Phosphorylation network dynamics in the control of cell cycle transitions
Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin – namely cyclin B – and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase;...
Saved in:
Published in | Journal of cell science Vol. 125; no. 20; pp. 4703 - 4711 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Company of Biologists
15.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin – namely cyclin B – and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions. |
---|---|
AbstractList | Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions. Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions.Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions. |
Author | Coudreuse, Damien Novák, Béla Fisher, Daniel Krasinska, Liliana |
Author_xml | – sequence: 1 givenname: Daniel surname: Fisher fullname: Fisher, Daniel organization: Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS UMR 5535, Université Montpellier I and II, 34293 Montpellier, France – sequence: 2 givenname: Liliana surname: Krasinska fullname: Krasinska, Liliana organization: Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS UMR 5535, Université Montpellier I and II, 34293 Montpellier, France – sequence: 3 givenname: Damien surname: Coudreuse fullname: Coudreuse, Damien organization: Institute of Genetics and Development of Rennes, CNRS UMR 6290, 35043 Rennes, France – sequence: 4 givenname: Béla surname: Novák fullname: Novák, Béla organization: Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23223895$$D View this record in MEDLINE/PubMed https://hal.science/hal-01068356$$DView record in HAL |
BookMark | eNqN0ctKAzEUBuAgFXvRjQ8gWaowNde5LEtRWyjoQtchk2aY1JmkJlOlb29qaxfiwkUIHL6THM4_BD3rrAbgEqMxJozcrVQYY5RSjk_AALMsSwpMsx4YIERwUnBK-2AYwgohlJEiOwN9QgmhecEHYP5cu7Cund82sjPOQqu7T-ff4HJrZWtUgMbCrtZQOdt510BXQaWbBqqtajTsvLTB7BrDOTitZBP0xeEegdeH-5fpLFk8Pc6nk0WiGE-7RGIcf2YZi0dKzhiTrJQIxRpZyqLiqqQ6r5jKpSIlTmWZIpbzNFtiVRBU0RG42b9by0asvWml3wonjZhNFmJXQ3EXOeXpB472em_X3r1vdOhEa8JufGm12wSBeRopYfQflNCMIx7HjPTqQDdlq5fHIX62GsHtHijvQvC6OhKMxC4yESMT-8giRr-wMt13FnG5pvmr5QtaApcM |
CitedBy_id | crossref_primary_10_1038_onc_2017_113 crossref_primary_10_3390_md11124751 crossref_primary_10_3892_ol_2015_3838 crossref_primary_10_1016_j_biotechadv_2014_03_006 crossref_primary_10_1039_C5NR00515A crossref_primary_10_1093_abbs_gmy174 crossref_primary_10_1093_bioinformatics_btx110 crossref_primary_10_1016_j_cub_2016_09_007 crossref_primary_10_3389_fpls_2022_915050 crossref_primary_10_1016_j_apjtm_2016_03_003 crossref_primary_10_1016_j_semcdb_2015_09_024 crossref_primary_10_1007_s11103_013_0170_9 crossref_primary_10_1038_s41594_019_0256_4 crossref_primary_10_3892_etm_2017_4115 crossref_primary_10_1515_bmt_2023_0335 crossref_primary_10_1074_mcp_RA118_001278 crossref_primary_10_1128_MCB_00233_15 crossref_primary_10_1111_jfbc_13509 crossref_primary_10_1371_journal_ppat_1005273 crossref_primary_10_1128_mBio_01846_17 crossref_primary_10_1016_j_tcb_2017_09_005 crossref_primary_10_1016_j_freeradbiomed_2015_06_030 crossref_primary_10_1016_molcells_2016_0149 crossref_primary_10_1016_j_celrep_2020_01_033 crossref_primary_10_1080_15384101_2018_1557488 crossref_primary_10_1002_bies_201600210 crossref_primary_10_1038_s41420_020_00301_2 crossref_primary_10_1074_mcp_M116_059394 crossref_primary_10_1152_ajpgi_00332_2014 crossref_primary_10_1016_j_xpro_2021_100495 crossref_primary_10_1371_journal_pcbi_1005100 crossref_primary_10_1038_s41598_017_01915_w crossref_primary_10_1016_j_cell_2016_11_034 crossref_primary_10_1016_j_fct_2019_111047 crossref_primary_10_1038_nrc3983 crossref_primary_10_1038_s41598_020_72353_4 crossref_primary_10_1038_s41598_021_90384_3 crossref_primary_10_4161_cc_29298 crossref_primary_10_1016_j_imu_2020_100426 crossref_primary_10_3389_fmicb_2016_00826 crossref_primary_10_1021_acs_inorgchem_1c03547 crossref_primary_10_1038_s41418_018_0223_3 crossref_primary_10_1152_ajpgi_00204_2021 crossref_primary_10_1038_s41587_019_0067_5 crossref_primary_10_15252_embr_201846224 crossref_primary_10_1016_j_peptides_2018_01_006 crossref_primary_10_1083_jcb_201808091 crossref_primary_10_1039_C3MB70402E crossref_primary_10_1007_s13277_013_1319_5 crossref_primary_10_1080_15384101_2016_1167297 crossref_primary_10_1093_genetics_iyaa002 crossref_primary_10_1002_jcp_30630 crossref_primary_10_1002_bies_201800016 crossref_primary_10_1016_j_tcb_2019_03_001 crossref_primary_10_1038_srep36486 crossref_primary_10_3390_cells11142189 crossref_primary_10_1002_bies_202300178 crossref_primary_10_1074_mcp_R119_001790 crossref_primary_10_1371_journal_pone_0129176 crossref_primary_10_1016_j_apsusc_2018_08_092 crossref_primary_10_1098_rsob_130083 crossref_primary_10_1039_C4OB02498B crossref_primary_10_1016_j_tcb_2018_01_006 crossref_primary_10_14348_molcells_2016_0149 crossref_primary_10_1038_ncomms6312 crossref_primary_10_1016_j_tcb_2013_03_002 crossref_primary_10_1002_anie_201402169 crossref_primary_10_1074_mcp_M114_039073 crossref_primary_10_1111_jphp_12879 crossref_primary_10_1126_sciadv_adl3188 crossref_primary_10_1172_JCI73957 crossref_primary_10_3892_ijo_2015_2890 crossref_primary_10_1016_j_bpj_2023_04_015 crossref_primary_10_1093_biolre_iox187 crossref_primary_10_1002_1878_0261_13584 crossref_primary_10_1242_jcs_121368 crossref_primary_10_1016_j_plantsci_2017_05_006 crossref_primary_10_1007_s13765_013_3164_z crossref_primary_10_1016_j_biopha_2017_07_060 crossref_primary_10_1371_journal_pone_0217676 crossref_primary_10_1016_j_lfs_2019_02_040 crossref_primary_10_1016_j_placenta_2018_05_003 crossref_primary_10_3390_cells11132019 crossref_primary_10_1038_srep20214 crossref_primary_10_1016_j_ejphar_2016_12_030 crossref_primary_10_3892_ijmm_2014_1617 crossref_primary_10_1667_RR15380_1 crossref_primary_10_3724_abbs_2022055 crossref_primary_10_1128_MCB_00594_15 crossref_primary_10_1074_jbc_M113_470187 crossref_primary_10_1126_scisignal_2005602 crossref_primary_10_18632_oncotarget_5302 crossref_primary_10_1038_s41467_023_40843_4 crossref_primary_10_2144_000114587 crossref_primary_10_1038_ncomms6894 crossref_primary_10_3109_10409238_2016_1143913 crossref_primary_10_1016_j_devcel_2014_12_001 crossref_primary_10_1016_j_isci_2021_103730 crossref_primary_10_1038_s41467_021_26220_z crossref_primary_10_1038_nsmb_2706 crossref_primary_10_1080_15384101_2017_1312235 crossref_primary_10_1016_j_molcel_2014_02_001 crossref_primary_10_1080_15384101_2017_1415679 crossref_primary_10_1210_en_2013_2020 crossref_primary_10_1016_j_dnarep_2019_102748 crossref_primary_10_1039_C9AN01258C crossref_primary_10_1093_rpd_ncv168 crossref_primary_10_1002_ange_201402169 crossref_primary_10_3892_or_2015_4065 crossref_primary_10_1007_s00497_013_0223_x crossref_primary_10_3892_ol_2017_7480 crossref_primary_10_1038_cddis_2016_197 crossref_primary_10_3389_fonc_2019_00203 crossref_primary_10_3390_ijms22126420 crossref_primary_10_1128_MCB_00742_15 crossref_primary_10_1186_s12985_018_1081_9 crossref_primary_10_18632_oncotarget_23070 crossref_primary_10_1371_journal_pone_0071697 |
Cites_doi | 10.1016/j.cell.2009.04.062 10.1083/jcb.200702034 10.1073/pnas.89.7.2917 10.1038/nature06046 10.1002/j.1460-2075.1996.tb00420.x 10.1016/j.cub.2004.09.019 10.1126/science.1197048 10.1002/j.1460-2075.1994.tb06865.x 10.1038/msb.2011.19 10.4161/cc.7.12.6101 10.1101/gad.13.9.1067 10.1038/ncb1109-1275 10.1111/j.1742-4658.2012.08585.x 10.1016/j.cell.2005.05.015 10.1038/nature03329 10.1128/MCB.21.15.4868-4874.2001 10.1038/nature09543 10.1016/j.cell.2011.03.006 10.1126/science.273.5280.1377 10.1073/pnas.0914191107 10.1016/0092-8674(91)90649-J 10.1016/j.cell.2011.09.047 10.1038/nature04652 10.1002/jez.1401770202 10.1101/gad.1860310 10.1101/gad.7.6.1059 10.1091/mbc.6.1.119 10.1091/mbc.E11-04-0340 10.1016/j.molcel.2011.05.031 10.1093/emboj/cdg545 10.1126/science.1081418 10.1242/jcs.106.4.1153 10.1007/978-1-4615-4253-7_10 10.1016/S0092-8674(03)01080-8 10.1038/ncb954 10.1242/jcs.109.6.1555 10.1038/nrm3149 10.1091/mbc.4.4.397 10.1016/j.cub.2011.01.042 10.1038/nature05432 10.1038/35107009 10.1016/j.molcel.2011.03.031 10.1016/j.cell.2007.01.039 10.1074/jbc.274.45.31917 10.1073/pnas.0903827106 10.1073/pnas.91.14.6408 10.1126/science.1195689 10.1016/j.molcel.2011.01.012 10.1016/j.molcel.2006.02.022 10.1038/emboj.2009.238 10.1083/jcb.201102003 10.1038/nature07984 10.1016/j.chembiol.2012.06.015 10.1038/nature10560 10.1073/pnas.0406987102 10.1128/MCB.25.7.2853-2860.2005 10.1038/nature05465 10.1016/j.molcel.2011.10.007 10.1038/ncb1711 10.1128/MCB.02267-05 10.1126/science.1156951 10.1038/nrm2510 10.1016/j.devcel.2010.02.013 10.1016/S1097-2765(00)80286-5 10.1126/science.1172867 10.1038/emboj.2008.16 10.1101/gad.1256504Genes&Dev.2004.18:2699-2711 10.1091/mbc.E05-08-0751 10.1038/nsb0896-696 10.1038/emboj.2009.228 10.1073/pnas.78.11.6840 10.1073/pnas.0235349100 10.1073/pnas.0507322102 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 1XC VOOES |
DOI | 10.1242/jcs.106351 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 4711 |
ExternalDocumentID | oai_HAL_hal_01068356v1 23223895 10_1242_jcs_106351 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X 0R~ 18M 2WC 34G 39C 3O- 4.4 4R4 53G 5GY 5RE 5VS 85S AAYXX ABDNZ ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADCOW ADVGF AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 O9- OK1 P2P R.V RCB RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ YQT ZY4 ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 .55 .GJ 1XC ABEFU ABJNI ACYGS AETEA AI. C1A EJD MVM OHT VH1 VOOES X7M XOL YQI ZGI ZXP |
ID | FETCH-LOGICAL-c456t-a11389474947aa5444a4ba008942da9f5cb3e8f4c8ac2b16ab6048567d1c920f3 |
ISSN | 0021-9533 1477-9137 |
IngestDate | Fri May 09 12:16:06 EDT 2025 Thu Jul 10 18:08:23 EDT 2025 Thu Jul 10 22:45:57 EDT 2025 Mon Jul 21 05:56:41 EDT 2025 Tue Jul 01 02:37:51 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | S Phase Cell Cycle Checkpoints Phosphoric Monoester Hydrolases CDC2 Protein Kinase Phosphorylation Cell Cycle Checkpoints Mitosis Cyclin B Humans DNA Replication Saccharomyces cerevisiae |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-a11389474947aa5444a4ba008942da9f5cb3e8f4c8ac2b16ab6048567d1c920f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6858-0852 0000-0003-2534-1621 |
OpenAccessLink | https://hal.science/hal-01068356 |
PMID | 23223895 |
PQID | 1237505894 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_01068356v1 proquest_miscellaneous_1566832431 proquest_miscellaneous_1237505894 pubmed_primary_23223895 crossref_primary_10_1242_jcs_106351 crossref_citationtrail_10_1242_jcs_106351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-15 |
PublicationDateYYYYMMDD | 2012-10-15 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2012 |
Publisher | Company of Biologists |
Publisher_xml | – name: Company of Biologists |
References | Loog (2021042522304796300_b33) 2005; 434 Novak (2021042522304796300_b47) 1993; 106 Yu (2021042522304796300_b67) 2006; 22 Burgess (2021042522304796300_b2) 2010; 107 Ferrell (2021042522304796300_b9) 2011; 144 Santamaría (2021042522304796300_b53) 2007; 448 Yamano (2021042522304796300_b63) 1994; 13 Nash (2021042522304796300_b45) 2001; 414 Harvey (2021042522304796300_b17) 2011; 22 Matsuno (2021042522304796300_b39) 2006; 26 Mochida (2021042522304796300_b42) 2010; 330 Bouchoux (2021042522304796300_b1) 2011; 147 Masui (2021042522304796300_b38) 1971; 177 Hochegger (2021042522304796300_b18) 2008; 9 Yao (2021042522304796300_b66) 2011; 7 Potapova (2021042522304796300_b50) 2006; 440 Margolis (2021042522304796300_b36) 2003; 22 Mochida (2021042522304796300_b41) 2009; 28 Parker (2021042522304796300_b48a); 89 Kalaszczynska (2021042522304796300_b22) 2009; 138 Krasinska (2021042522304796300_b26) 2008; 27 Sansam (2021042522304796300_b52) 2010; 24 Gavet (2021042522304796300_b11) 2010; 18 Gunawardena (2021042522304796300_b16) 2005; 102 Krasinska (2021042522304796300_b28) 2011; 44 Strausfeld (2021042522304796300_b55) 1996; 109 Vigneron (2021042522304796300_b60) 2009; 28 Merrick (2021042522304796300_b40) 2011; 42 Yan (2021042522304796300_b64) 1999; 274 Tyson (2021042522304796300_b59) 2011; 21 Holt (2021042522304796300_b20) 2009; 325 Lee (2021042522304796300_b32) 1991; 64 Sha (2021042522304796300_b54) 2003; 100 Echalier (2021042522304796300_b7) 2012; 19 Kõivomägi (2021042522304796300_b25) 2011; 480 Pomerening (2021042522304796300_b49) 2003; 5 Goldbeter (2021042522304796300_b15) 1981; 78 Hu (2021042522304796300_b21) 2005; 102 Kumagai (2021042522304796300_b30) 1999; 13 Wurzenberger (2021042522304796300_b62) 2011; 12 Sangrithi (2021042522304796300_b51) 2005; 121 Tsai (2021042522304796300_b58) 2008; 321 Moore (2021042522304796300_b43) 2003; 300 Pagliuca (2021042522304796300_b48) 2011; 43 Russo (2021042522304796300_b50a) 1996; 3 Wohlschlegel (2021042522304796300_b61a) 2001; 21 Gérard (2021042522304796300_b13) 2012; 279 Krasinska (2021042522304796300_b27) 2008; 7 Margolis (2021042522304796300_b37) 2006; 17 Ferguson (2021042522304796300_b8) 2005; 25 Clarke (2021042522304796300_b3) 1993; 4 Sherr (2021042522304796300_b54a) 2004; 18 Murray (2021042522304796300_b44a) 2004; 116 Coudreuse (2021042522304796300_b4) 2010; 468 Mueller (2021042522304796300_b44) 1995; 6 López–Avilés (2021042522304796300_b34) 2009; 459 Zegerman (2021042522304796300_b68) 2007; 445 Kumagai (2021042522304796300_b29) 1996; 273 Gharbi–Ayachi (2021042522304796300_b14) 2010; 330 Visintin (2021042522304796300_b61) 1998; 2 Diffley (2021042522304796300_b5) 2004; 14 Hochegger (2021042522304796300_b19) 2007; 178 Fisher (2021042522304796300_b10) 1996; 15 Nilsson (2021042522304796300_b46) 2000; 4 Yao (2021042522304796300_b65) 2008; 10 Kinoshita (2021042522304796300_b24) 1993; 7 Kim (2021042522304796300_b23) 2007; 128 Gérard (2021042522304796300_b12) 2009; 106 Trunnell (2021042522304796300_b57) 2011; 41 Tanaka (2021042522304796300_b56) 2007; 445 Kumagai (2021042522304796300_b31) 2011; 193 Dohadwala (2021042522304796300_b6) 1994; 91 Malumbres (2021042522304796300_b35) 2009; 11 |
References_xml | – volume: 138 start-page: 352 year: 2009 ident: 2021042522304796300_b22 article-title: Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. publication-title: Cell doi: 10.1016/j.cell.2009.04.062 – volume: 178 start-page: 257 year: 2007 ident: 2021042522304796300_b19 article-title: An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. publication-title: J. Cell Biol. doi: 10.1083/jcb.200702034 – volume: 89 start-page: 2917 ident: 2021042522304796300_b48a publication-title: Proc. Natl. Acad. USA. doi: 10.1073/pnas.89.7.2917 – volume: 448 start-page: 811 year: 2007 ident: 2021042522304796300_b53 article-title: Cdk1 is sufficient to drive the mammalian cell cycle. publication-title: Nature doi: 10.1038/nature06046 – volume: 15 start-page: 850 year: 1996 ident: 2021042522304796300_b10 article-title: A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00420.x – volume: 14 start-page: R778 year: 2004 ident: 2021042522304796300_b5 article-title: Regulation of early events in chromosome replication. publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.09.019 – volume: 330 start-page: 1673 year: 2010 ident: 2021042522304796300_b14 article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. publication-title: Science doi: 10.1126/science.1197048 – volume: 13 start-page: 5310 year: 1994 ident: 2021042522304796300_b63 article-title: Phosphorylation of dis2 protein phosphatase at the C-terminal cdc2 consensus and its potential role in cell cycle regulation. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06865.x – volume: 7 start-page: 485 year: 2011 ident: 2021042522304796300_b66 article-title: Origin of bistability underlying mammalian cell cycle entry. publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.19 – volume: 7 start-page: 1702 year: 2008 ident: 2021042522304796300_b27 article-title: Selective chemical inhibition as a tool to study Cdk1 and Cdk2 functions in the cell cycle. publication-title: Cell Cycle doi: 10.4161/cc.7.12.6101 – volume: 13 start-page: 1067 year: 1999 ident: 2021042522304796300_b30 article-title: Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. publication-title: Genes Dev. doi: 10.1101/gad.13.9.1067 – volume: 11 start-page: 1275 year: 2009 ident: 2021042522304796300_b35 article-title: Cyclin-dependent kinases: a family portrait. publication-title: Nat. Cell Biol. doi: 10.1038/ncb1109-1275 – volume: 279 start-page: 3411 year: 2012 ident: 2021042522304796300_b13 article-title: Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle. publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08585.x – volume: 121 start-page: 887 year: 2005 ident: 2021042522304796300_b51 article-title: Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. publication-title: Cell doi: 10.1016/j.cell.2005.05.015 – volume: 434 start-page: 104 year: 2005 ident: 2021042522304796300_b33 article-title: Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. publication-title: Nature doi: 10.1038/nature03329 – volume: 21 start-page: 4868 year: 2001 ident: 2021042522304796300_b61a article-title: Mutational analysis of the Cy motif from p21 reveals sequence degeneracy and specificity for different cyclin-dependent kinases. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.15.4868-4874.2001 – volume: 468 start-page: 1074 year: 2010 ident: 2021042522304796300_b4 article-title: Driving the cell cycle with a minimal CDK control network. publication-title: Nature doi: 10.1038/nature09543 – volume: 144 start-page: 874 year: 2011 ident: 2021042522304796300_b9 article-title: Modeling the cell cycle: why do certain circuits oscillate? publication-title: Cell doi: 10.1016/j.cell.2011.03.006 – volume: 273 start-page: 1377 year: 1996 ident: 2021042522304796300_b29 article-title: Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. publication-title: Science doi: 10.1126/science.273.5280.1377 – volume: 107 start-page: 12564 year: 2010 ident: 2021042522304796300_b2 article-title: Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0914191107 – volume: 64 start-page: 415 year: 1991 ident: 2021042522304796300_b32 article-title: INH, a negative regulator of MPF, is a form of protein phosphatase 2A. publication-title: Cell doi: 10.1016/0092-8674(91)90649-J – volume: 147 start-page: 803 year: 2011 ident: 2021042522304796300_b1 article-title: A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit. publication-title: Cell doi: 10.1016/j.cell.2011.09.047 – volume: 440 start-page: 954 year: 2006 ident: 2021042522304796300_b50 article-title: The reversibility of mitotic exit in vertebrate cells. publication-title: Nature doi: 10.1038/nature04652 – volume: 177 start-page: 129 year: 1971 ident: 2021042522304796300_b38 article-title: Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. publication-title: J. Exp. Zool. doi: 10.1002/jez.1401770202 – volume: 24 start-page: 183 year: 2010 ident: 2021042522304796300_b52 article-title: A vertebrate gene, ticrr, is an essential checkpoint and replication regulator. publication-title: Genes Dev. doi: 10.1101/gad.1860310 – volume: 7 start-page: 1059 year: 1993 ident: 2021042522304796300_b24 article-title: Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. publication-title: Genes Dev. doi: 10.1101/gad.7.6.1059 – volume: 6 start-page: 119 year: 1995 ident: 2021042522304796300_b44 article-title: Cell cycle regulation of a Xenopus Wee1-like kinase. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.6.1.119 – volume: 22 start-page: 3595 year: 2011 ident: 2021042522304796300_b17 article-title: A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E11-04-0340 – volume: 43 start-page: 406 year: 2011 ident: 2021042522304796300_b48 article-title: Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.05.031 – volume: 22 start-page: 5734 year: 2003 ident: 2021042522304796300_b36 article-title: PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. publication-title: EMBO J. doi: 10.1093/emboj/cdg545 – volume: 300 start-page: 987 year: 2003 ident: 2021042522304796300_b43 article-title: Unmasking the S-phase-promoting potential of cyclin B1. publication-title: Science doi: 10.1126/science.1081418 – volume: 106 start-page: 1153 year: 1993 ident: 2021042522304796300_b47 article-title: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. publication-title: J. Cell Sci. doi: 10.1242/jcs.106.4.1153 – volume: 4 start-page: 107 year: 2000 ident: 2021042522304796300_b46 article-title: Cell cycle regulation by the Cdc25 phosphatase family. publication-title: Prog. Cell Cycle Res. doi: 10.1007/978-1-4615-4253-7_10 – volume: 116 start-page: 221 year: 2004 ident: 2021042522304796300_b44a article-title: Recycling the cell cycle: cyclins revisited. publication-title: Cell doi: 10.1016/S0092-8674(03)01080-8 – volume: 5 start-page: 346 year: 2003 ident: 2021042522304796300_b49 article-title: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. publication-title: Nat. Cell Biol. doi: 10.1038/ncb954 – volume: 109 start-page: 1555 year: 1996 ident: 2021042522304796300_b55 article-title: Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. publication-title: J. Cell Sci. doi: 10.1242/jcs.109.6.1555 – volume: 12 start-page: 469 year: 2011 ident: 2021042522304796300_b62 article-title: Phosphatases: providing safe passage through mitotic exit. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3149 – volume: 4 start-page: 397 year: 1993 ident: 2021042522304796300_b3 article-title: Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.4.4.397 – volume: 21 start-page: R185 year: 2011 ident: 2021042522304796300_b59 article-title: Cell cycle: who turns the crank? publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.01.042 – volume: 445 start-page: 281 year: 2007 ident: 2021042522304796300_b68 article-title: Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. publication-title: Nature doi: 10.1038/nature05432 – volume: 414 start-page: 514 year: 2001 ident: 2021042522304796300_b45 article-title: Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. publication-title: Nature doi: 10.1038/35107009 – volume: 42 start-page: 624 year: 2011 ident: 2021042522304796300_b40 article-title: Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.03.031 – volume: 128 start-page: 1133 year: 2007 ident: 2021042522304796300_b23 article-title: Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. publication-title: Cell doi: 10.1016/j.cell.2007.01.039 – volume: 274 start-page: 31917 year: 1999 ident: 2021042522304796300_b64 article-title: Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.45.31917 – volume: 106 start-page: 21643 year: 2009 ident: 2021042522304796300_b12 article-title: Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903827106 – volume: 91 start-page: 6408 year: 1994 ident: 2021042522304796300_b6 article-title: Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.14.6408 – volume: 330 start-page: 1670 year: 2010 ident: 2021042522304796300_b42 article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. publication-title: Science doi: 10.1126/science.1195689 – volume: 41 start-page: 263 year: 2011 ident: 2021042522304796300_b57 article-title: Ultrasensitivity in the Regulation of Cdc25C by Cdk1. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.01.012 – volume: 22 start-page: 83 year: 2006 ident: 2021042522304796300_b67 article-title: Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.02.022 – volume: 28 start-page: 2777 year: 2009 ident: 2021042522304796300_b41 article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. publication-title: EMBO J. doi: 10.1038/emboj.2009.238 – volume: 193 start-page: 995 year: 2011 ident: 2021042522304796300_b31 article-title: Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. publication-title: J. Cell Biol. doi: 10.1083/jcb.201102003 – volume: 459 start-page: 592 year: 2009 ident: 2021042522304796300_b34 article-title: Irreversibility of mitotic exit is the consequence of systems-level feedback. publication-title: Nature doi: 10.1038/nature07984 – volume: 19 start-page: 1028 year: 2012 ident: 2021042522304796300_b7 article-title: An integrated chemical biology approach provides insight into cdk2 functional redundancy and inhibitor sensitivity. publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2012.06.015 – volume: 480 start-page: 128 year: 2011 ident: 2021042522304796300_b25 article-title: Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. publication-title: Nature doi: 10.1038/nature10560 – volume: 102 start-page: 8910 year: 2005 ident: 2021042522304796300_b21 article-title: Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406987102 – volume: 25 start-page: 2853 year: 2005 ident: 2021042522304796300_b8 article-title: Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.7.2853-2860.2005 – volume: 445 start-page: 328 year: 2007 ident: 2021042522304796300_b56 article-title: CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. publication-title: Nature doi: 10.1038/nature05465 – volume: 44 start-page: 437 year: 2011 ident: 2021042522304796300_b28 article-title: Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.10.007 – volume: 10 start-page: 476 year: 2008 ident: 2021042522304796300_b65 article-title: A bistable Rb-E2F switch underlies the restriction point. publication-title: Nat. Cell Biol. doi: 10.1038/ncb1711 – volume: 26 start-page: 4843 year: 2006 ident: 2021042522304796300_b39 article-title: The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02267-05 – volume: 321 start-page: 126 year: 2008 ident: 2021042522304796300_b58 article-title: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. publication-title: Science doi: 10.1126/science.1156951 – volume: 9 start-page: 910 year: 2008 ident: 2021042522304796300_b18 article-title: Cyclin-dependent kinases and cell-cycle transitions: does one fit all? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2510 – volume: 18 start-page: 533 year: 2010 ident: 2021042522304796300_b11 article-title: Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.02.013 – volume: 2 start-page: 709 year: 1998 ident: 2021042522304796300_b61 article-title: The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80286-5 – volume: 325 start-page: 1682 year: 2009 ident: 2021042522304796300_b20 article-title: Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. publication-title: Science doi: 10.1126/science.1172867 – volume: 27 start-page: 758 year: 2008 ident: 2021042522304796300_b26 article-title: Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. publication-title: EMBO J. doi: 10.1038/emboj.2008.16 – volume: 18 start-page: 2699 year: 2004 ident: 2021042522304796300_b54a article-title: Living with or without cyclins and cyclin-dependent kinases. Living with or without cyclins and cyclin-dependent kinases. publication-title: Genes Dev. doi: 10.1101/gad.1256504Genes&Dev.2004.18:2699-2711 – volume: 17 start-page: 1779 year: 2006 ident: 2021042522304796300_b37 article-title: A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-08-0751 – volume: 3 start-page: 696 year: 1996 ident: 2021042522304796300_b50a article-title: Structural basis of cyclin-dependent kinase activation by phosphorylation. publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0896-696 – volume: 28 start-page: 2786 year: 2009 ident: 2021042522304796300_b60 article-title: Greatwall maintains mitosis through regulation of PP2A. publication-title: EMBO J. doi: 10.1038/emboj.2009.228 – volume: 78 start-page: 6840 year: 1981 ident: 2021042522304796300_b15 article-title: An amplified sensitivity arising from covalent modification in biological systems. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.78.11.6840 – volume: 100 start-page: 975 year: 2003 ident: 2021042522304796300_b54 article-title: Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0235349100 – volume: 102 start-page: 14617 year: 2005 ident: 2021042522304796300_b16 article-title: Multisite protein phosphorylation makes a good threshold but can be a poor switch. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0507322102 |
SSID | ssj0007297 |
Score | 2.4425328 |
SecondaryResourceType | review_article |
Snippet | Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase... |
SourceID | hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4703 |
SubjectTerms | CDC2 Protein Kinase - genetics CDC2 Protein Kinase - metabolism Cell Cycle Checkpoints - genetics Cyclin B - genetics Cyclin B - metabolism DNA Replication Genetics Humans Life Sciences Mitosis - genetics Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Phosphorylation S Phase Cell Cycle Checkpoints - genetics Saccharomyces cerevisiae - genetics Schizosaccharomyces pombe |
Title | Phosphorylation network dynamics in the control of cell cycle transitions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23223895 https://www.proquest.com/docview/1237505894 https://www.proquest.com/docview/1566832431 https://hal.science/hal-01068356 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbdLYW-lN5NL9TjpSzetSX5ety2u6QlTfuQQN6MpMiksNhLjoX01_eT5SslW7Z9iAliojjzTUbzyTMaQt7nHIuCFLEnE5Z6QuIvpfw88rjhhvlK-4myRPHbOBpOxddZOOu6dFbVJWt1rH_trSv5H1QxBlxtlew_INtOigG8B764AmFcb4Txj0W5ulyUy61LaDsqXE730dy1mV81SYxNPrpNIbd7dXqLiWx3iKLO2LomRK2E6zWyBbrtle6q01uPvZQr2wVbOqZvd0-6JKByM1-ajevh-Bm31tWfjcsrWTnkj-ZC9rcgAmZ9tyvCbEsCAvscmO-4VRb27If5PS8pYp_3Vlysj8Feb47wwXpzvToGceX1wbQ7R2aPv2fn09Eom5zNJgfkNgNXqCq-Z12eD9hD3bfX3WN9Ri3mPulm3olKDhY2J_Y6wlEFHpP75F4NBz118D8gt0zxkNxxPUS3j8iXP4yA1kZAGyOgPwsKI6C1EdAypxZXWhkB7RnBYzI9P5t8Gnp1fwxPI-xdezKwT5lFLPCSMhRCSKEkgrpUsLlM81ArbpJc6ERqpoJIqgj-OozieaBT5uf8CTksysI8IzTOAwXmyZmJI5EnJglzrrQGl5ZgEDIekA-NfjJdHx5ve5hcZJZEQpcZdJk5XQ7Iu1b20h2ZslfqLdTcCthTzoeno8yO2W0KEIPoCkJvGhQyuD2rHVmYcoNJGEesG-Kn_kUGVAULFkLkAXnqIGy_D0QCwWoaPr_Bp1-Qu53VvySH6-XGvEIoulavK1P7DU5Kiuk |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+network+dynamics+in+the+control+of+cell+cycle+transitions&rft.jtitle=Journal+of+cell+science&rft.au=Fisher%2C+Daniel&rft.au=Krasinska%2C+Liliana&rft.au=Coudreuse%2C+Damien&rft.au=Novak%2C+Bela&rft.date=2012-10-15&rft.issn=0021-9533&rft.volume=125&rft.issue=20&rft.spage=4703&rft.epage=4711&rft_id=info:doi/10.1242%2Fjcs.106351&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |