Human brain effects of DMT assessed via EEG-fMRI
Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 13; p. e2218949120 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
28.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2218949120 |
Cover
Loading…
Abstract | Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT’s effects. The present findings advance on previous work by confirming a predominant action of DMT—and likely other 5-HT2AR agonist psychedelics—on the brain’s transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors. |
---|---|
AbstractList | Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors. Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors. Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT’s effects. The present findings advance on previous work by confirming a predominant action of DMT—and likely other 5-HT2AR agonist psychedelics—on the brain’s transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors. This placebo-controlled multimodal [functional MRI-electroencephalography (fMRI-EEG)] human neuroimaging study offers the most comprehensive view of the acute brain action of psychedelics to date. It assessed N,N-Dimethyltryptamine (DMT), a psychedelic that generates immersive altered conscious experience with no diminishment of wakefulness. Global hyperconnectivity, collapsed hierarchical organization and reduced intranetwork integrity, was observed (fMRI) that correlated with decreased alpha power and increased entropy (EEG). Regions with the densest expression of serotonin 2A receptors as determined via independent positron emission tomography (PET) data, were most affected by DMT, and overlapped with regions related to evolved cognitive functions such as language and semantic processing. These results support the notion that psychedelics impact a principal axis of brain organization, and relatedly, the quality of human conscious experience. Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT’s effects. The present findings advance on previous work by confirming a predominant action of DMT—and likely other 5-HT2AR agonist psychedelics—on the brain’s transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors. |
Author | Haridas, Sharad Luan, Lisa Roseman, Leor Pallavicini, Carla Girn, Manesh Nutt, David J. Alamia, Andrea Carhart-Harris, Robin L. Martell, Jonny Rosas, Fernando E. Erritzoe, David Leech, Robert Kettner, Hannes Timmermann, Christopher Tagliazucchi, Enzo |
Author_xml | – sequence: 1 givenname: Christopher orcidid: 0000-0002-2281-377X surname: Timmermann fullname: Timmermann, Christopher organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 2 givenname: Leor surname: Roseman fullname: Roseman, Leor organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 3 givenname: Sharad surname: Haridas fullname: Haridas, Sharad organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 4 givenname: Fernando E. orcidid: 0000-0001-7790-6183 surname: Rosas fullname: Rosas, Fernando E. organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK, Department of Informatics, University of Sussex, Brighton BN1 9RH, United Kingdom, Centre for Complexity Science, Imperial College London, London SW7 2AZ, United Kingdom, Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom – sequence: 5 givenname: Lisa surname: Luan fullname: Luan, Lisa organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 6 givenname: Hannes surname: Kettner fullname: Kettner, Hannes organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 7 givenname: Jonny orcidid: 0000-0002-4194-7669 surname: Martell fullname: Martell, Jonny organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 8 givenname: David orcidid: 0000-0002-7022-6211 surname: Erritzoe fullname: Erritzoe, David organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 9 givenname: Enzo surname: Tagliazucchi fullname: Tagliazucchi, Enzo organization: Departamento de Física, Latin American Brain Health Institute, Universidad Adolfo Ibanez, 3485 Santiago, Chile, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, 1428 Buenos Aires, Argentina – sequence: 10 givenname: Carla surname: Pallavicini fullname: Pallavicini, Carla organization: Universidad de Buenos Aires and Instituto de Física de Buenos Aires, 1428 Buenos Aires, Argentina – sequence: 11 givenname: Manesh surname: Girn fullname: Girn, Manesh organization: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada – sequence: 12 givenname: Andrea orcidid: 0000-0001-9826-2161 surname: Alamia fullname: Alamia, Andrea organization: CNRS Université de Toulouse, 31300 Toulouse, France – sequence: 13 givenname: Robert orcidid: 0000-0002-5801-6318 surname: Leech fullname: Leech, Robert organization: Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London WC2R 2LS, UK – sequence: 14 givenname: David J. orcidid: 0000-0002-1286-1401 surname: Nutt fullname: Nutt, David J. organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK – sequence: 15 givenname: Robin L. surname: Carhart-Harris fullname: Carhart-Harris, Robin L. organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK, Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, CA 94143 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36940333$$D View this record in MEDLINE/PubMed https://hal.science/hal-04756233$$DView record in HAL |
BookMark | eNp1kd1rFDEUxYNU7Lb67JsM-FIfpr35njxJqdtuYYsg9TlkMolNmU3WycyC_70Ztq26IIQEkt85N_eeE3QUU3QIvcdwjkHSi200-ZwQ3CimMIFXaIFB4VowBUdoAUBk3TDCjtFJzo8AoHgDb9AxFYoBpXSBYDVtTKzawYRYOe-dHXOVfPXl7r4yObuyumoXTLVc3tT-7tvtW_Tamz67d0_nKfp-vby_WtXrrze3V5fr2jIuxlpJsI47ScHhtvXQcOg4MEE5bb3DZVMNEb7lXWeZld61QrSyM85x2eHO0lP0ee-7ndqN66yL42B6vR3Cxgy_dDJB__sSw4P-kXYaA4hGclEcPu0dHg50q8u1nu-AFYxQusOFPXuqNqSfk8uj3oRsXd-b6NKUNZGNIpQ3ZEY_HqCPaRpimUWhFMOUcQ6F-vD391_qP0--AHwP2CHlPDivbRjNGNLcTehLG3pOWM8J6z8JF93Fge7Z-n-K31O3pg4 |
CitedBy_id | crossref_primary_10_1001_jamanetworkopen_2024_22181 crossref_primary_10_1007_s11071_024_10729_1 crossref_primary_10_1038_s41598_023_47600_z crossref_primary_10_1007_s11920_024_01567_4 crossref_primary_10_1089_psymed_2024_0002 crossref_primary_10_3389_fphar_2024_1454628 crossref_primary_10_1038_s44220_024_00298_y crossref_primary_10_1093_nsr_nwae124 crossref_primary_10_1038_s42003_023_04988_8 crossref_primary_10_3389_fnhum_2024_1402549 crossref_primary_10_3390_ijms24119463 crossref_primary_10_1038_s41398_024_03187_1 crossref_primary_10_1177_02698811231196877 crossref_primary_10_1177_26331055241286518 crossref_primary_10_1016_j_neuroimage_2024_120629 crossref_primary_10_1016_j_bpsc_2024_04_001 crossref_primary_10_1038_s42003_023_05678_1 crossref_primary_10_1111_anoc_12233 crossref_primary_10_1162_jocn_e_02027 crossref_primary_10_1038_s44220_024_00206_4 crossref_primary_10_1016_j_biopsych_2024_08_026 crossref_primary_10_1016_j_neuroimage_2023_120480 crossref_primary_10_3389_fpsyg_2025_1532937 crossref_primary_10_1176_appi_ajp_20230890 crossref_primary_10_1038_s41380_024_02734_y crossref_primary_10_7554_eLife_88173_4 crossref_primary_10_1007_s40265_024_02106_4 crossref_primary_10_1038_s41386_024_01891_6 crossref_primary_10_1093_brain_awad311 crossref_primary_10_1126_sciadv_adf8332 crossref_primary_10_1038_s41467_024_46382_w crossref_primary_10_3390_brainsci14090880 crossref_primary_10_1080_02791072_2023_2230568 crossref_primary_10_1038_s44220_023_00172_3 crossref_primary_10_1038_s41467_024_52429_9 crossref_primary_10_1016_j_tins_2024_05_007 crossref_primary_10_1007_s11469_024_01253_9 crossref_primary_10_1007_s00018_024_05353_6 crossref_primary_10_1016_j_bbr_2023_114445 crossref_primary_10_12688_f1000research_151422_2 crossref_primary_10_12688_f1000research_151422_1 crossref_primary_10_1038_s41386_024_01809_2 crossref_primary_10_1073_pnas_2321906121 crossref_primary_10_1093_cercor_bhad249 crossref_primary_10_4103_aip_aip_195_23 crossref_primary_10_1016_j_neuropharm_2025_110314 crossref_primary_10_1016_j_nsa_2023_103929 crossref_primary_10_1162_imag_a_00420 crossref_primary_10_7554_eLife_88173 crossref_primary_10_1177_02698811241248395 crossref_primary_10_1016_j_clinph_2025_02_264 crossref_primary_10_1177_02698811241303599 crossref_primary_10_3389_fpsyt_2023_1305796 crossref_primary_10_1016_j_bpsgos_2024_100372 crossref_primary_10_1016_j_neubiorev_2024_105538 crossref_primary_10_1021_acs_chemrev_3c00375 crossref_primary_10_1177_02698811241276788 crossref_primary_10_3389_fnagi_2023_1270226 crossref_primary_10_1016_j_tics_2023_01_003 crossref_primary_10_3390_ph18010130 crossref_primary_10_1016_j_bpsc_2024_05_003 crossref_primary_10_1002_pcn5_146 crossref_primary_10_1007_s12021_024_09660_y crossref_primary_10_1016_j_bpsc_2024_05_006 crossref_primary_10_1038_s41380_023_02360_0 crossref_primary_10_3390_psychoactives3010007 crossref_primary_10_3174_ajnr_A8118 crossref_primary_10_1002_jocb_1525 crossref_primary_10_1016_j_isci_2024_111639 crossref_primary_10_1016_j_neuroimage_2024_120759 crossref_primary_10_1038_s42003_025_07576_0 crossref_primary_10_1093_cercor_bhae347 crossref_primary_10_3389_fnins_2023_1217079 crossref_primary_10_1038_s41398_024_03013_8 |
Cites_doi | 10.1038/s41598-021-01209-2 10.1177/0269881117725915 10.1016/j.tics.2017.11.002 10.3389/fnins.2017.00115 10.1038/s41598-017-17546-0 10.1038/nature17637 10.1016/0166-4328(96)00081-2 10.1371/journal.pone.0118143 10.1016/j.neuron.2020.09.034 10.1073/pnas.1518377113 10.1007/s10548-015-0448-0 10.1016/S1053-8119(09)70882-1 10.1056/NEJMoa2032994 10.1016/j.euroneuro.2021.06.001 10.1152/jn.00338.2011 10.1155/2011/156869 10.1016/j.cub.2016.02.010 10.1016/j.jneumeth.2007.03.024 10.1016/j.neuroimage.2022.119220 10.1016/j.tics.2013.09.017 10.1006/nimg.2001.0978 10.1073/pnas.0500334102 10.1006/cbmr.1996.0014 10.1016/j.neuron.2017.06.041 10.1523/JNEUROSCI.2830-16.2016 10.1006/nimg.1998.0395 10.1007/s00018-020-03628-2 10.1038/s41467-019-08944-1 10.1002/hbm.22562 10.1038/s41598-022-11999-8 10.1016/j.neuroimage.2004.07.051 10.1016/j.brainres.2015.02.002 10.1016/j.neuron.2021.06.016 10.3389/fpsyg.2018.01475 10.1177/0269881120981384 10.3389/fnhum.2014.00020 10.1038/s41467-022-33578-1 10.3389/fnins.2015.00167 10.3389/fpsyg.2018.01424 10.3389/fpsyg.2021.720717 10.1017/S0033291718001356 10.1016/j.neuroimage.2019.05.060 10.1177/0269881116677852 10.1016/j.neuroimage.2013.08.048 10.1002/hbm.24889 10.1124/pr.115.011478 10.1016/j.biopsych.2019.12.027 10.1371/journal.pone.0014224 10.1093/cercor/bhx179 10.1016/j.neuron.2021.06.008 10.1101/lm.60803 10.1371/journal.pone.0012412 10.1093/brain/awab095 10.7554/eLife.35082 10.1080/15294145.2007.10773557 10.1016/j.cell.2020.03.020 10.1073/pnas.1902174116 10.1016/j.neuroimage.2016.11.052 10.1038/s41598-019-51974-4 10.1124/pr.118.017160 10.1006/nimg.1998.0361 10.1177/0269881118754710 10.1038/s42003-020-0794-7 10.1016/j.neuroimage.2018.06.068 10.1038/s41386-022-01344-y 10.1126/sciadv.abf2709 10.1038/s41598-020-73216-8 10.1177/0269881115609019 10.1073/pnas.1921475117 10.1093/cercor/bhs352 10.1371/journal.pbio.3000487 10.1038/srep46421 10.1073/pnas.1608282113 10.1177/13634615221082796 10.1016/j.scib.2022.01.002 10.1016/j.tics.2022.11.006 10.1016/j.celrep.2018.05.022 10.1073/pnas.1119598109 10.1016/j.neuropharm.2018.03.010 10.3389/fnhum.2014.00204 10.1038/s41591-022-01744-z 10.1006/nimg.2000.0599 10.1523/JNEUROSCI.2063-13.2013 10.1016/j.neuroimage.2015.08.012 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 28, 2023 Attribution Copyright © 2023 the Author(s). Published by PNAS. 2023 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 28, 2023 – notice: Attribution – notice: Copyright © 2023 the Author(s). Published by PNAS. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.1073/pnas.2218949120 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC10068756 oai_HAL_hal_04756233v1 36940333 10_1073_pnas_2218949120 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: NA |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c456t-970ce5e730e1bbf0850d5046353bfe13bf9826fb5ddc4c7feb66b7daee57d1dc3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:38:38 EDT 2025 Fri May 09 12:19:47 EDT 2025 Thu Jul 10 23:15:28 EDT 2025 Mon Jun 30 09:56:06 EDT 2025 Wed Feb 19 02:24:03 EST 2025 Tue Jul 01 01:03:34 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | psychedelics ayahuasca serotonin consciousness dimethyltryptamine |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-970ce5e730e1bbf0850d5046353bfe13bf9826fb5ddc4c7feb66b7daee57d1dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Marcus Raichle, Washington University in St Louis School of Medicine, St. Louis, MO; received November 12, 2022; accepted December 14, 2022 |
ORCID | 0000-0002-7022-6211 0000-0002-5801-6318 0000-0001-7790-6183 0000-0002-2281-377X 0000-0001-9826-2161 0000-0002-1286-1401 0000-0002-4194-7669 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10068756 |
PMID | 36940333 |
PQID | 2794134550 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10068756 hal_primary_oai_HAL_hal_04756233v1 proquest_miscellaneous_2789235821 proquest_journals_2794134550 pubmed_primary_36940333 crossref_citationtrail_10_1073_pnas_2218949120 crossref_primary_10_1073_pnas_2218949120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-28 |
PublicationDateYYYYMMDD | 2023-03-28 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2023 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 Dong D. (e_1_3_4_62_2) 2021 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 Alamia A. (e_1_3_4_40_2) 2020; 9 Avants B. B. (e_1_3_4_75_2) 2009; 2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_12_2 doi: 10.1038/s41598-021-01209-2 – ident: e_1_3_4_15_2 doi: 10.1177/0269881117725915 – ident: e_1_3_4_29_2 doi: 10.1016/j.tics.2017.11.002 – ident: e_1_3_4_35_2 doi: 10.3389/fnins.2017.00115 – ident: e_1_3_4_24_2 doi: 10.1038/s41598-017-17546-0 – ident: e_1_3_4_43_2 doi: 10.1038/nature17637 – ident: e_1_3_4_8_2 doi: 10.1016/0166-4328(96)00081-2 – ident: e_1_3_4_42_2 doi: 10.1371/journal.pone.0118143 – ident: e_1_3_4_50_2 doi: 10.1016/j.neuron.2020.09.034 – ident: e_1_3_4_19_2 doi: 10.1073/pnas.1518377113 – ident: e_1_3_4_84_2 doi: 10.1007/s10548-015-0448-0 – ident: e_1_3_4_90_2 doi: 10.1016/S1053-8119(09)70882-1 – ident: e_1_3_4_3_2 doi: 10.1056/NEJMoa2032994 – ident: e_1_3_4_66_2 doi: 10.1016/j.euroneuro.2021.06.001 – ident: e_1_3_4_80_2 doi: 10.1152/jn.00338.2011 – ident: e_1_3_4_6_2 – ident: e_1_3_4_79_2 doi: 10.1155/2011/156869 – ident: e_1_3_4_25_2 doi: 10.1016/j.cub.2016.02.010 – ident: e_1_3_4_83_2 doi: 10.1016/j.jneumeth.2007.03.024 – ident: e_1_3_4_27_2 doi: 10.1016/j.neuroimage.2022.119220 – ident: e_1_3_4_49_2 doi: 10.1016/j.tics.2013.09.017 – ident: e_1_3_4_81_2 doi: 10.1006/nimg.2001.0978 – ident: e_1_3_4_88_2 doi: 10.1073/pnas.0500334102 – ident: e_1_3_4_91_2 – ident: e_1_3_4_73_2 doi: 10.1006/cbmr.1996.0014 – ident: e_1_3_4_44_2 doi: 10.1016/j.neuron.2017.06.041 – ident: e_1_3_4_38_2 doi: 10.1523/JNEUROSCI.2830-16.2016 – ident: e_1_3_4_76_2 doi: 10.1006/nimg.1998.0395 – ident: e_1_3_4_51_2 doi: 10.1007/s00018-020-03628-2 – ident: e_1_3_4_89_2 doi: 10.1038/s41467-019-08944-1 – ident: e_1_3_4_22_2 doi: 10.1002/hbm.22562 – ident: e_1_3_4_10_2 doi: 10.1038/s41598-022-11999-8 – ident: e_1_3_4_74_2 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_3_4_57_2 doi: 10.1016/j.brainres.2015.02.002 – ident: e_1_3_4_28_2 doi: 10.1016/j.neuron.2021.06.016 – ident: e_1_3_4_61_2 doi: 10.3389/fpsyg.2018.01475 – ident: e_1_3_4_39_2 doi: 10.1177/0269881120981384 – ident: e_1_3_4_47_2 doi: 10.3389/fnhum.2014.00020 – ident: e_1_3_4_26_2 doi: 10.1038/s41467-022-33578-1 – ident: e_1_3_4_31_2 doi: 10.3389/fnins.2015.00167 – ident: e_1_3_4_9_2 doi: 10.3389/fpsyg.2018.01424 – ident: e_1_3_4_11_2 doi: 10.3389/fpsyg.2021.720717 – ident: e_1_3_4_5_2 doi: 10.1017/S0033291718001356 – ident: e_1_3_4_23_2 doi: 10.1016/j.neuroimage.2019.05.060 – ident: e_1_3_4_54_2 doi: 10.1177/0269881116677852 – ident: e_1_3_4_72_2 doi: 10.1016/j.neuroimage.2013.08.048 – ident: e_1_3_4_60_2 doi: 10.1002/hbm.24889 – ident: e_1_3_4_2_2 doi: 10.1124/pr.115.011478 – ident: e_1_3_4_64_2 doi: 10.1016/j.biopsych.2019.12.027 – ident: e_1_3_4_58_2 doi: 10.1371/journal.pone.0014224 – year: 2021 ident: e_1_3_4_62_2 article-title: Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia publication-title: Psychol. Med. – ident: e_1_3_4_37_2 doi: 10.1093/cercor/bhx179 – ident: e_1_3_4_17_2 doi: 10.1016/j.neuron.2021.06.008 – volume: 9 start-page: 1 year: 2020 ident: e_1_3_4_40_2 article-title: DMT alters cortical travelling waves publication-title: Elife – ident: e_1_3_4_52_2 doi: 10.1101/lm.60803 – ident: e_1_3_4_69_2 doi: 10.1371/journal.pone.0012412 – ident: e_1_3_4_48_2 doi: 10.1093/brain/awab095 – ident: e_1_3_4_65_2 doi: 10.7554/eLife.35082 – ident: e_1_3_4_13_2 doi: 10.1080/15294145.2007.10773557 – ident: e_1_3_4_14_2 doi: 10.1016/j.cell.2020.03.020 – ident: e_1_3_4_71_2 – ident: e_1_3_4_1_2 doi: 10.1073/pnas.1902174116 – ident: e_1_3_4_67_2 doi: 10.1016/j.neuroimage.2016.11.052 – ident: e_1_3_4_32_2 doi: 10.1038/s41598-019-51974-4 – ident: e_1_3_4_30_2 doi: 10.1124/pr.118.017160 – ident: e_1_3_4_4_2 – volume: 2 start-page: 1 year: 2009 ident: e_1_3_4_75_2 article-title: Advanced normalization tools (ANTS) publication-title: Insight J. – ident: e_1_3_4_78_2 doi: 10.1006/nimg.1998.0361 – ident: e_1_3_4_53_2 doi: 10.1177/0269881118754710 – ident: e_1_3_4_87_2 doi: 10.1038/s42003-020-0794-7 – ident: e_1_3_4_85_2 doi: 10.1016/j.neuroimage.2018.06.068 – ident: e_1_3_4_7_2 doi: 10.1038/s41386-022-01344-y – ident: e_1_3_4_45_2 doi: 10.1126/sciadv.abf2709 – ident: e_1_3_4_59_2 doi: 10.1038/s41598-020-73216-8 – ident: e_1_3_4_70_2 doi: 10.1177/0269881115609019 – ident: e_1_3_4_46_2 doi: 10.1073/pnas.1921475117 – ident: e_1_3_4_82_2 doi: 10.1093/cercor/bhs352 – ident: e_1_3_4_86_2 doi: 10.1371/journal.pbio.3000487 – ident: e_1_3_4_34_2 doi: 10.1038/srep46421 – ident: e_1_3_4_36_2 doi: 10.1073/pnas.1608282113 – ident: e_1_3_4_55_2 doi: 10.1177/13634615221082796 – ident: e_1_3_4_63_2 doi: 10.1016/j.scib.2022.01.002 – ident: e_1_3_4_68_2 doi: 10.1016/j.tics.2022.11.006 – ident: e_1_3_4_16_2 doi: 10.1016/j.celrep.2018.05.022 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.1119598109 – ident: e_1_3_4_41_2 doi: 10.1016/j.neuropharm.2018.03.010 – ident: e_1_3_4_21_2 doi: 10.3389/fnhum.2014.00204 – ident: e_1_3_4_18_2 doi: 10.1038/s41591-022-01744-z – ident: e_1_3_4_77_2 doi: 10.1006/nimg.2000.0599 – ident: e_1_3_4_33_2 doi: 10.1523/JNEUROSCI.2063-13.2013 – ident: e_1_3_4_56_2 doi: 10.1016/j.neuroimage.2015.08.012 |
SSID | ssj0009580 |
Score | 2.6391864 |
Snippet | Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects,... This placebo-controlled multimodal [functional MRI-electroencephalography (fMRI-EEG)] human neuroimaging study offers the most comprehensive view of the acute... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2218949120 |
SubjectTerms | Agonists Biological Sciences Brain Brain mapping Cognitive science Compression Disintegration EEG Electroencephalography Emission analysis Functional magnetic resonance imaging Hallucinogens - pharmacology Humans Magnetic Resonance Imaging Medical imaging N,N-Dimethyltryptamine - pharmacology Neural networks Neuroimaging Placebos Positron emission Positron emission tomography Psychedelic drugs Receptors Serotonin Serotonin S2 receptors |
Title | Human brain effects of DMT assessed via EEG-fMRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36940333 https://www.proquest.com/docview/2794134550 https://www.proquest.com/docview/2789235821 https://hal.science/hal-04756233 https://pubmed.ncbi.nlm.nih.gov/PMC10068756 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdpB6MvY92n1254Yw8dwalt2Vb0GLqs2VhCGCnkzViyTAOrXfLRh_4V-5N3siRbyTLY-mKMLH-g--nuJN_9DqGPBGxaVuTUCxNKPLC3wsviIoJ5lYGxDRknRR0gO0lGV9G3eTzvdH5ZUUubNevx-715JQ-RKrSBXGWW7H9ItnkoNMA5yBeOIGE4_pOM1Q48k1Ue7MCMz-NZN6t_5oI3ebfIusPhpVeMf3y1PdFpY7lWJk5gYjYGB22aiZ77q67XnU7aosUg4hup08tyh6Gg_YGzEiavQVTLVtEtF7nKIauponOrv2rWG9tVd9izdyRCLEOydIa3Rei992NtVRyCeYxUAnVPKO0LzouXRKp-aKOeQ9_GId6r90FRyWLFZbbqheC00Ijq2ywU3N7UMMAJjXys2Dd2qLan44tA5syQODlAj0JYeMiaGJfzwKJx7qukJv3xhiyK4POdlx-hx-ZNWy7PwbUMuP1zNbMblGt5ObOn6IlenrgDhbVj1BHlM3RsxtU90yzln54jvwafW4PP1eBzq8IF8LkGfC6AzzXge4GuvgxnFyNPl9_wOHjVa48Sn4tYgAkQAWOF5DbMY0kwF2NWiAAOFNamBYvznEcwpwVLEkbyTIiY5EHO8Ut0WFaleI1ccEL9kEYi5EkS9THLCsIoxn3CWcAzyh3UMyOUcs1NL0uk_EzrGAmCUzm6aTu6DjprbrhVtCx_7_oBhrzpJenUR4PvqWzzIyLdf3wXOOjUSCTVExyeAbYqwDLt30Hvm8ugfuU_tawU1Ub26VOVbe6gV0qAzauM_B3U3xLt1rdsXykX1zXFu4Hhm4ffeoKO2sl5ig7Xy414Cw70mr2rMf0bqiPCgw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+brain+effects+of+DMT+assessed+via+EEG-fMRI&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Timmermann%2C+Christopher&rft.au=Roseman%2C+Leor&rft.au=Haridas%2C+Sharad&rft.au=Rosas%2C+Fernando+E.&rft.date=2023-03-28&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=13&rft_id=info:doi/10.1073%2Fpnas.2218949120&rft_id=info%3Apmid%2F36940333&rft.externalDocID=PMC10068756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |