Dawant (bib32) 2008; 35 Weissleder, Mahmood (bib50) 2001; 219 Alexandrakis, Rannou, Chatziioannou (bib1) 2005; 50 Dogdas, Stout, Chatziioannou, Leahy (bib17) 2007; 52 Wang, Peterson, Staib (bib49) 2003; 89 noz Moreno, E., de Luis-García, R., Martín-Fernández, M., Alberola-López, C., in press. Automated articulated registration of hand radiographs. Image and Vision Computing. Zack, Rogers, Latt (bib51) 1977; 25 Bab, Hajbi-Yonissi, Gabet, Müller (bib4) 2007 Massoud, Gambhir (bib37) 2003; 17 Commowick, Arsigny, Isambert, Costa, Dhermain, Bidault, Bondiau, Ayache, Malandain (bib14) 2008; 12 Rohr, Stiehl, Sprengel, Buzug, Weese, Kuhn (bib43) 2001; 20 Bookstein (bib9) 1989; 11 Baiker, M., Milles, J., Vossepoel, A.M., Que, I., Kaijzel, E.L., Löwik, C.W.G.M., Reiber, J.H.C., Dijkstra, J., Lelieveldt, B.P.F., 2007. Fully automated whole-body registration in mice using an articulated skeleton atlas. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 728–731. Belongie, Malik, Puzicha (bib7) 2002; 24 du Bois d’Aische, A., De Craene, M., Macq, B., Warfield, S.K., 2005. An articulated registration method. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 21–24. Baiker, M., Dijkstra, J., Que, I., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F., 2008. Organ approximation in μCT data with low soft tissue contrast using an articulated whole-body atlas. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 1267–1270. Elad, Kimmel (bib19) 2003; 25 Holden (bib24) 2008; 27 Rohlfing, Maurer, Bluemke, Jacobs (bib42) 2003; 22 Pluim, Maintz, Viergever (bib40) 2003; 22 Zhang, Badea, Johnson (bib53) 2009; 14 Lorensen, W.E., Cline, H.E., 1987. Marching cubes: a high resolution 3d surface construction algorithm. In: SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163–169. Walimbe, Shekhar (bib48) 2006; 10 Martín-Fernández, M.A., Cárdenes, R., Mu Wahba (bib47) 1990 Sumner, Popović (bib46) 2004 Segars, Tsui, Frey, Johnson, Berr (bib44) 2004; 6 Pearson (bib39) 1901; 2 Dice (bib16) 1945 Zayer, Rössl, Karni, Seidel (bib52) 2005; vol. 24 Zitova, Flusser (bib54) 2003; 21 Alexandrakis, Rannou, Chatziioannou (bib2) 2006; 51 Kok, P., Dijkstra, J., Botha, C.P., Post, F.H., Kaijzel, E., Que, I., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F., 2007. Integrated visualization of multi-angle bioluminescence imaging and micro CT. In: Proceedings of the SPIE Medical Imaging, vol. 6509, pp. 1–10. Kaijzel, Snoeks, Buijs, van der Pluijm, Löwik (bib27) 2009; 26 Kovacevic, N., Hamarneh, G., Henkelman, M., 2003. Anatomically guided registration of whole body mouse MR images. In: Proceedings of the MICCAI, pp. 870–877. Ridler, Calvard (bib41) 1978; 8 Soutiere, Tankersley, Mitzner (bib45) 2004; 140 Massoud (10.1016/j.media.2010.04.008_bib37) 2003; 17 Arsigny (10.1016/j.media.2010.04.008_bib3) 2009; 33 10.1016/j.media.2010.04.008_bib18 Alexandrakis (10.1016/j.media.2010.04.008_bib2) 2006; 51 Besl (10.1016/j.media.2010.04.008_bib8) 1992; 14 Walimbe (10.1016/j.media.2010.04.008_bib48) 2006; 10 Kimmel (10.1016/j.media.2010.04.008_bib28) 1998; 95 10.1016/j.media.2010.04.008_bib10 Hill (10.1016/j.media.2010.04.008_bib23) 2001; 46 Jain (10.1016/j.media.2010.04.008_bib25) 2007; 39 Segars (10.1016/j.media.2010.04.008_bib44) 2004; 6 Rohr (10.1016/j.media.2010.04.008_bib43) 2001; 20 Chui (10.1016/j.media.2010.04.008_bib12) 2003; 89 Kaijzel (10.1016/j.media.2010.04.008_bib27) 2009; 26 Garland (10.1016/j.media.2010.04.008_bib20) 2002 Pearson (10.1016/j.media.2010.04.008_bib39) 1901; 2 10.1016/j.media.2010.04.008_bib6 10.1016/j.media.2010.04.008_bib5 Rohlfing (10.1016/j.media.2010.04.008_bib42) 2003; 22 Kaijzel (10.1016/j.media.2010.04.008_bib26) 2007; 13 Zitova (10.1016/j.media.2010.04.008_bib54) 2003; 21 Henning (10.1016/j.media.2010.04.008_bib22) 2008; 15 Zhang (10.1016/j.media.2010.04.008_bib53) 2009; 14 Holden (10.1016/j.media.2010.04.008_bib24) 2008; 27 Li (10.1016/j.media.2010.04.008_bib32) 2008; 35 Wang (10.1016/j.media.2010.04.008_bib49) 2003; 89 Bab (10.1016/j.media.2010.04.008_bib4) 2007 Weissleder (10.1016/j.media.2010.04.008_bib50) 2001; 219 Soutiere (10.1016/j.media.2010.04.008_bib45) 2004; 140 10.1016/j.media.2010.04.008_bib36 Bookstein (10.1016/j.media.2010.04.008_bib9) 1989; 11 10.1016/j.media.2010.04.008_bib38 Cheers (10.1016/j.media.2010.04.008_bib11) 2004 10.1016/j.media.2010.04.008_bib33 Krücker (10.1016/j.media.2010.04.008_bib31) 2002; 21 10.1016/j.media.2010.04.008_bib35 Sumner (10.1016/j.media.2010.04.008_bib46) 2004 Elad (10.1016/j.media.2010.04.008_bib19) 2003; 25 Maintz (10.1016/j.media.2010.04.008_bib34) 1998; 2 10.1016/j.media.2010.04.008_bib30 Cook (10.1016/j.media.2010.04.008_bib15) 1965 Pluim (10.1016/j.media.2010.04.008_bib40) 2003; 22 Belongie (10.1016/j.media.2010.04.008_bib7) 2002; 24 10.1016/j.media.2010.04.008_bib29 Dice (10.1016/j.media.2010.04.008_bib16) 1945 Zayer (10.1016/j.media.2010.04.008_bib52) 2005; vol. 24 Dogdas (10.1016/j.media.2010.04.008_bib17) 2007; 52 Alexandrakis (10.1016/j.media.2010.04.008_bib1) 2005; 50 10.1016/j.media.2010.04.008_bib21 Coleman (10.1016/j.media.2010.04.008_bib13) 1996; 6 Commowick (10.1016/j.media.2010.04.008_bib14) 2008; 12 Ridler (10.1016/j.media.2010.04.008_bib41) 1978; 8 Zack (10.1016/j.media.2010.04.008_bib51) 1977; 25 Wahba (10.1016/j.media.2010.04.008_bib47) 1990 |
References_xml | – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib8 article-title: A method for registration of 3D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 6 start-page: 418 year: 1996 end-page: 445 ident: bib13 article-title: An interior, trust region approach for nonlinear minimization subject to bounds publication-title: SIAM Journal on Optimization – volume: 22 start-page: 730 year: 2003 end-page: 741 ident: bib42 article-title: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint publication-title: IEEE Transactions on Medical Imaging – year: 1990 ident: bib47 article-title: Spline Models for Observational Data – volume: 21 start-page: 977 year: 2003 end-page: 1000 ident: bib54 article-title: Image registration methods: a survey publication-title: Image and Vision Computing – reference: Martín-Fernández, M.A., Mu – volume: 89 start-page: 114 year: 2003 end-page: 141 ident: bib12 article-title: A new point matching algorithm for non-rigid registration publication-title: Computer Vision and Image Understanding – volume: 21 start-page: 1384 year: 2002 end-page: 1394 ident: bib31 article-title: Rapid elastic image registration for 3-D ultrasound publication-title: IEEE Transactions on Medical Imaging – volume: 24 start-page: 509 year: 2002 end-page: 522 ident: bib7 article-title: Shape matching and object recognition using shape contexts publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Kok, P., Dijkstra, J., Botha, C.P., Post, F.H., Kaijzel, E., Que, I., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F., 2007. Integrated visualization of multi-angle bioluminescence imaging and micro CT. In: Proceedings of the SPIE Medical Imaging, vol. 6509, pp. 1–10. – volume: 95 start-page: 8431 year: 1998 end-page: 8435 ident: bib28 article-title: Computing geodesic paths on manifolds publication-title: Proceedings of National Academy of Sciences – volume: 25 start-page: 741 year: 1977 end-page: 753 ident: bib51 article-title: Automatic measurement of sister chromatid exchange frequency publication-title: Journal of Histochemistry and Cytochemistry – volume: 52 start-page: 577 year: 2007 end-page: 587 ident: bib17 article-title: Digimouse: a 3D whole body mouse atlas from CT and cryosection data publication-title: Physics in Medicine and Biology – volume: 17 start-page: 545 year: 2003 end-page: 580 ident: bib37 article-title: Molecular imaging in living subjects: seeing fundamental biological processes in a new light publication-title: Genes and Development – volume: 14 start-page: 064010 year: 2009 ident: bib53 article-title: Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy publication-title: Journal of Biomedical Optics – volume: 13 start-page: 3490 year: 2007 ident: bib26 article-title: Whole-body optical imaging in animal models to assess cancer development and progression publication-title: Clinical Cancer Research – volume: 2 start-page: 559 year: 1901 end-page: 572 ident: bib39 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine – volume: 22 start-page: 986 year: 2003 end-page: 1004 ident: bib40 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 117 year: 2002 end-page: 124 ident: bib20 article-title: A multiphase approach to efficient surface simplification publication-title: VIS ’02: Proceedings of the Conference on Visualization ’02 – volume: 35 start-page: 1507 year: 2008 end-page: 1520 ident: bib32 article-title: Automatic nonrigid registration of whole body ct mice images publication-title: Medical Physics – volume: 33 start-page: 222 year: 2009 end-page: 238 ident: bib3 article-title: A fast and log-euclidean polyaffine framework for locally linear registration publication-title: Journal of Mathematical Imaging and Vision – year: 2004 ident: bib11 article-title: Anatomica – volume: 39 start-page: 398 year: 2007 end-page: 407 ident: bib25 article-title: A spectral approach to shape-based retrieval of articulated 3d models publication-title: Computer-Aided Design – reference: Kovacevic, N., Hamarneh, G., Henkelman, M., 2003. Anatomically guided registration of whole body mouse MR images. In: Proceedings of the MICCAI, pp. 870–877. – reference: Lorensen, W.E., Cline, H.E., 1987. Marching cubes: a high resolution 3d surface construction algorithm. In: SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163–169. – volume: 89 start-page: 252 year: 2003 end-page: 271 ident: bib49 article-title: 3D brain surface matching based on geodesics and local geometry publication-title: Computer Vision and Image Understanding – reference: noz Moreno, E., Martín-Fernández, M., Alberola-López, C., 2005. Articulated registration: elastic registration based on a wire model. In: Proceedings of the SPIE Medical Imaging, vol. 5747, pp. 182–191. – volume: 15 start-page: 342 year: 2008 end-page: 349 ident: bib22 article-title: Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice publication-title: Academic Radiology – volume: 46 start-page: R1 year: 2001 end-page: R45 ident: bib23 article-title: Medical image registration publication-title: Physics in Medicine and Biology – year: 2007 ident: bib4 article-title: Micro-Tomographic Atlas of the Mouse Skeleton – volume: 8 start-page: 630 year: 1978 end-page: 632 ident: bib41 article-title: Picture thresholding using an iterative selection method publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 51 start-page: 2045 year: 2006 end-page: 2053 ident: bib2 article-title: Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical pet (opet) system publication-title: Physics in Medicine and Biology – year: 1965 ident: bib15 article-title: Anatomy of the Laboratory Mouse – volume: 2 start-page: 1 year: 1998 end-page: 36 ident: bib34 article-title: A survey of medical image registration publication-title: Medical Image Analysis – reference: noz Moreno, E., de Luis-García, R., Martín-Fernández, M., Alberola-López, C., in press. Automated articulated registration of hand radiographs. Image and Vision Computing. – volume: 11 start-page: 567 year: 1989 end-page: 585 ident: bib9 article-title: Principal warps – Thin-Plate-Splines and the decomposition of deformations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: vol. 24 start-page: 601 year: 2005 end-page: 609 ident: bib52 article-title: Harmonic guidance for surface deformation publication-title: The European Association for Computer Graphics 26th Annual Conference: EUROGRAPHICS 2005, Computer Graphics Forum, Eurographics – volume: 12 start-page: 427 year: 2008 end-page: 441 ident: bib14 article-title: An efficient locally affine framework for the smooth registration of anatomical structures publication-title: Medical Image Analysis – volume: 140 start-page: 283 year: 2004 end-page: 291 ident: bib45 article-title: Differences in alveolar size in inbred mouse strains publication-title: Respiratory Physiology & Neurobiology – volume: 26 start-page: 371 year: 2009 end-page: 379 ident: bib27 article-title: Multimodal imaging and treatment of bone metastasis publication-title: Clinical and Experimental Metastasis – volume: 219 start-page: 316 year: 2001 end-page: 333 ident: bib50 article-title: Molecular imaging publication-title: Radiology – start-page: 297 year: 1945 end-page: 302 ident: bib16 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 27 start-page: 111 year: 2008 end-page: 128 ident: bib24 article-title: A review of geometric transformations for nonrigid body registration publication-title: IEEE Transactions on Medical Imaging – volume: 10 start-page: 899 year: 2006 end-page: 914 ident: bib48 article-title: Automatic elastic image registration by interpolation of 3d rotations and translations from discrete rigid-body transformations publication-title: Medical Image Analysis – reference: Baiker, M., Dijkstra, J., Que, I., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F., 2008. Organ approximation in μCT data with low soft tissue contrast using an articulated whole-body atlas. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 1267–1270. – reference: du Bois d’Aische, A., De Craene, M., Macq, B., Warfield, S.K., 2005. An articulated registration method. In: Proceedings of the IEEE International Conference on Image Processing, vol. 1, pp. 21–24. – start-page: 399 year: 2004 end-page: 405 ident: bib46 article-title: Deformation transfer for triangle meshes publication-title: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers – reference: Chaudhari, A.J., Joshi, A.A., Darvas, F., Leahy, R.M., 2007. A method for atlas-based volumetric registration with surface constraints for optical bioluminescence tomography in small animal imaging. In: Proceedings of the SPIE Medical Imaging, vol. 6510, pp. 651024-1–651024-10. – reference: Baiker, M., Milles, J., Vossepoel, A.M., Que, I., Kaijzel, E.L., Löwik, C.W.G.M., Reiber, J.H.C., Dijkstra, J., Lelieveldt, B.P.F., 2007. Fully automated whole-body registration in mice using an articulated skeleton atlas. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 728–731. – volume: 25 start-page: 1285 year: 2003 end-page: 1295 ident: bib19 article-title: On bending invariant signatures for surfaces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Gatzke, T., Grimm, C., 2005. Curvature maps for local shape comparison. In: Shape Modeling International, pp. 244–256. – volume: 50 start-page: 4225 year: 2005 end-page: 4241 ident: bib1 article-title: Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study publication-title: Physics in Medicine and Biology – reference: Martín-Fernández, M.A., Cárdenes, R., Mu – volume: 20 start-page: 526 year: 2001 end-page: 534 ident: bib43 article-title: Landmark-based elastic registration using approximating Thin-Plate-Splines publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Papademetris, X., Dione, D.P., Dobrucki, L.W., Staib, L., Sinusas, A.J., 2005. Articulated rigid registration for serial lower-limb mouse imaging. In: Proceedings of the MICCAI, pp. 919–926. – volume: 6 start-page: 149 year: 2004 end-page: 159 ident: bib44 article-title: Development of a 4D digital mouse phantom for molecular imaging research publication-title: Molecular Imaging and Biology – volume: 17 start-page: 545 issue: 5 year: 2003 ident: 10.1016/j.media.2010.04.008_bib37 article-title: Molecular imaging in living subjects: seeing fundamental biological processes in a new light publication-title: Genes and Development doi: 10.1101/gad.1047403 – volume: 11 start-page: 567 issue: 6 year: 1989 ident: 10.1016/j.media.2010.04.008_bib9 article-title: Principal warps – Thin-Plate-Splines and the decomposition of deformations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.24792 – year: 2007 ident: 10.1016/j.media.2010.04.008_bib4 – volume: 2 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.media.2010.04.008_bib34 article-title: A survey of medical image registration publication-title: Medical Image Analysis doi: 10.1016/S1361-8415(01)80026-8 – volume: 21 start-page: 977 issue: 11 year: 2003 ident: 10.1016/j.media.2010.04.008_bib54 article-title: Image registration methods: a survey publication-title: Image and Vision Computing doi: 10.1016/S0262-8856(03)00137-9 – ident: 10.1016/j.media.2010.04.008_bib21 doi: 10.1109/SMI.2005.13 – ident: 10.1016/j.media.2010.04.008_bib10 doi: 10.1117/12.710197 – volume: 15 start-page: 342 issue: 3 year: 2008 ident: 10.1016/j.media.2010.04.008_bib22 article-title: Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice publication-title: Academic Radiology doi: 10.1016/j.acra.2007.10.007 – volume: 50 start-page: 4225 issue: 17 year: 2005 ident: 10.1016/j.media.2010.04.008_bib1 article-title: Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/50/17/021 – volume: 25 start-page: 741 issue: 7 year: 1977 ident: 10.1016/j.media.2010.04.008_bib51 article-title: Automatic measurement of sister chromatid exchange frequency publication-title: Journal of Histochemistry and Cytochemistry doi: 10.1177/25.7.70454 – ident: 10.1016/j.media.2010.04.008_bib18 doi: 10.1109/ICIP.2005.1529677 – volume: 219 start-page: 316 issue: 2 year: 2001 ident: 10.1016/j.media.2010.04.008_bib50 article-title: Molecular imaging publication-title: Radiology doi: 10.1148/radiology.219.2.r01ma19316 – volume: 33 start-page: 222 issue: 2 year: 2009 ident: 10.1016/j.media.2010.04.008_bib3 article-title: A fast and log-euclidean polyaffine framework for locally linear registration publication-title: Journal of Mathematical Imaging and Vision doi: 10.1007/s10851-008-0135-9 – volume: 21 start-page: 1384 issue: 11 year: 2002 ident: 10.1016/j.media.2010.04.008_bib31 article-title: Rapid elastic image registration for 3-D ultrasound publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2002.806424 – volume: 39 start-page: 398 issue: 5 year: 2007 ident: 10.1016/j.media.2010.04.008_bib25 article-title: A spectral approach to shape-based retrieval of articulated 3d models publication-title: Computer-Aided Design doi: 10.1016/j.cad.2007.02.009 – ident: 10.1016/j.media.2010.04.008_bib29 doi: 10.1117/12.711117 – start-page: 117 year: 2002 ident: 10.1016/j.media.2010.04.008_bib20 article-title: A multiphase approach to efficient surface simplification – ident: 10.1016/j.media.2010.04.008_bib38 doi: 10.1007/11566489_113 – ident: 10.1016/j.media.2010.04.008_bib30 doi: 10.1007/978-3-540-39903-2_106 – volume: 24 start-page: 509 issue: 4 year: 2002 ident: 10.1016/j.media.2010.04.008_bib7 article-title: Shape matching and object recognition using shape contexts publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.993558 – volume: 22 start-page: 986 issue: 8 year: 2003 ident: 10.1016/j.media.2010.04.008_bib40 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 46 start-page: R1 issue: 3 year: 2001 ident: 10.1016/j.media.2010.04.008_bib23 article-title: Medical image registration publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/46/3/201 – volume: 12 start-page: 427 issue: 4 year: 2008 ident: 10.1016/j.media.2010.04.008_bib14 article-title: An efficient locally affine framework for the smooth registration of anatomical structures publication-title: Medical Image Analysis doi: 10.1016/j.media.2008.01.002 – volume: 140 start-page: 283 issue: 3 year: 2004 ident: 10.1016/j.media.2010.04.008_bib45 article-title: Differences in alveolar size in inbred mouse strains publication-title: Respiratory Physiology & Neurobiology doi: 10.1016/j.resp.2004.02.003 – volume: 14 start-page: 064010 year: 2009 ident: 10.1016/j.media.2010.04.008_bib53 article-title: Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy publication-title: Journal of Biomedical Optics doi: 10.1117/1.3258836 – year: 1990 ident: 10.1016/j.media.2010.04.008_bib47 – year: 1965 ident: 10.1016/j.media.2010.04.008_bib15 – volume: 35 start-page: 1507 issue: 4 year: 2008 ident: 10.1016/j.media.2010.04.008_bib32 article-title: Automatic nonrigid registration of whole body ct mice images publication-title: Medical Physics doi: 10.1118/1.2889758 – volume: 25 start-page: 1285 issue: 10 year: 2003 ident: 10.1016/j.media.2010.04.008_bib19 article-title: On bending invariant signatures for surfaces publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1233902 – start-page: 399 year: 2004 ident: 10.1016/j.media.2010.04.008_bib46 article-title: Deformation transfer for triangle meshes – year: 2004 ident: 10.1016/j.media.2010.04.008_bib11 – volume: 6 start-page: 418 issue: 5 year: 1996 ident: 10.1016/j.media.2010.04.008_bib13 article-title: An interior, trust region approach for nonlinear minimization subject to bounds publication-title: SIAM Journal on Optimization doi: 10.1137/0806023 – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.media.2010.04.008_bib8 article-title: A method for registration of 3D shapes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.121791 – volume: 51 start-page: 2045 year: 2006 ident: 10.1016/j.media.2010.04.008_bib2 article-title: Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical pet (opet) system publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/51/8/006 – start-page: 297 year: 1945 ident: 10.1016/j.media.2010.04.008_bib16 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: vol. 24 start-page: 601 year: 2005 ident: 10.1016/j.media.2010.04.008_bib52 article-title: Harmonic guidance for surface deformation – ident: 10.1016/j.media.2010.04.008_bib36 – ident: 10.1016/j.media.2010.04.008_bib35 doi: 10.1117/12.595133 – volume: 6 start-page: 149 issue: 3 year: 2004 ident: 10.1016/j.media.2010.04.008_bib44 article-title: Development of a 4D digital mouse phantom for molecular imaging research publication-title: Molecular Imaging and Biology doi: 10.1016/j.mibio.2004.03.002 – ident: 10.1016/j.media.2010.04.008_bib6 doi: 10.1109/ISBI.2008.4541234 – volume: 26 start-page: 371 issue: 4 year: 2009 ident: 10.1016/j.media.2010.04.008_bib27 article-title: Multimodal imaging and treatment of bone metastasis publication-title: Clinical and Experimental Metastasis doi: 10.1007/s10585-008-9217-8 – volume: 95 start-page: 8431 issue: 15 year: 1998 ident: 10.1016/j.media.2010.04.008_bib28 article-title: Computing geodesic paths on manifolds publication-title: Proceedings of National Academy of Sciences doi: 10.1073/pnas.95.15.8431 – volume: 89 start-page: 114 issue: 3 year: 2003 ident: 10.1016/j.media.2010.04.008_bib12 article-title: A new point matching algorithm for non-rigid registration publication-title: Computer Vision and Image Understanding doi: 10.1016/S1077-3142(03)00009-2 – ident: 10.1016/j.media.2010.04.008_bib5 doi: 10.1109/ISBI.2007.356955 – volume: 10 start-page: 899 issue: 6 year: 2006 ident: 10.1016/j.media.2010.04.008_bib48 article-title: Automatic elastic image registration by interpolation of 3d rotations and translations from discrete rigid-body transformations publication-title: Medical Image Analysis doi: 10.1016/j.media.2006.09.002 – volume: 20 start-page: 526 issue: 6 year: 2001 ident: 10.1016/j.media.2010.04.008_bib43 article-title: Landmark-based elastic registration using approximating Thin-Plate-Splines publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 22 start-page: 730 issue: 6 year: 2003 ident: 10.1016/j.media.2010.04.008_bib42 article-title: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2003.814791 – ident: 10.1016/j.media.2010.04.008_bib33 doi: 10.1145/37401.37422 – volume: 8 start-page: 630 issue: 8 year: 1978 ident: 10.1016/j.media.2010.04.008_bib41 article-title: Picture thresholding using an iterative selection method publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1978.4310039 – volume: 52 start-page: 577 issue: 3 year: 2007 ident: 10.1016/j.media.2010.04.008_bib17 article-title: Digimouse: a 3D whole body mouse atlas from CT and cryosection data publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/52/3/003 – volume: 13 start-page: 3490 issue: 12 year: 2007 ident: 10.1016/j.media.2010.04.008_bib26 article-title: Whole-body optical imaging in animal models to assess cancer development and progression publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-07-0402 – volume: 2 start-page: 559 issue: 6 year: 1901 ident: 10.1016/j.media.2010.04.008_bib39 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine – volume: 27 start-page: 111 issue: 1 year: 2008 ident: 10.1016/j.media.2010.04.008_bib24 article-title: A review of geometric transformations for nonrigid body registration publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2007.904691 – volume: 89 start-page: 252 issue: 2–3 year: 2003 ident: 10.1016/j.media.2010.04.008_bib49 article-title: 3D brain surface matching based on geodesics and local geometry publication-title: Computer Vision and Image Understanding doi: 10.1016/S1077-3142(03)00015-8 |
SSID | ssj0007440 |
Score | 2.2673101 |
Snippet | This paper presents a fully automated method for atlas-based whole-body segmentation in non-contrast-enhanced Micro-CT data of mice. The position and posture... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 723 |
SubjectTerms | Animals Articulated registration Atlas-based whole-body segmentation Computer Simulation In vivo small animal imaging Mice - anatomy & histology Mice, Inbred BALB C Micro-CT Models, Anatomic Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods Tomography, X-Ray Computed - veterinary Whole Body Imaging - methods |
Title | Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data |
URI | https://dx.doi.org/10.1016/j.media.2010.04.008 https://www.ncbi.nlm.nih.gov/pubmed/20576463 https://www.proquest.com/docview/734004880 https://www.proquest.com/docview/754881194 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xISF6QO0WykKLfOixZpPYceLjagVainYvBWlvlmM7CEQTxAahXvrbO06cVTnsHrhGM5L1bL8ZK29mAL7zNDJJKQXN0thSbqOMSm0NtUiXZSlMFllf7zybi-kt_7lIF1sw6WthvKwycH_H6S1bhy-jgObo6f5-9CtmflgJRqw2z-XZNuwmTAo82rvjq-vpfEXIvgdeV34VU-_QNx9qZV5tgUaQePlG2vm6ALUuAW0D0eVHOAgZJBl3i_wEW64awIf_-goOYG8W_ph_hutxg_kx9cHKklc_DJcWtf1Dlu7udyg7qkhdEj-VnvhaE_JYv9JWwK6XDZl5vR6d3BCvJD2E28uLm8mUhgEK1GBe1FCNl5UVpTaC4b20gjHmMiQ3k9rMclNInhphkWfiWLoiNWjB08RIkTMtEyfZEexUdeWOgTCTi7JAFzTkVrtcu0gjsDnDB5W00RCSHjVlQndxP-TiUfUysgfVQq081CriCqEewo-V01PXXGOzuei3Q705Iwrpf7Mj6TdP4e3xv0R05eqXpcpY4LANJvim8wDxIXzp9n211gSTXcEFO3nvwk5hP1nJY77CTvP84r5hktMUZ7B9_jc-C0f5Hy_P-TA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1RkFp6QC0tsIW2PvRYd5PYcZIjWoG2wHLpInGzHNupqCBBbBDiwrd3JnG27YE99BqNJes582Ysv5kB-CLTyCZVoXiWxo5LF2W8MM5yh3RZVcpmkaN659m5ml7Ik8v0cg0mQy0MySoD9_ec3rF1-DIOaI5vr67GP2JBw0owYnV5rsxewIZE9yXv_Pb0R-dBHfD64quYk_nQeqgTeXXlGUHgRW208-fC03PpZxeGjt_AVsgf2WG_xbew5utteP1XV8FteDkL7-Xv4PSwxeyYU6hy7IFG4fKycY9s4X_ehKKjmjUVo5n0jCpN2HXzwDv5ulm0bEZqPT6ZM9KRvoeL46P5ZMrD-ARuMStquUFXFWVlrBLolU4JIXyG1GZTlzlpy0KmVjlkmTgufJlatJBpYguVC1MkvhA7sF43td8DJmyuqhKXoKF0xufGRwaBzQVepwoXjSAZUNM29BanERfXehCR_dId1Jqg1pHUCPUIvi4X3fatNVabq-E49D9_iEbyX72QDYen0XfoQcTUvrlf6EwEBlthgjc6AkiOYLc_9-VeE0x1lVTiw_9u7DO8ms5nZ_rs-_npPmwmS6HMAay3d_f-I6Y7bfmp-51_AzQQ-fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atlas-based+whole-body+segmentation+of+mice+from+low-contrast+Micro-CT+data&rft.jtitle=Medical+image+analysis&rft.au=Baiker%2C+Martin&rft.au=Milles%2C+Julien&rft.au=Dijkstra%2C+Jouke&rft.au=Henning%2C+Tobias+D.&rft.date=2010-12-01&rft.issn=1361-8415&rft.volume=14&rft.issue=6&rft.spage=723&rft.epage=737&rft_id=info:doi/10.1016%2Fj.media.2010.04.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2010_04_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |