Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images

Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop classification with satisfactory results, most of them focused on supervised methods, which are usually applicable to a specific domain and l...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 59; no. 1; pp. 2247 - 2265
Main Authors Wang, Yumiao, Feng, Luwei, Sun, Weiwei, Zhang, Zhou, Zhang, Hanyu, Yang, Gang, Meng, Xiangchao
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2022
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2022.2156123

Cover

Abstract Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop classification with satisfactory results, most of them focused on supervised methods, which are usually applicable to a specific domain and lose their validity in new domains. Unsupervised domain adaptation (UDA) was proposed to solve this limitation by transferring knowledge from source domains with labeled samples to target domains with unlabeled samples. Particularly, multi-source UDA (MUDA) is a powerful extension that leverages knowledge from multiple source domains and can achieve better results in the target domain than single-source UDA (SUDA). However, few studies have explored the potential of MUDA for crop mapping. This study proposed a MUDA crop classification model (MUCCM) for unsupervised crop mapping. Specifically, 11 states in the U.S. were selected as the multi-source domains, and three provinces in Northeast China were selected as individual target domains. Ten spectral bands and five vegetation indexes were collected at a 10-day interval from time-series Sentinel-2 images to build the MUCCM. Subsequently, a SUDA model Domain Adversarial Neural Network (DANN) and two direct transfer methods, namely, the deep neural network and random forest, were constructed and compared with the MUCCM. The results indicated that the UDA models outperformed the direct transfer models significantly, and the MUCCM was superior to the DANN, achieving the highest classification accuracy (OA>85%) in each target domain. In addition, the MUCCM also performed best in in-season forecasting and crop mapping. This study is the first to apply a MUDA to crop classification and demonstrate a novel, effective solution for high-performance crop mapping in regions without labeled samples.
AbstractList Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop classification with satisfactory results, most of them focused on supervised methods, which are usually applicable to a specific domain and lose their validity in new domains. Unsupervised domain adaptation (UDA) was proposed to solve this limitation by transferring knowledge from source domains with labeled samples to target domains with unlabeled samples. Particularly, multi-source UDA (MUDA) is a powerful extension that leverages knowledge from multiple source domains and can achieve better results in the target domain than single-source UDA (SUDA). However, few studies have explored the potential of MUDA for crop mapping. This study proposed a MUDA crop classification model (MUCCM) for unsupervised crop mapping. Specifically, 11 states in the U.S. were selected as the multi-source domains, and three provinces in Northeast China were selected as individual target domains. Ten spectral bands and five vegetation indexes were collected at a 10-day interval from time-series Sentinel-2 images to build the MUCCM. Subsequently, a SUDA model Domain Adversarial Neural Network (DANN) and two direct transfer methods, namely, the deep neural network and random forest, were constructed and compared with the MUCCM. The results indicated that the UDA models outperformed the direct transfer models significantly, and the MUCCM was superior to the DANN, achieving the highest classification accuracy (OA>85%) in each target domain. In addition, the MUCCM also performed best in in-season forecasting and crop mapping. This study is the first to apply a MUDA to crop classification and demonstrate a novel, effective solution for high-performance crop mapping in regions without labeled samples.
Author Feng, Luwei
Wang, Yumiao
Zhang, Hanyu
Zhang, Zhou
Meng, Xiangchao
Yang, Gang
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Yumiao
  surname: Wang
  fullname: Wang, Yumiao
  organization: Ministry of Natural Resources
– sequence: 2
  givenname: Luwei
  surname: Feng
  fullname: Feng, Luwei
  organization: Wuhan University
– sequence: 3
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  email: sunweiwei@nbu.edu.cn
  organization: Ningbo University
– sequence: 4
  givenname: Zhou
  surname: Zhang
  fullname: Zhang, Zhou
  email: zzhang347@wisc.edu
  organization: University of Wisconsin-Madison
– sequence: 5
  givenname: Hanyu
  surname: Zhang
  fullname: Zhang, Hanyu
  organization: University of California
– sequence: 6
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
  organization: Ningbo University
– sequence: 7
  givenname: Xiangchao
  surname: Meng
  fullname: Meng, Xiangchao
  organization: Ningbo University
BookMark eNqFkc1u1TAUhCNUJNrCIyB5ySYX_8WxxQZUFahUiQWwtk5s5-LKsYPtQPv2JE3pgkXZ2D7WzHekmbPmJKbomuY1wQeCJX5LOi6JwOxAMaUHSjpBKHvWnBLFWdtTKk7W96ppN9GL5qyUG4xZR0h32sTL2zmk7OMR1R8Ozam6WD0ElEY0LaH6tqQlG4eWWJbZ5V--OItsmsBHBBbmCtWniNbJ5DSjCeZ5gy1lO79usOhCS5Gf4OjKy-b5CKG4Vw_3efP94-W3i8_t9ZdPVxcfrlvDO1Fb1VEL42CYxYJby7gcuBwNV0qMRElBQbhx6AdlMMOuc0IJbDnrjbQKBBvYeXO1c22CGz3ndXu-0wm8vv9I-aghV2-C01waRzERYEzPHXUgpeG96oVZQ1X3rDc7a87p5-JK1ZMvxoUA0aWlaCoZpwwrRldpt0vXLErJbnxcTbDeutJ_u9JbV_qhq9X37h-f8XuwNYMP_3W_390-jilP8DvlYHWFu7XYMUM0vmj2NOIPjFuwIg
CitedBy_id crossref_primary_10_1016_j_rse_2023_113924
crossref_primary_10_1016_j_ecolind_2023_111246
crossref_primary_10_1016_j_isprsjprs_2024_12_021
crossref_primary_10_5194_essd_16_3213_2024
crossref_primary_10_1016_j_isprsjprs_2024_10_015
crossref_primary_10_1016_j_compag_2024_109370
crossref_primary_10_1080_15481603_2024_2309843
crossref_primary_10_1109_JSTARS_2023_3329987
crossref_primary_10_1109_TGRS_2023_3345159
crossref_primary_10_1016_j_isprsjprs_2024_08_006
crossref_primary_10_1080_07038992_2024_2367479
crossref_primary_10_1186_s40537_023_00735_2
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_1109_LGRS_2024_3418880
crossref_primary_10_1109_TGRS_2023_3247343
crossref_primary_10_1080_15481603_2024_2387393
crossref_primary_10_1016_j_rse_2024_114427
crossref_primary_10_29121_shodhkosh_v5_i4_2024_2988
crossref_primary_10_3390_rs15153792
crossref_primary_10_1109_JSTARS_2024_3399741
crossref_primary_10_1080_17538947_2023_2297943
crossref_primary_10_48175_IJARSCT_23743
crossref_primary_10_1109_TGRS_2024_3442171
crossref_primary_10_1080_15481603_2023_2281142
crossref_primary_10_3390_rs16081464
crossref_primary_10_3389_fpls_2024_1471085
Cites_doi 10.1038/nclimate2353
10.1109/TKDE.2009.191
10.1016/j.isprsjprs.2021.04.015
10.1016/j.jag.2018.06.007
10.1016/j.rse.2015.10.029
10.1038/s41597-021-00827-9
10.1016/j.fcr.2012.08.008
10.1080/2150704X.2015.1019015
10.1016/j.agrformet.2013.01.007
10.1080/10106049.2011.562309
10.1016/0034-4257(79)90013-0
10.1109/CVPR.2016.90
10.1016/j.geosus.2020.05.002
10.1080/15481603.2019.1658960
10.1016/j.biosystemseng.2018.06.017
10.1016/S0034-4257(96)00067-3
10.1109/JSTARS.2019.2922469
10.1109/LGRS.2010.2095409
10.1016/S0034-4257(02)00096-2
10.1109/ICCV.2019.00149
10.3390/drones4010007
10.1080/15481603.2019.1628412
10.1016/j.rse.2017.06.031
10.1609/aaai.v33i01.33015989
10.1016/j.jag.2021.102451
10.1016/j.knosys.2018.12.019
10.1038/nature14539
10.1016/j.rse.2015.04.021
10.1002/ird.2597
10.1016/j.isprsjprs.2013.08.007
10.1016/j.jag.2014.07.002
10.1016/j.neunet.2014.09.003
10.1016/S0034-4257(01)00289-9
10.1016/j.compag.2021.106090
10.1016/j.rse.2017.04.026
10.1016/j.rse.2021.112603
10.1016/j.isprsjprs.2016.07.007
10.1016/j.compag.2021.106188
10.1016/j.rse.2021.112599
10.2134/agronj2007.0249
10.1007/978-3-319-49409-8_35
10.1016/j.jag.2021.102388
10.1016/j.inffus.2014.12.003
10.1016/j.compag.2021.106314
10.1016/j.scitotenv.2020.138869
10.1016/j.rse.2020.111660
10.1145/2382577.2382582
10.1609/aaai.v34i05.6288
10.1016/S0034-4257(00)00169-3
10.1016/j.rse.2018.11.032
10.3390/rs70505347
10.1016/j.rse.2018.02.045
10.1109/ICASSP.2018.8461423
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2022.2156123
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: WRHA-Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
EndPage 2265
ExternalDocumentID oai_doaj_org_article_48ce2016acc74e2ea88c47976c81693b
10_1080_15481603_2022_2156123
2156123
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ID FETCH-LOGICAL-c456t-952dafbc3d064dd348b48fc4996f19862a6efb7b9c030e5e6960d437c8d9a63b3
IEDL.DBID DOA
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:31:07 EDT 2025
Mon May 05 21:11:21 EDT 2025
Tue Jul 01 02:27:28 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Dec 25 09:04:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-952dafbc3d064dd348b48fc4996f19862a6efb7b9c030e5e6960d437c8d9a63b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/48ce2016acc74e2ea88c47976c81693b
PQID 2834230932
PQPubID 24069
PageCount 19
ParticipantIDs informaworld_taylorfrancis_310_1080_15481603_2022_2156123
crossref_primary_10_1080_15481603_2022_2156123
proquest_miscellaneous_2834230932
doaj_primary_oai_doaj_org_article_48ce2016acc74e2ea88c47976c81693b
crossref_citationtrail_10_1080_15481603_2022_2156123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0033
cit0034
cit0031
cit0032
cit0030
Van der Maaten L. (cit0047) 2008; 9
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
cit0028
cit0029
cit0026
cit0027
cit0024
cit0025
Guo J. (cit0019) 2018; 1809
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
Ganin Y. (cit0011) 2016; 17
cit0018
cit0015
cit0059
cit0016
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
Gretton A. (cit0017) 2012; 13
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
References_xml – ident: cit0001
  doi: 10.1038/nclimate2353
– ident: cit0034
  doi: 10.1109/TKDE.2009.191
– volume: 1809
  start-page: 02256
  year: 2018
  ident: cit0019
  publication-title: ArXiv Preprint ArXiv
– ident: cit0037
  doi: 10.1016/j.isprsjprs.2021.04.015
– ident: cit0049
  doi: 10.1016/j.jag.2018.06.007
– ident: cit0035
  doi: 10.1016/j.rse.2015.10.029
– ident: cit0053
  doi: 10.1038/s41597-021-00827-9
– ident: cit0027
  doi: 10.1016/j.fcr.2012.08.008
– ident: cit0025
  doi: 10.1080/2150704X.2015.1019015
– ident: cit0002
  doi: 10.1016/j.agrformet.2013.01.007
– ident: cit0003
  doi: 10.1080/10106049.2011.562309
– ident: cit0044
  doi: 10.1016/0034-4257(79)90013-0
– ident: cit0023
  doi: 10.1109/CVPR.2016.90
– ident: cit0048
  doi: 10.1016/j.geosus.2020.05.002
– ident: cit0055
  doi: 10.1080/15481603.2019.1658960
– ident: cit0041
  doi: 10.1016/j.biosystemseng.2018.06.017
– ident: cit0012
  doi: 10.1016/S0034-4257(96)00067-3
– ident: cit0010
  doi: 10.1109/JSTARS.2019.2922469
– ident: cit0033
  doi: 10.1109/LGRS.2010.2095409
– ident: cit0024
  doi: 10.1016/S0034-4257(02)00096-2
– ident: cit0036
  doi: 10.1109/ICCV.2019.00149
– ident: cit0007
  doi: 10.3390/drones4010007
– ident: cit0058
  doi: 10.1080/15481603.2019.1628412
– ident: cit0016
  doi: 10.1016/j.rse.2017.06.031
– ident: cit0059
  doi: 10.1609/aaai.v33i01.33015989
– ident: cit0014
  doi: 10.1016/j.jag.2021.102451
– ident: cit0020
  doi: 10.1016/j.knosys.2018.12.019
– volume: 17
  start-page: 2030
  issue: 1
  year: 2016
  ident: cit0011
  publication-title: The Journal of Machine Learning Research
– ident: cit0026
  doi: 10.1038/nature14539
– ident: cit0028
  doi: 10.1016/j.rse.2015.04.021
– ident: cit0009
  doi: 10.1002/ird.2597
– ident: cit0029
  doi: 10.1016/j.isprsjprs.2013.08.007
– ident: cit0046
– ident: cit0056
  doi: 10.1016/j.jag.2014.07.002
– ident: cit0038
  doi: 10.1016/j.neunet.2014.09.003
– ident: cit0015
  doi: 10.1016/S0034-4257(01)00289-9
– ident: cit0051
  doi: 10.1016/j.compag.2021.106090
– ident: cit0039
  doi: 10.1016/j.rse.2017.04.026
– ident: cit0045
  doi: 10.1016/j.rse.2021.112603
– ident: cit0006
  doi: 10.1016/j.isprsjprs.2016.07.007
– ident: cit0031
  doi: 10.1016/j.compag.2021.106188
– ident: cit0052
  doi: 10.1016/j.rse.2021.112599
– ident: cit0013
  doi: 10.2134/agronj2007.0249
– ident: cit0042
  doi: 10.1007/978-3-319-49409-8_35
– ident: cit0054
  doi: 10.1016/j.jag.2021.102388
– volume: 13
  start-page: 723
  issue: 1
  year: 2012
  ident: cit0017
  publication-title: The Journal of Machine Learning Research
– ident: cit0043
  doi: 10.1016/j.inffus.2014.12.003
– ident: cit0030
  doi: 10.1016/j.compag.2021.106314
– ident: cit0021
  doi: 10.1016/j.scitotenv.2020.138869
– ident: cit0008
  doi: 10.1016/j.rse.2020.111660
– ident: cit0005
  doi: 10.1145/2382577.2382582
– ident: cit0018
  doi: 10.1609/aaai.v34i05.6288
– ident: cit0040
  doi: 10.1016/S0034-4257(00)00169-3
– ident: cit0032
– volume: 9
  start-page: 11
  year: 2008
  ident: cit0047
  publication-title: Journal of Machine Learning Research
– ident: cit0057
  doi: 10.1016/j.rse.2018.11.032
– ident: cit0022
  doi: 10.3390/rs70505347
– ident: cit0004
  doi: 10.1016/j.rse.2018.02.045
– ident: cit0050
  doi: 10.1109/ICASSP.2018.8461423
SSID ssj0035115
Score 2.441566
Snippet Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2247
SubjectTerms China
Crop mapping
deep learning
multi-source unsupervised domain adaptation
satellites
time series analysis
time-series remote sensing
transfer learning
vegetation
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-Ll7EJ64vIoi3qJumbXpUURZBL7qgp5BXF8Ftl2334L93Jm0XH8gevDWlCaXTTL6ZfPmGkNMURU5MnLFYe84g3rAsS3nMXJxYnTkudNDZfnhMBkNx_xJ3bMKqpVViDJ03QhHBV-Pk1qbqGHEXiLKxOjJEd5yfw5qFEiLLZJUDUERW3-XroHPGuE0WB8lUAcES9OkO8fw1zLflKaj4_9Aw_eWzw0J0t0HWWwRJrxqTb5IlX2yRvasKc9rl-IOe0XDdpCyqbVLMaXYUwB6dlDUShGCEMqeBTsiaBD6dFdVsgq6j8o66cqzfCqqdnjSb9RRaWO6LjjVKOowoMuZH9AkHK_w74_RtDL6p2iHDu9vnmwFrqywwC-CpZlnMnc6NjRygE-ciIY2QuYVIKMn7GQQ8OvG5SU1mwR_42CcQ8zgRpVa6TCeRiXbJSlEWfo_Q1PWFk9aYSEqho0RLZ_s5IB5uwiHWHhHdx1W2lSDHShjvqt8qlXY2UWgT1dqkR87n3SaNBseiDtdoufnDKKEdbpTTkWpnpBLSekA_ibY2FZ57LaUVKaAzK1GgxvRI9tXuqg4ZlLwpd6KiBS9w0v0kCqYr7sHowpezSgGaAwB7Cah5_x_jH5A1bDaCk4dkpZ7O_BGAo9och9__E8dsAtI
  priority: 102
  providerName: Taylor & Francis
Title Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2156123
https://www.proquest.com/docview/2834230932
https://doaj.org/article/48ce2016acc74e2ea88c47976c81693b
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy4IWlCXR2UkxM1t1nYc-1gqqhVSuUClcrL8SlWpm6ya7IF_z4ydrAoc9sItsWLH8tgz39jjbwj52CDJia8Nq13iDPyNwEzDaxZrFZyJXLrMs331Ta2u5deb-uZRqi-MCSv0wGXgzqQOCYyUciE0MvHktA6yASMaNPKIeNS-lalmZ6roYDwdqzNTqgQfSVVivrujqzMswyLwDTk_BYuHBCR_WKVM3v8Xdek_qjrbn8sX5PkEHOl56fBL8iR1h-T4fMCt7H79i36i-bnsVAxHpNtF11HAeHTTjxgXBC30Lc1RhKzs29NtN2w3qDGGFGns1-6uoy66TTmjp_CGWb7o2iGTwy3FQPlb-h0b69I94_RuDSppeEWuL7_8uFixKbkCC4CZRmZqHl3rg4gASmIUUnup2wAOkGqXBvwcp1LrG28CqIFUJwWuTpSiCToap4QXr8lB13fpmNAmLmXUwXuhtXRCOR3DsgWgw32-u7ogch5cGybmcUyAcW-XE0HpLBOLMrGTTBbkdFdtU6g39lX4jJLbfYzM2bkA5pOd5pPdN58WxDyWux3zxklbspxYsacDH-ZJYmGV4tGL61K_HSyAOMCtFYDlN_-jk2_JM_xvIZx8Rw7Gh216D-Bo9CfkafVzdZJXw2_FeAbV
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELVYDnBBMyyimc1IiJuBduzEOTII1MN2ASQ4Wd7SQqKTFkkf-PupcpIWi0Yc5pbNpSiVKr8ql18RspchyYmVOZMmcAbxhmN5xiXzMnUm91yYyLN9dZ2O7sT5vbx_tRcGyyoxhi5aoojoq9G4MRndl8QdIszG9sgQ3nF-AJMWcogskmWpIJqAf_roYdR7Y1wnk5EzVUC0BGP6XTz_EvNmfoo0_u9ITD847TgTnX0hax2EpMetzr-ShVCuk-3jGpPa1eSF7tN43OYs6g1SzuvsKKA9Oq0arBACCVVBYz0hazP4dFbWsyn6jjp46quJeSyp8WbartZTOMN-X3RikNNhTLFkfkxvUFgZnhinjxNwTvUmuTs7vT0Zsa7NAnOAnhqWS-5NYV3iAZ54nwhlhSochEJpMcwh4jFpKGxmcwcOIciQQtDjRZI55XOTJjbZIktlVYZtQjM_FF45axOlhElSo7wbFgB5uI27WAdE9B9Xu46DHFthPOlhR1Xa60SjTnSnkwE5mA-btiQcnw34jZqbP4wc2vFC9TzWnUlqoVwA-JMa5zIReDBKOZEBPHMKGWrsgOSv9a6bmEIp2n4nOvnkBXb7n0SDveIijClDNas1wDlAsEcAm3f-Q_4vsjK6vbrUl3-uL76RVbzVsk9-J0vN8yz8AKTU2J_RFP4Cw2QGPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLb9QtBYyEuGXp2o7jHFtgVV4rJKjEzfIrq4puEjXJofx6ZuxkBUWoh97yshU74_E39pdvCHlVoMiJzcssN4FlEG-4rCxYnvlcOlN6JkzU2f6ykscn4uOPfGITdiOtEmPoKglFRF-Ng7v11cSIe4MoG7MjQ3TH2BzmLJQQuUluSYAnyOrjB6vJGeM2WR4lUwUES1Bm-onnf9X8NT1FFf9LGqb_-Ow4ES3vETs1IfFPfs6H3s7dr0vqjtdq431yd4Sp9DDZ1QNyI9QPye5hhwvnzeaCvqbxOK2LdI9IveXyUUCUtG16ZCFBDU1FI2cxS7sEdKi7oUX_1AVPfbMxpzU13rSJEUDhDHOK0Y1B3Yg1RVr-mn7DyupwljF6ugEH2D0mJ8v3398eZ2Mqh8wBQuuzMmfeVNZxDxDIey6UFapyEG7JalFCVGVkqGxhSwdOJ-RBQmDlBS-c8qWR3PInZKdu6rBLaOEXwitnLVdKGC6N8m5RAaxiNv4pOyNi-oLajTrnmG7jTC9GOdSpbzX2rR77dkbm22JtEvq4qsARmsf2YdTpjhea87Ueh70WygWAWNI4V4jAglHKiQIgoFOogmNnpPzTuHQfl2mqlFNF8yte4OVkiRp8Am70mDo0Q6cBMgJKPgBovneN-l-Q21_fLfXnD6tPT8kdvJMELvfJTn8-hGcAxnr7PA633-wMJNs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+potential+of+multi-source+unsupervised+domain+adaptation+in+crop+mapping+using+Sentinel-2+images&rft.jtitle=GIScience+and+remote+sensing&rft.au=Wang%2C+Yumiao&rft.au=Feng%2C+Luwei&rft.au=Sun%2C+Weiwei&rft.au=Zhang%2C+Zhou&rft.date=2022-12-31&rft.issn=1943-7226&rft.volume=59&rft.issue=1+p.2247-2265&rft.spage=2247&rft.epage=2265&rft_id=info:doi/10.1080%2F15481603.2022.2156123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon