Phosphorylation network dynamics in the control of cell cycle transitions

Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin – namely cyclin B – and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase;...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 125; no. 20; pp. 4703 - 4711
Main Authors Fisher, Daniel, Krasinska, Liliana, Coudreuse, Damien, Novák, Béla
Format Journal Article
LanguageEnglish
Published England Company of Biologists 15.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin – namely cyclin B – and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions.
AbstractList Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions.
Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions.Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase complex comprising a cyclin - namely cyclin B - and cyclin dependent kinase 1 (Cdk1). When its activity is low, Cdk1 triggers the onset of S phase; when its activity level exceeds a specific threshold, it promotes entry into mitosis. This model has redefined our understanding of the essential functional inputs that organize cell cycle progression, and its main principles now appear to be applicable to all eukaryotic cells. But how does a change in the activity of one kinase generate ordered progression through the cell cycle in order to separate DNA replication from mitosis? To answer this question, we must consider the biochemical processes that underlie the phosphorylation of Cdk1 substrates. In this Commentary, we discuss recent findings that have shed light on how the threshold levels of Cdk1 activity that are required for progression through each phase are determined, how an increase in Cdk activity generates directionality in the cell cycle, and why cell cycle transitions are abrupt rather than gradual. These considerations lead to a general quantitative model of cell cycle control, in which opposing kinase and phosphatase activities have an essential role in ensuring dynamic transitions.
Author Coudreuse, Damien
Novák, Béla
Fisher, Daniel
Krasinska, Liliana
Author_xml – sequence: 1
  givenname: Daniel
  surname: Fisher
  fullname: Fisher, Daniel
  organization: Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS UMR 5535, Université Montpellier I and II, 34293 Montpellier, France
– sequence: 2
  givenname: Liliana
  surname: Krasinska
  fullname: Krasinska, Liliana
  organization: Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS UMR 5535, Université Montpellier I and II, 34293 Montpellier, France
– sequence: 3
  givenname: Damien
  surname: Coudreuse
  fullname: Coudreuse, Damien
  organization: Institute of Genetics and Development of Rennes, CNRS UMR 6290, 35043 Rennes, France
– sequence: 4
  givenname: Béla
  surname: Novák
  fullname: Novák, Béla
  organization: Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23223895$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01068356$$DView record in HAL
BookMark eNqN0ctKAzEUBuAgFXvRjQ8gWaowNde5LEtRWyjoQtchk2aY1JmkJlOlb29qaxfiwkUIHL6THM4_BD3rrAbgEqMxJozcrVQYY5RSjk_AALMsSwpMsx4YIERwUnBK-2AYwgohlJEiOwN9QgmhecEHYP5cu7Cund82sjPOQqu7T-ff4HJrZWtUgMbCrtZQOdt510BXQaWbBqqtajTsvLTB7BrDOTitZBP0xeEegdeH-5fpLFk8Pc6nk0WiGE-7RGIcf2YZi0dKzhiTrJQIxRpZyqLiqqQ6r5jKpSIlTmWZIpbzNFtiVRBU0RG42b9by0asvWml3wonjZhNFmJXQ3EXOeXpB472em_X3r1vdOhEa8JufGm12wSBeRopYfQflNCMIx7HjPTqQDdlq5fHIX62GsHtHijvQvC6OhKMxC4yESMT-8giRr-wMt13FnG5pvmr5QtaApcM
CitedBy_id crossref_primary_10_1038_onc_2017_113
crossref_primary_10_3390_md11124751
crossref_primary_10_3892_ol_2015_3838
crossref_primary_10_1016_j_biotechadv_2014_03_006
crossref_primary_10_1039_C5NR00515A
crossref_primary_10_1093_abbs_gmy174
crossref_primary_10_1093_bioinformatics_btx110
crossref_primary_10_1016_j_cub_2016_09_007
crossref_primary_10_3389_fpls_2022_915050
crossref_primary_10_1016_j_apjtm_2016_03_003
crossref_primary_10_1016_j_semcdb_2015_09_024
crossref_primary_10_1007_s11103_013_0170_9
crossref_primary_10_1038_s41594_019_0256_4
crossref_primary_10_3892_etm_2017_4115
crossref_primary_10_1515_bmt_2023_0335
crossref_primary_10_1074_mcp_RA118_001278
crossref_primary_10_1128_MCB_00233_15
crossref_primary_10_1111_jfbc_13509
crossref_primary_10_1371_journal_ppat_1005273
crossref_primary_10_1128_mBio_01846_17
crossref_primary_10_1016_j_tcb_2017_09_005
crossref_primary_10_1016_j_freeradbiomed_2015_06_030
crossref_primary_10_1016_molcells_2016_0149
crossref_primary_10_1016_j_celrep_2020_01_033
crossref_primary_10_1080_15384101_2018_1557488
crossref_primary_10_1002_bies_201600210
crossref_primary_10_1038_s41420_020_00301_2
crossref_primary_10_1074_mcp_M116_059394
crossref_primary_10_1152_ajpgi_00332_2014
crossref_primary_10_1016_j_xpro_2021_100495
crossref_primary_10_1371_journal_pcbi_1005100
crossref_primary_10_1038_s41598_017_01915_w
crossref_primary_10_1016_j_cell_2016_11_034
crossref_primary_10_1016_j_fct_2019_111047
crossref_primary_10_1038_nrc3983
crossref_primary_10_1038_s41598_020_72353_4
crossref_primary_10_1038_s41598_021_90384_3
crossref_primary_10_4161_cc_29298
crossref_primary_10_1016_j_imu_2020_100426
crossref_primary_10_3389_fmicb_2016_00826
crossref_primary_10_1021_acs_inorgchem_1c03547
crossref_primary_10_1038_s41418_018_0223_3
crossref_primary_10_1152_ajpgi_00204_2021
crossref_primary_10_1038_s41587_019_0067_5
crossref_primary_10_15252_embr_201846224
crossref_primary_10_1016_j_peptides_2018_01_006
crossref_primary_10_1083_jcb_201808091
crossref_primary_10_1039_C3MB70402E
crossref_primary_10_1007_s13277_013_1319_5
crossref_primary_10_1080_15384101_2016_1167297
crossref_primary_10_1093_genetics_iyaa002
crossref_primary_10_1002_jcp_30630
crossref_primary_10_1002_bies_201800016
crossref_primary_10_1016_j_tcb_2019_03_001
crossref_primary_10_1038_srep36486
crossref_primary_10_3390_cells11142189
crossref_primary_10_1002_bies_202300178
crossref_primary_10_1074_mcp_R119_001790
crossref_primary_10_1371_journal_pone_0129176
crossref_primary_10_1016_j_apsusc_2018_08_092
crossref_primary_10_1098_rsob_130083
crossref_primary_10_1039_C4OB02498B
crossref_primary_10_1016_j_tcb_2018_01_006
crossref_primary_10_14348_molcells_2016_0149
crossref_primary_10_1038_ncomms6312
crossref_primary_10_1016_j_tcb_2013_03_002
crossref_primary_10_1002_anie_201402169
crossref_primary_10_1074_mcp_M114_039073
crossref_primary_10_1111_jphp_12879
crossref_primary_10_1126_sciadv_adl3188
crossref_primary_10_1172_JCI73957
crossref_primary_10_3892_ijo_2015_2890
crossref_primary_10_1016_j_bpj_2023_04_015
crossref_primary_10_1093_biolre_iox187
crossref_primary_10_1002_1878_0261_13584
crossref_primary_10_1242_jcs_121368
crossref_primary_10_1016_j_plantsci_2017_05_006
crossref_primary_10_1007_s13765_013_3164_z
crossref_primary_10_1016_j_biopha_2017_07_060
crossref_primary_10_1371_journal_pone_0217676
crossref_primary_10_1016_j_lfs_2019_02_040
crossref_primary_10_1016_j_placenta_2018_05_003
crossref_primary_10_3390_cells11132019
crossref_primary_10_1038_srep20214
crossref_primary_10_1016_j_ejphar_2016_12_030
crossref_primary_10_3892_ijmm_2014_1617
crossref_primary_10_1667_RR15380_1
crossref_primary_10_3724_abbs_2022055
crossref_primary_10_1128_MCB_00594_15
crossref_primary_10_1074_jbc_M113_470187
crossref_primary_10_1126_scisignal_2005602
crossref_primary_10_18632_oncotarget_5302
crossref_primary_10_1038_s41467_023_40843_4
crossref_primary_10_2144_000114587
crossref_primary_10_1038_ncomms6894
crossref_primary_10_3109_10409238_2016_1143913
crossref_primary_10_1016_j_devcel_2014_12_001
crossref_primary_10_1016_j_isci_2021_103730
crossref_primary_10_1038_s41467_021_26220_z
crossref_primary_10_1038_nsmb_2706
crossref_primary_10_1080_15384101_2017_1312235
crossref_primary_10_1016_j_molcel_2014_02_001
crossref_primary_10_1080_15384101_2017_1415679
crossref_primary_10_1210_en_2013_2020
crossref_primary_10_1016_j_dnarep_2019_102748
crossref_primary_10_1039_C9AN01258C
crossref_primary_10_1093_rpd_ncv168
crossref_primary_10_1002_ange_201402169
crossref_primary_10_3892_or_2015_4065
crossref_primary_10_1007_s00497_013_0223_x
crossref_primary_10_3892_ol_2017_7480
crossref_primary_10_1038_cddis_2016_197
crossref_primary_10_3389_fonc_2019_00203
crossref_primary_10_3390_ijms22126420
crossref_primary_10_1128_MCB_00742_15
crossref_primary_10_1186_s12985_018_1081_9
crossref_primary_10_18632_oncotarget_23070
crossref_primary_10_1371_journal_pone_0071697
Cites_doi 10.1016/j.cell.2009.04.062
10.1083/jcb.200702034
10.1073/pnas.89.7.2917
10.1038/nature06046
10.1002/j.1460-2075.1996.tb00420.x
10.1016/j.cub.2004.09.019
10.1126/science.1197048
10.1002/j.1460-2075.1994.tb06865.x
10.1038/msb.2011.19
10.4161/cc.7.12.6101
10.1101/gad.13.9.1067
10.1038/ncb1109-1275
10.1111/j.1742-4658.2012.08585.x
10.1016/j.cell.2005.05.015
10.1038/nature03329
10.1128/MCB.21.15.4868-4874.2001
10.1038/nature09543
10.1016/j.cell.2011.03.006
10.1126/science.273.5280.1377
10.1073/pnas.0914191107
10.1016/0092-8674(91)90649-J
10.1016/j.cell.2011.09.047
10.1038/nature04652
10.1002/jez.1401770202
10.1101/gad.1860310
10.1101/gad.7.6.1059
10.1091/mbc.6.1.119
10.1091/mbc.E11-04-0340
10.1016/j.molcel.2011.05.031
10.1093/emboj/cdg545
10.1126/science.1081418
10.1242/jcs.106.4.1153
10.1007/978-1-4615-4253-7_10
10.1016/S0092-8674(03)01080-8
10.1038/ncb954
10.1242/jcs.109.6.1555
10.1038/nrm3149
10.1091/mbc.4.4.397
10.1016/j.cub.2011.01.042
10.1038/nature05432
10.1038/35107009
10.1016/j.molcel.2011.03.031
10.1016/j.cell.2007.01.039
10.1074/jbc.274.45.31917
10.1073/pnas.0903827106
10.1073/pnas.91.14.6408
10.1126/science.1195689
10.1016/j.molcel.2011.01.012
10.1016/j.molcel.2006.02.022
10.1038/emboj.2009.238
10.1083/jcb.201102003
10.1038/nature07984
10.1016/j.chembiol.2012.06.015
10.1038/nature10560
10.1073/pnas.0406987102
10.1128/MCB.25.7.2853-2860.2005
10.1038/nature05465
10.1016/j.molcel.2011.10.007
10.1038/ncb1711
10.1128/MCB.02267-05
10.1126/science.1156951
10.1038/nrm2510
10.1016/j.devcel.2010.02.013
10.1016/S1097-2765(00)80286-5
10.1126/science.1172867
10.1038/emboj.2008.16
10.1101/gad.1256504Genes&Dev.2004.18:2699-2711
10.1091/mbc.E05-08-0751
10.1038/nsb0896-696
10.1038/emboj.2009.228
10.1073/pnas.78.11.6840
10.1073/pnas.0235349100
10.1073/pnas.0507322102
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
1XC
VOOES
DOI 10.1242/jcs.106351
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Genetics Abstracts
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
EndPage 4711
ExternalDocumentID oai_HAL_hal_01068356v1
23223895
10_1242_jcs_106351
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
AAYXX
ABDNZ
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADCOW
ADVGF
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
RNS
SJN
TN5
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
ZY4
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
.55
.GJ
1XC
ABEFU
ABJNI
ACYGS
AETEA
AI.
C1A
EJD
MVM
OHT
VH1
VOOES
X7M
XOL
YQI
ZGI
ZXP
ID FETCH-LOGICAL-c456t-a11389474947aa5444a4ba008942da9f5cb3e8f4c8ac2b16ab6048567d1c920f3
ISSN 0021-9533
1477-9137
IngestDate Fri May 09 12:16:06 EDT 2025
Thu Jul 10 18:08:23 EDT 2025
Thu Jul 10 22:45:57 EDT 2025
Mon Jul 21 05:56:41 EDT 2025
Tue Jul 01 02:37:51 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords S Phase Cell Cycle Checkpoints
Phosphoric Monoester Hydrolases
CDC2 Protein Kinase
Phosphorylation
Cell Cycle Checkpoints
Mitosis
Cyclin B
Humans
DNA Replication
Saccharomyces cerevisiae
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-a11389474947aa5444a4ba008942da9f5cb3e8f4c8ac2b16ab6048567d1c920f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6858-0852
0000-0003-2534-1621
OpenAccessLink https://hal.science/hal-01068356
PMID 23223895
PQID 1237505894
PQPubID 23479
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01068356v1
proquest_miscellaneous_1566832431
proquest_miscellaneous_1237505894
pubmed_primary_23223895
crossref_primary_10_1242_jcs_106351
crossref_citationtrail_10_1242_jcs_106351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-15
PublicationDateYYYYMMDD 2012-10-15
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2012
Publisher Company of Biologists
Publisher_xml – name: Company of Biologists
References Loog (2021042522304796300_b33) 2005; 434
Novak (2021042522304796300_b47) 1993; 106
Yu (2021042522304796300_b67) 2006; 22
Burgess (2021042522304796300_b2) 2010; 107
Ferrell (2021042522304796300_b9) 2011; 144
Santamaría (2021042522304796300_b53) 2007; 448
Yamano (2021042522304796300_b63) 1994; 13
Nash (2021042522304796300_b45) 2001; 414
Harvey (2021042522304796300_b17) 2011; 22
Matsuno (2021042522304796300_b39) 2006; 26
Mochida (2021042522304796300_b42) 2010; 330
Bouchoux (2021042522304796300_b1) 2011; 147
Masui (2021042522304796300_b38) 1971; 177
Hochegger (2021042522304796300_b18) 2008; 9
Yao (2021042522304796300_b66) 2011; 7
Potapova (2021042522304796300_b50) 2006; 440
Margolis (2021042522304796300_b36) 2003; 22
Mochida (2021042522304796300_b41) 2009; 28
Parker (2021042522304796300_b48a); 89
Kalaszczynska (2021042522304796300_b22) 2009; 138
Krasinska (2021042522304796300_b26) 2008; 27
Sansam (2021042522304796300_b52) 2010; 24
Gavet (2021042522304796300_b11) 2010; 18
Gunawardena (2021042522304796300_b16) 2005; 102
Krasinska (2021042522304796300_b28) 2011; 44
Strausfeld (2021042522304796300_b55) 1996; 109
Vigneron (2021042522304796300_b60) 2009; 28
Merrick (2021042522304796300_b40) 2011; 42
Yan (2021042522304796300_b64) 1999; 274
Tyson (2021042522304796300_b59) 2011; 21
Holt (2021042522304796300_b20) 2009; 325
Lee (2021042522304796300_b32) 1991; 64
Sha (2021042522304796300_b54) 2003; 100
Echalier (2021042522304796300_b7) 2012; 19
Kõivomägi (2021042522304796300_b25) 2011; 480
Pomerening (2021042522304796300_b49) 2003; 5
Goldbeter (2021042522304796300_b15) 1981; 78
Hu (2021042522304796300_b21) 2005; 102
Kumagai (2021042522304796300_b30) 1999; 13
Wurzenberger (2021042522304796300_b62) 2011; 12
Sangrithi (2021042522304796300_b51) 2005; 121
Tsai (2021042522304796300_b58) 2008; 321
Moore (2021042522304796300_b43) 2003; 300
Pagliuca (2021042522304796300_b48) 2011; 43
Russo (2021042522304796300_b50a) 1996; 3
Wohlschlegel (2021042522304796300_b61a) 2001; 21
Gérard (2021042522304796300_b13) 2012; 279
Krasinska (2021042522304796300_b27) 2008; 7
Margolis (2021042522304796300_b37) 2006; 17
Ferguson (2021042522304796300_b8) 2005; 25
Clarke (2021042522304796300_b3) 1993; 4
Sherr (2021042522304796300_b54a) 2004; 18
Murray (2021042522304796300_b44a) 2004; 116
Coudreuse (2021042522304796300_b4) 2010; 468
Mueller (2021042522304796300_b44) 1995; 6
López–Avilés (2021042522304796300_b34) 2009; 459
Zegerman (2021042522304796300_b68) 2007; 445
Kumagai (2021042522304796300_b29) 1996; 273
Gharbi–Ayachi (2021042522304796300_b14) 2010; 330
Visintin (2021042522304796300_b61) 1998; 2
Diffley (2021042522304796300_b5) 2004; 14
Hochegger (2021042522304796300_b19) 2007; 178
Fisher (2021042522304796300_b10) 1996; 15
Nilsson (2021042522304796300_b46) 2000; 4
Yao (2021042522304796300_b65) 2008; 10
Kinoshita (2021042522304796300_b24) 1993; 7
Kim (2021042522304796300_b23) 2007; 128
Gérard (2021042522304796300_b12) 2009; 106
Trunnell (2021042522304796300_b57) 2011; 41
Tanaka (2021042522304796300_b56) 2007; 445
Kumagai (2021042522304796300_b31) 2011; 193
Dohadwala (2021042522304796300_b6) 1994; 91
Malumbres (2021042522304796300_b35) 2009; 11
References_xml – volume: 138
  start-page: 352
  year: 2009
  ident: 2021042522304796300_b22
  article-title: Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.062
– volume: 178
  start-page: 257
  year: 2007
  ident: 2021042522304796300_b19
  article-title: An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200702034
– volume: 89
  start-page: 2917
  ident: 2021042522304796300_b48a
  publication-title: Proc. Natl. Acad. USA.
  doi: 10.1073/pnas.89.7.2917
– volume: 448
  start-page: 811
  year: 2007
  ident: 2021042522304796300_b53
  article-title: Cdk1 is sufficient to drive the mammalian cell cycle.
  publication-title: Nature
  doi: 10.1038/nature06046
– volume: 15
  start-page: 850
  year: 1996
  ident: 2021042522304796300_b10
  article-title: A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00420.x
– volume: 14
  start-page: R778
  year: 2004
  ident: 2021042522304796300_b5
  article-title: Regulation of early events in chromosome replication.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.09.019
– volume: 330
  start-page: 1673
  year: 2010
  ident: 2021042522304796300_b14
  article-title: The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A.
  publication-title: Science
  doi: 10.1126/science.1197048
– volume: 13
  start-page: 5310
  year: 1994
  ident: 2021042522304796300_b63
  article-title: Phosphorylation of dis2 protein phosphatase at the C-terminal cdc2 consensus and its potential role in cell cycle regulation.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06865.x
– volume: 7
  start-page: 485
  year: 2011
  ident: 2021042522304796300_b66
  article-title: Origin of bistability underlying mammalian cell cycle entry.
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.19
– volume: 7
  start-page: 1702
  year: 2008
  ident: 2021042522304796300_b27
  article-title: Selective chemical inhibition as a tool to study Cdk1 and Cdk2 functions in the cell cycle.
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.12.6101
– volume: 13
  start-page: 1067
  year: 1999
  ident: 2021042522304796300_b30
  article-title: Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25.
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.9.1067
– volume: 11
  start-page: 1275
  year: 2009
  ident: 2021042522304796300_b35
  article-title: Cyclin-dependent kinases: a family portrait.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1109-1275
– volume: 279
  start-page: 3411
  year: 2012
  ident: 2021042522304796300_b13
  article-title: Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle.
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08585.x
– volume: 121
  start-page: 887
  year: 2005
  ident: 2021042522304796300_b51
  article-title: Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.015
– volume: 434
  start-page: 104
  year: 2005
  ident: 2021042522304796300_b33
  article-title: Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
  publication-title: Nature
  doi: 10.1038/nature03329
– volume: 21
  start-page: 4868
  year: 2001
  ident: 2021042522304796300_b61a
  article-title: Mutational analysis of the Cy motif from p21 reveals sequence degeneracy and specificity for different cyclin-dependent kinases.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.15.4868-4874.2001
– volume: 468
  start-page: 1074
  year: 2010
  ident: 2021042522304796300_b4
  article-title: Driving the cell cycle with a minimal CDK control network.
  publication-title: Nature
  doi: 10.1038/nature09543
– volume: 144
  start-page: 874
  year: 2011
  ident: 2021042522304796300_b9
  article-title: Modeling the cell cycle: why do certain circuits oscillate?
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.006
– volume: 273
  start-page: 1377
  year: 1996
  ident: 2021042522304796300_b29
  article-title: Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.
  publication-title: Science
  doi: 10.1126/science.273.5280.1377
– volume: 107
  start-page: 12564
  year: 2010
  ident: 2021042522304796300_b2
  article-title: Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914191107
– volume: 64
  start-page: 415
  year: 1991
  ident: 2021042522304796300_b32
  article-title: INH, a negative regulator of MPF, is a form of protein phosphatase 2A.
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90649-J
– volume: 147
  start-page: 803
  year: 2011
  ident: 2021042522304796300_b1
  article-title: A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.047
– volume: 440
  start-page: 954
  year: 2006
  ident: 2021042522304796300_b50
  article-title: The reversibility of mitotic exit in vertebrate cells.
  publication-title: Nature
  doi: 10.1038/nature04652
– volume: 177
  start-page: 129
  year: 1971
  ident: 2021042522304796300_b38
  article-title: Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.
  publication-title: J. Exp. Zool.
  doi: 10.1002/jez.1401770202
– volume: 24
  start-page: 183
  year: 2010
  ident: 2021042522304796300_b52
  article-title: A vertebrate gene, ticrr, is an essential checkpoint and replication regulator.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1860310
– volume: 7
  start-page: 1059
  year: 1993
  ident: 2021042522304796300_b24
  article-title: Negative regulation of mitosis by the fission yeast protein phosphatase ppa2.
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.6.1059
– volume: 6
  start-page: 119
  year: 1995
  ident: 2021042522304796300_b44
  article-title: Cell cycle regulation of a Xenopus Wee1-like kinase.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.6.1.119
– volume: 22
  start-page: 3595
  year: 2011
  ident: 2021042522304796300_b17
  article-title: A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E11-04-0340
– volume: 43
  start-page: 406
  year: 2011
  ident: 2021042522304796300_b48
  article-title: Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.05.031
– volume: 22
  start-page: 5734
  year: 2003
  ident: 2021042522304796300_b36
  article-title: PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation.
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg545
– volume: 300
  start-page: 987
  year: 2003
  ident: 2021042522304796300_b43
  article-title: Unmasking the S-phase-promoting potential of cyclin B1.
  publication-title: Science
  doi: 10.1126/science.1081418
– volume: 106
  start-page: 1153
  year: 1993
  ident: 2021042522304796300_b47
  article-title: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.106.4.1153
– volume: 4
  start-page: 107
  year: 2000
  ident: 2021042522304796300_b46
  article-title: Cell cycle regulation by the Cdc25 phosphatase family.
  publication-title: Prog. Cell Cycle Res.
  doi: 10.1007/978-1-4615-4253-7_10
– volume: 116
  start-page: 221
  year: 2004
  ident: 2021042522304796300_b44a
  article-title: Recycling the cell cycle: cyclins revisited.
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)01080-8
– volume: 5
  start-page: 346
  year: 2003
  ident: 2021042522304796300_b49
  article-title: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb954
– volume: 109
  start-page: 1555
  year: 1996
  ident: 2021042522304796300_b55
  article-title: Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.109.6.1555
– volume: 12
  start-page: 469
  year: 2011
  ident: 2021042522304796300_b62
  article-title: Phosphatases: providing safe passage through mitotic exit.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3149
– volume: 4
  start-page: 397
  year: 1993
  ident: 2021042522304796300_b3
  article-title: Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.4.4.397
– volume: 21
  start-page: R185
  year: 2011
  ident: 2021042522304796300_b59
  article-title: Cell cycle: who turns the crank?
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.01.042
– volume: 445
  start-page: 281
  year: 2007
  ident: 2021042522304796300_b68
  article-title: Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast.
  publication-title: Nature
  doi: 10.1038/nature05432
– volume: 414
  start-page: 514
  year: 2001
  ident: 2021042522304796300_b45
  article-title: Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication.
  publication-title: Nature
  doi: 10.1038/35107009
– volume: 42
  start-page: 624
  year: 2011
  ident: 2021042522304796300_b40
  article-title: Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.031
– volume: 128
  start-page: 1133
  year: 2007
  ident: 2021042522304796300_b23
  article-title: Substrate competition as a source of ultrasensitivity in the inactivation of Wee1.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.039
– volume: 274
  start-page: 31917
  year: 1999
  ident: 2021042522304796300_b64
  article-title: Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.45.31917
– volume: 106
  start-page: 21643
  year: 2009
  ident: 2021042522304796300_b12
  article-title: Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903827106
– volume: 91
  start-page: 6408
  year: 1994
  ident: 2021042522304796300_b6
  article-title: Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.14.6408
– volume: 330
  start-page: 1670
  year: 2010
  ident: 2021042522304796300_b42
  article-title: Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis.
  publication-title: Science
  doi: 10.1126/science.1195689
– volume: 41
  start-page: 263
  year: 2011
  ident: 2021042522304796300_b57
  article-title: Ultrasensitivity in the Regulation of Cdc25C by Cdk1.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.01.012
– volume: 22
  start-page: 83
  year: 2006
  ident: 2021042522304796300_b67
  article-title: Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.02.022
– volume: 28
  start-page: 2777
  year: 2009
  ident: 2021042522304796300_b41
  article-title: Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.238
– volume: 193
  start-page: 995
  year: 2011
  ident: 2021042522304796300_b31
  article-title: Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201102003
– volume: 459
  start-page: 592
  year: 2009
  ident: 2021042522304796300_b34
  article-title: Irreversibility of mitotic exit is the consequence of systems-level feedback.
  publication-title: Nature
  doi: 10.1038/nature07984
– volume: 19
  start-page: 1028
  year: 2012
  ident: 2021042522304796300_b7
  article-title: An integrated chemical biology approach provides insight into cdk2 functional redundancy and inhibitor sensitivity.
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2012.06.015
– volume: 480
  start-page: 128
  year: 2011
  ident: 2021042522304796300_b25
  article-title: Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.
  publication-title: Nature
  doi: 10.1038/nature10560
– volume: 102
  start-page: 8910
  year: 2005
  ident: 2021042522304796300_b21
  article-title: Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406987102
– volume: 25
  start-page: 2853
  year: 2005
  ident: 2021042522304796300_b8
  article-title: Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.7.2853-2860.2005
– volume: 445
  start-page: 328
  year: 2007
  ident: 2021042522304796300_b56
  article-title: CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast.
  publication-title: Nature
  doi: 10.1038/nature05465
– volume: 44
  start-page: 437
  year: 2011
  ident: 2021042522304796300_b28
  article-title: Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.10.007
– volume: 10
  start-page: 476
  year: 2008
  ident: 2021042522304796300_b65
  article-title: A bistable Rb-E2F switch underlies the restriction point.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1711
– volume: 26
  start-page: 4843
  year: 2006
  ident: 2021042522304796300_b39
  article-title: The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02267-05
– volume: 321
  start-page: 126
  year: 2008
  ident: 2021042522304796300_b58
  article-title: Robust, tunable biological oscillations from interlinked positive and negative feedback loops.
  publication-title: Science
  doi: 10.1126/science.1156951
– volume: 9
  start-page: 910
  year: 2008
  ident: 2021042522304796300_b18
  article-title: Cyclin-dependent kinases and cell-cycle transitions: does one fit all?
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2510
– volume: 18
  start-page: 533
  year: 2010
  ident: 2021042522304796300_b11
  article-title: Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.02.013
– volume: 2
  start-page: 709
  year: 1998
  ident: 2021042522304796300_b61
  article-title: The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation.
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80286-5
– volume: 325
  start-page: 1682
  year: 2009
  ident: 2021042522304796300_b20
  article-title: Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.
  publication-title: Science
  doi: 10.1126/science.1172867
– volume: 27
  start-page: 758
  year: 2008
  ident: 2021042522304796300_b26
  article-title: Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.16
– volume: 18
  start-page: 2699
  year: 2004
  ident: 2021042522304796300_b54a
  article-title: Living with or without cyclins and cyclin-dependent kinases. Living with or without cyclins and cyclin-dependent kinases.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1256504Genes&Dev.2004.18:2699-2711
– volume: 17
  start-page: 1779
  year: 2006
  ident: 2021042522304796300_b37
  article-title: A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-08-0751
– volume: 3
  start-page: 696
  year: 1996
  ident: 2021042522304796300_b50a
  article-title: Structural basis of cyclin-dependent kinase activation by phosphorylation.
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0896-696
– volume: 28
  start-page: 2786
  year: 2009
  ident: 2021042522304796300_b60
  article-title: Greatwall maintains mitosis through regulation of PP2A.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.228
– volume: 78
  start-page: 6840
  year: 1981
  ident: 2021042522304796300_b15
  article-title: An amplified sensitivity arising from covalent modification in biological systems.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.78.11.6840
– volume: 100
  start-page: 975
  year: 2003
  ident: 2021042522304796300_b54
  article-title: Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0235349100
– volume: 102
  start-page: 14617
  year: 2005
  ident: 2021042522304796300_b16
  article-title: Multisite protein phosphorylation makes a good threshold but can be a poor switch.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0507322102
SSID ssj0007297
Score 2.4425328
SecondaryResourceType review_article
Snippet Fifteen years ago, it was proposed that the cell cycle in fission yeast can be driven by quantitative changes in the activity of a single protein kinase...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4703
SubjectTerms CDC2 Protein Kinase - genetics
CDC2 Protein Kinase - metabolism
Cell Cycle Checkpoints - genetics
Cyclin B - genetics
Cyclin B - metabolism
DNA Replication
Genetics
Humans
Life Sciences
Mitosis - genetics
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Phosphorylation
S Phase Cell Cycle Checkpoints - genetics
Saccharomyces cerevisiae - genetics
Schizosaccharomyces pombe
Title Phosphorylation network dynamics in the control of cell cycle transitions
URI https://www.ncbi.nlm.nih.gov/pubmed/23223895
https://www.proquest.com/docview/1237505894
https://www.proquest.com/docview/1566832431
https://hal.science/hal-01068356
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbdLYW-lN5NL9TjpSzetSX5ety2u6QlTfuQQN6MpMiksNhLjoX01_eT5SslW7Z9iAliojjzTUbzyTMaQt7nHIuCFLEnE5Z6QuIvpfw88rjhhvlK-4myRPHbOBpOxddZOOu6dFbVJWt1rH_trSv5H1QxBlxtlew_INtOigG8B764AmFcb4Txj0W5ulyUy61LaDsqXE730dy1mV81SYxNPrpNIbd7dXqLiWx3iKLO2LomRK2E6zWyBbrtle6q01uPvZQr2wVbOqZvd0-6JKByM1-ajevh-Bm31tWfjcsrWTnkj-ZC9rcgAmZ9tyvCbEsCAvscmO-4VRb27If5PS8pYp_3Vlysj8Feb47wwXpzvToGceX1wbQ7R2aPv2fn09Eom5zNJgfkNgNXqCq-Z12eD9hD3bfX3WN9Ri3mPulm3olKDhY2J_Y6wlEFHpP75F4NBz118D8gt0zxkNxxPUS3j8iXP4yA1kZAGyOgPwsKI6C1EdAypxZXWhkB7RnBYzI9P5t8Gnp1fwxPI-xdezKwT5lFLPCSMhRCSKEkgrpUsLlM81ArbpJc6ERqpoJIqgj-OozieaBT5uf8CTksysI8IzTOAwXmyZmJI5EnJglzrrQGl5ZgEDIekA-NfjJdHx5ve5hcZJZEQpcZdJk5XQ7Iu1b20h2ZslfqLdTcCthTzoeno8yO2W0KEIPoCkJvGhQyuD2rHVmYcoNJGEesG-Kn_kUGVAULFkLkAXnqIGy_D0QCwWoaPr_Bp1-Qu53VvySH6-XGvEIoulavK1P7DU5Kiuk
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+network+dynamics+in+the+control+of+cell+cycle+transitions&rft.jtitle=Journal+of+cell+science&rft.au=Fisher%2C+Daniel&rft.au=Krasinska%2C+Liliana&rft.au=Coudreuse%2C+Damien&rft.au=Novak%2C+Bela&rft.date=2012-10-15&rft.issn=0021-9533&rft.volume=125&rft.issue=20&rft.spage=4703&rft.epage=4711&rft_id=info:doi/10.1242%2Fjcs.106351&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon