Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy

Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 36; no. 7; pp. 1521 - 1533.e5
Main Authors Dorweiler, Tim F., Singh, Arjun, Ganju, Aditya, Lydic, Todd A., Glazer, Louis C., Kolesnick, Richard N., Busik, Julia V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a “ceramidopathy” reversible by anti-ceramide immunotherapy. [Display omitted] •Vitreous C16:0/26:0 ceramide ratio is increased in proliferative diabetic retinopathy•C16-ceramide forms pro-inflammatory and pro-apoptotic ceramide-rich platforms•Cytokines induce ceramide-rich platform formation on retinal endothelial cells•Retinal microvascular injury in diabetes is reversed by anti-ceramide immunotherapy Diabetic metabolic abnormalities cause retinal “ceramidopathy,” with sphingolipid imbalance leading to pathological ceramide-rich platform formation on the surface of retinal endothelial cells. Anti-ceramide antibodies targeting ceramide-rich platforms inhibit diabetes-induced endothelial cell apoptosis, dysfunction, and increased permeability. Intravitreal and systemic anti-ceramide immunotherapy reverse retinal microvascular injury in diabetic retinopathy.
AbstractList Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Diabetic retinopathy is a microvascular disease-causing blindness. Using acid sphingomyelinase knockout mice, we reported ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very-long chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a 3-dimensional confocal assay and show retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platforms formation on retinal endothelial cell within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support: (1) Retinal endothelial ceramide as a diabetic retinopathy treatment target; (2) Early-stage therapy of non-proliferative diabetic retinopathy to prevent progression; (3) Systemic diabetic retinopathy treatment; and characterize diabetic retinopathy as a “Ceramidopathy” reversible by anti-ceramide immunotherapy. Diabetic metabolic abnormalities cause retinal “Ceramidopathy” with sphingolipid imbalance leading to pathological ceramide rich platform formation on the surface of retinal endothelial cells. Anti-ceramide antibodies targeting ceramide-rich platforms inhibit diabetes-induced endothelial cell apoptosis, dysfunction and increased permeability. Intravitreal and systemic anti-ceramide immunotherapy reverse retinal microvascular injury in diabetic retinopathy.
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a “ceramidopathy” reversible by anti-ceramide immunotherapy. [Display omitted] •Vitreous C16:0/26:0 ceramide ratio is increased in proliferative diabetic retinopathy•C16-ceramide forms pro-inflammatory and pro-apoptotic ceramide-rich platforms•Cytokines induce ceramide-rich platform formation on retinal endothelial cells•Retinal microvascular injury in diabetes is reversed by anti-ceramide immunotherapy Diabetic metabolic abnormalities cause retinal “ceramidopathy,” with sphingolipid imbalance leading to pathological ceramide-rich platform formation on the surface of retinal endothelial cells. Anti-ceramide antibodies targeting ceramide-rich platforms inhibit diabetes-induced endothelial cell apoptosis, dysfunction, and increased permeability. Intravitreal and systemic anti-ceramide immunotherapy reverse retinal microvascular injury in diabetic retinopathy.
Author Glazer, Louis C.
Lydic, Todd A.
Ganju, Aditya
Kolesnick, Richard N.
Singh, Arjun
Dorweiler, Tim F.
Busik, Julia V.
AuthorAffiliation 5 Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, 10065 NYC, NY, USA
6 Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, 73104 Oklahoma City, OK, USA
7 These authors contributed equally
1 Department of Physiology, Michigan State University, 48824 East Lansing, MI, USA
2 Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, 02113 Boston, MA, USA
8 Lead contact
3 Vitreo-Retinal Associates, 49546 Grand Rapids, MI, USA
4 Ophthalmology, Michigan State University, 48824 East Lansing, MI, USA
AuthorAffiliation_xml – name: 2 Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, 02113 Boston, MA, USA
– name: 5 Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, 10065 NYC, NY, USA
– name: 6 Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, 73104 Oklahoma City, OK, USA
– name: 4 Ophthalmology, Michigan State University, 48824 East Lansing, MI, USA
– name: 1 Department of Physiology, Michigan State University, 48824 East Lansing, MI, USA
– name: 7 These authors contributed equally
– name: 3 Vitreo-Retinal Associates, 49546 Grand Rapids, MI, USA
– name: 8 Lead contact
Author_xml – sequence: 1
  givenname: Tim F.
  orcidid: 0000-0003-2741-7298
  surname: Dorweiler
  fullname: Dorweiler, Tim F.
  organization: Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
– sequence: 2
  givenname: Arjun
  surname: Singh
  fullname: Singh, Arjun
  organization: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
– sequence: 3
  givenname: Aditya
  surname: Ganju
  fullname: Ganju, Aditya
  organization: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
– sequence: 4
  givenname: Todd A.
  surname: Lydic
  fullname: Lydic, Todd A.
  organization: Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
– sequence: 5
  givenname: Louis C.
  surname: Glazer
  fullname: Glazer, Louis C.
  organization: Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA
– sequence: 6
  givenname: Richard N.
  surname: Kolesnick
  fullname: Kolesnick, Richard N.
  email: kolesnir@mskcc.org
  organization: Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
– sequence: 7
  givenname: Julia V.
  orcidid: 0000-0003-3453-7124
  surname: Busik
  fullname: Busik, Julia V.
  email: julia-busik@ouhsc.edu
  organization: Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38718792$$D View this record in MEDLINE/PubMed
BookMark eNp9UUuLFDEQDrLiPvQPeJA-eumxKunu6QZBZH3Cggh6DnlUOxm6kzHJDMy_3zQzK-phoUgqyfcg9V2zCx88MfYSYYWA3ZvtysyUVxx4s4JSKJ6wKxwEr9cNh4vSty3UDQq8ZNcpbQFEJwbxjF2Kfo39euBX7PsHpzRlZ6pYVh92Km-OlUuVqgxFNTt7vop0oJicnqjSx0r57OozgCo3z3sf8qacd8fn7OmopkQvzvsN-_np44_bL_Xdt89fb9_f1aZpu1wr6FFoZQcCq7VVajCCtO6pJSVsJ7DDUfGW2w6wgW4cNY7lJ2SAjG4sFzfs3Ul3t9czWUM-RzXJXXSzikcZlJP_vni3kb_CQSJyzqFbFF6fFWL4vaeU5eySoWlSnsI-SQGtQNHDGgv01d9mf1weBlkA_QlgYkgp0iiNyyq7sHi7SSLIJTO5lUtmcslMQikUhcr_oz6oP0p6eyJRGfHBUZTJOPKGrItksrTBPUa_BxRCsy4
CitedBy_id crossref_primary_10_1126_science_ado4188
crossref_primary_10_52711_2231_5691_2024_00030
crossref_primary_10_52711_2231_5713_2024_00031
crossref_primary_10_1080_17435889_2024_2380241
crossref_primary_10_1016_j_apjo_2024_100109
crossref_primary_10_52711_2231_5691_2024_00027
crossref_primary_10_1016_j_tice_2025_102817
Cites_doi 10.2337/db10-0550
10.1074/jbc.M406499200
10.1074/jbc.M101866200
10.1126/science.aav3722
10.1194/jlr.TR120000981
10.1177/2474126420975303
10.1167/iovs.09-4731
10.1007/978-1-60761-322-0_3
10.1038/nrm.2017.107
10.3390/jcm10204666
10.1006/meth.2001.1262
10.1006/bbrc.2001.5045
10.1038/nm.3214
10.1007/s12282-019-00953-8
10.1172/JCI59920
10.1016/0042-6989(72)90106-X
10.1074/jbc.M414569200
10.1194/jlr.C088377
10.1371/journal.pone.0055177
10.1016/j.cmet.2014.08.002
10.3389/fendo.2020.569250
10.1038/nm977
10.1038/sj.onc.1209568
10.3390/cells10051049
10.1007/s40139-020-00205-x
10.3389/fendo.2020.00483
10.1016/j.chemphyslip.2015.07.026
10.1167/iovs.02-0648
10.1016/j.ebiom.2016.08.013
10.1016/j.visres.2017.04.010
10.1080/08820530902800355
10.1172/jci.insight.145380
10.1007/s001250051564
10.1016/j.diabres.2021.109119
10.1074/jbc.273.7.4081
10.1016/j.nbd.2020.105014
10.1016/S0092-8674(00)80091-4
10.1042/bj3200717
10.1074/jbc.273.23.14550
10.1016/j.bbamem.2008.07.030
10.1167/iovs.06-0510
10.3109/02713683.2012.661114
10.1093/eurheartj/ehw148
10.1074/jbc.M101207200
10.1016/j.jdiacomp.2018.12.005
10.1016/j.plipres.2005.11.002
10.1002/stem.2259
10.1016/j.cmet.2014.10.017
10.1194/jlr.D050302
10.1016/j.cmet.2014.09.015
10.1210/er.2007-0025
10.1016/j.tips.2021.10.001
10.1159/000484621
10.2174/1573399812666151016101622
10.2337/db17-1034
10.1161/ATVBAHA.118.311199
10.1096/fj.08-108043
10.1126/science.8424175
10.1016/j.febslet.2010.02.026
10.1084/jem.186.11.1831
10.1038/nm823
10.1126/science.1060191
10.1139/o03-091
10.1016/j.jacl.2017.03.007
10.1083/jcb.201903176
10.2337/db07-1520
10.1167/iovs.11-8167
10.1007/s13167-023-00318-4
10.1038/s41598-022-11219-3
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2024.04.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1533.e5
ExternalDocumentID PMC11222062
38718792
10_1016_j_cmet_2024_04_013
S1550413124001335
Genre Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY025383
– fundername: NEI NIH HHS
  grantid: R01 EY016077
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NEI NIH HHS
  grantid: R01 EY030766
– fundername: NEI NIH HHS
  grantid: R01 EY028049
GroupedDBID ---
--K
0R~
0SF
1~5
29B
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
AEFWE
AENEX
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
TR2
UNMZH
2WC
AAIKJ
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
SSZ
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c456t-a0813bad9e0dbbdaa9c3ebb8e5ea3d63161fa252d601406ffb1f131ec0ecb4d23
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:33:19 EDT 2025
Thu Jul 10 17:22:38 EDT 2025
Mon Jul 21 06:04:23 EDT 2025
Tue Jul 01 03:58:22 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Sat Nov 16 15:57:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords ceramide
TNFα
retina
inflammation
endothelial cell
sphingomyelinase
apoptosis
diabetic retinopathy
IL-1β
diabetes
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-a0813bad9e0dbbdaa9c3ebb8e5ea3d63161fa252d601406ffb1f131ec0ecb4d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
CONTRIBUTION STATEMENT
All authors read and agreed on submission of the manuscript.
TFD: Project administration, Validation, Conceptualization, Data curation, Formal Analysis, Methodology, Validation, Visualization, Writing – original draft, Writing – review and editing. AS: Conceptualization, Data curation, Formal Analysis, Methodology, Validation, Visualization, Writing – review and editing.
AG, TAL, LCG: Data curation, Formal Analysis, Methodology, Validation Writing – review and editing.
RNK, JVB: Methodology, Validation, Visualization, Writing – original draft, Writing – review and editing, Funding acquisition, Project administration, Resources, Supervision.
ORCID 0000-0003-2741-7298
0000-0003-3453-7124
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413124001335
PMID 38718792
PQID 3053138071
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11222062
proquest_miscellaneous_3053138071
pubmed_primary_38718792
crossref_citationtrail_10_1016_j_cmet_2024_04_013
crossref_primary_10_1016_j_cmet_2024_04_013
elsevier_sciencedirect_doi_10_1016_j_cmet_2024_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-02
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zheng, Gong, Hatala, Kern (bib28) 2007; 48
Kielczewski, Li Calzi, Shaw, Cai, Qi, Ruan, Wu, Liu, Hu, Chan-Ling (bib65) 2011; 52
Kady, Liu, Lydic, Syed, Navitskaya, Wang, Hammer, O'Reilly, Huang, Seregin (bib25) 2018; 67
Wilmott, Grambergs, Allegood, Lyons, Mandal (bib53) 2019; 33
Lotfy, Adeghate, Kalasz, Singh, Adeghate (bib2) 2017; 13
Cingolani, Futerman, Casas (bib12) 2016; 197
Witkin, Hahn, Murray, Arevalo, Blinder, Choudhry, Emerson, Goldberg, Kim, Pearlman (bib43) 2021; 5
Lydic, Busik, Reid (bib33) 2014; 55
Tippetts, Holland, Summers (bib8) 2021; 42
Mathias, Younes, Kan, Orlow, Joseph, Kolesnick (bib41) 1993; 259
Livak, Schmittgen (bib34) 2001; 25
Peterson, Xanthakis, Duncan, Gross, Friedrich, Völzke, Felix, Jiang, Sidhu, Nauck (bib46) 2018; 7
Raichur (bib70) 2020; 11
Winkler (bib29) 1972; 12
Cremesti, Paris, Grassmé, Holler, Tschopp, Fuks, Gulbins, Kolesnick (bib38) 2001; 276
Silva, Sun, Aiello (bib6) 2009; 24
Opreanu, Tikhonenko, Bozack, Lydic, Reid, McSorley, Sochacki, Perez, Esselman, Kern (bib26) 2011; 60
Holland, Summers (bib71) 2008; 29
Busik (bib24) 2021; 62
Stratford, Hoehn, Liu, Summers (bib69) 2004; 279
Zhang, Li, Becker, Gulbins (bib27) 2009; 1788
Göggel, Winoto-Morbach, Vielhaber, Imai, Lindner, Brade, Brade, Ehlers, Slutsky, Schütze (bib52) 2004; 10
Smith, Schuchman (bib15) 2008; 22
Haimovitz-Friedman, Cordon-Cardo, Bayoumy, Garzotto, McLoughlin, Gallily, Edwards, Schuchman, Fuks, Kolesnick (bib51) 1997; 186
Tikhonenko, Lydic, Opreanu, Li Calzi, Bozack, McSorley, Sochacki, Faber, Hazra, Duclos (bib14) 2013; 8
Grassmé, Jendrossek, Riehle, von Kürthy, Berger, Schwarz, Weller, Kolesnick, Gulbins (bib60) 2003; 9
Summers (bib11) 2006; 45
Kropp, De Clerck, Vo, Thumann, Costigliola, Golubnitschaja (bib54) 2023; 14
Becker, Halmer, Davies, Henry, Ziobro-Henry, Decker, Liu, Gulbins, Fassbender, Walter (bib49) 2017; 25
Mota, Morgan, Bahnson (bib37) 2020; 8
Li, Talbot, Chandravanshi, Ksiazek, Sood, Chowdhury, Maschek, Cox, Babu, Paz (bib68) 2022; 12
Meeusen, Donato, Bryant, Baudhuin, Berger, Jaffe (bib48) 2018; 38
Busik, Reid, Lydic (bib31) 2009; 579
Luberto, Hannun (bib40) 1998; 273
Kady, Yan, Salazar, Wang, Chakravarthy, Huang, Beli, Navitskaya, Grant, Busik (bib62) 2017; 11
Tomita, Lee, Tsubota, Negishi, Kurihara (bib7) 2021; 10
Hannun, Obeid (bib55) 2018; 19
Santana, Peña, Haimovitz-Friedman, Martin, Green, McLoughlin, Cordon-Cardo, Schuchman, Fuks, Kolesnick (bib21) 1996; 86
Tippetts, Holland, Summers (bib47) 2018; 59
Zhou, Wang, Xia (bib39) 2012; 37
Turpin, Nicholls, Willmes, Mourier, Brodesser, Wunderlich, Mauer, Xu, Hammerschmidt, Brönneke (bib57) 2014; 20
Grassmé, Schwarz, Gulbins (bib61) 2001; 284
Field, Gordillo, Scherer (bib9) 2020; 11
Dumitru, Gulbins (bib58) 2006; 25
Ferranti, Cheng, Thompson, Zhang, Rotolo, Buddaseth, Fuks, Kolesnick (bib18) 2020; 219
Laaksonen, Ekroos, Sysi-Aho, Hilvo, Vihervaara, Kauhanen, Suoniemi, Hurme, März, Scharnagl (bib10) 2016; 37
Smith, Wesolowski, McLellan, Kostyk, D'Amato, Sullivan, D'Amore (bib73) 1994; 35
Rotolo, Zhang, Donepudi, Lee, Fuks, Kolesnick (bib32) 2005; 280
Grassme, Jekle, Riehle, Schwarz, Berger, Sandhoff, Kolesnick, Gulbins (bib59) 2001; 276
Elsner, Guldbakke, Tiedge, Munday, Lenzen (bib44) 2000; 43
Wallsh, Gallemore (bib5) 2021; 10
Marchesini, Hannun (bib16) 2004; 82
Raichur, Wang, Chan, Li, Ching, Chaurasia, Dogra, Öhman, Takeda, Sugii (bib56) 2014; 20
Wang, Navitskaya, Chakravarthy, Huang, Kady, Lydic, Chen, Yin, Powell, Martin (bib35) 2016; 11
Gulbins, Palmada, Reichel, Lüth, Böhmer, Amato, Müller, Tischbirek, Groemer, Tabatabai (bib50) 2013; 19
Rotolo, Fong, Bodo, Nagesh, Fuller, Sharma, Piersigilli, Zhang, Fuks, Singh, Kolesnick (bib23) 2021; 6
Busik, Mohr, Grant (bib66) 2008; 57
Opreanu, Lydic, Reid, McSorley, Esselman, Busik (bib63) 2010; 51
Lyons, Jenkins, Zheng, Lackland, McGee, Garvey, Klein (bib3) 2004; 45
Hartsock, Cho, Wu, Chen, Gong, Duh (bib42) 2016; 113
Sun, Saeedi, Karuranga, Pinkepank, Ogurtsova, Duncan, Stein, Basit, Chan, Mbanya (bib1) 2022; 183
Hammer, Busik (bib4) 2017; 139
Hla, Kolesnick (bib36) 2014; 20
Paris, Fuks, Kang, Capodieci, Juan, Ehleiter, Haimovitz-Friedman, Cordon-Cardo, Kolesnick (bib20) 2001; 293
Chaurasia, Tippetts, Mayoral Monibas, Liu, Li, Wang, Wilkerson, Sweeney, Pereira, Sumida (bib67) 2019; 365
Rotolo, Stancevic, Zhang, Hua, Fuller, Yin, Haimovitz-Friedman, Kim, Qian, Cardó-Vila (bib22) 2012; 122
Nagesh, Monette, Shamu, Giralt, Jean, Zhang, Fuks, Kolesnick (bib45) 2023
Marathe, Schissel, Yellin, Beatini, Mintzer, Williams, Tabas (bib19) 1998; 273
Moro, Nagahashi, Gabriel, Takabe, Wakai (bib13) 2019; 26
Chakravarthy, Navitskaya, O'Reilly, Gallimore, Mize, Beli, Wang, Kady, Huang, Blanchard (bib64) 2016; 34
Stancevic, Kolesnick (bib17) 2010; 584
Pant, Aguilera-Albesa, Pujol (bib72) 2020; 143
Gardner, Lesher, Khin, Vu, Barber, Brennan (bib30) 1996; 320
Tippetts (10.1016/j.cmet.2024.04.013_bib8) 2021; 42
Winkler (10.1016/j.cmet.2024.04.013_bib29) 1972; 12
Nagesh (10.1016/j.cmet.2024.04.013_bib45) 2023
Livak (10.1016/j.cmet.2024.04.013_bib34) 2001; 25
Paris (10.1016/j.cmet.2024.04.013_bib20) 2001; 293
Zheng (10.1016/j.cmet.2024.04.013_bib28) 2007; 48
Lotfy (10.1016/j.cmet.2024.04.013_bib2) 2017; 13
Cingolani (10.1016/j.cmet.2024.04.013_bib12) 2016; 197
Hartsock (10.1016/j.cmet.2024.04.013_bib42) 2016; 113
Laaksonen (10.1016/j.cmet.2024.04.013_bib10) 2016; 37
Smith (10.1016/j.cmet.2024.04.013_bib15) 2008; 22
Holland (10.1016/j.cmet.2024.04.013_bib71) 2008; 29
Kropp (10.1016/j.cmet.2024.04.013_bib54) 2023; 14
Busik (10.1016/j.cmet.2024.04.013_bib66) 2008; 57
Silva (10.1016/j.cmet.2024.04.013_bib6) 2009; 24
Mota (10.1016/j.cmet.2024.04.013_bib37) 2020; 8
Hla (10.1016/j.cmet.2024.04.013_bib36) 2014; 20
Gulbins (10.1016/j.cmet.2024.04.013_bib50) 2013; 19
Kady (10.1016/j.cmet.2024.04.013_bib62) 2017; 11
Göggel (10.1016/j.cmet.2024.04.013_bib52) 2004; 10
Raichur (10.1016/j.cmet.2024.04.013_bib70) 2020; 11
Gardner (10.1016/j.cmet.2024.04.013_bib30) 1996; 320
Rotolo (10.1016/j.cmet.2024.04.013_bib32) 2005; 280
Zhang (10.1016/j.cmet.2024.04.013_bib27) 2009; 1788
Meeusen (10.1016/j.cmet.2024.04.013_bib48) 2018; 38
Li (10.1016/j.cmet.2024.04.013_bib68) 2022; 12
Luberto (10.1016/j.cmet.2024.04.013_bib40) 1998; 273
Peterson (10.1016/j.cmet.2024.04.013_bib46) 2018; 7
Lyons (10.1016/j.cmet.2024.04.013_bib3) 2004; 45
Wallsh (10.1016/j.cmet.2024.04.013_bib5) 2021; 10
Moro (10.1016/j.cmet.2024.04.013_bib13) 2019; 26
Stratford (10.1016/j.cmet.2024.04.013_bib69) 2004; 279
Hammer (10.1016/j.cmet.2024.04.013_bib4) 2017; 139
Tomita (10.1016/j.cmet.2024.04.013_bib7) 2021; 10
Chakravarthy (10.1016/j.cmet.2024.04.013_bib64) 2016; 34
Elsner (10.1016/j.cmet.2024.04.013_bib44) 2000; 43
Smith (10.1016/j.cmet.2024.04.013_bib73) 1994; 35
Rotolo (10.1016/j.cmet.2024.04.013_bib23) 2021; 6
Busik (10.1016/j.cmet.2024.04.013_bib31) 2009; 579
Santana (10.1016/j.cmet.2024.04.013_bib21) 1996; 86
Field (10.1016/j.cmet.2024.04.013_bib9) 2020; 11
Ferranti (10.1016/j.cmet.2024.04.013_bib18) 2020; 219
Dumitru (10.1016/j.cmet.2024.04.013_bib58) 2006; 25
Grassme (10.1016/j.cmet.2024.04.013_bib59) 2001; 276
Stancevic (10.1016/j.cmet.2024.04.013_bib17) 2010; 584
Becker (10.1016/j.cmet.2024.04.013_bib49) 2017; 25
Turpin (10.1016/j.cmet.2024.04.013_bib57) 2014; 20
Wilmott (10.1016/j.cmet.2024.04.013_bib53) 2019; 33
Busik (10.1016/j.cmet.2024.04.013_bib24) 2021; 62
Kady (10.1016/j.cmet.2024.04.013_bib25) 2018; 67
Grassmé (10.1016/j.cmet.2024.04.013_bib60) 2003; 9
Lydic (10.1016/j.cmet.2024.04.013_bib33) 2014; 55
Chaurasia (10.1016/j.cmet.2024.04.013_bib67) 2019; 365
Wang (10.1016/j.cmet.2024.04.013_bib35) 2016; 11
Marathe (10.1016/j.cmet.2024.04.013_bib19) 1998; 273
Rotolo (10.1016/j.cmet.2024.04.013_bib22) 2012; 122
Opreanu (10.1016/j.cmet.2024.04.013_bib26) 2011; 60
Sun (10.1016/j.cmet.2024.04.013_bib1) 2022; 183
Kielczewski (10.1016/j.cmet.2024.04.013_bib65) 2011; 52
Hannun (10.1016/j.cmet.2024.04.013_bib55) 2018; 19
Witkin (10.1016/j.cmet.2024.04.013_bib43) 2021; 5
Tippetts (10.1016/j.cmet.2024.04.013_bib47) 2018; 59
Marchesini (10.1016/j.cmet.2024.04.013_bib16) 2004; 82
Grassmé (10.1016/j.cmet.2024.04.013_bib61) 2001; 284
Raichur (10.1016/j.cmet.2024.04.013_bib56) 2014; 20
Pant (10.1016/j.cmet.2024.04.013_bib72) 2020; 143
Opreanu (10.1016/j.cmet.2024.04.013_bib63) 2010; 51
Summers (10.1016/j.cmet.2024.04.013_bib11) 2006; 45
Mathias (10.1016/j.cmet.2024.04.013_bib41) 1993; 259
Zhou (10.1016/j.cmet.2024.04.013_bib39) 2012; 37
Haimovitz-Friedman (10.1016/j.cmet.2024.04.013_bib51) 1997; 186
Tikhonenko (10.1016/j.cmet.2024.04.013_bib14) 2013; 8
Cremesti (10.1016/j.cmet.2024.04.013_bib38) 2001; 276
References_xml – volume: 8
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib37
  article-title: Diabetic vasculopathy: macro and microvascular injury
  publication-title: Curr. Pathobiol. Rep.
– volume: 59
  start-page: 1549
  year: 2018
  end-page: 1550
  ident: bib47
  article-title: The ceramide ratio: a predictor of cardiometabolic risk
  publication-title: J. Lipid Res.
– volume: 5
  start-page: 326
  year: 2021
  end-page: 332
  ident: bib43
  article-title: Brolucizumab-associated intraocular inflammation in eyes without retinal vasculitis
  publication-title: J. Vitreoretin Dis
– volume: 11
  start-page: 694
  year: 2017
  end-page: 703
  ident: bib62
  article-title: Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34
  publication-title: J. Clin. Lipidol.
– volume: 24
  start-page: 93
  year: 2009
  end-page: 99
  ident: bib6
  article-title: Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy
  publication-title: Semin. Ophthalmol.
– volume: 37
  start-page: 1967
  year: 2016
  end-page: 1976
  ident: bib10
  article-title: Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol
  publication-title: Eur. Heart J.
– volume: 33
  start-page: 195
  year: 2019
  end-page: 201
  ident: bib53
  article-title: Analysis of sphingolipid composition in human vitreous from control and diabetic individuals
  publication-title: J. Diabetes Complications
– volume: 67
  start-page: 769
  year: 2018
  end-page: 781
  ident: bib25
  article-title: ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability
  publication-title: Diabetes
– volume: 35
  start-page: 101
  year: 1994
  end-page: 111
  ident: bib73
  article-title: Oxygen-induced retinopathy in the mouse
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 82
  start-page: 27
  year: 2004
  end-page: 44
  ident: bib16
  article-title: Acid and neutral sphingomyelinases: roles and mechanisms of regulation
  publication-title: Biochem. Cell Biol.
– volume: 113
  start-page: 54065
  year: 2016
  ident: bib42
  article-title: A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure
  publication-title: J. Vis. Exp.
– volume: 25
  start-page: 88
  year: 2017
  end-page: 97
  ident: bib49
  article-title: Blockade of Experimental Multiple Sclerosis by Inhibition of the Acid Sphingomyelinase/Ceramide System
  publication-title: Neurosignals.
– volume: 273
  start-page: 14550
  year: 1998
  end-page: 14559
  ident: bib40
  article-title: Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C?
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib34
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
– volume: 45
  start-page: 42
  year: 2006
  end-page: 72
  ident: bib11
  article-title: Ceramides in insulin resistance and lipotoxicity
  publication-title: Prog. Lipid Res.
– volume: 52
  start-page: 8278
  year: 2011
  end-page: 8286
  ident: bib65
  article-title: Free insulin-like growth factor binding protein-3 (IGFBP-3) reduces retinal vascular permeability in association with a reduction of acid sphingomyelinase (ASMase)
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 12
  start-page: 1183
  year: 1972
  end-page: 1198
  ident: bib29
  article-title: The electroretinogram of the isolated rat retina
  publication-title: Vision Res.
– volume: 57
  start-page: 1952
  year: 2008
  end-page: 1965
  ident: bib66
  article-title: Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators
  publication-title: Diabetes
– volume: 37
  start-page: 416
  year: 2012
  end-page: 420
  ident: bib39
  article-title: Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy
  publication-title: Curr. Eye Res.
– year: 2023
  ident: bib45
  article-title: Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 320
  start-page: 717
  year: 1996
  end-page: 721
  ident: bib30
  article-title: Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells
  publication-title: Biochem. J.
– volume: 48
  start-page: 361
  year: 2007
  end-page: 367
  ident: bib28
  article-title: Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 12
  start-page: 7273
  year: 2022
  ident: bib68
  article-title: Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis
  publication-title: Sci. Rep.
– volume: 143
  year: 2020
  ident: bib72
  article-title: Ceramide signalling in inherited and multifactorial brain metabolic diseases
  publication-title: Neurobiol. Dis.
– volume: 86
  start-page: 189
  year: 1996
  end-page: 199
  ident: bib21
  article-title: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis
  publication-title: Cell
– volume: 55
  start-page: 1797
  year: 2014
  end-page: 1809
  ident: bib33
  article-title: A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids
  publication-title: J. Lipid Res.
– volume: 26
  start-page: 407
  year: 2019
  end-page: 415
  ident: bib13
  article-title: Clinical application of ceramide in cancer treatment
  publication-title: Breast Cancer
– volume: 10
  start-page: 155
  year: 2004
  end-page: 160
  ident: bib52
  article-title: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide
  publication-title: Nat. Med.
– volume: 276
  start-page: 23954
  year: 2001
  end-page: 23961
  ident: bib38
  article-title: Ceramide enables fas to cap and kill
  publication-title: J. Biol. Chem.
– volume: 293
  start-page: 293
  year: 2001
  end-page: 297
  ident: bib20
  article-title: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice
  publication-title: Science
– volume: 279
  start-page: 36608
  year: 2004
  end-page: 36615
  ident: bib69
  article-title: Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 1528
  year: 2000
  end-page: 1533
  ident: bib44
  article-title: Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin
  publication-title: Diabetologia
– volume: 11
  start-page: 138
  year: 2016
  end-page: 150
  ident: bib35
  article-title: Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy
  publication-title: EBioMedicine
– volume: 10
  start-page: 1049
  year: 2021
  ident: bib5
  article-title: Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options
  publication-title: Cells
– volume: 11
  start-page: 483
  year: 2020
  ident: bib70
  article-title: Ceramide Synthases Are Attractive Drug Targets for Treating Metabolic Diseases
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 280
  start-page: 26425
  year: 2005
  end-page: 26434
  ident: bib32
  article-title: Caspase-dependent and -independent activation of acid sphingomyelinase signaling
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 322
  year: 2003
  end-page: 330
  ident: bib60
  article-title: Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts
  publication-title: Nat. Med.
– volume: 20
  start-page: 703
  year: 2014
  end-page: 705
  ident: bib36
  article-title: C16:0-ceramide signals insulin resistance
  publication-title: Cell Metab.
– volume: 197
  start-page: 25
  year: 2016
  end-page: 32
  ident: bib12
  article-title: Ceramide synthases in biomedical research
  publication-title: Chem. Phys. Lipids
– volume: 584
  start-page: 1728
  year: 2010
  end-page: 1740
  ident: bib17
  article-title: Ceramide-rich platforms in transmembrane signaling
  publication-title: FEBS Lett.
– volume: 62
  start-page: 100017
  year: 2021
  ident: bib24
  article-title: Lipid metabolism dysregulation in diabetic retinopathy
  publication-title: J. Lipid Res.
– volume: 1788
  start-page: 178
  year: 2009
  end-page: 183
  ident: bib27
  article-title: Ceramide-enriched membrane domains--structure and function
  publication-title: Biochim. Biophys. Acta
– volume: 139
  start-page: 228
  year: 2017
  end-page: 236
  ident: bib4
  article-title: The role of dyslipidemia in diabetic retinopathy
  publication-title: Vision Res.
– volume: 19
  start-page: 934
  year: 2013
  end-page: 938
  ident: bib50
  article-title: Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs
  publication-title: Nat. Med.
– volume: 14
  start-page: 43
  year: 2023
  end-page: 51
  ident: bib54
  article-title: Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation
  publication-title: EPMA J.
– volume: 22
  start-page: 3419
  year: 2008
  end-page: 3431
  ident: bib15
  article-title: The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases
  publication-title: FASEB J.
– volume: 60
  start-page: 2370
  year: 2011
  end-page: 2378
  ident: bib26
  article-title: The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models
  publication-title: Diabetes
– volume: 276
  start-page: 20589
  year: 2001
  end-page: 20596
  ident: bib59
  article-title: CD95 signaling via ceramide-rich membrane rafts
  publication-title: J. Biol. Chem.
– volume: 8
  year: 2013
  ident: bib14
  article-title: N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function
  publication-title: PLoS One
– volume: 122
  start-page: 1786
  year: 2012
  end-page: 1790
  ident: bib22
  article-title: Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice
  publication-title: J. Clin. Invest.
– volume: 19
  start-page: 175
  year: 2018
  end-page: 191
  ident: bib55
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 219
  year: 2020
  ident: bib18
  article-title: Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis
  publication-title: J. Cell Biol.
– volume: 273
  start-page: 4081
  year: 1998
  end-page: 4088
  ident: bib19
  article-title: Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling
  publication-title: J. Biol. Chem.
– volume: 11
  year: 2020
  ident: bib9
  article-title: The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 42
  start-page: 1082
  year: 2021
  end-page: 1095
  ident: bib8
  article-title: Cholesterol - the devil you know; ceramide - the devil you don't
  publication-title: Trends Pharmacol. Sci.
– volume: 7
  year: 2018
  ident: bib46
  article-title: Ceramide Remodeling and Risk of Cardiovascular Events and Mortality
  publication-title: J. Am. Heart Assoc.
– volume: 51
  start-page: 3253
  year: 2010
  end-page: 3263
  ident: bib63
  article-title: Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 284
  start-page: 1016
  year: 2001
  end-page: 1030
  ident: bib61
  article-title: Molecular mechanisms of ceramide-mediated CD95 clustering
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 45
  start-page: 910
  year: 2004
  end-page: 918
  ident: bib3
  article-title: Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 259
  start-page: 519
  year: 1993
  end-page: 522
  ident: bib41
  article-title: Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta
  publication-title: Science
– volume: 20
  start-page: 678
  year: 2014
  end-page: 686
  ident: bib57
  article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance
  publication-title: Cell Metab.
– volume: 13
  start-page: 3
  year: 2017
  end-page: 10
  ident: bib2
  article-title: Chronic Complications of Diabetes Mellitus: A Mini Review
  publication-title: Curr. Diabetes Rev.
– volume: 6
  year: 2021
  ident: bib23
  article-title: Anti-ceramide single-chain variable fragment mitigates radiation GI syndrome mortality independent of DNA repair
  publication-title: JCI Insight
– volume: 34
  start-page: 972
  year: 2016
  end-page: 983
  ident: bib64
  article-title: Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy
  publication-title: Stem Cells
– volume: 365
  start-page: 386
  year: 2019
  end-page: 392
  ident: bib67
  article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis
  publication-title: Science
– volume: 579
  start-page: 33
  year: 2009
  end-page: 70
  ident: bib31
  article-title: Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry
  publication-title: Methods Mol. Biol.
– volume: 29
  start-page: 381
  year: 2008
  end-page: 402
  ident: bib71
  article-title: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism
  publication-title: Endocr. Rev.
– volume: 10
  start-page: 4666
  year: 2021
  ident: bib7
  article-title: Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy
  publication-title: J. Clin. Med.
– volume: 25
  start-page: 5612
  year: 2006
  end-page: 5625
  ident: bib58
  article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis
  publication-title: Oncogene
– volume: 183
  year: 2022
  ident: bib1
  article-title: IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045
  publication-title: Diabetes Res. Clin. Pract.
– volume: 20
  start-page: 687
  year: 2014
  end-page: 695
  ident: bib56
  article-title: CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance
  publication-title: Cell Metab.
– volume: 38
  start-page: 1933
  year: 2018
  end-page: 1939
  ident: bib48
  article-title: Plasma Ceramides
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 186
  start-page: 1831
  year: 1997
  end-page: 1841
  ident: bib51
  article-title: Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation
  publication-title: J. Exp. Med.
– volume: 60
  start-page: 2370
  year: 2011
  ident: 10.1016/j.cmet.2024.04.013_bib26
  article-title: The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models
  publication-title: Diabetes
  doi: 10.2337/db10-0550
– volume: 279
  start-page: 36608
  year: 2004
  ident: 10.1016/j.cmet.2024.04.013_bib69
  article-title: Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M406499200
– volume: 276
  start-page: 23954
  year: 2001
  ident: 10.1016/j.cmet.2024.04.013_bib38
  article-title: Ceramide enables fas to cap and kill
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101866200
– volume: 365
  start-page: 386
  year: 2019
  ident: 10.1016/j.cmet.2024.04.013_bib67
  article-title: Targeting a ceramide double bond improves insulin resistance and hepatic steatosis
  publication-title: Science
  doi: 10.1126/science.aav3722
– volume: 62
  start-page: 100017
  year: 2021
  ident: 10.1016/j.cmet.2024.04.013_bib24
  article-title: Lipid metabolism dysregulation in diabetic retinopathy
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.TR120000981
– volume: 5
  start-page: 326
  year: 2021
  ident: 10.1016/j.cmet.2024.04.013_bib43
  article-title: Brolucizumab-associated intraocular inflammation in eyes without retinal vasculitis
  publication-title: J. Vitreoretin Dis
  doi: 10.1177/2474126420975303
– volume: 51
  start-page: 3253
  year: 2010
  ident: 10.1016/j.cmet.2024.04.013_bib63
  article-title: Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-4731
– volume: 579
  start-page: 33
  year: 2009
  ident: 10.1016/j.cmet.2024.04.013_bib31
  article-title: Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-322-0_3
– volume: 19
  start-page: 175
  year: 2018
  ident: 10.1016/j.cmet.2024.04.013_bib55
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.107
– volume: 10
  start-page: 4666
  year: 2021
  ident: 10.1016/j.cmet.2024.04.013_bib7
  article-title: Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm10204666
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.cmet.2024.04.013_bib34
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 284
  start-page: 1016
  year: 2001
  ident: 10.1016/j.cmet.2024.04.013_bib61
  article-title: Molecular mechanisms of ceramide-mediated CD95 clustering
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5045
– volume: 19
  start-page: 934
  year: 2013
  ident: 10.1016/j.cmet.2024.04.013_bib50
  article-title: Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs
  publication-title: Nat. Med.
  doi: 10.1038/nm.3214
– volume: 26
  start-page: 407
  year: 2019
  ident: 10.1016/j.cmet.2024.04.013_bib13
  article-title: Clinical application of ceramide in cancer treatment
  publication-title: Breast Cancer
  doi: 10.1007/s12282-019-00953-8
– volume: 122
  start-page: 1786
  year: 2012
  ident: 10.1016/j.cmet.2024.04.013_bib22
  article-title: Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI59920
– volume: 12
  start-page: 1183
  year: 1972
  ident: 10.1016/j.cmet.2024.04.013_bib29
  article-title: The electroretinogram of the isolated rat retina
  publication-title: Vision Res.
  doi: 10.1016/0042-6989(72)90106-X
– volume: 280
  start-page: 26425
  year: 2005
  ident: 10.1016/j.cmet.2024.04.013_bib32
  article-title: Caspase-dependent and -independent activation of acid sphingomyelinase signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414569200
– volume: 59
  start-page: 1549
  year: 2018
  ident: 10.1016/j.cmet.2024.04.013_bib47
  article-title: The ceramide ratio: a predictor of cardiometabolic risk
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.C088377
– volume: 8
  year: 2013
  ident: 10.1016/j.cmet.2024.04.013_bib14
  article-title: N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055177
– volume: 7
  year: 2018
  ident: 10.1016/j.cmet.2024.04.013_bib46
  article-title: Ceramide Remodeling and Risk of Cardiovascular Events and Mortality
  publication-title: J. Am. Heart Assoc.
– volume: 20
  start-page: 678
  year: 2014
  ident: 10.1016/j.cmet.2024.04.013_bib57
  article-title: Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.08.002
– volume: 11
  year: 2020
  ident: 10.1016/j.cmet.2024.04.013_bib9
  article-title: The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2020.569250
– volume: 10
  start-page: 155
  year: 2004
  ident: 10.1016/j.cmet.2024.04.013_bib52
  article-title: PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide
  publication-title: Nat. Med.
  doi: 10.1038/nm977
– volume: 25
  start-page: 5612
  year: 2006
  ident: 10.1016/j.cmet.2024.04.013_bib58
  article-title: TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209568
– volume: 10
  start-page: 1049
  year: 2021
  ident: 10.1016/j.cmet.2024.04.013_bib5
  article-title: Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options
  publication-title: Cells
  doi: 10.3390/cells10051049
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.cmet.2024.04.013_bib37
  article-title: Diabetic vasculopathy: macro and microvascular injury
  publication-title: Curr. Pathobiol. Rep.
  doi: 10.1007/s40139-020-00205-x
– volume: 11
  start-page: 483
  year: 2020
  ident: 10.1016/j.cmet.2024.04.013_bib70
  article-title: Ceramide Synthases Are Attractive Drug Targets for Treating Metabolic Diseases
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2020.00483
– volume: 197
  start-page: 25
  year: 2016
  ident: 10.1016/j.cmet.2024.04.013_bib12
  article-title: Ceramide synthases in biomedical research
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2015.07.026
– volume: 45
  start-page: 910
  year: 2004
  ident: 10.1016/j.cmet.2024.04.013_bib3
  article-title: Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0648
– volume: 11
  start-page: 138
  year: 2016
  ident: 10.1016/j.cmet.2024.04.013_bib35
  article-title: Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.08.013
– volume: 139
  start-page: 228
  year: 2017
  ident: 10.1016/j.cmet.2024.04.013_bib4
  article-title: The role of dyslipidemia in diabetic retinopathy
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2017.04.010
– volume: 35
  start-page: 101
  year: 1994
  ident: 10.1016/j.cmet.2024.04.013_bib73
  article-title: Oxygen-induced retinopathy in the mouse
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 24
  start-page: 93
  year: 2009
  ident: 10.1016/j.cmet.2024.04.013_bib6
  article-title: Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy
  publication-title: Semin. Ophthalmol.
  doi: 10.1080/08820530902800355
– volume: 6
  year: 2021
  ident: 10.1016/j.cmet.2024.04.013_bib23
  article-title: Anti-ceramide single-chain variable fragment mitigates radiation GI syndrome mortality independent of DNA repair
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.145380
– volume: 43
  start-page: 1528
  year: 2000
  ident: 10.1016/j.cmet.2024.04.013_bib44
  article-title: Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin
  publication-title: Diabetologia
  doi: 10.1007/s001250051564
– volume: 183
  year: 2022
  ident: 10.1016/j.cmet.2024.04.013_bib1
  article-title: IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2021.109119
– year: 2023
  ident: 10.1016/j.cmet.2024.04.013_bib45
  article-title: Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 273
  start-page: 4081
  year: 1998
  ident: 10.1016/j.cmet.2024.04.013_bib19
  article-title: Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.7.4081
– volume: 143
  year: 2020
  ident: 10.1016/j.cmet.2024.04.013_bib72
  article-title: Ceramide signalling in inherited and multifactorial brain metabolic diseases
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.105014
– volume: 86
  start-page: 189
  year: 1996
  ident: 10.1016/j.cmet.2024.04.013_bib21
  article-title: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80091-4
– volume: 320
  start-page: 717
  year: 1996
  ident: 10.1016/j.cmet.2024.04.013_bib30
  article-title: Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells
  publication-title: Biochem. J.
  doi: 10.1042/bj3200717
– volume: 273
  start-page: 14550
  year: 1998
  ident: 10.1016/j.cmet.2024.04.013_bib40
  article-title: Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C?
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.23.14550
– volume: 1788
  start-page: 178
  year: 2009
  ident: 10.1016/j.cmet.2024.04.013_bib27
  article-title: Ceramide-enriched membrane domains--structure and function
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2008.07.030
– volume: 48
  start-page: 361
  year: 2007
  ident: 10.1016/j.cmet.2024.04.013_bib28
  article-title: Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.06-0510
– volume: 37
  start-page: 416
  year: 2012
  ident: 10.1016/j.cmet.2024.04.013_bib39
  article-title: Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy
  publication-title: Curr. Eye Res.
  doi: 10.3109/02713683.2012.661114
– volume: 37
  start-page: 1967
  year: 2016
  ident: 10.1016/j.cmet.2024.04.013_bib10
  article-title: Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehw148
– volume: 276
  start-page: 20589
  year: 2001
  ident: 10.1016/j.cmet.2024.04.013_bib59
  article-title: CD95 signaling via ceramide-rich membrane rafts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101207200
– volume: 33
  start-page: 195
  year: 2019
  ident: 10.1016/j.cmet.2024.04.013_bib53
  article-title: Analysis of sphingolipid composition in human vitreous from control and diabetic individuals
  publication-title: J. Diabetes Complications
  doi: 10.1016/j.jdiacomp.2018.12.005
– volume: 45
  start-page: 42
  year: 2006
  ident: 10.1016/j.cmet.2024.04.013_bib11
  article-title: Ceramides in insulin resistance and lipotoxicity
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2005.11.002
– volume: 34
  start-page: 972
  year: 2016
  ident: 10.1016/j.cmet.2024.04.013_bib64
  article-title: Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy
  publication-title: Stem Cells
  doi: 10.1002/stem.2259
– volume: 20
  start-page: 703
  year: 2014
  ident: 10.1016/j.cmet.2024.04.013_bib36
  article-title: C16:0-ceramide signals insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.10.017
– volume: 55
  start-page: 1797
  year: 2014
  ident: 10.1016/j.cmet.2024.04.013_bib33
  article-title: A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.D050302
– volume: 20
  start-page: 687
  year: 2014
  ident: 10.1016/j.cmet.2024.04.013_bib56
  article-title: CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.09.015
– volume: 29
  start-page: 381
  year: 2008
  ident: 10.1016/j.cmet.2024.04.013_bib71
  article-title: Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2007-0025
– volume: 42
  start-page: 1082
  year: 2021
  ident: 10.1016/j.cmet.2024.04.013_bib8
  article-title: Cholesterol - the devil you know; ceramide - the devil you don't
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2021.10.001
– volume: 25
  start-page: 88
  year: 2017
  ident: 10.1016/j.cmet.2024.04.013_bib49
  article-title: Blockade of Experimental Multiple Sclerosis by Inhibition of the Acid Sphingomyelinase/Ceramide System
  publication-title: Neurosignals.
  doi: 10.1159/000484621
– volume: 13
  start-page: 3
  year: 2017
  ident: 10.1016/j.cmet.2024.04.013_bib2
  article-title: Chronic Complications of Diabetes Mellitus: A Mini Review
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/1573399812666151016101622
– volume: 67
  start-page: 769
  year: 2018
  ident: 10.1016/j.cmet.2024.04.013_bib25
  article-title: ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability
  publication-title: Diabetes
  doi: 10.2337/db17-1034
– volume: 38
  start-page: 1933
  year: 2018
  ident: 10.1016/j.cmet.2024.04.013_bib48
  article-title: Plasma Ceramides
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311199
– volume: 22
  start-page: 3419
  year: 2008
  ident: 10.1016/j.cmet.2024.04.013_bib15
  article-title: The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases
  publication-title: FASEB J.
  doi: 10.1096/fj.08-108043
– volume: 259
  start-page: 519
  year: 1993
  ident: 10.1016/j.cmet.2024.04.013_bib41
  article-title: Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta
  publication-title: Science
  doi: 10.1126/science.8424175
– volume: 584
  start-page: 1728
  year: 2010
  ident: 10.1016/j.cmet.2024.04.013_bib17
  article-title: Ceramide-rich platforms in transmembrane signaling
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.02.026
– volume: 186
  start-page: 1831
  year: 1997
  ident: 10.1016/j.cmet.2024.04.013_bib51
  article-title: Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.186.11.1831
– volume: 9
  start-page: 322
  year: 2003
  ident: 10.1016/j.cmet.2024.04.013_bib60
  article-title: Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts
  publication-title: Nat. Med.
  doi: 10.1038/nm823
– volume: 293
  start-page: 293
  year: 2001
  ident: 10.1016/j.cmet.2024.04.013_bib20
  article-title: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice
  publication-title: Science
  doi: 10.1126/science.1060191
– volume: 82
  start-page: 27
  year: 2004
  ident: 10.1016/j.cmet.2024.04.013_bib16
  article-title: Acid and neutral sphingomyelinases: roles and mechanisms of regulation
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/o03-091
– volume: 11
  start-page: 694
  year: 2017
  ident: 10.1016/j.cmet.2024.04.013_bib62
  article-title: Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes
  publication-title: J. Clin. Lipidol.
  doi: 10.1016/j.jacl.2017.03.007
– volume: 219
  year: 2020
  ident: 10.1016/j.cmet.2024.04.013_bib18
  article-title: Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201903176
– volume: 57
  start-page: 1952
  year: 2008
  ident: 10.1016/j.cmet.2024.04.013_bib66
  article-title: Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators
  publication-title: Diabetes
  doi: 10.2337/db07-1520
– volume: 52
  start-page: 8278
  year: 2011
  ident: 10.1016/j.cmet.2024.04.013_bib65
  article-title: Free insulin-like growth factor binding protein-3 (IGFBP-3) reduces retinal vascular permeability in association with a reduction of acid sphingomyelinase (ASMase)
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-8167
– volume: 113
  start-page: 54065
  year: 2016
  ident: 10.1016/j.cmet.2024.04.013_bib42
  article-title: A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure
  publication-title: J. Vis. Exp.
– volume: 14
  start-page: 43
  year: 2023
  ident: 10.1016/j.cmet.2024.04.013_bib54
  article-title: Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation
  publication-title: EPMA J.
  doi: 10.1007/s13167-023-00318-4
– volume: 12
  start-page: 7273
  year: 2022
  ident: 10.1016/j.cmet.2024.04.013_bib68
  article-title: Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11219-3
SSID ssj0036393
Score 2.5223525
Snippet Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is...
Diabetic retinopathy is a microvascular disease-causing blindness. Using acid sphingomyelinase knockout mice, we reported ceramide generation is critical for...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1521
SubjectTerms Animals
apoptosis
Apoptosis - drug effects
ceramide
Ceramides - metabolism
diabetes
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
diabetic retinopathy
Diabetic Retinopathy - drug therapy
Diabetic Retinopathy - immunology
Diabetic Retinopathy - metabolism
Diabetic Retinopathy - pathology
endothelial cell
Endothelial Cells - metabolism
Female
Humans
IL-1β
Immunotherapy
inflammation
Interleukin-1beta - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Rats
retina
Retina - metabolism
Retina - pathology
sphingomyelinase
TNFα
Tumor Necrosis Factor-alpha - metabolism
Vitreous Body - metabolism
Title Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy
URI https://dx.doi.org/10.1016/j.cmet.2024.04.013
https://www.ncbi.nlm.nih.gov/pubmed/38718792
https://www.proquest.com/docview/3053138071
https://pubmed.ncbi.nlm.nih.gov/PMC11222062
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN6kbJuktT2qKCIoiAp7C3lMsaLdZV0P---dadPFVfQg9JJ0UsJMMvlCv5lh7BhSyJRXJRU0gUilLsY9Z5LIFC5LhSvwykIBzrd32fWTuhmkgwV20cXCEK0y-P7WpzfeOvT0gzb7o6rqPxC4RhecEAsSb1oUaC5V3gTxDc47byzxBG5I9igckXQInGk5Xu4NiE8pVJPuNJG_HU4_wed3DuWXQ-lqla0ENMnP2gmvsQWo19lSW19yusHuW75L5TjFKtZDKj885dU7N9zB2LxVPnRRHqcxbo5X4HbKUdlVFASAVxRBEuK0ppvs6ery8eI6CjUUIofQaBIZPPKlNb6A2FvrDdpAgrU52shIn0kEfKURqfAZXbWysrRJiVoCF4Ozygu5xRbrYQ07jIN1CF68U7kRyuaZBWyUhUEEl-OXoceSTnnahQTjVOfiVXdMshdNCtekcB3jk8geO5mNGbXpNf6UTjub6LlFotH__znuqDOgxt1Dv0RMDcOPdy3JB1HO_aTHtluDzuYh8S6Znxaix_I5U88EKDP3_Ju6em4ydCOIFSLOxO4_J7zHlqnV0ILFPlucjD_gAMHPxB42q_sTwYgFrA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-spdQXsV96frRb6FsJl-wmMXm0UjlbFUoV7m3ZjwlGzpyc58P9984km6PXUh-EvGQzG5aZ7MxvyW9mAL5ghnnq04obmmCUZi6mPWeSyJQuz6Qr6cjCCc7nF_noKv0xzsZrcNznwjCtMvj-zqe33jqMDIM2h3d1PfzN4JpccMIsSDppZS_gJaGBQ96dp-NvvTtWFIJblj1JRyweMmc6kpe7RSZUyrStd5qo_0Wnf9Hn3yTKP6LSyRZsBjgpjroVv4E1bN7Cq67B5OId_OoIL7UTnKzYTLn_8ELU98IIhzNzW_swxIWcZrQ7JijsQpC26ygIoKg5hSQkai3ew9XJ98vjURSaKESOtDGPDMV8ZY0vMfbWekNGUGhtQUYyyueKEF9lZCZ9zmetvKpsUpGW0MXobOql-gDrzbTBHRBoHaEX79LCyNQWuUW6qUpDEK6gN-MAkl552oUK49zoYqJ7KtmNZoVrVriO6UrUAL4u59x19TWelM56m-iVr0RTAHhy3ufegJq2D_8TMQ1OH-61YifERfeTAWx3Bl2uQ9Fhsjgs5QCKFVMvBbg09-qTpr5uS3QTipUyzuXuMxf8CV6PLs_P9Nnpxc892OAnLUdY7sP6fPaAB4SE5vZj-6U_Aui8CMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diabetic+retinopathy+is+a+ceramidopathy+reversible+by+anti-ceramide+immunotherapy&rft.jtitle=Cell+metabolism&rft.au=Dorweiler%2C+Tim+F.&rft.au=Singh%2C+Arjun&rft.au=Ganju%2C+Aditya&rft.au=Lydic%2C+Todd+A.&rft.date=2024-07-02&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.volume=36&rft.issue=7&rft.spage=1521&rft.epage=1533.e5&rft_id=info:doi/10.1016%2Fj.cmet.2024.04.013&rft.externalDocID=S1550413124001335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon