A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency
Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire dete...
Saved in:
Published in | GIScience and remote sensing Vol. 59; no. 1; pp. 2019 - 2035 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2022
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire detection algorithm, with a focus on reducing detection latency, utilizing 10-min interval high temporal resolution Himawari-8 Advanced Himawari Imager. Random forest (RF) and convolutional neural network (CNN) were utilized for model development. The CNN model accurately reflected the contextual approach adopted in previous studies by learning information between adjacent matrices from an image. This study also investigates the contribution of temporal and spatial information to the two machine learning techniques by combining input features. Temporal and spatial factors contributed to the reduction in detection latency and false alarms, respectively, and forest fires could be most effectively detected using both types of information. The overall accuracy, precision, recall, and F1-score were 0.97, 0.89, 0.41, and 0.54, respectively, in the best scheme among the RF-based schemes and 0.98, 0.91, 0.63, and 0.74, respectively, in that among the CNN-based schemes. This indicated better performance of the CNN model for forest fire detection that is attributed to its spatial pattern training and data augmentation. The CNN model detected all test forest fires within an average of 12 min, and one case was detected 9 min earlier than the recording time. Moreover, the proposed model outperformed the recent operational satellite-based active fire detection algorithms. Further spatial generality test results showed that the CNN model had reliable generality and was robust under varied environmental conditions. Overall, our results demonstrated the benefits of geostationary satellite-based remote sensing for forest fire monitoring. |
---|---|
AbstractList | Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire detection algorithm, with a focus on reducing detection latency, utilizing 10-min interval high temporal resolution Himawari-8 Advanced Himawari Imager. Random forest (RF) and convolutional neural network (CNN) were utilized for model development. The CNN model accurately reflected the contextual approach adopted in previous studies by learning information between adjacent matrices from an image. This study also investigates the contribution of temporal and spatial information to the two machine learning techniques by combining input features. Temporal and spatial factors contributed to the reduction in detection latency and false alarms, respectively, and forest fires could be most effectively detected using both types of information. The overall accuracy, precision, recall, and F1-score were 0.97, 0.89, 0.41, and 0.54, respectively, in the best scheme among the RF-based schemes and 0.98, 0.91, 0.63, and 0.74, respectively, in that among the CNN-based schemes. This indicated better performance of the CNN model for forest fire detection that is attributed to its spatial pattern training and data augmentation. The CNN model detected all test forest fires within an average of 12 min, and one case was detected 9 min earlier than the recording time. Moreover, the proposed model outperformed the recent operational satellite-based active fire detection algorithms. Further spatial generality test results showed that the CNN model had reliable generality and was robust under varied environmental conditions. Overall, our results demonstrated the benefits of geostationary satellite-based remote sensing for forest fire monitoring. Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire detection algorithm, with a focus on reducing detection latency, utilizing 10-min interval high temporal resolution Himawari-8 Advanced Himawari Imager. Random forest (RF) and convolutional neural network (CNN) were utilized for model development. The CNN model accurately reflected the contextual approach adopted in previous studies by learning information between adjacent matrices from an image. This study also investigates the contribution of temporal and spatial information to the two machine learning techniques by combining input features. Temporal and spatial factors contributed to the reduction in detection latency and false alarms, respectively, and forest fires could be most effectively detected using both types of information. The overall accuracy, precision, recall, and F1-score were 0.97, 0.89, 0.41, and 0.54, respectively, in the best scheme among the RF-based schemes and 0.98, 0.91, 0.63, and 0.74, respectively, in that among the CNN-based schemes. This indicated better performance of the CNN model for forest fire detection that is attributed to its spatial pattern training and data augmentation. The CNN model detected all test forest fires within an average of 12 min, and one case was detected 9 min earlier than the recording time. Moreover, the proposed model outperformed the recent operational satellite-based active fire detection algorithms. Further spatial generality test results showed that the CNN model had reliable generality and was robust under varied environmental conditions. Overall, our results demonstrated the benefits of geostationary satellite-based remote sensing for forest fire monitoring. |
Author | Im, Jungho Kwon, Chungeun Kang, Yoojin Jang, Eunna |
Author_xml | – sequence: 1 givenname: Yoojin orcidid: 0000-0003-3006-6994 surname: Kang fullname: Kang, Yoojin organization: Ulsan National Institute of Science and Technology – sequence: 2 givenname: Eunna orcidid: 0000-0002-4474-631X surname: Jang fullname: Jang, Eunna organization: Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology – sequence: 3 givenname: Jungho orcidid: 0000-0002-4506-6877 surname: Im fullname: Im, Jungho email: ersgis@unist.ac.kr organization: Ulsan National Institute of Science and Technology – sequence: 4 givenname: Chungeun surname: Kwon fullname: Kwon, Chungeun organization: Korea Forest Research Institute |
BookMark | eNqFUctqHDEQHIIDsZ18QkDHXHaj54yGXGJMHgZDLslZ9EitjYx2tJa0mP37aDJOCDnYh6aboqqa7rrozuY0Y9e9ZXTLqKbvmZKa9VRsOeV8y5kUeuAvunM2SrEZOO_P2tw4m4X0qrso5Y5SoRhT5939FXGIBxIR8hzmHdknh5EcyzLvMJUKNaQZ8okUqBhjqEgcVCA-5aWwVOJDbiBWtAuXPIT6k2R0R4vuHzg2_WxPr7uXHmLBN4_9svvx-dP366-b229fbq6vbjdWqr5uRsYsY3oSzErhGXqt_dhPFLymAifqlaDTNDmwA51QSq_d4EYv_KAG74GJy-5m9XUJ7swhh307wiQI5jeQ8s5ArsFGNCN1Tis-olJaThK0UhJHxznH3ms2NK93q9chp_tjO9nsQ7HtGzBjOhbDtZCcMyEXqlqpNqdSMvq_qxk1S1zmT1xmics8xtV0H_7T2bD-vmYI8Vn1x1Ud5pbJHh5Sjs5UOMWUfYbZhmLE0xa_AC_IsZ0 |
CitedBy_id | crossref_primary_10_1007_s11270_024_07233_y crossref_primary_10_1016_j_jag_2025_104416 crossref_primary_10_1109_JSTARS_2023_3308041 crossref_primary_10_1080_01431161_2023_2295834 crossref_primary_10_3390_land13101696 crossref_primary_10_1109_ACCESS_2024_3515215 crossref_primary_10_1080_15481603_2023_2287291 crossref_primary_10_3390_fire7020054 crossref_primary_10_3390_rs15061541 crossref_primary_10_3390_rs15143521 crossref_primary_10_1109_JIOT_2024_3401178 crossref_primary_10_1109_JSTARS_2024_3435853 crossref_primary_10_1016_j_heliyon_2023_e23127 crossref_primary_10_1016_j_atmosres_2023_106787 crossref_primary_10_1016_j_jag_2024_103784 crossref_primary_10_1109_TGRS_2024_3418475 crossref_primary_10_3390_f14040778 crossref_primary_10_3390_f15010217 crossref_primary_10_3390_fire6050192 crossref_primary_10_1155_2024_8511649 crossref_primary_10_1016_j_foreco_2024_121712 crossref_primary_10_3390_fire6080291 crossref_primary_10_1109_ACCESS_2024_3383653 crossref_primary_10_1002_qj_4643 crossref_primary_10_1080_15481603_2023_2243671 crossref_primary_10_5572_KOSAE_2024_40_1_103 crossref_primary_10_7780_kjrs_2024_40_6_3_11 crossref_primary_10_1016_j_procs_2024_11_181 crossref_primary_10_1016_j_rse_2023_113814 crossref_primary_10_3390_rs15235435 crossref_primary_10_1016_j_jag_2024_104029 crossref_primary_10_1109_JSTARS_2024_3450714 crossref_primary_10_1016_j_ecolind_2024_112067 crossref_primary_10_1080_00102202_2024_2372689 crossref_primary_10_3390_f14102089 crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_1109_ACCESS_2024_3501336 crossref_primary_10_1109_TSMC_2023_3345928 crossref_primary_10_1080_01431161_2023_2255349 crossref_primary_10_3390_rs16142629 crossref_primary_10_3390_computers13020036 crossref_primary_10_1016_j_eswa_2024_124791 crossref_primary_10_1016_j_ufug_2024_128239 |
Cites_doi | 10.1016/j.rse.2019.111600 10.1016/j.rse.2016.02.054 10.3390/rs8110932 10.1080/15481603.2020.1712100 10.1109/ACCESS.2020.2985657 10.1016/j.isprsjprs.2019.09.013 10.1016/j.rse.2017.07.003 10.1080/15481603.2021.1879495 10.3389/fenvs.2022.794028 10.1080/15481603.2021.1960075 10.1080/15481603.2019.1658960 10.1080/15481603.2021.1872228 10.1109/PIERS-Spring46901.2019.9017857 10.1016/j.rse.2016.07.021 10.1023/A:1010933404324 10.1016/j.rse.2013.12.008 10.1016/j.isprsjprs.2021.06.002 10.1080/15481603.2021.1907896 10.3390/rs12010108 10.1016/j.envpol.2019.113395 10.1016/S0034-4257(03)00184-6 10.3390/app10228213 10.5194/essd-13-2753-2021 10.1016/j.jag.2021.102347 10.1080/15481603.2021.1932126 10.3390/rs10121992 10.1016/j.atmosenv.2020.117788 10.1016/j.isprsjprs.2019.09.009 10.1016/j.isprsjprs.2022.07.015 10.3390/rs10050699 10.1016/j.jag.2021.102491 10.1080/15481603.2022.2128251 10.1080/17538947.2017.1391341 10.1016/j.rse.2018.04.027 10.3390/rs14040992 10.1016/j.jag.2019.101928 10.1016/j.envpol.2021.117711 10.3390/rs12182870 10.5194/nhess-18-847-2018 10.1016/j.rse.2015.08.032 10.1080/2150704X.2017.1350303 10.1080/01431161.2017.1295481 10.3390/rs11030271 10.1109/TGRS.2019.2923248 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2022.2143872 |
DatabaseName | Taylor & Francis Free Journals (Free resource, activated by CARLI) CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
EndPage | 2035 |
ExternalDocumentID | oai_doaj_org_article_90dd8529e5584b4a8554e9d222e6f817 10_1080_15481603_2022_2143872 2143872 |
Genre | Research Article |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-911c118b31c43f1ef88f96b0af803eb0f530bbbdac70be44f8d7d9f3f757ffa13 |
IEDL.DBID | DOA |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:19:30 EDT 2025 Mon May 05 21:01:44 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Tue Jul 01 02:27:28 EDT 2025 Wed Dec 25 09:04:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-911c118b31c43f1ef88f96b0af803eb0f530bbbdac70be44f8d7d9f3f757ffa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4474-631X 0000-0003-3006-6994 0000-0002-4506-6877 |
OpenAccessLink | https://doaj.org/article/90dd8529e5584b4a8554e9d222e6f817 |
PQID | 2834221347 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15481603_2022_2143872 proquest_miscellaneous_2834221347 crossref_citationtrail_10_1080_15481603_2022_2143872 crossref_primary_10_1080_15481603_2022_2143872 doaj_primary_oai_doaj_org_article_90dd8529e5584b4a8554e9d222e6f817 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 Bekkar M. (cit0002) 2013; 3 cit0019 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0044 cit0001 cit0023 cit0045 cit0020 cit0042 cit0021 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0028 doi: 10.1016/j.rse.2019.111600 – ident: cit0010 doi: 10.1016/j.rse.2016.02.054 – ident: cit0037 doi: 10.3390/rs8110932 – ident: cit0040 doi: 10.1080/15481603.2020.1712100 – ident: cit0042 doi: 10.1109/ACCESS.2020.2985657 – ident: cit0044 doi: 10.1016/j.isprsjprs.2019.09.013 – ident: cit0035 doi: 10.1016/j.rse.2017.07.003 – ident: cit0001 doi: 10.1080/15481603.2021.1879495 – ident: cit0012 doi: 10.3389/fenvs.2022.794028 – ident: cit0024 doi: 10.1080/15481603.2021.1960075 – ident: cit0045 doi: 10.1080/15481603.2019.1658960 – ident: cit0017 doi: 10.1080/15481603.2021.1872228 – ident: cit0007 doi: 10.1109/PIERS-Spring46901.2019.9017857 – ident: cit0021 doi: 10.1016/j.rse.2016.07.021 – ident: cit0003 doi: 10.1023/A:1010933404324 – volume: 3 issue: 10 year: 2013 ident: cit0002 publication-title: J Inf Eng Appl – ident: cit0032 doi: 10.1016/j.rse.2013.12.008 – ident: cit0008 doi: 10.1016/j.isprsjprs.2021.06.002 – ident: cit0004 doi: 10.1080/15481603.2021.1907896 – ident: cit0023 doi: 10.3390/rs12010108 – ident: cit0029 doi: 10.1016/j.envpol.2019.113395 – ident: cit0009 doi: 10.1016/S0034-4257(03)00184-6 – ident: cit0019 doi: 10.3390/app10228213 – ident: cit0043 doi: 10.5194/essd-13-2753-2021 – ident: cit0013 doi: 10.1016/j.jag.2021.102347 – ident: cit0015 doi: 10.1080/15481603.2021.1932126 – ident: cit0038 doi: 10.3390/rs10121992 – ident: cit0036 doi: 10.1016/j.atmosenv.2020.117788 – ident: cit0041 doi: 10.1016/j.isprsjprs.2019.09.009 – ident: cit0034 doi: 10.1016/j.isprsjprs.2022.07.015 – ident: cit0025 doi: 10.3390/rs10050699 – ident: cit0020 doi: 10.1016/j.jag.2021.102491 – ident: cit0005 doi: 10.1080/15481603.2022.2128251 – ident: cit0022 doi: 10.1080/17538947.2017.1391341 – ident: cit0027 doi: 10.1016/j.rse.2018.04.027 – ident: cit0030 doi: 10.3390/rs14040992 – ident: cit0011 doi: 10.1016/j.jag.2019.101928 – ident: cit0018 doi: 10.1016/j.envpol.2021.117711 – ident: cit0006 doi: 10.3390/rs12182870 – ident: cit0031 doi: 10.5194/nhess-18-847-2018 – ident: cit0033 doi: 10.1016/j.rse.2015.08.032 – ident: cit0039 doi: 10.1080/2150704X.2017.1350303 – ident: cit0014 doi: 10.1080/01431161.2017.1295481 – ident: cit0016 doi: 10.3390/rs11030271 – ident: cit0026 doi: 10.1109/TGRS.2019.2923248 |
SSID | ssj0035115 |
Score | 2.5036705 |
Snippet | Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2019 |
SubjectTerms | algorithms convolutional neural network fire detection Forest fire forest fires forests Himawari-8 AHI machine learning neural networks random forest remote sensing satellites spatial data statistical analysis |
SummonAdditionalLinks | – databaseName: Taylor & Francis Free Journals (Free resource, activated by CARLI) dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQuXBBQEFdoMhIFbcUx3ES-7hFVCuk9kQlOFn-mr2UpGzSw_57ZpykKiDUA4dIiRVbVsYzfjOevGHsRKgYYmNcEbVMhZJlU7gIptAQEJy6WKvMzn9x2Wyu1Jdv9ZJNOMxpleRDw0QUkW01Kbfzw5IR95FQNlVHRu9OylNJBbxbtMKPJa1WXNLi-2YxxnRMVmfKVIXOEvZZfuL51zC_bU-Zxf8PDtO_bHbeiM6fsaczguTrSeTP2aPUvWBH64Fi2v2PPf_A8_0UshgO2c81jynd8Lk-xJbn4jecEt63fJv6YTqMd7s9H1zm5xwTp8RRjtOhC-fAAS0jDjPmxK2OU_SW74j1NcV7zdeOEPj-Jbs6__z106aYCy0UAfHTSAYvoKPhqzKoCsoEWoNpvHCgRZW8gLoS3vvoQit8Ugp0bKOBCtq6BXBl9YoddH2XjhiXLiYRfVBEA--N8ADKUSHQNmghIayYWr6vDTMLORXDuLblTFa6iMWSWOwslhU7vet2M9FwPNThjIR39zKxaOeGfre1s1JaI2LUtTSpRhjmlaOUvWQiQqbUgC7bFTP3RW_HHESBqeKJrR6YwPtlnVjUWDqGcV3qbweLgE5JItJrX__H-G_YE3qcOCffsoNxd5uOER-N_l3WgF8x0AWR priority: 102 providerName: Taylor & Francis |
Title | A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2143872 https://www.proquest.com/docview/2834221347 https://doaj.org/article/90dd8529e5584b4a8554e9d222e6f817 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYop16qtrRiaYuMVHELOI6T2MdtBVoh0RNIcLL8mr3QLGzCYf99PXaCtu1hLxwiRVacjDyTeXn8DSHfmfDON8oUXvJQCF42hfGgCgkuOqfG1yKh81__aha34uquvttq9YU1YRkeOC_cuWLey5qrUEdTaYXBsqqgfDRroQFZpnPk0eZNwVTWwbg7ViekVBFjpIZV09kdyc5xDIdibMj5Gcf23y3_yyol8P5_oEv_U9XJ_ly-J-9Gx5HOM8EfyF7oPpLDeY-p7NXvDT2l6T5nKvoD8jSnPoRHOraFWNLU84ZinfuSLsOqz3vwZr2hvUmwnEOgWC9KIzl4RRooRIUYXzOkeq2OYtKWrhHsNfit4QeDjvfmE7m9vLj5uSjG_gqFi27TgHrOxfjCVqUTFZQBpATVWGZAsipYBnXFrLXeuJbZIARI33oFFbR1C2DK6jPZ71ZdOCSUGx-Yt04g-rtVzAIIg_0_WycZBzcjYlpf7UbwceyB8aDLEaN0YotGtuiRLTNy9jLtMaNv7JrwA5n38jCCZ6eBKFJ6FCm9S6RmRG2zXg8pdwK50YmudhBwMsmJjj8q7r6YLqyeex39OMERP689eg0iv5C3-N2MOfmV7A_r5_At-keDPSZv2P3iOP0QfwA1zwjn |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFN-ryNBLilsVJnNg-LohqgXZPrdSb5dfsgZKUTfaw_Ho8TlItRaiHHiJFTmzFjj3-PB5_HyHvGffO18pkXhYh40VeZ8aDyiS4CE6Nr3hi5z9Z1csz_u28Ot87C4NhlbiGhoEoItlqHNzojJ5C4j4izEZ55Li8K4p5gQreIprhu5WqBaoYlGw1WWPcJ6sSZyqPq6WYZzrF879i_pqfEo3_NRLTf4x2momOHhI31WEIQPkx3_Z27n5fo3e8XSUfkQcjUKWLoWc9JndC84QcLjp0nbc_d_QDTfeDZ6R7Sn4tqA_hko4yFGuaNHYoxtWv6Tq03bDnbzY72plEA9oHivGpNFYar1hTCtEAx2L6FB_WUHQS0w2Sywa_l3xhEOjvnpGzoy-nn5fZqOeQuQjTerSrLq5nbJk7XkIeQEpQtWUGJCuDZVCVzFrrjRPMBs5BeuEVlCAqAWDy8jk5aNomHBJaGB-Yt44j27xVzAJwg3qjwklWgJsRPv1F7Uayc9TcuND5yIk6Na_G5tVj887I_Crb5cD2cVOGT9hFrl5Gsu6U0G7Wehz7WjHvZVWoUEW0Z7nByMCgfERmoQaZixlR-x1M98lXA4Owii5v-IB3U2_U0TDgbo9pQrvtdMSNvEC-PvHiFuW_JfeWpyfH-vjr6vtLch8fDTSXr8hBv9mG1xGS9fZNGnN_ACOTKQY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAXylNdysNIiFsWx3ES-7g8VuW14kAlbpZfswdKsmyyh-XX43GSqhShHnqIFDmxFTvj8Tfj8TeEvGTCO18pk3nJQyZ4XmXGg8okuAhOjS9FYuf_sqpOTsXH7-UUTdiNYZVoQ8NAFJF0NU7ujYcpIu41omzMjhytO87nHBN411EL36yQPBxPcbDVpIxxm6xMlKkiGkuxznSI53_N_LU8JRb_Sxym_-jstBAtD4mdujDEn_yY73o7d78vsTteq493yZ0RptLFIFf3yI3Q3CdHiw4d5-3PPX1F0_3gF-kekF8L6kPY0DEJxZqmDDsUo-rXdB3abtjxN9s97UwiAe0DxehUGvuMV-wohah-YzN9ig5rKLqI6RapZYO_UHxmEObvH5LT5ftvb0-yMZtD5iJI61GrumjN2CJ3ooA8gJSgKssMSFYEy6AsmLXWG1czG4QA6WuvoIC6rAFMXjwiB03bhCNCufGBeesEcs1bxSyAMJhttHaScXAzIqafqN1IdY4ZN850PjKiTsOrcXj1OLwzMj-vthm4Pq6q8AYl5PxlpOpOBe12rceZrxXzXpZchTJiPSsMxgUG5SMuCxXIvJ4RdVG-dJ88NTCkVdHFFR_wYhJGHdUC7vWYJrS7TkfUKDiy9dWPr9H-c3Lr67ul_vxh9emY3MYnA8flE3LQb3fhacRjvX2WZtwfVAcnqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+using+geostationary+satellite+data+for+forest+fire+detection+with+reduced+detection+latency&rft.jtitle=GIScience+and+remote+sensing&rft.au=Yoojin+Kang&rft.au=Eunna+Jang&rft.au=Jungho+Im&rft.au=Chungeun+Kwon&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=2019&rft.epage=2035&rft_id=info:doi/10.1080%2F15481603.2022.2143872&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90dd8529e5584b4a8554e9d222e6f817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |