Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images
Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop classification with satisfactory results, most of them focused on supervised methods, which are usually applicable to a specific domain and l...
Saved in:
Published in | GIScience and remote sensing Vol. 59; no. 1; pp. 2247 - 2265 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2022
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2022.2156123 |
Cover
Abstract | Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop classification with satisfactory results, most of them focused on supervised methods, which are usually applicable to a specific domain and lose their validity in new domains. Unsupervised domain adaptation (UDA) was proposed to solve this limitation by transferring knowledge from source domains with labeled samples to target domains with unlabeled samples. Particularly, multi-source UDA (MUDA) is a powerful extension that leverages knowledge from multiple source domains and can achieve better results in the target domain than single-source UDA (SUDA). However, few studies have explored the potential of MUDA for crop mapping. This study proposed a MUDA crop classification model (MUCCM) for unsupervised crop mapping. Specifically, 11 states in the U.S. were selected as the multi-source domains, and three provinces in Northeast China were selected as individual target domains. Ten spectral bands and five vegetation indexes were collected at a 10-day interval from time-series Sentinel-2 images to build the MUCCM. Subsequently, a SUDA model Domain Adversarial Neural Network (DANN) and two direct transfer methods, namely, the deep neural network and random forest, were constructed and compared with the MUCCM. The results indicated that the UDA models outperformed the direct transfer models significantly, and the MUCCM was superior to the DANN, achieving the highest classification accuracy (OA>85%) in each target domain. In addition, the MUCCM also performed best in in-season forecasting and crop mapping. This study is the first to apply a MUDA to crop classification and demonstrate a novel, effective solution for high-performance crop mapping in regions without labeled samples. |
---|---|
AbstractList | Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop classification with satisfactory results, most of them focused on supervised methods, which are usually applicable to a specific domain and lose their validity in new domains. Unsupervised domain adaptation (UDA) was proposed to solve this limitation by transferring knowledge from source domains with labeled samples to target domains with unlabeled samples. Particularly, multi-source UDA (MUDA) is a powerful extension that leverages knowledge from multiple source domains and can achieve better results in the target domain than single-source UDA (SUDA). However, few studies have explored the potential of MUDA for crop mapping. This study proposed a MUDA crop classification model (MUCCM) for unsupervised crop mapping. Specifically, 11 states in the U.S. were selected as the multi-source domains, and three provinces in Northeast China were selected as individual target domains. Ten spectral bands and five vegetation indexes were collected at a 10-day interval from time-series Sentinel-2 images to build the MUCCM. Subsequently, a SUDA model Domain Adversarial Neural Network (DANN) and two direct transfer methods, namely, the deep neural network and random forest, were constructed and compared with the MUCCM. The results indicated that the UDA models outperformed the direct transfer models significantly, and the MUCCM was superior to the DANN, achieving the highest classification accuracy (OA>85%) in each target domain. In addition, the MUCCM also performed best in in-season forecasting and crop mapping. This study is the first to apply a MUDA to crop classification and demonstrate a novel, effective solution for high-performance crop mapping in regions without labeled samples. |
Author | Feng, Luwei Wang, Yumiao Zhang, Hanyu Zhang, Zhou Meng, Xiangchao Yang, Gang Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Yumiao surname: Wang fullname: Wang, Yumiao organization: Ministry of Natural Resources – sequence: 2 givenname: Luwei surname: Feng fullname: Feng, Luwei organization: Wuhan University – sequence: 3 givenname: Weiwei surname: Sun fullname: Sun, Weiwei email: sunweiwei@nbu.edu.cn organization: Ningbo University – sequence: 4 givenname: Zhou surname: Zhang fullname: Zhang, Zhou email: zzhang347@wisc.edu organization: University of Wisconsin-Madison – sequence: 5 givenname: Hanyu surname: Zhang fullname: Zhang, Hanyu organization: University of California – sequence: 6 givenname: Gang surname: Yang fullname: Yang, Gang organization: Ningbo University – sequence: 7 givenname: Xiangchao surname: Meng fullname: Meng, Xiangchao organization: Ningbo University |
BookMark | eNqFkc1u1TAUhCNUJNrCIyB5ySYX_8WxxQZUFahUiQWwtk5s5-LKsYPtQPv2JE3pgkXZ2D7WzHekmbPmJKbomuY1wQeCJX5LOi6JwOxAMaUHSjpBKHvWnBLFWdtTKk7W96ppN9GL5qyUG4xZR0h32sTL2zmk7OMR1R8Ozam6WD0ElEY0LaH6tqQlG4eWWJbZ5V--OItsmsBHBBbmCtWniNbJ5DSjCeZ5gy1lO79usOhCS5Gf4OjKy-b5CKG4Vw_3efP94-W3i8_t9ZdPVxcfrlvDO1Fb1VEL42CYxYJby7gcuBwNV0qMRElBQbhx6AdlMMOuc0IJbDnrjbQKBBvYeXO1c22CGz3ndXu-0wm8vv9I-aghV2-C01waRzERYEzPHXUgpeG96oVZQ1X3rDc7a87p5-JK1ZMvxoUA0aWlaCoZpwwrRldpt0vXLErJbnxcTbDeutJ_u9JbV_qhq9X37h-f8XuwNYMP_3W_390-jilP8DvlYHWFu7XYMUM0vmj2NOIPjFuwIg |
CitedBy_id | crossref_primary_10_1016_j_rse_2023_113924 crossref_primary_10_1016_j_ecolind_2023_111246 crossref_primary_10_1016_j_isprsjprs_2024_12_021 crossref_primary_10_5194_essd_16_3213_2024 crossref_primary_10_1016_j_isprsjprs_2024_10_015 crossref_primary_10_1016_j_compag_2024_109370 crossref_primary_10_1080_15481603_2024_2309843 crossref_primary_10_1109_JSTARS_2023_3329987 crossref_primary_10_1109_TGRS_2023_3345159 crossref_primary_10_1016_j_isprsjprs_2024_08_006 crossref_primary_10_1080_07038992_2024_2367479 crossref_primary_10_1186_s40537_023_00735_2 crossref_primary_10_1017_eds_2024_53 crossref_primary_10_1109_LGRS_2024_3418880 crossref_primary_10_1109_TGRS_2023_3247343 crossref_primary_10_1080_15481603_2024_2387393 crossref_primary_10_1016_j_rse_2024_114427 crossref_primary_10_29121_shodhkosh_v5_i4_2024_2988 crossref_primary_10_3390_rs15153792 crossref_primary_10_1109_JSTARS_2024_3399741 crossref_primary_10_1080_17538947_2023_2297943 crossref_primary_10_48175_IJARSCT_23743 crossref_primary_10_1109_TGRS_2024_3442171 crossref_primary_10_1080_15481603_2023_2281142 crossref_primary_10_3390_rs16081464 crossref_primary_10_3389_fpls_2024_1471085 |
Cites_doi | 10.1038/nclimate2353 10.1109/TKDE.2009.191 10.1016/j.isprsjprs.2021.04.015 10.1016/j.jag.2018.06.007 10.1016/j.rse.2015.10.029 10.1038/s41597-021-00827-9 10.1016/j.fcr.2012.08.008 10.1080/2150704X.2015.1019015 10.1016/j.agrformet.2013.01.007 10.1080/10106049.2011.562309 10.1016/0034-4257(79)90013-0 10.1109/CVPR.2016.90 10.1016/j.geosus.2020.05.002 10.1080/15481603.2019.1658960 10.1016/j.biosystemseng.2018.06.017 10.1016/S0034-4257(96)00067-3 10.1109/JSTARS.2019.2922469 10.1109/LGRS.2010.2095409 10.1016/S0034-4257(02)00096-2 10.1109/ICCV.2019.00149 10.3390/drones4010007 10.1080/15481603.2019.1628412 10.1016/j.rse.2017.06.031 10.1609/aaai.v33i01.33015989 10.1016/j.jag.2021.102451 10.1016/j.knosys.2018.12.019 10.1038/nature14539 10.1016/j.rse.2015.04.021 10.1002/ird.2597 10.1016/j.isprsjprs.2013.08.007 10.1016/j.jag.2014.07.002 10.1016/j.neunet.2014.09.003 10.1016/S0034-4257(01)00289-9 10.1016/j.compag.2021.106090 10.1016/j.rse.2017.04.026 10.1016/j.rse.2021.112603 10.1016/j.isprsjprs.2016.07.007 10.1016/j.compag.2021.106188 10.1016/j.rse.2021.112599 10.2134/agronj2007.0249 10.1007/978-3-319-49409-8_35 10.1016/j.jag.2021.102388 10.1016/j.inffus.2014.12.003 10.1016/j.compag.2021.106314 10.1016/j.scitotenv.2020.138869 10.1016/j.rse.2020.111660 10.1145/2382577.2382582 10.1609/aaai.v34i05.6288 10.1016/S0034-4257(00)00169-3 10.1016/j.rse.2018.11.032 10.3390/rs70505347 10.1016/j.rse.2018.02.045 10.1109/ICASSP.2018.8461423 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2022.2156123 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: WRHA-Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
EndPage | 2265 |
ExternalDocumentID | oai_doaj_org_article_48ce2016acc74e2ea88c47976c81693b 10_1080_15481603_2022_2156123 2156123 |
Genre | Research Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-952dafbc3d064dd348b48fc4996f19862a6efb7b9c030e5e6960d437c8d9a63b3 |
IEDL.DBID | DOA |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:31:07 EDT 2025 Mon May 05 21:11:21 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Dec 25 09:04:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-952dafbc3d064dd348b48fc4996f19862a6efb7b9c030e5e6960d437c8d9a63b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/48ce2016acc74e2ea88c47976c81693b |
PQID | 2834230932 |
PQPubID | 24069 |
PageCount | 19 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15481603_2022_2156123 crossref_primary_10_1080_15481603_2022_2156123 proquest_miscellaneous_2834230932 doaj_primary_oai_doaj_org_article_48ce2016acc74e2ea88c47976c81693b crossref_citationtrail_10_1080_15481603_2022_2156123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | cit0033 cit0034 cit0031 cit0032 cit0030 Van der Maaten L. (cit0047) 2008; 9 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 Guo J. (cit0019) 2018; 1809 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 Ganin Y. (cit0011) 2016; 17 cit0018 cit0015 cit0059 cit0016 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 Gretton A. (cit0017) 2012; 13 cit0042 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 |
References_xml | – ident: cit0001 doi: 10.1038/nclimate2353 – ident: cit0034 doi: 10.1109/TKDE.2009.191 – volume: 1809 start-page: 02256 year: 2018 ident: cit0019 publication-title: ArXiv Preprint ArXiv – ident: cit0037 doi: 10.1016/j.isprsjprs.2021.04.015 – ident: cit0049 doi: 10.1016/j.jag.2018.06.007 – ident: cit0035 doi: 10.1016/j.rse.2015.10.029 – ident: cit0053 doi: 10.1038/s41597-021-00827-9 – ident: cit0027 doi: 10.1016/j.fcr.2012.08.008 – ident: cit0025 doi: 10.1080/2150704X.2015.1019015 – ident: cit0002 doi: 10.1016/j.agrformet.2013.01.007 – ident: cit0003 doi: 10.1080/10106049.2011.562309 – ident: cit0044 doi: 10.1016/0034-4257(79)90013-0 – ident: cit0023 doi: 10.1109/CVPR.2016.90 – ident: cit0048 doi: 10.1016/j.geosus.2020.05.002 – ident: cit0055 doi: 10.1080/15481603.2019.1658960 – ident: cit0041 doi: 10.1016/j.biosystemseng.2018.06.017 – ident: cit0012 doi: 10.1016/S0034-4257(96)00067-3 – ident: cit0010 doi: 10.1109/JSTARS.2019.2922469 – ident: cit0033 doi: 10.1109/LGRS.2010.2095409 – ident: cit0024 doi: 10.1016/S0034-4257(02)00096-2 – ident: cit0036 doi: 10.1109/ICCV.2019.00149 – ident: cit0007 doi: 10.3390/drones4010007 – ident: cit0058 doi: 10.1080/15481603.2019.1628412 – ident: cit0016 doi: 10.1016/j.rse.2017.06.031 – ident: cit0059 doi: 10.1609/aaai.v33i01.33015989 – ident: cit0014 doi: 10.1016/j.jag.2021.102451 – ident: cit0020 doi: 10.1016/j.knosys.2018.12.019 – volume: 17 start-page: 2030 issue: 1 year: 2016 ident: cit0011 publication-title: The Journal of Machine Learning Research – ident: cit0026 doi: 10.1038/nature14539 – ident: cit0028 doi: 10.1016/j.rse.2015.04.021 – ident: cit0009 doi: 10.1002/ird.2597 – ident: cit0029 doi: 10.1016/j.isprsjprs.2013.08.007 – ident: cit0046 – ident: cit0056 doi: 10.1016/j.jag.2014.07.002 – ident: cit0038 doi: 10.1016/j.neunet.2014.09.003 – ident: cit0015 doi: 10.1016/S0034-4257(01)00289-9 – ident: cit0051 doi: 10.1016/j.compag.2021.106090 – ident: cit0039 doi: 10.1016/j.rse.2017.04.026 – ident: cit0045 doi: 10.1016/j.rse.2021.112603 – ident: cit0006 doi: 10.1016/j.isprsjprs.2016.07.007 – ident: cit0031 doi: 10.1016/j.compag.2021.106188 – ident: cit0052 doi: 10.1016/j.rse.2021.112599 – ident: cit0013 doi: 10.2134/agronj2007.0249 – ident: cit0042 doi: 10.1007/978-3-319-49409-8_35 – ident: cit0054 doi: 10.1016/j.jag.2021.102388 – volume: 13 start-page: 723 issue: 1 year: 2012 ident: cit0017 publication-title: The Journal of Machine Learning Research – ident: cit0043 doi: 10.1016/j.inffus.2014.12.003 – ident: cit0030 doi: 10.1016/j.compag.2021.106314 – ident: cit0021 doi: 10.1016/j.scitotenv.2020.138869 – ident: cit0008 doi: 10.1016/j.rse.2020.111660 – ident: cit0005 doi: 10.1145/2382577.2382582 – ident: cit0018 doi: 10.1609/aaai.v34i05.6288 – ident: cit0040 doi: 10.1016/S0034-4257(00)00169-3 – ident: cit0032 – volume: 9 start-page: 11 year: 2008 ident: cit0047 publication-title: Journal of Machine Learning Research – ident: cit0057 doi: 10.1016/j.rse.2018.11.032 – ident: cit0022 doi: 10.3390/rs70505347 – ident: cit0004 doi: 10.1016/j.rse.2018.02.045 – ident: cit0050 doi: 10.1109/ICASSP.2018.8461423 |
SSID | ssj0035115 |
Score | 2.441566 |
Snippet | Accurate crop mapping is critical for agricultural applications. Although studies have combined deep learning methods and time-series satellite images to crop... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2247 |
SubjectTerms | China Crop mapping deep learning multi-source unsupervised domain adaptation satellites time series analysis time-series remote sensing transfer learning vegetation |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-Ll7EJ64vIoi3qJumbXpUURZBL7qgp5BXF8Ftl2334L93Jm0XH8gevDWlCaXTTL6ZfPmGkNMURU5MnLFYe84g3rAsS3nMXJxYnTkudNDZfnhMBkNx_xJ3bMKqpVViDJ03QhHBV-Pk1qbqGHEXiLKxOjJEd5yfw5qFEiLLZJUDUERW3-XroHPGuE0WB8lUAcES9OkO8fw1zLflKaj4_9Aw_eWzw0J0t0HWWwRJrxqTb5IlX2yRvasKc9rl-IOe0XDdpCyqbVLMaXYUwB6dlDUShGCEMqeBTsiaBD6dFdVsgq6j8o66cqzfCqqdnjSb9RRaWO6LjjVKOowoMuZH9AkHK_w74_RtDL6p2iHDu9vnmwFrqywwC-CpZlnMnc6NjRygE-ciIY2QuYVIKMn7GQQ8OvG5SU1mwR_42CcQ8zgRpVa6TCeRiXbJSlEWfo_Q1PWFk9aYSEqho0RLZ_s5IB5uwiHWHhHdx1W2lSDHShjvqt8qlXY2UWgT1dqkR87n3SaNBseiDtdoufnDKKEdbpTTkWpnpBLSekA_ibY2FZ57LaUVKaAzK1GgxvRI9tXuqg4ZlLwpd6KiBS9w0v0kCqYr7sHowpezSgGaAwB7Cah5_x_jH5A1bDaCk4dkpZ7O_BGAo9och9__E8dsAtI priority: 102 providerName: Taylor & Francis |
Title | Exploring the potential of multi-source unsupervised domain adaptation in crop mapping using Sentinel-2 images |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2156123 https://www.proquest.com/docview/2834230932 https://doaj.org/article/48ce2016acc74e2ea88c47976c81693b |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy4IWlCXR2UkxM1t1nYc-1gqqhVSuUClcrL8SlWpm6ya7IF_z4ydrAoc9sItsWLH8tgz39jjbwj52CDJia8Nq13iDPyNwEzDaxZrFZyJXLrMs331Ta2u5deb-uZRqi-MCSv0wGXgzqQOCYyUciE0MvHktA6yASMaNPKIeNS-lalmZ6roYDwdqzNTqgQfSVVivrujqzMswyLwDTk_BYuHBCR_WKVM3v8Xdek_qjrbn8sX5PkEHOl56fBL8iR1h-T4fMCt7H79i36i-bnsVAxHpNtF11HAeHTTjxgXBC30Lc1RhKzs29NtN2w3qDGGFGns1-6uoy66TTmjp_CGWb7o2iGTwy3FQPlb-h0b69I94_RuDSppeEWuL7_8uFixKbkCC4CZRmZqHl3rg4gASmIUUnup2wAOkGqXBvwcp1LrG28CqIFUJwWuTpSiCToap4QXr8lB13fpmNAmLmXUwXuhtXRCOR3DsgWgw32-u7ogch5cGybmcUyAcW-XE0HpLBOLMrGTTBbkdFdtU6g39lX4jJLbfYzM2bkA5pOd5pPdN58WxDyWux3zxklbspxYsacDH-ZJYmGV4tGL61K_HSyAOMCtFYDlN_-jk2_JM_xvIZx8Rw7Gh216D-Bo9CfkafVzdZJXw2_FeAbV |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELVYDnBBMyyimc1IiJuBduzEOTII1MN2ASQ4Wd7SQqKTFkkf-PupcpIWi0Yc5pbNpSiVKr8ql18RspchyYmVOZMmcAbxhmN5xiXzMnUm91yYyLN9dZ2O7sT5vbx_tRcGyyoxhi5aoojoq9G4MRndl8QdIszG9sgQ3nF-AJMWcogskmWpIJqAf_roYdR7Y1wnk5EzVUC0BGP6XTz_EvNmfoo0_u9ITD847TgTnX0hax2EpMetzr-ShVCuk-3jGpPa1eSF7tN43OYs6g1SzuvsKKA9Oq0arBACCVVBYz0hazP4dFbWsyn6jjp46quJeSyp8WbartZTOMN-X3RikNNhTLFkfkxvUFgZnhinjxNwTvUmuTs7vT0Zsa7NAnOAnhqWS-5NYV3iAZ54nwhlhSochEJpMcwh4jFpKGxmcwcOIciQQtDjRZI55XOTJjbZIktlVYZtQjM_FF45axOlhElSo7wbFgB5uI27WAdE9B9Xu46DHFthPOlhR1Xa60SjTnSnkwE5mA-btiQcnw34jZqbP4wc2vFC9TzWnUlqoVwA-JMa5zIReDBKOZEBPHMKGWrsgOSv9a6bmEIp2n4nOvnkBXb7n0SDveIijClDNas1wDlAsEcAm3f-Q_4vsjK6vbrUl3-uL76RVbzVsk9-J0vN8yz8AKTU2J_RFP4Cw2QGPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLb9QtBYyEuGXp2o7jHFtgVV4rJKjEzfIrq4puEjXJofx6ZuxkBUWoh97yshU74_E39pdvCHlVoMiJzcssN4FlEG-4rCxYnvlcOlN6JkzU2f6ykscn4uOPfGITdiOtEmPoKglFRF-Ng7v11cSIe4MoG7MjQ3TH2BzmLJQQuUluSYAnyOrjB6vJGeM2WR4lUwUES1Bm-onnf9X8NT1FFf9LGqb_-Ow4ES3vETs1IfFPfs6H3s7dr0vqjtdq431yd4Sp9DDZ1QNyI9QPye5hhwvnzeaCvqbxOK2LdI9IveXyUUCUtG16ZCFBDU1FI2cxS7sEdKi7oUX_1AVPfbMxpzU13rSJEUDhDHOK0Y1B3Yg1RVr-mn7DyupwljF6ugEH2D0mJ8v3398eZ2Mqh8wBQuuzMmfeVNZxDxDIey6UFapyEG7JalFCVGVkqGxhSwdOJ-RBQmDlBS-c8qWR3PInZKdu6rBLaOEXwitnLVdKGC6N8m5RAaxiNv4pOyNi-oLajTrnmG7jTC9GOdSpbzX2rR77dkbm22JtEvq4qsARmsf2YdTpjhea87Ueh70WygWAWNI4V4jAglHKiQIgoFOogmNnpPzTuHQfl2mqlFNF8yte4OVkiRp8Am70mDo0Q6cBMgJKPgBovneN-l-Q21_fLfXnD6tPT8kdvJMELvfJTn8-hGcAxnr7PA633-wMJNs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+potential+of+multi-source+unsupervised+domain+adaptation+in+crop+mapping+using+Sentinel-2+images&rft.jtitle=GIScience+and+remote+sensing&rft.au=Wang%2C+Yumiao&rft.au=Feng%2C+Luwei&rft.au=Sun%2C+Weiwei&rft.au=Zhang%2C+Zhou&rft.date=2022-12-31&rft.issn=1943-7226&rft.volume=59&rft.issue=1+p.2247-2265&rft.spage=2247&rft.epage=2265&rft_id=info:doi/10.1080%2F15481603.2022.2156123&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |