Human brain effects of DMT assessed via EEG-fMRI

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 13; p. e2218949120
Main Authors Timmermann, Christopher, Roseman, Leor, Haridas, Sharad, Rosas, Fernando E., Luan, Lisa, Kettner, Hannes, Martell, Jonny, Erritzoe, David, Tagliazucchi, Enzo, Pallavicini, Carla, Girn, Manesh, Alamia, Andrea, Leech, Robert, Nutt, David J., Carhart-Harris, Robin L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 28.03.2023
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2218949120

Cover

Loading…
Abstract Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT’s effects. The present findings advance on previous work by confirming a predominant action of DMT—and likely other 5-HT2AR agonist psychedelics—on the brain’s transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.
AbstractList Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.
Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.
Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT’s effects. The present findings advance on previous work by confirming a predominant action of DMT—and likely other 5-HT2AR agonist psychedelics—on the brain’s transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.
This placebo-controlled multimodal [functional MRI-electroencephalography (fMRI-EEG)] human neuroimaging study offers the most comprehensive view of the acute brain action of psychedelics to date. It assessed N,N-Dimethyltryptamine (DMT), a psychedelic that generates immersive altered conscious experience with no diminishment of wakefulness. Global hyperconnectivity, collapsed hierarchical organization and reduced intranetwork integrity, was observed (fMRI) that correlated with decreased alpha power and increased entropy (EEG). Regions with the densest expression of serotonin 2A receptors as determined via independent positron emission tomography (PET) data, were most affected by DMT, and overlapped with regions related to evolved cognitive functions such as language and semantic processing. These results support the notion that psychedelics impact a principal axis of brain organization, and relatedly, the quality of human conscious experience. Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT’s effects. The present findings advance on previous work by confirming a predominant action of DMT—and likely other 5-HT2AR agonist psychedelics—on the brain’s transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.
Author Haridas, Sharad
Luan, Lisa
Roseman, Leor
Pallavicini, Carla
Girn, Manesh
Nutt, David J.
Alamia, Andrea
Carhart-Harris, Robin L.
Martell, Jonny
Rosas, Fernando E.
Erritzoe, David
Leech, Robert
Kettner, Hannes
Timmermann, Christopher
Tagliazucchi, Enzo
Author_xml – sequence: 1
  givenname: Christopher
  orcidid: 0000-0002-2281-377X
  surname: Timmermann
  fullname: Timmermann, Christopher
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 2
  givenname: Leor
  surname: Roseman
  fullname: Roseman, Leor
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 3
  givenname: Sharad
  surname: Haridas
  fullname: Haridas, Sharad
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 4
  givenname: Fernando E.
  orcidid: 0000-0001-7790-6183
  surname: Rosas
  fullname: Rosas, Fernando E.
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK, Department of Informatics, University of Sussex, Brighton BN1 9RH, United Kingdom, Centre for Complexity Science, Imperial College London, London SW7 2AZ, United Kingdom, Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom
– sequence: 5
  givenname: Lisa
  surname: Luan
  fullname: Luan, Lisa
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 6
  givenname: Hannes
  surname: Kettner
  fullname: Kettner, Hannes
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 7
  givenname: Jonny
  orcidid: 0000-0002-4194-7669
  surname: Martell
  fullname: Martell, Jonny
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 8
  givenname: David
  orcidid: 0000-0002-7022-6211
  surname: Erritzoe
  fullname: Erritzoe, David
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 9
  givenname: Enzo
  surname: Tagliazucchi
  fullname: Tagliazucchi, Enzo
  organization: Departamento de Física, Latin American Brain Health Institute, Universidad Adolfo Ibanez, 3485 Santiago, Chile, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, 1428 Buenos Aires, Argentina
– sequence: 10
  givenname: Carla
  surname: Pallavicini
  fullname: Pallavicini, Carla
  organization: Universidad de Buenos Aires and Instituto de Física de Buenos Aires, 1428 Buenos Aires, Argentina
– sequence: 11
  givenname: Manesh
  surname: Girn
  fullname: Girn, Manesh
  organization: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
– sequence: 12
  givenname: Andrea
  orcidid: 0000-0001-9826-2161
  surname: Alamia
  fullname: Alamia, Andrea
  organization: CNRS Université de Toulouse, 31300 Toulouse, France
– sequence: 13
  givenname: Robert
  orcidid: 0000-0002-5801-6318
  surname: Leech
  fullname: Leech, Robert
  organization: Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London WC2R 2LS, UK
– sequence: 14
  givenname: David J.
  orcidid: 0000-0002-1286-1401
  surname: Nutt
  fullname: Nutt, David J.
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
– sequence: 15
  givenname: Robin L.
  surname: Carhart-Harris
  fullname: Carhart-Harris, Robin L.
  organization: Division of Psychiatry, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK, Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, CA 94143
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36940333$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04756233$$DView record in HAL
BookMark eNp1kd1rFDEUxYNU7Lb67JsM-FIfpr35njxJqdtuYYsg9TlkMolNmU3WycyC_70Ztq26IIQEkt85N_eeE3QUU3QIvcdwjkHSi200-ZwQ3CimMIFXaIFB4VowBUdoAUBk3TDCjtFJzo8AoHgDb9AxFYoBpXSBYDVtTKzawYRYOe-dHXOVfPXl7r4yObuyumoXTLVc3tT-7tvtW_Tamz67d0_nKfp-vby_WtXrrze3V5fr2jIuxlpJsI47ScHhtvXQcOg4MEE5bb3DZVMNEb7lXWeZld61QrSyM85x2eHO0lP0ee-7ndqN66yL42B6vR3Cxgy_dDJB__sSw4P-kXYaA4hGclEcPu0dHg50q8u1nu-AFYxQusOFPXuqNqSfk8uj3oRsXd-b6NKUNZGNIpQ3ZEY_HqCPaRpimUWhFMOUcQ6F-vD391_qP0--AHwP2CHlPDivbRjNGNLcTehLG3pOWM8J6z8JF93Fge7Z-n-K31O3pg4
CitedBy_id crossref_primary_10_1001_jamanetworkopen_2024_22181
crossref_primary_10_1007_s11071_024_10729_1
crossref_primary_10_1038_s41598_023_47600_z
crossref_primary_10_1007_s11920_024_01567_4
crossref_primary_10_1089_psymed_2024_0002
crossref_primary_10_3389_fphar_2024_1454628
crossref_primary_10_1038_s44220_024_00298_y
crossref_primary_10_1093_nsr_nwae124
crossref_primary_10_1038_s42003_023_04988_8
crossref_primary_10_3389_fnhum_2024_1402549
crossref_primary_10_3390_ijms24119463
crossref_primary_10_1038_s41398_024_03187_1
crossref_primary_10_1177_02698811231196877
crossref_primary_10_1177_26331055241286518
crossref_primary_10_1016_j_neuroimage_2024_120629
crossref_primary_10_1016_j_bpsc_2024_04_001
crossref_primary_10_1038_s42003_023_05678_1
crossref_primary_10_1111_anoc_12233
crossref_primary_10_1162_jocn_e_02027
crossref_primary_10_1038_s44220_024_00206_4
crossref_primary_10_1016_j_biopsych_2024_08_026
crossref_primary_10_1016_j_neuroimage_2023_120480
crossref_primary_10_3389_fpsyg_2025_1532937
crossref_primary_10_1176_appi_ajp_20230890
crossref_primary_10_1038_s41380_024_02734_y
crossref_primary_10_7554_eLife_88173_4
crossref_primary_10_1007_s40265_024_02106_4
crossref_primary_10_1038_s41386_024_01891_6
crossref_primary_10_1093_brain_awad311
crossref_primary_10_1126_sciadv_adf8332
crossref_primary_10_1038_s41467_024_46382_w
crossref_primary_10_3390_brainsci14090880
crossref_primary_10_1080_02791072_2023_2230568
crossref_primary_10_1038_s44220_023_00172_3
crossref_primary_10_1038_s41467_024_52429_9
crossref_primary_10_1016_j_tins_2024_05_007
crossref_primary_10_1007_s11469_024_01253_9
crossref_primary_10_1007_s00018_024_05353_6
crossref_primary_10_1016_j_bbr_2023_114445
crossref_primary_10_12688_f1000research_151422_2
crossref_primary_10_12688_f1000research_151422_1
crossref_primary_10_1038_s41386_024_01809_2
crossref_primary_10_1073_pnas_2321906121
crossref_primary_10_1093_cercor_bhad249
crossref_primary_10_4103_aip_aip_195_23
crossref_primary_10_1016_j_neuropharm_2025_110314
crossref_primary_10_1016_j_nsa_2023_103929
crossref_primary_10_1162_imag_a_00420
crossref_primary_10_7554_eLife_88173
crossref_primary_10_1177_02698811241248395
crossref_primary_10_1016_j_clinph_2025_02_264
crossref_primary_10_1177_02698811241303599
crossref_primary_10_3389_fpsyt_2023_1305796
crossref_primary_10_1016_j_bpsgos_2024_100372
crossref_primary_10_1016_j_neubiorev_2024_105538
crossref_primary_10_1021_acs_chemrev_3c00375
crossref_primary_10_1177_02698811241276788
crossref_primary_10_3389_fnagi_2023_1270226
crossref_primary_10_1016_j_tics_2023_01_003
crossref_primary_10_3390_ph18010130
crossref_primary_10_1016_j_bpsc_2024_05_003
crossref_primary_10_1002_pcn5_146
crossref_primary_10_1007_s12021_024_09660_y
crossref_primary_10_1016_j_bpsc_2024_05_006
crossref_primary_10_1038_s41380_023_02360_0
crossref_primary_10_3390_psychoactives3010007
crossref_primary_10_3174_ajnr_A8118
crossref_primary_10_1002_jocb_1525
crossref_primary_10_1016_j_isci_2024_111639
crossref_primary_10_1016_j_neuroimage_2024_120759
crossref_primary_10_1038_s42003_025_07576_0
crossref_primary_10_1093_cercor_bhae347
crossref_primary_10_3389_fnins_2023_1217079
crossref_primary_10_1038_s41398_024_03013_8
Cites_doi 10.1038/s41598-021-01209-2
10.1177/0269881117725915
10.1016/j.tics.2017.11.002
10.3389/fnins.2017.00115
10.1038/s41598-017-17546-0
10.1038/nature17637
10.1016/0166-4328(96)00081-2
10.1371/journal.pone.0118143
10.1016/j.neuron.2020.09.034
10.1073/pnas.1518377113
10.1007/s10548-015-0448-0
10.1016/S1053-8119(09)70882-1
10.1056/NEJMoa2032994
10.1016/j.euroneuro.2021.06.001
10.1152/jn.00338.2011
10.1155/2011/156869
10.1016/j.cub.2016.02.010
10.1016/j.jneumeth.2007.03.024
10.1016/j.neuroimage.2022.119220
10.1016/j.tics.2013.09.017
10.1006/nimg.2001.0978
10.1073/pnas.0500334102
10.1006/cbmr.1996.0014
10.1016/j.neuron.2017.06.041
10.1523/JNEUROSCI.2830-16.2016
10.1006/nimg.1998.0395
10.1007/s00018-020-03628-2
10.1038/s41467-019-08944-1
10.1002/hbm.22562
10.1038/s41598-022-11999-8
10.1016/j.neuroimage.2004.07.051
10.1016/j.brainres.2015.02.002
10.1016/j.neuron.2021.06.016
10.3389/fpsyg.2018.01475
10.1177/0269881120981384
10.3389/fnhum.2014.00020
10.1038/s41467-022-33578-1
10.3389/fnins.2015.00167
10.3389/fpsyg.2018.01424
10.3389/fpsyg.2021.720717
10.1017/S0033291718001356
10.1016/j.neuroimage.2019.05.060
10.1177/0269881116677852
10.1016/j.neuroimage.2013.08.048
10.1002/hbm.24889
10.1124/pr.115.011478
10.1016/j.biopsych.2019.12.027
10.1371/journal.pone.0014224
10.1093/cercor/bhx179
10.1016/j.neuron.2021.06.008
10.1101/lm.60803
10.1371/journal.pone.0012412
10.1093/brain/awab095
10.7554/eLife.35082
10.1080/15294145.2007.10773557
10.1016/j.cell.2020.03.020
10.1073/pnas.1902174116
10.1016/j.neuroimage.2016.11.052
10.1038/s41598-019-51974-4
10.1124/pr.118.017160
10.1006/nimg.1998.0361
10.1177/0269881118754710
10.1038/s42003-020-0794-7
10.1016/j.neuroimage.2018.06.068
10.1038/s41386-022-01344-y
10.1126/sciadv.abf2709
10.1038/s41598-020-73216-8
10.1177/0269881115609019
10.1073/pnas.1921475117
10.1093/cercor/bhs352
10.1371/journal.pbio.3000487
10.1038/srep46421
10.1073/pnas.1608282113
10.1177/13634615221082796
10.1016/j.scib.2022.01.002
10.1016/j.tics.2022.11.006
10.1016/j.celrep.2018.05.022
10.1073/pnas.1119598109
10.1016/j.neuropharm.2018.03.010
10.3389/fnhum.2014.00204
10.1038/s41591-022-01744-z
10.1006/nimg.2000.0599
10.1523/JNEUROSCI.2063-13.2013
10.1016/j.neuroimage.2015.08.012
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 28, 2023
Attribution
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright National Academy of Sciences Mar 28, 2023
– notice: Attribution
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.2218949120
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC10068756
oai_HAL_hal_04756233v1
36940333
10_1073_pnas_2218949120
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: NA
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c456t-970ce5e730e1bbf0850d5046353bfe13bf9826fb5ddc4c7feb66b7daee57d1dc3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:38:38 EDT 2025
Fri May 09 12:19:47 EDT 2025
Thu Jul 10 23:15:28 EDT 2025
Mon Jun 30 09:56:06 EDT 2025
Wed Feb 19 02:24:03 EST 2025
Tue Jul 01 01:03:34 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords psychedelics
ayahuasca
serotonin
consciousness
dimethyltryptamine
Language English
License Attribution: http://creativecommons.org/licenses/by
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-970ce5e730e1bbf0850d5046353bfe13bf9826fb5ddc4c7feb66b7daee57d1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Marcus Raichle, Washington University in St Louis School of Medicine, St. Louis, MO; received November 12, 2022; accepted December 14, 2022
ORCID 0000-0002-7022-6211
0000-0002-5801-6318
0000-0001-7790-6183
0000-0002-2281-377X
0000-0001-9826-2161
0000-0002-1286-1401
0000-0002-4194-7669
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10068756
PMID 36940333
PQID 2794134550
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10068756
hal_primary_oai_HAL_hal_04756233v1
proquest_miscellaneous_2789235821
proquest_journals_2794134550
pubmed_primary_36940333
crossref_citationtrail_10_1073_pnas_2218949120
crossref_primary_10_1073_pnas_2218949120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-28
PublicationDateYYYYMMDD 2023-03-28
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
Dong D. (e_1_3_4_62_2) 2021
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
Alamia A. (e_1_3_4_40_2) 2020; 9
Avants B. B. (e_1_3_4_75_2) 2009; 2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_88_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_12_2
  doi: 10.1038/s41598-021-01209-2
– ident: e_1_3_4_15_2
  doi: 10.1177/0269881117725915
– ident: e_1_3_4_29_2
  doi: 10.1016/j.tics.2017.11.002
– ident: e_1_3_4_35_2
  doi: 10.3389/fnins.2017.00115
– ident: e_1_3_4_24_2
  doi: 10.1038/s41598-017-17546-0
– ident: e_1_3_4_43_2
  doi: 10.1038/nature17637
– ident: e_1_3_4_8_2
  doi: 10.1016/0166-4328(96)00081-2
– ident: e_1_3_4_42_2
  doi: 10.1371/journal.pone.0118143
– ident: e_1_3_4_50_2
  doi: 10.1016/j.neuron.2020.09.034
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.1518377113
– ident: e_1_3_4_84_2
  doi: 10.1007/s10548-015-0448-0
– ident: e_1_3_4_90_2
  doi: 10.1016/S1053-8119(09)70882-1
– ident: e_1_3_4_3_2
  doi: 10.1056/NEJMoa2032994
– ident: e_1_3_4_66_2
  doi: 10.1016/j.euroneuro.2021.06.001
– ident: e_1_3_4_80_2
  doi: 10.1152/jn.00338.2011
– ident: e_1_3_4_6_2
– ident: e_1_3_4_79_2
  doi: 10.1155/2011/156869
– ident: e_1_3_4_25_2
  doi: 10.1016/j.cub.2016.02.010
– ident: e_1_3_4_83_2
  doi: 10.1016/j.jneumeth.2007.03.024
– ident: e_1_3_4_27_2
  doi: 10.1016/j.neuroimage.2022.119220
– ident: e_1_3_4_49_2
  doi: 10.1016/j.tics.2013.09.017
– ident: e_1_3_4_81_2
  doi: 10.1006/nimg.2001.0978
– ident: e_1_3_4_88_2
  doi: 10.1073/pnas.0500334102
– ident: e_1_3_4_91_2
– ident: e_1_3_4_73_2
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_3_4_44_2
  doi: 10.1016/j.neuron.2017.06.041
– ident: e_1_3_4_38_2
  doi: 10.1523/JNEUROSCI.2830-16.2016
– ident: e_1_3_4_76_2
  doi: 10.1006/nimg.1998.0395
– ident: e_1_3_4_51_2
  doi: 10.1007/s00018-020-03628-2
– ident: e_1_3_4_89_2
  doi: 10.1038/s41467-019-08944-1
– ident: e_1_3_4_22_2
  doi: 10.1002/hbm.22562
– ident: e_1_3_4_10_2
  doi: 10.1038/s41598-022-11999-8
– ident: e_1_3_4_74_2
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_3_4_57_2
  doi: 10.1016/j.brainres.2015.02.002
– ident: e_1_3_4_28_2
  doi: 10.1016/j.neuron.2021.06.016
– ident: e_1_3_4_61_2
  doi: 10.3389/fpsyg.2018.01475
– ident: e_1_3_4_39_2
  doi: 10.1177/0269881120981384
– ident: e_1_3_4_47_2
  doi: 10.3389/fnhum.2014.00020
– ident: e_1_3_4_26_2
  doi: 10.1038/s41467-022-33578-1
– ident: e_1_3_4_31_2
  doi: 10.3389/fnins.2015.00167
– ident: e_1_3_4_9_2
  doi: 10.3389/fpsyg.2018.01424
– ident: e_1_3_4_11_2
  doi: 10.3389/fpsyg.2021.720717
– ident: e_1_3_4_5_2
  doi: 10.1017/S0033291718001356
– ident: e_1_3_4_23_2
  doi: 10.1016/j.neuroimage.2019.05.060
– ident: e_1_3_4_54_2
  doi: 10.1177/0269881116677852
– ident: e_1_3_4_72_2
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_3_4_60_2
  doi: 10.1002/hbm.24889
– ident: e_1_3_4_2_2
  doi: 10.1124/pr.115.011478
– ident: e_1_3_4_64_2
  doi: 10.1016/j.biopsych.2019.12.027
– ident: e_1_3_4_58_2
  doi: 10.1371/journal.pone.0014224
– year: 2021
  ident: e_1_3_4_62_2
  article-title: Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia
  publication-title: Psychol. Med.
– ident: e_1_3_4_37_2
  doi: 10.1093/cercor/bhx179
– ident: e_1_3_4_17_2
  doi: 10.1016/j.neuron.2021.06.008
– volume: 9
  start-page: 1
  year: 2020
  ident: e_1_3_4_40_2
  article-title: DMT alters cortical travelling waves
  publication-title: Elife
– ident: e_1_3_4_52_2
  doi: 10.1101/lm.60803
– ident: e_1_3_4_69_2
  doi: 10.1371/journal.pone.0012412
– ident: e_1_3_4_48_2
  doi: 10.1093/brain/awab095
– ident: e_1_3_4_65_2
  doi: 10.7554/eLife.35082
– ident: e_1_3_4_13_2
  doi: 10.1080/15294145.2007.10773557
– ident: e_1_3_4_14_2
  doi: 10.1016/j.cell.2020.03.020
– ident: e_1_3_4_71_2
– ident: e_1_3_4_1_2
  doi: 10.1073/pnas.1902174116
– ident: e_1_3_4_67_2
  doi: 10.1016/j.neuroimage.2016.11.052
– ident: e_1_3_4_32_2
  doi: 10.1038/s41598-019-51974-4
– ident: e_1_3_4_30_2
  doi: 10.1124/pr.118.017160
– ident: e_1_3_4_4_2
– volume: 2
  start-page: 1
  year: 2009
  ident: e_1_3_4_75_2
  article-title: Advanced normalization tools (ANTS)
  publication-title: Insight J.
– ident: e_1_3_4_78_2
  doi: 10.1006/nimg.1998.0361
– ident: e_1_3_4_53_2
  doi: 10.1177/0269881118754710
– ident: e_1_3_4_87_2
  doi: 10.1038/s42003-020-0794-7
– ident: e_1_3_4_85_2
  doi: 10.1016/j.neuroimage.2018.06.068
– ident: e_1_3_4_7_2
  doi: 10.1038/s41386-022-01344-y
– ident: e_1_3_4_45_2
  doi: 10.1126/sciadv.abf2709
– ident: e_1_3_4_59_2
  doi: 10.1038/s41598-020-73216-8
– ident: e_1_3_4_70_2
  doi: 10.1177/0269881115609019
– ident: e_1_3_4_46_2
  doi: 10.1073/pnas.1921475117
– ident: e_1_3_4_82_2
  doi: 10.1093/cercor/bhs352
– ident: e_1_3_4_86_2
  doi: 10.1371/journal.pbio.3000487
– ident: e_1_3_4_34_2
  doi: 10.1038/srep46421
– ident: e_1_3_4_36_2
  doi: 10.1073/pnas.1608282113
– ident: e_1_3_4_55_2
  doi: 10.1177/13634615221082796
– ident: e_1_3_4_63_2
  doi: 10.1016/j.scib.2022.01.002
– ident: e_1_3_4_68_2
  doi: 10.1016/j.tics.2022.11.006
– ident: e_1_3_4_16_2
  doi: 10.1016/j.celrep.2018.05.022
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.1119598109
– ident: e_1_3_4_41_2
  doi: 10.1016/j.neuropharm.2018.03.010
– ident: e_1_3_4_21_2
  doi: 10.3389/fnhum.2014.00204
– ident: e_1_3_4_18_2
  doi: 10.1038/s41591-022-01744-z
– ident: e_1_3_4_77_2
  doi: 10.1006/nimg.2000.0599
– ident: e_1_3_4_33_2
  doi: 10.1523/JNEUROSCI.2063-13.2013
– ident: e_1_3_4_56_2
  doi: 10.1016/j.neuroimage.2015.08.012
SSID ssj0009580
Score 2.6391864
Snippet Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects,...
This placebo-controlled multimodal [functional MRI-electroencephalography (fMRI-EEG)] human neuroimaging study offers the most comprehensive view of the acute...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2218949120
SubjectTerms Agonists
Biological Sciences
Brain
Brain mapping
Cognitive science
Compression
Disintegration
EEG
Electroencephalography
Emission analysis
Functional magnetic resonance imaging
Hallucinogens - pharmacology
Humans
Magnetic Resonance Imaging
Medical imaging
N,N-Dimethyltryptamine - pharmacology
Neural networks
Neuroimaging
Placebos
Positron emission
Positron emission tomography
Psychedelic drugs
Receptors
Serotonin
Serotonin S2 receptors
Title Human brain effects of DMT assessed via EEG-fMRI
URI https://www.ncbi.nlm.nih.gov/pubmed/36940333
https://www.proquest.com/docview/2794134550
https://www.proquest.com/docview/2789235821
https://hal.science/hal-04756233
https://pubmed.ncbi.nlm.nih.gov/PMC10068756
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdpB6MvY92n1254Yw8dwalt2Vb0GLqs2VhCGCnkzViyTAOrXfLRh_4V-5N3siRbyTLY-mKMLH-g--nuJN_9DqGPBGxaVuTUCxNKPLC3wsviIoJ5lYGxDRknRR0gO0lGV9G3eTzvdH5ZUUubNevx-715JQ-RKrSBXGWW7H9ItnkoNMA5yBeOIGE4_pOM1Q48k1Ue7MCMz-NZN6t_5oI3ebfIusPhpVeMf3y1PdFpY7lWJk5gYjYGB22aiZ77q67XnU7aosUg4hup08tyh6Gg_YGzEiavQVTLVtEtF7nKIauponOrv2rWG9tVd9izdyRCLEOydIa3Rei992NtVRyCeYxUAnVPKO0LzouXRKp-aKOeQ9_GId6r90FRyWLFZbbqheC00Ijq2ywU3N7UMMAJjXys2Dd2qLan44tA5syQODlAj0JYeMiaGJfzwKJx7qukJv3xhiyK4POdlx-hx-ZNWy7PwbUMuP1zNbMblGt5ObOn6IlenrgDhbVj1BHlM3RsxtU90yzln54jvwafW4PP1eBzq8IF8LkGfC6AzzXge4GuvgxnFyNPl9_wOHjVa48Sn4tYgAkQAWOF5DbMY0kwF2NWiAAOFNamBYvznEcwpwVLEkbyTIiY5EHO8Ut0WFaleI1ccEL9kEYi5EkS9THLCsIoxn3CWcAzyh3UMyOUcs1NL0uk_EzrGAmCUzm6aTu6DjprbrhVtCx_7_oBhrzpJenUR4PvqWzzIyLdf3wXOOjUSCTVExyeAbYqwDLt30Hvm8ugfuU_tawU1Ub26VOVbe6gV0qAzauM_B3U3xLt1rdsXykX1zXFu4Hhm4ffeoKO2sl5ig7Xy414Cw70mr2rMf0bqiPCgw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+brain+effects+of+DMT+assessed+via+EEG-fMRI&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Timmermann%2C+Christopher&rft.au=Roseman%2C+Leor&rft.au=Haridas%2C+Sharad&rft.au=Rosas%2C+Fernando+E.&rft.date=2023-03-28&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=13&rft_id=info:doi/10.1073%2Fpnas.2218949120&rft_id=info%3Apmid%2F36940333&rft.externalDocID=PMC10068756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon