Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance...
Saved in:
Published in | Cell metabolism Vol. 36; no. 7; pp. 1521 - 1533.e5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a “ceramidopathy” reversible by anti-ceramide immunotherapy.
[Display omitted]
•Vitreous C16:0/26:0 ceramide ratio is increased in proliferative diabetic retinopathy•C16-ceramide forms pro-inflammatory and pro-apoptotic ceramide-rich platforms•Cytokines induce ceramide-rich platform formation on retinal endothelial cells•Retinal microvascular injury in diabetes is reversed by anti-ceramide immunotherapy
Diabetic metabolic abnormalities cause retinal “ceramidopathy,” with sphingolipid imbalance leading to pathological ceramide-rich platform formation on the surface of retinal endothelial cells. Anti-ceramide antibodies targeting ceramide-rich platforms inhibit diabetes-induced endothelial cell apoptosis, dysfunction, and increased permeability. Intravitreal and systemic anti-ceramide immunotherapy reverse retinal microvascular injury in diabetic retinopathy. |
---|---|
AbstractList | Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy. Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy. Diabetic retinopathy is a microvascular disease-causing blindness. Using acid sphingomyelinase knockout mice, we reported ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very-long chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a 3-dimensional confocal assay and show retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platforms formation on retinal endothelial cell within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support: (1) Retinal endothelial ceramide as a diabetic retinopathy treatment target; (2) Early-stage therapy of non-proliferative diabetic retinopathy to prevent progression; (3) Systemic diabetic retinopathy treatment; and characterize diabetic retinopathy as a “Ceramidopathy” reversible by anti-ceramide immunotherapy. Diabetic metabolic abnormalities cause retinal “Ceramidopathy” with sphingolipid imbalance leading to pathological ceramide rich platform formation on the surface of retinal endothelial cells. Anti-ceramide antibodies targeting ceramide-rich platforms inhibit diabetes-induced endothelial cell apoptosis, dysfunction and increased permeability. Intravitreal and systemic anti-ceramide immunotherapy reverse retinal microvascular injury in diabetic retinopathy. Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a “ceramidopathy” reversible by anti-ceramide immunotherapy. [Display omitted] •Vitreous C16:0/26:0 ceramide ratio is increased in proliferative diabetic retinopathy•C16-ceramide forms pro-inflammatory and pro-apoptotic ceramide-rich platforms•Cytokines induce ceramide-rich platform formation on retinal endothelial cells•Retinal microvascular injury in diabetes is reversed by anti-ceramide immunotherapy Diabetic metabolic abnormalities cause retinal “ceramidopathy,” with sphingolipid imbalance leading to pathological ceramide-rich platform formation on the surface of retinal endothelial cells. Anti-ceramide antibodies targeting ceramide-rich platforms inhibit diabetes-induced endothelial cell apoptosis, dysfunction, and increased permeability. Intravitreal and systemic anti-ceramide immunotherapy reverse retinal microvascular injury in diabetic retinopathy. |
Author | Glazer, Louis C. Lydic, Todd A. Ganju, Aditya Kolesnick, Richard N. Singh, Arjun Dorweiler, Tim F. Busik, Julia V. |
AuthorAffiliation | 5 Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, 10065 NYC, NY, USA 6 Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, 73104 Oklahoma City, OK, USA 7 These authors contributed equally 1 Department of Physiology, Michigan State University, 48824 East Lansing, MI, USA 2 Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, 02113 Boston, MA, USA 8 Lead contact 3 Vitreo-Retinal Associates, 49546 Grand Rapids, MI, USA 4 Ophthalmology, Michigan State University, 48824 East Lansing, MI, USA |
AuthorAffiliation_xml | – name: 2 Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, 02113 Boston, MA, USA – name: 5 Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, 10065 NYC, NY, USA – name: 6 Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, 73104 Oklahoma City, OK, USA – name: 4 Ophthalmology, Michigan State University, 48824 East Lansing, MI, USA – name: 1 Department of Physiology, Michigan State University, 48824 East Lansing, MI, USA – name: 7 These authors contributed equally – name: 3 Vitreo-Retinal Associates, 49546 Grand Rapids, MI, USA – name: 8 Lead contact |
Author_xml | – sequence: 1 givenname: Tim F. orcidid: 0000-0003-2741-7298 surname: Dorweiler fullname: Dorweiler, Tim F. organization: Department of Physiology, Michigan State University, East Lansing, MI 48824, USA – sequence: 2 givenname: Arjun surname: Singh fullname: Singh, Arjun organization: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA – sequence: 3 givenname: Aditya surname: Ganju fullname: Ganju, Aditya organization: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA – sequence: 4 givenname: Todd A. surname: Lydic fullname: Lydic, Todd A. organization: Department of Physiology, Michigan State University, East Lansing, MI 48824, USA – sequence: 5 givenname: Louis C. surname: Glazer fullname: Glazer, Louis C. organization: Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA – sequence: 6 givenname: Richard N. surname: Kolesnick fullname: Kolesnick, Richard N. email: kolesnir@mskcc.org organization: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA – sequence: 7 givenname: Julia V. orcidid: 0000-0003-3453-7124 surname: Busik fullname: Busik, Julia V. email: julia-busik@ouhsc.edu organization: Department of Physiology, Michigan State University, East Lansing, MI 48824, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38718792$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUuLFDEQDrLiPvQPeJA-eumxKunu6QZBZH3Cggh6DnlUOxm6kzHJDMy_3zQzK-phoUgqyfcg9V2zCx88MfYSYYWA3ZvtysyUVxx4s4JSKJ6wKxwEr9cNh4vSty3UDQq8ZNcpbQFEJwbxjF2Kfo39euBX7PsHpzRlZ6pYVh92Km-OlUuVqgxFNTt7vop0oJicnqjSx0r57OozgCo3z3sf8qacd8fn7OmopkQvzvsN-_np44_bL_Xdt89fb9_f1aZpu1wr6FFoZQcCq7VVajCCtO6pJSVsJ7DDUfGW2w6wgW4cNY7lJ2SAjG4sFzfs3Ul3t9czWUM-RzXJXXSzikcZlJP_vni3kb_CQSJyzqFbFF6fFWL4vaeU5eySoWlSnsI-SQGtQNHDGgv01d9mf1weBlkA_QlgYkgp0iiNyyq7sHi7SSLIJTO5lUtmcslMQikUhcr_oz6oP0p6eyJRGfHBUZTJOPKGrItksrTBPUa_BxRCsy4 |
CitedBy_id | crossref_primary_10_1126_science_ado4188 crossref_primary_10_52711_2231_5691_2024_00030 crossref_primary_10_52711_2231_5713_2024_00031 crossref_primary_10_1080_17435889_2024_2380241 crossref_primary_10_1016_j_apjo_2024_100109 crossref_primary_10_52711_2231_5691_2024_00027 crossref_primary_10_1016_j_tice_2025_102817 |
Cites_doi | 10.2337/db10-0550 10.1074/jbc.M406499200 10.1074/jbc.M101866200 10.1126/science.aav3722 10.1194/jlr.TR120000981 10.1177/2474126420975303 10.1167/iovs.09-4731 10.1007/978-1-60761-322-0_3 10.1038/nrm.2017.107 10.3390/jcm10204666 10.1006/meth.2001.1262 10.1006/bbrc.2001.5045 10.1038/nm.3214 10.1007/s12282-019-00953-8 10.1172/JCI59920 10.1016/0042-6989(72)90106-X 10.1074/jbc.M414569200 10.1194/jlr.C088377 10.1371/journal.pone.0055177 10.1016/j.cmet.2014.08.002 10.3389/fendo.2020.569250 10.1038/nm977 10.1038/sj.onc.1209568 10.3390/cells10051049 10.1007/s40139-020-00205-x 10.3389/fendo.2020.00483 10.1016/j.chemphyslip.2015.07.026 10.1167/iovs.02-0648 10.1016/j.ebiom.2016.08.013 10.1016/j.visres.2017.04.010 10.1080/08820530902800355 10.1172/jci.insight.145380 10.1007/s001250051564 10.1016/j.diabres.2021.109119 10.1074/jbc.273.7.4081 10.1016/j.nbd.2020.105014 10.1016/S0092-8674(00)80091-4 10.1042/bj3200717 10.1074/jbc.273.23.14550 10.1016/j.bbamem.2008.07.030 10.1167/iovs.06-0510 10.3109/02713683.2012.661114 10.1093/eurheartj/ehw148 10.1074/jbc.M101207200 10.1016/j.jdiacomp.2018.12.005 10.1016/j.plipres.2005.11.002 10.1002/stem.2259 10.1016/j.cmet.2014.10.017 10.1194/jlr.D050302 10.1016/j.cmet.2014.09.015 10.1210/er.2007-0025 10.1016/j.tips.2021.10.001 10.1159/000484621 10.2174/1573399812666151016101622 10.2337/db17-1034 10.1161/ATVBAHA.118.311199 10.1096/fj.08-108043 10.1126/science.8424175 10.1016/j.febslet.2010.02.026 10.1084/jem.186.11.1831 10.1038/nm823 10.1126/science.1060191 10.1139/o03-091 10.1016/j.jacl.2017.03.007 10.1083/jcb.201903176 10.2337/db07-1520 10.1167/iovs.11-8167 10.1007/s13167-023-00318-4 10.1038/s41598-022-11219-3 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2024.04.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1533.e5 |
ExternalDocumentID | PMC11222062 38718792 10_1016_j_cmet_2024_04_013 S1550413124001335 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY025383 – fundername: NEI NIH HHS grantid: R01 EY016077 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NEI NIH HHS grantid: R01 EY030766 – fundername: NEI NIH HHS grantid: R01 EY028049 |
GroupedDBID | --- --K 0R~ 0SF 1~5 29B 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ADBBV ADEZE AEFWE AENEX AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES TR2 UNMZH 2WC AAIKJ AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AIGII AKBMS AKYEP APXCP CITATION EJD HZ~ OZT SSZ CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c456t-a0813bad9e0dbbdaa9c3ebb8e5ea3d63161fa252d601406ffb1f131ec0ecb4d23 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:33:19 EDT 2025 Thu Jul 10 17:22:38 EDT 2025 Mon Jul 21 06:04:23 EDT 2025 Tue Jul 01 03:58:22 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Sat Nov 16 15:57:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | ceramide TNFα retina inflammation endothelial cell sphingomyelinase apoptosis diabetic retinopathy IL-1β diabetes |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-a0813bad9e0dbbdaa9c3ebb8e5ea3d63161fa252d601406ffb1f131ec0ecb4d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 CONTRIBUTION STATEMENT All authors read and agreed on submission of the manuscript. TFD: Project administration, Validation, Conceptualization, Data curation, Formal Analysis, Methodology, Validation, Visualization, Writing – original draft, Writing – review and editing. AS: Conceptualization, Data curation, Formal Analysis, Methodology, Validation, Visualization, Writing – review and editing. AG, TAL, LCG: Data curation, Formal Analysis, Methodology, Validation Writing – review and editing. RNK, JVB: Methodology, Validation, Visualization, Writing – original draft, Writing – review and editing, Funding acquisition, Project administration, Resources, Supervision. |
ORCID | 0000-0003-2741-7298 0000-0003-3453-7124 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413124001335 |
PMID | 38718792 |
PQID | 3053138071 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222062 proquest_miscellaneous_3053138071 pubmed_primary_38718792 crossref_citationtrail_10_1016_j_cmet_2024_04_013 crossref_primary_10_1016_j_cmet_2024_04_013 elsevier_sciencedirect_doi_10_1016_j_cmet_2024_04_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-02 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zheng, Gong, Hatala, Kern (bib28) 2007; 48 Kielczewski, Li Calzi, Shaw, Cai, Qi, Ruan, Wu, Liu, Hu, Chan-Ling (bib65) 2011; 52 Kady, Liu, Lydic, Syed, Navitskaya, Wang, Hammer, O'Reilly, Huang, Seregin (bib25) 2018; 67 Wilmott, Grambergs, Allegood, Lyons, Mandal (bib53) 2019; 33 Lotfy, Adeghate, Kalasz, Singh, Adeghate (bib2) 2017; 13 Cingolani, Futerman, Casas (bib12) 2016; 197 Witkin, Hahn, Murray, Arevalo, Blinder, Choudhry, Emerson, Goldberg, Kim, Pearlman (bib43) 2021; 5 Lydic, Busik, Reid (bib33) 2014; 55 Tippetts, Holland, Summers (bib8) 2021; 42 Mathias, Younes, Kan, Orlow, Joseph, Kolesnick (bib41) 1993; 259 Livak, Schmittgen (bib34) 2001; 25 Peterson, Xanthakis, Duncan, Gross, Friedrich, Völzke, Felix, Jiang, Sidhu, Nauck (bib46) 2018; 7 Raichur (bib70) 2020; 11 Winkler (bib29) 1972; 12 Cremesti, Paris, Grassmé, Holler, Tschopp, Fuks, Gulbins, Kolesnick (bib38) 2001; 276 Silva, Sun, Aiello (bib6) 2009; 24 Opreanu, Tikhonenko, Bozack, Lydic, Reid, McSorley, Sochacki, Perez, Esselman, Kern (bib26) 2011; 60 Holland, Summers (bib71) 2008; 29 Busik (bib24) 2021; 62 Stratford, Hoehn, Liu, Summers (bib69) 2004; 279 Zhang, Li, Becker, Gulbins (bib27) 2009; 1788 Göggel, Winoto-Morbach, Vielhaber, Imai, Lindner, Brade, Brade, Ehlers, Slutsky, Schütze (bib52) 2004; 10 Smith, Schuchman (bib15) 2008; 22 Haimovitz-Friedman, Cordon-Cardo, Bayoumy, Garzotto, McLoughlin, Gallily, Edwards, Schuchman, Fuks, Kolesnick (bib51) 1997; 186 Tikhonenko, Lydic, Opreanu, Li Calzi, Bozack, McSorley, Sochacki, Faber, Hazra, Duclos (bib14) 2013; 8 Grassmé, Jendrossek, Riehle, von Kürthy, Berger, Schwarz, Weller, Kolesnick, Gulbins (bib60) 2003; 9 Summers (bib11) 2006; 45 Kropp, De Clerck, Vo, Thumann, Costigliola, Golubnitschaja (bib54) 2023; 14 Becker, Halmer, Davies, Henry, Ziobro-Henry, Decker, Liu, Gulbins, Fassbender, Walter (bib49) 2017; 25 Mota, Morgan, Bahnson (bib37) 2020; 8 Li, Talbot, Chandravanshi, Ksiazek, Sood, Chowdhury, Maschek, Cox, Babu, Paz (bib68) 2022; 12 Meeusen, Donato, Bryant, Baudhuin, Berger, Jaffe (bib48) 2018; 38 Busik, Reid, Lydic (bib31) 2009; 579 Luberto, Hannun (bib40) 1998; 273 Kady, Yan, Salazar, Wang, Chakravarthy, Huang, Beli, Navitskaya, Grant, Busik (bib62) 2017; 11 Tomita, Lee, Tsubota, Negishi, Kurihara (bib7) 2021; 10 Hannun, Obeid (bib55) 2018; 19 Santana, Peña, Haimovitz-Friedman, Martin, Green, McLoughlin, Cordon-Cardo, Schuchman, Fuks, Kolesnick (bib21) 1996; 86 Tippetts, Holland, Summers (bib47) 2018; 59 Zhou, Wang, Xia (bib39) 2012; 37 Turpin, Nicholls, Willmes, Mourier, Brodesser, Wunderlich, Mauer, Xu, Hammerschmidt, Brönneke (bib57) 2014; 20 Grassmé, Schwarz, Gulbins (bib61) 2001; 284 Field, Gordillo, Scherer (bib9) 2020; 11 Dumitru, Gulbins (bib58) 2006; 25 Ferranti, Cheng, Thompson, Zhang, Rotolo, Buddaseth, Fuks, Kolesnick (bib18) 2020; 219 Laaksonen, Ekroos, Sysi-Aho, Hilvo, Vihervaara, Kauhanen, Suoniemi, Hurme, März, Scharnagl (bib10) 2016; 37 Smith, Wesolowski, McLellan, Kostyk, D'Amato, Sullivan, D'Amore (bib73) 1994; 35 Rotolo, Zhang, Donepudi, Lee, Fuks, Kolesnick (bib32) 2005; 280 Grassme, Jekle, Riehle, Schwarz, Berger, Sandhoff, Kolesnick, Gulbins (bib59) 2001; 276 Elsner, Guldbakke, Tiedge, Munday, Lenzen (bib44) 2000; 43 Wallsh, Gallemore (bib5) 2021; 10 Marchesini, Hannun (bib16) 2004; 82 Raichur, Wang, Chan, Li, Ching, Chaurasia, Dogra, Öhman, Takeda, Sugii (bib56) 2014; 20 Wang, Navitskaya, Chakravarthy, Huang, Kady, Lydic, Chen, Yin, Powell, Martin (bib35) 2016; 11 Gulbins, Palmada, Reichel, Lüth, Böhmer, Amato, Müller, Tischbirek, Groemer, Tabatabai (bib50) 2013; 19 Rotolo, Fong, Bodo, Nagesh, Fuller, Sharma, Piersigilli, Zhang, Fuks, Singh, Kolesnick (bib23) 2021; 6 Busik, Mohr, Grant (bib66) 2008; 57 Opreanu, Lydic, Reid, McSorley, Esselman, Busik (bib63) 2010; 51 Lyons, Jenkins, Zheng, Lackland, McGee, Garvey, Klein (bib3) 2004; 45 Hartsock, Cho, Wu, Chen, Gong, Duh (bib42) 2016; 113 Sun, Saeedi, Karuranga, Pinkepank, Ogurtsova, Duncan, Stein, Basit, Chan, Mbanya (bib1) 2022; 183 Hammer, Busik (bib4) 2017; 139 Hla, Kolesnick (bib36) 2014; 20 Paris, Fuks, Kang, Capodieci, Juan, Ehleiter, Haimovitz-Friedman, Cordon-Cardo, Kolesnick (bib20) 2001; 293 Chaurasia, Tippetts, Mayoral Monibas, Liu, Li, Wang, Wilkerson, Sweeney, Pereira, Sumida (bib67) 2019; 365 Rotolo, Stancevic, Zhang, Hua, Fuller, Yin, Haimovitz-Friedman, Kim, Qian, Cardó-Vila (bib22) 2012; 122 Nagesh, Monette, Shamu, Giralt, Jean, Zhang, Fuks, Kolesnick (bib45) 2023 Marathe, Schissel, Yellin, Beatini, Mintzer, Williams, Tabas (bib19) 1998; 273 Moro, Nagahashi, Gabriel, Takabe, Wakai (bib13) 2019; 26 Chakravarthy, Navitskaya, O'Reilly, Gallimore, Mize, Beli, Wang, Kady, Huang, Blanchard (bib64) 2016; 34 Stancevic, Kolesnick (bib17) 2010; 584 Pant, Aguilera-Albesa, Pujol (bib72) 2020; 143 Gardner, Lesher, Khin, Vu, Barber, Brennan (bib30) 1996; 320 Tippetts (10.1016/j.cmet.2024.04.013_bib8) 2021; 42 Winkler (10.1016/j.cmet.2024.04.013_bib29) 1972; 12 Nagesh (10.1016/j.cmet.2024.04.013_bib45) 2023 Livak (10.1016/j.cmet.2024.04.013_bib34) 2001; 25 Paris (10.1016/j.cmet.2024.04.013_bib20) 2001; 293 Zheng (10.1016/j.cmet.2024.04.013_bib28) 2007; 48 Lotfy (10.1016/j.cmet.2024.04.013_bib2) 2017; 13 Cingolani (10.1016/j.cmet.2024.04.013_bib12) 2016; 197 Hartsock (10.1016/j.cmet.2024.04.013_bib42) 2016; 113 Laaksonen (10.1016/j.cmet.2024.04.013_bib10) 2016; 37 Smith (10.1016/j.cmet.2024.04.013_bib15) 2008; 22 Holland (10.1016/j.cmet.2024.04.013_bib71) 2008; 29 Kropp (10.1016/j.cmet.2024.04.013_bib54) 2023; 14 Busik (10.1016/j.cmet.2024.04.013_bib66) 2008; 57 Silva (10.1016/j.cmet.2024.04.013_bib6) 2009; 24 Mota (10.1016/j.cmet.2024.04.013_bib37) 2020; 8 Hla (10.1016/j.cmet.2024.04.013_bib36) 2014; 20 Gulbins (10.1016/j.cmet.2024.04.013_bib50) 2013; 19 Kady (10.1016/j.cmet.2024.04.013_bib62) 2017; 11 Göggel (10.1016/j.cmet.2024.04.013_bib52) 2004; 10 Raichur (10.1016/j.cmet.2024.04.013_bib70) 2020; 11 Gardner (10.1016/j.cmet.2024.04.013_bib30) 1996; 320 Rotolo (10.1016/j.cmet.2024.04.013_bib32) 2005; 280 Zhang (10.1016/j.cmet.2024.04.013_bib27) 2009; 1788 Meeusen (10.1016/j.cmet.2024.04.013_bib48) 2018; 38 Li (10.1016/j.cmet.2024.04.013_bib68) 2022; 12 Luberto (10.1016/j.cmet.2024.04.013_bib40) 1998; 273 Peterson (10.1016/j.cmet.2024.04.013_bib46) 2018; 7 Lyons (10.1016/j.cmet.2024.04.013_bib3) 2004; 45 Wallsh (10.1016/j.cmet.2024.04.013_bib5) 2021; 10 Moro (10.1016/j.cmet.2024.04.013_bib13) 2019; 26 Stratford (10.1016/j.cmet.2024.04.013_bib69) 2004; 279 Hammer (10.1016/j.cmet.2024.04.013_bib4) 2017; 139 Tomita (10.1016/j.cmet.2024.04.013_bib7) 2021; 10 Chakravarthy (10.1016/j.cmet.2024.04.013_bib64) 2016; 34 Elsner (10.1016/j.cmet.2024.04.013_bib44) 2000; 43 Smith (10.1016/j.cmet.2024.04.013_bib73) 1994; 35 Rotolo (10.1016/j.cmet.2024.04.013_bib23) 2021; 6 Busik (10.1016/j.cmet.2024.04.013_bib31) 2009; 579 Santana (10.1016/j.cmet.2024.04.013_bib21) 1996; 86 Field (10.1016/j.cmet.2024.04.013_bib9) 2020; 11 Ferranti (10.1016/j.cmet.2024.04.013_bib18) 2020; 219 Dumitru (10.1016/j.cmet.2024.04.013_bib58) 2006; 25 Grassme (10.1016/j.cmet.2024.04.013_bib59) 2001; 276 Stancevic (10.1016/j.cmet.2024.04.013_bib17) 2010; 584 Becker (10.1016/j.cmet.2024.04.013_bib49) 2017; 25 Turpin (10.1016/j.cmet.2024.04.013_bib57) 2014; 20 Wilmott (10.1016/j.cmet.2024.04.013_bib53) 2019; 33 Busik (10.1016/j.cmet.2024.04.013_bib24) 2021; 62 Kady (10.1016/j.cmet.2024.04.013_bib25) 2018; 67 Grassmé (10.1016/j.cmet.2024.04.013_bib60) 2003; 9 Lydic (10.1016/j.cmet.2024.04.013_bib33) 2014; 55 Chaurasia (10.1016/j.cmet.2024.04.013_bib67) 2019; 365 Wang (10.1016/j.cmet.2024.04.013_bib35) 2016; 11 Marathe (10.1016/j.cmet.2024.04.013_bib19) 1998; 273 Rotolo (10.1016/j.cmet.2024.04.013_bib22) 2012; 122 Opreanu (10.1016/j.cmet.2024.04.013_bib26) 2011; 60 Sun (10.1016/j.cmet.2024.04.013_bib1) 2022; 183 Kielczewski (10.1016/j.cmet.2024.04.013_bib65) 2011; 52 Hannun (10.1016/j.cmet.2024.04.013_bib55) 2018; 19 Witkin (10.1016/j.cmet.2024.04.013_bib43) 2021; 5 Tippetts (10.1016/j.cmet.2024.04.013_bib47) 2018; 59 Marchesini (10.1016/j.cmet.2024.04.013_bib16) 2004; 82 Grassmé (10.1016/j.cmet.2024.04.013_bib61) 2001; 284 Raichur (10.1016/j.cmet.2024.04.013_bib56) 2014; 20 Pant (10.1016/j.cmet.2024.04.013_bib72) 2020; 143 Opreanu (10.1016/j.cmet.2024.04.013_bib63) 2010; 51 Summers (10.1016/j.cmet.2024.04.013_bib11) 2006; 45 Mathias (10.1016/j.cmet.2024.04.013_bib41) 1993; 259 Zhou (10.1016/j.cmet.2024.04.013_bib39) 2012; 37 Haimovitz-Friedman (10.1016/j.cmet.2024.04.013_bib51) 1997; 186 Tikhonenko (10.1016/j.cmet.2024.04.013_bib14) 2013; 8 Cremesti (10.1016/j.cmet.2024.04.013_bib38) 2001; 276 |
References_xml | – volume: 8 start-page: 1 year: 2020 end-page: 14 ident: bib37 article-title: Diabetic vasculopathy: macro and microvascular injury publication-title: Curr. Pathobiol. Rep. – volume: 59 start-page: 1549 year: 2018 end-page: 1550 ident: bib47 article-title: The ceramide ratio: a predictor of cardiometabolic risk publication-title: J. Lipid Res. – volume: 5 start-page: 326 year: 2021 end-page: 332 ident: bib43 article-title: Brolucizumab-associated intraocular inflammation in eyes without retinal vasculitis publication-title: J. Vitreoretin Dis – volume: 11 start-page: 694 year: 2017 end-page: 703 ident: bib62 article-title: Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34 publication-title: J. Clin. Lipidol. – volume: 24 start-page: 93 year: 2009 end-page: 99 ident: bib6 article-title: Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy publication-title: Semin. Ophthalmol. – volume: 37 start-page: 1967 year: 2016 end-page: 1976 ident: bib10 article-title: Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol publication-title: Eur. Heart J. – volume: 33 start-page: 195 year: 2019 end-page: 201 ident: bib53 article-title: Analysis of sphingolipid composition in human vitreous from control and diabetic individuals publication-title: J. Diabetes Complications – volume: 67 start-page: 769 year: 2018 end-page: 781 ident: bib25 article-title: ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability publication-title: Diabetes – volume: 35 start-page: 101 year: 1994 end-page: 111 ident: bib73 article-title: Oxygen-induced retinopathy in the mouse publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 82 start-page: 27 year: 2004 end-page: 44 ident: bib16 article-title: Acid and neutral sphingomyelinases: roles and mechanisms of regulation publication-title: Biochem. Cell Biol. – volume: 113 start-page: 54065 year: 2016 ident: bib42 article-title: A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure publication-title: J. Vis. Exp. – volume: 25 start-page: 88 year: 2017 end-page: 97 ident: bib49 article-title: Blockade of Experimental Multiple Sclerosis by Inhibition of the Acid Sphingomyelinase/Ceramide System publication-title: Neurosignals. – volume: 273 start-page: 14550 year: 1998 end-page: 14559 ident: bib40 article-title: Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? publication-title: J. Biol. Chem. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib34 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods – volume: 45 start-page: 42 year: 2006 end-page: 72 ident: bib11 article-title: Ceramides in insulin resistance and lipotoxicity publication-title: Prog. Lipid Res. – volume: 52 start-page: 8278 year: 2011 end-page: 8286 ident: bib65 article-title: Free insulin-like growth factor binding protein-3 (IGFBP-3) reduces retinal vascular permeability in association with a reduction of acid sphingomyelinase (ASMase) publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 12 start-page: 1183 year: 1972 end-page: 1198 ident: bib29 article-title: The electroretinogram of the isolated rat retina publication-title: Vision Res. – volume: 57 start-page: 1952 year: 2008 end-page: 1965 ident: bib66 article-title: Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators publication-title: Diabetes – volume: 37 start-page: 416 year: 2012 end-page: 420 ident: bib39 article-title: Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy publication-title: Curr. Eye Res. – year: 2023 ident: bib45 article-title: Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 320 start-page: 717 year: 1996 end-page: 721 ident: bib30 article-title: Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells publication-title: Biochem. J. – volume: 48 start-page: 361 year: 2007 end-page: 367 ident: bib28 article-title: Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 12 start-page: 7273 year: 2022 ident: bib68 article-title: Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis publication-title: Sci. Rep. – volume: 143 year: 2020 ident: bib72 article-title: Ceramide signalling in inherited and multifactorial brain metabolic diseases publication-title: Neurobiol. Dis. – volume: 86 start-page: 189 year: 1996 end-page: 199 ident: bib21 article-title: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis publication-title: Cell – volume: 55 start-page: 1797 year: 2014 end-page: 1809 ident: bib33 article-title: A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids publication-title: J. Lipid Res. – volume: 26 start-page: 407 year: 2019 end-page: 415 ident: bib13 article-title: Clinical application of ceramide in cancer treatment publication-title: Breast Cancer – volume: 10 start-page: 155 year: 2004 end-page: 160 ident: bib52 article-title: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide publication-title: Nat. Med. – volume: 276 start-page: 23954 year: 2001 end-page: 23961 ident: bib38 article-title: Ceramide enables fas to cap and kill publication-title: J. Biol. Chem. – volume: 293 start-page: 293 year: 2001 end-page: 297 ident: bib20 article-title: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice publication-title: Science – volume: 279 start-page: 36608 year: 2004 end-page: 36615 ident: bib69 article-title: Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B publication-title: J. Biol. Chem. – volume: 43 start-page: 1528 year: 2000 end-page: 1533 ident: bib44 article-title: Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin publication-title: Diabetologia – volume: 11 start-page: 138 year: 2016 end-page: 150 ident: bib35 article-title: Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy publication-title: EBioMedicine – volume: 10 start-page: 1049 year: 2021 ident: bib5 article-title: Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options publication-title: Cells – volume: 11 start-page: 483 year: 2020 ident: bib70 article-title: Ceramide Synthases Are Attractive Drug Targets for Treating Metabolic Diseases publication-title: Front. Endocrinol. (Lausanne) – volume: 280 start-page: 26425 year: 2005 end-page: 26434 ident: bib32 article-title: Caspase-dependent and -independent activation of acid sphingomyelinase signaling publication-title: J. Biol. Chem. – volume: 9 start-page: 322 year: 2003 end-page: 330 ident: bib60 article-title: Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts publication-title: Nat. Med. – volume: 20 start-page: 703 year: 2014 end-page: 705 ident: bib36 article-title: C16:0-ceramide signals insulin resistance publication-title: Cell Metab. – volume: 197 start-page: 25 year: 2016 end-page: 32 ident: bib12 article-title: Ceramide synthases in biomedical research publication-title: Chem. Phys. Lipids – volume: 584 start-page: 1728 year: 2010 end-page: 1740 ident: bib17 article-title: Ceramide-rich platforms in transmembrane signaling publication-title: FEBS Lett. – volume: 62 start-page: 100017 year: 2021 ident: bib24 article-title: Lipid metabolism dysregulation in diabetic retinopathy publication-title: J. Lipid Res. – volume: 1788 start-page: 178 year: 2009 end-page: 183 ident: bib27 article-title: Ceramide-enriched membrane domains--structure and function publication-title: Biochim. Biophys. Acta – volume: 139 start-page: 228 year: 2017 end-page: 236 ident: bib4 article-title: The role of dyslipidemia in diabetic retinopathy publication-title: Vision Res. – volume: 19 start-page: 934 year: 2013 end-page: 938 ident: bib50 article-title: Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs publication-title: Nat. Med. – volume: 14 start-page: 43 year: 2023 end-page: 51 ident: bib54 article-title: Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation publication-title: EPMA J. – volume: 22 start-page: 3419 year: 2008 end-page: 3431 ident: bib15 article-title: The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases publication-title: FASEB J. – volume: 60 start-page: 2370 year: 2011 end-page: 2378 ident: bib26 article-title: The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models publication-title: Diabetes – volume: 276 start-page: 20589 year: 2001 end-page: 20596 ident: bib59 article-title: CD95 signaling via ceramide-rich membrane rafts publication-title: J. Biol. Chem. – volume: 8 year: 2013 ident: bib14 article-title: N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function publication-title: PLoS One – volume: 122 start-page: 1786 year: 2012 end-page: 1790 ident: bib22 article-title: Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice publication-title: J. Clin. Invest. – volume: 19 start-page: 175 year: 2018 end-page: 191 ident: bib55 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 219 year: 2020 ident: bib18 article-title: Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis publication-title: J. Cell Biol. – volume: 273 start-page: 4081 year: 1998 end-page: 4088 ident: bib19 article-title: Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling publication-title: J. Biol. Chem. – volume: 11 year: 2020 ident: bib9 article-title: The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines publication-title: Front. Endocrinol. (Lausanne) – volume: 42 start-page: 1082 year: 2021 end-page: 1095 ident: bib8 article-title: Cholesterol - the devil you know; ceramide - the devil you don't publication-title: Trends Pharmacol. Sci. – volume: 7 year: 2018 ident: bib46 article-title: Ceramide Remodeling and Risk of Cardiovascular Events and Mortality publication-title: J. Am. Heart Assoc. – volume: 51 start-page: 3253 year: 2010 end-page: 3263 ident: bib63 article-title: Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 284 start-page: 1016 year: 2001 end-page: 1030 ident: bib61 article-title: Molecular mechanisms of ceramide-mediated CD95 clustering publication-title: Biochem. Biophys. Res. Commun. – volume: 45 start-page: 910 year: 2004 end-page: 918 ident: bib3 article-title: Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 259 start-page: 519 year: 1993 end-page: 522 ident: bib41 article-title: Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta publication-title: Science – volume: 20 start-page: 678 year: 2014 end-page: 686 ident: bib57 article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance publication-title: Cell Metab. – volume: 13 start-page: 3 year: 2017 end-page: 10 ident: bib2 article-title: Chronic Complications of Diabetes Mellitus: A Mini Review publication-title: Curr. Diabetes Rev. – volume: 6 year: 2021 ident: bib23 article-title: Anti-ceramide single-chain variable fragment mitigates radiation GI syndrome mortality independent of DNA repair publication-title: JCI Insight – volume: 34 start-page: 972 year: 2016 end-page: 983 ident: bib64 article-title: Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy publication-title: Stem Cells – volume: 365 start-page: 386 year: 2019 end-page: 392 ident: bib67 article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis publication-title: Science – volume: 579 start-page: 33 year: 2009 end-page: 70 ident: bib31 article-title: Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry publication-title: Methods Mol. Biol. – volume: 29 start-page: 381 year: 2008 end-page: 402 ident: bib71 article-title: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism publication-title: Endocr. Rev. – volume: 10 start-page: 4666 year: 2021 ident: bib7 article-title: Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy publication-title: J. Clin. Med. – volume: 25 start-page: 5612 year: 2006 end-page: 5625 ident: bib58 article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis publication-title: Oncogene – volume: 183 year: 2022 ident: bib1 article-title: IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 publication-title: Diabetes Res. Clin. Pract. – volume: 20 start-page: 687 year: 2014 end-page: 695 ident: bib56 article-title: CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance publication-title: Cell Metab. – volume: 38 start-page: 1933 year: 2018 end-page: 1939 ident: bib48 article-title: Plasma Ceramides publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 186 start-page: 1831 year: 1997 end-page: 1841 ident: bib51 article-title: Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation publication-title: J. Exp. Med. – volume: 60 start-page: 2370 year: 2011 ident: 10.1016/j.cmet.2024.04.013_bib26 article-title: The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models publication-title: Diabetes doi: 10.2337/db10-0550 – volume: 279 start-page: 36608 year: 2004 ident: 10.1016/j.cmet.2024.04.013_bib69 article-title: Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406499200 – volume: 276 start-page: 23954 year: 2001 ident: 10.1016/j.cmet.2024.04.013_bib38 article-title: Ceramide enables fas to cap and kill publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101866200 – volume: 365 start-page: 386 year: 2019 ident: 10.1016/j.cmet.2024.04.013_bib67 article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis publication-title: Science doi: 10.1126/science.aav3722 – volume: 62 start-page: 100017 year: 2021 ident: 10.1016/j.cmet.2024.04.013_bib24 article-title: Lipid metabolism dysregulation in diabetic retinopathy publication-title: J. Lipid Res. doi: 10.1194/jlr.TR120000981 – volume: 5 start-page: 326 year: 2021 ident: 10.1016/j.cmet.2024.04.013_bib43 article-title: Brolucizumab-associated intraocular inflammation in eyes without retinal vasculitis publication-title: J. Vitreoretin Dis doi: 10.1177/2474126420975303 – volume: 51 start-page: 3253 year: 2010 ident: 10.1016/j.cmet.2024.04.013_bib63 article-title: Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.09-4731 – volume: 579 start-page: 33 year: 2009 ident: 10.1016/j.cmet.2024.04.013_bib31 article-title: Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-322-0_3 – volume: 19 start-page: 175 year: 2018 ident: 10.1016/j.cmet.2024.04.013_bib55 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.107 – volume: 10 start-page: 4666 year: 2021 ident: 10.1016/j.cmet.2024.04.013_bib7 article-title: Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy publication-title: J. Clin. Med. doi: 10.3390/jcm10204666 – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.cmet.2024.04.013_bib34 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 284 start-page: 1016 year: 2001 ident: 10.1016/j.cmet.2024.04.013_bib61 article-title: Molecular mechanisms of ceramide-mediated CD95 clustering publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5045 – volume: 19 start-page: 934 year: 2013 ident: 10.1016/j.cmet.2024.04.013_bib50 article-title: Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs publication-title: Nat. Med. doi: 10.1038/nm.3214 – volume: 26 start-page: 407 year: 2019 ident: 10.1016/j.cmet.2024.04.013_bib13 article-title: Clinical application of ceramide in cancer treatment publication-title: Breast Cancer doi: 10.1007/s12282-019-00953-8 – volume: 122 start-page: 1786 year: 2012 ident: 10.1016/j.cmet.2024.04.013_bib22 article-title: Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI59920 – volume: 12 start-page: 1183 year: 1972 ident: 10.1016/j.cmet.2024.04.013_bib29 article-title: The electroretinogram of the isolated rat retina publication-title: Vision Res. doi: 10.1016/0042-6989(72)90106-X – volume: 280 start-page: 26425 year: 2005 ident: 10.1016/j.cmet.2024.04.013_bib32 article-title: Caspase-dependent and -independent activation of acid sphingomyelinase signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414569200 – volume: 59 start-page: 1549 year: 2018 ident: 10.1016/j.cmet.2024.04.013_bib47 article-title: The ceramide ratio: a predictor of cardiometabolic risk publication-title: J. Lipid Res. doi: 10.1194/jlr.C088377 – volume: 8 year: 2013 ident: 10.1016/j.cmet.2024.04.013_bib14 article-title: N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function publication-title: PLoS One doi: 10.1371/journal.pone.0055177 – volume: 7 year: 2018 ident: 10.1016/j.cmet.2024.04.013_bib46 article-title: Ceramide Remodeling and Risk of Cardiovascular Events and Mortality publication-title: J. Am. Heart Assoc. – volume: 20 start-page: 678 year: 2014 ident: 10.1016/j.cmet.2024.04.013_bib57 article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.08.002 – volume: 11 year: 2020 ident: 10.1016/j.cmet.2024.04.013_bib9 article-title: The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2020.569250 – volume: 10 start-page: 155 year: 2004 ident: 10.1016/j.cmet.2024.04.013_bib52 article-title: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide publication-title: Nat. Med. doi: 10.1038/nm977 – volume: 25 start-page: 5612 year: 2006 ident: 10.1016/j.cmet.2024.04.013_bib58 article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1209568 – volume: 10 start-page: 1049 year: 2021 ident: 10.1016/j.cmet.2024.04.013_bib5 article-title: Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options publication-title: Cells doi: 10.3390/cells10051049 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.cmet.2024.04.013_bib37 article-title: Diabetic vasculopathy: macro and microvascular injury publication-title: Curr. Pathobiol. Rep. doi: 10.1007/s40139-020-00205-x – volume: 11 start-page: 483 year: 2020 ident: 10.1016/j.cmet.2024.04.013_bib70 article-title: Ceramide Synthases Are Attractive Drug Targets for Treating Metabolic Diseases publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2020.00483 – volume: 197 start-page: 25 year: 2016 ident: 10.1016/j.cmet.2024.04.013_bib12 article-title: Ceramide synthases in biomedical research publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2015.07.026 – volume: 45 start-page: 910 year: 2004 ident: 10.1016/j.cmet.2024.04.013_bib3 article-title: Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-0648 – volume: 11 start-page: 138 year: 2016 ident: 10.1016/j.cmet.2024.04.013_bib35 article-title: Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.08.013 – volume: 139 start-page: 228 year: 2017 ident: 10.1016/j.cmet.2024.04.013_bib4 article-title: The role of dyslipidemia in diabetic retinopathy publication-title: Vision Res. doi: 10.1016/j.visres.2017.04.010 – volume: 35 start-page: 101 year: 1994 ident: 10.1016/j.cmet.2024.04.013_bib73 article-title: Oxygen-induced retinopathy in the mouse publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 24 start-page: 93 year: 2009 ident: 10.1016/j.cmet.2024.04.013_bib6 article-title: Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy publication-title: Semin. Ophthalmol. doi: 10.1080/08820530902800355 – volume: 6 year: 2021 ident: 10.1016/j.cmet.2024.04.013_bib23 article-title: Anti-ceramide single-chain variable fragment mitigates radiation GI syndrome mortality independent of DNA repair publication-title: JCI Insight doi: 10.1172/jci.insight.145380 – volume: 43 start-page: 1528 year: 2000 ident: 10.1016/j.cmet.2024.04.013_bib44 article-title: Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin publication-title: Diabetologia doi: 10.1007/s001250051564 – volume: 183 year: 2022 ident: 10.1016/j.cmet.2024.04.013_bib1 article-title: IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2021.109119 – year: 2023 ident: 10.1016/j.cmet.2024.04.013_bib45 article-title: Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 273 start-page: 4081 year: 1998 ident: 10.1016/j.cmet.2024.04.013_bib19 article-title: Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.7.4081 – volume: 143 year: 2020 ident: 10.1016/j.cmet.2024.04.013_bib72 article-title: Ceramide signalling in inherited and multifactorial brain metabolic diseases publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.105014 – volume: 86 start-page: 189 year: 1996 ident: 10.1016/j.cmet.2024.04.013_bib21 article-title: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis publication-title: Cell doi: 10.1016/S0092-8674(00)80091-4 – volume: 320 start-page: 717 year: 1996 ident: 10.1016/j.cmet.2024.04.013_bib30 article-title: Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells publication-title: Biochem. J. doi: 10.1042/bj3200717 – volume: 273 start-page: 14550 year: 1998 ident: 10.1016/j.cmet.2024.04.013_bib40 article-title: Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.23.14550 – volume: 1788 start-page: 178 year: 2009 ident: 10.1016/j.cmet.2024.04.013_bib27 article-title: Ceramide-enriched membrane domains--structure and function publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2008.07.030 – volume: 48 start-page: 361 year: 2007 ident: 10.1016/j.cmet.2024.04.013_bib28 article-title: Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.06-0510 – volume: 37 start-page: 416 year: 2012 ident: 10.1016/j.cmet.2024.04.013_bib39 article-title: Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy publication-title: Curr. Eye Res. doi: 10.3109/02713683.2012.661114 – volume: 37 start-page: 1967 year: 2016 ident: 10.1016/j.cmet.2024.04.013_bib10 article-title: Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehw148 – volume: 276 start-page: 20589 year: 2001 ident: 10.1016/j.cmet.2024.04.013_bib59 article-title: CD95 signaling via ceramide-rich membrane rafts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101207200 – volume: 33 start-page: 195 year: 2019 ident: 10.1016/j.cmet.2024.04.013_bib53 article-title: Analysis of sphingolipid composition in human vitreous from control and diabetic individuals publication-title: J. Diabetes Complications doi: 10.1016/j.jdiacomp.2018.12.005 – volume: 45 start-page: 42 year: 2006 ident: 10.1016/j.cmet.2024.04.013_bib11 article-title: Ceramides in insulin resistance and lipotoxicity publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2005.11.002 – volume: 34 start-page: 972 year: 2016 ident: 10.1016/j.cmet.2024.04.013_bib64 article-title: Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy publication-title: Stem Cells doi: 10.1002/stem.2259 – volume: 20 start-page: 703 year: 2014 ident: 10.1016/j.cmet.2024.04.013_bib36 article-title: C16:0-ceramide signals insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.10.017 – volume: 55 start-page: 1797 year: 2014 ident: 10.1016/j.cmet.2024.04.013_bib33 article-title: A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids publication-title: J. Lipid Res. doi: 10.1194/jlr.D050302 – volume: 20 start-page: 687 year: 2014 ident: 10.1016/j.cmet.2024.04.013_bib56 article-title: CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.09.015 – volume: 29 start-page: 381 year: 2008 ident: 10.1016/j.cmet.2024.04.013_bib71 article-title: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism publication-title: Endocr. Rev. doi: 10.1210/er.2007-0025 – volume: 42 start-page: 1082 year: 2021 ident: 10.1016/j.cmet.2024.04.013_bib8 article-title: Cholesterol - the devil you know; ceramide - the devil you don't publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2021.10.001 – volume: 25 start-page: 88 year: 2017 ident: 10.1016/j.cmet.2024.04.013_bib49 article-title: Blockade of Experimental Multiple Sclerosis by Inhibition of the Acid Sphingomyelinase/Ceramide System publication-title: Neurosignals. doi: 10.1159/000484621 – volume: 13 start-page: 3 year: 2017 ident: 10.1016/j.cmet.2024.04.013_bib2 article-title: Chronic Complications of Diabetes Mellitus: A Mini Review publication-title: Curr. Diabetes Rev. doi: 10.2174/1573399812666151016101622 – volume: 67 start-page: 769 year: 2018 ident: 10.1016/j.cmet.2024.04.013_bib25 article-title: ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability publication-title: Diabetes doi: 10.2337/db17-1034 – volume: 38 start-page: 1933 year: 2018 ident: 10.1016/j.cmet.2024.04.013_bib48 article-title: Plasma Ceramides publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.311199 – volume: 22 start-page: 3419 year: 2008 ident: 10.1016/j.cmet.2024.04.013_bib15 article-title: The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases publication-title: FASEB J. doi: 10.1096/fj.08-108043 – volume: 259 start-page: 519 year: 1993 ident: 10.1016/j.cmet.2024.04.013_bib41 article-title: Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta publication-title: Science doi: 10.1126/science.8424175 – volume: 584 start-page: 1728 year: 2010 ident: 10.1016/j.cmet.2024.04.013_bib17 article-title: Ceramide-rich platforms in transmembrane signaling publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.02.026 – volume: 186 start-page: 1831 year: 1997 ident: 10.1016/j.cmet.2024.04.013_bib51 article-title: Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation publication-title: J. Exp. Med. doi: 10.1084/jem.186.11.1831 – volume: 9 start-page: 322 year: 2003 ident: 10.1016/j.cmet.2024.04.013_bib60 article-title: Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts publication-title: Nat. Med. doi: 10.1038/nm823 – volume: 293 start-page: 293 year: 2001 ident: 10.1016/j.cmet.2024.04.013_bib20 article-title: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice publication-title: Science doi: 10.1126/science.1060191 – volume: 82 start-page: 27 year: 2004 ident: 10.1016/j.cmet.2024.04.013_bib16 article-title: Acid and neutral sphingomyelinases: roles and mechanisms of regulation publication-title: Biochem. Cell Biol. doi: 10.1139/o03-091 – volume: 11 start-page: 694 year: 2017 ident: 10.1016/j.cmet.2024.04.013_bib62 article-title: Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2017.03.007 – volume: 219 year: 2020 ident: 10.1016/j.cmet.2024.04.013_bib18 article-title: Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis publication-title: J. Cell Biol. doi: 10.1083/jcb.201903176 – volume: 57 start-page: 1952 year: 2008 ident: 10.1016/j.cmet.2024.04.013_bib66 article-title: Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators publication-title: Diabetes doi: 10.2337/db07-1520 – volume: 52 start-page: 8278 year: 2011 ident: 10.1016/j.cmet.2024.04.013_bib65 article-title: Free insulin-like growth factor binding protein-3 (IGFBP-3) reduces retinal vascular permeability in association with a reduction of acid sphingomyelinase (ASMase) publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.11-8167 – volume: 113 start-page: 54065 year: 2016 ident: 10.1016/j.cmet.2024.04.013_bib42 article-title: A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure publication-title: J. Vis. Exp. – volume: 14 start-page: 43 year: 2023 ident: 10.1016/j.cmet.2024.04.013_bib54 article-title: Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation publication-title: EPMA J. doi: 10.1007/s13167-023-00318-4 – volume: 12 start-page: 7273 year: 2022 ident: 10.1016/j.cmet.2024.04.013_bib68 article-title: Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis publication-title: Sci. Rep. doi: 10.1038/s41598-022-11219-3 |
SSID | ssj0036393 |
Score | 2.5223525 |
Snippet | Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is... Diabetic retinopathy is a microvascular disease-causing blindness. Using acid sphingomyelinase knockout mice, we reported ceramide generation is critical for... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1521 |
SubjectTerms | Animals apoptosis Apoptosis - drug effects ceramide Ceramides - metabolism diabetes Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Experimental - pathology diabetic retinopathy Diabetic Retinopathy - drug therapy Diabetic Retinopathy - immunology Diabetic Retinopathy - metabolism Diabetic Retinopathy - pathology endothelial cell Endothelial Cells - metabolism Female Humans IL-1β Immunotherapy inflammation Interleukin-1beta - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Rats retina Retina - metabolism Retina - pathology sphingomyelinase TNFα Tumor Necrosis Factor-alpha - metabolism Vitreous Body - metabolism |
Title | Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy |
URI | https://dx.doi.org/10.1016/j.cmet.2024.04.013 https://www.ncbi.nlm.nih.gov/pubmed/38718792 https://www.proquest.com/docview/3053138071 https://pubmed.ncbi.nlm.nih.gov/PMC11222062 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6kbJuktT2qKCIoiAp7C3lMsaLdZV0P---dadPFVfQg9JJ0UsJMMvlCv5lh7BhSyJRXJRU0gUilLsY9Z5LIFC5LhSvwykIBzrd32fWTuhmkgwV20cXCEK0y-P7WpzfeOvT0gzb7o6rqPxC4RhecEAsSb1oUaC5V3gTxDc47byzxBG5I9igckXQInGk5Xu4NiE8pVJPuNJG_HU4_wed3DuWXQ-lqla0ENMnP2gmvsQWo19lSW19yusHuW75L5TjFKtZDKj885dU7N9zB2LxVPnRRHqcxbo5X4HbKUdlVFASAVxRBEuK0ppvs6ery8eI6CjUUIofQaBIZPPKlNb6A2FvrDdpAgrU52shIn0kEfKURqfAZXbWysrRJiVoCF4Ozygu5xRbrYQ07jIN1CF68U7kRyuaZBWyUhUEEl-OXoceSTnnahQTjVOfiVXdMshdNCtekcB3jk8geO5mNGbXpNf6UTjub6LlFotH__znuqDOgxt1Dv0RMDcOPdy3JB1HO_aTHtluDzuYh8S6Znxaix_I5U88EKDP3_Ju6em4ydCOIFSLOxO4_J7zHlqnV0ILFPlucjD_gAMHPxB42q_sTwYgFrA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-spdQXsV96frRb6FsJl-wmMXm0UjlbFUoV7m3ZjwlGzpyc58P9984km6PXUh-EvGQzG5aZ7MxvyW9mAL5ghnnq04obmmCUZi6mPWeSyJQuz6Qr6cjCCc7nF_noKv0xzsZrcNznwjCtMvj-zqe33jqMDIM2h3d1PfzN4JpccMIsSDppZS_gJaGBQ96dp-NvvTtWFIJblj1JRyweMmc6kpe7RSZUyrStd5qo_0Wnf9Hn3yTKP6LSyRZsBjgpjroVv4E1bN7Cq67B5OId_OoIL7UTnKzYTLn_8ELU98IIhzNzW_swxIWcZrQ7JijsQpC26ygIoKg5hSQkai3ew9XJ98vjURSaKESOtDGPDMV8ZY0vMfbWekNGUGhtQUYyyueKEF9lZCZ9zmetvKpsUpGW0MXobOql-gDrzbTBHRBoHaEX79LCyNQWuUW6qUpDEK6gN-MAkl552oUK49zoYqJ7KtmNZoVrVriO6UrUAL4u59x19TWelM56m-iVr0RTAHhy3ufegJq2D_8TMQ1OH-61YifERfeTAWx3Bl2uQ9Fhsjgs5QCKFVMvBbg09-qTpr5uS3QTipUyzuXuMxf8CV6PLs_P9Nnpxc892OAnLUdY7sP6fPaAB4SE5vZj-6U_Aui8CMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diabetic+retinopathy+is+a+ceramidopathy+reversible+by+anti-ceramide+immunotherapy&rft.jtitle=Cell+metabolism&rft.au=Dorweiler%2C+Tim+F.&rft.au=Singh%2C+Arjun&rft.au=Ganju%2C+Aditya&rft.au=Lydic%2C+Todd+A.&rft.date=2024-07-02&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.volume=36&rft.issue=7&rft.spage=1521&rft.epage=1533.e5&rft_id=info:doi/10.1016%2Fj.cmet.2024.04.013&rft.externalDocID=S1550413124001335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |