A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency

Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire dete...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 59; no. 1; pp. 2019 - 2035
Main Authors Kang, Yoojin, Jang, Eunna, Im, Jungho, Kwon, Chungeun
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2022
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire detection algorithm, with a focus on reducing detection latency, utilizing 10-min interval high temporal resolution Himawari-8 Advanced Himawari Imager. Random forest (RF) and convolutional neural network (CNN) were utilized for model development. The CNN model accurately reflected the contextual approach adopted in previous studies by learning information between adjacent matrices from an image. This study also investigates the contribution of temporal and spatial information to the two machine learning techniques by combining input features. Temporal and spatial factors contributed to the reduction in detection latency and false alarms, respectively, and forest fires could be most effectively detected using both types of information. The overall accuracy, precision, recall, and F1-score were 0.97, 0.89, 0.41, and 0.54, respectively, in the best scheme among the RF-based schemes and 0.98, 0.91, 0.63, and 0.74, respectively, in that among the CNN-based schemes. This indicated better performance of the CNN model for forest fire detection that is attributed to its spatial pattern training and data augmentation. The CNN model detected all test forest fires within an average of 12 min, and one case was detected 9 min earlier than the recording time. Moreover, the proposed model outperformed the recent operational satellite-based active fire detection algorithms. Further spatial generality test results showed that the CNN model had reliable generality and was robust under varied environmental conditions. Overall, our results demonstrated the benefits of geostationary satellite-based remote sensing for forest fire monitoring.
AbstractList Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire detection algorithm, with a focus on reducing detection latency, utilizing 10-min interval high temporal resolution Himawari-8 Advanced Himawari Imager. Random forest (RF) and convolutional neural network (CNN) were utilized for model development. The CNN model accurately reflected the contextual approach adopted in previous studies by learning information between adjacent matrices from an image. This study also investigates the contribution of temporal and spatial information to the two machine learning techniques by combining input features. Temporal and spatial factors contributed to the reduction in detection latency and false alarms, respectively, and forest fires could be most effectively detected using both types of information. The overall accuracy, precision, recall, and F1-score were 0.97, 0.89, 0.41, and 0.54, respectively, in the best scheme among the RF-based schemes and 0.98, 0.91, 0.63, and 0.74, respectively, in that among the CNN-based schemes. This indicated better performance of the CNN model for forest fire detection that is attributed to its spatial pattern training and data augmentation. The CNN model detected all test forest fires within an average of 12 min, and one case was detected 9 min earlier than the recording time. Moreover, the proposed model outperformed the recent operational satellite-based active fire detection algorithms. Further spatial generality test results showed that the CNN model had reliable generality and was robust under varied environmental conditions. Overall, our results demonstrated the benefits of geostationary satellite-based remote sensing for forest fire monitoring.
Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based on contextual statistical analysis suffer from generalization problems. Therefore, this study proposes a deep learning-based forest fire detection algorithm, with a focus on reducing detection latency, utilizing 10-min interval high temporal resolution Himawari-8 Advanced Himawari Imager. Random forest (RF) and convolutional neural network (CNN) were utilized for model development. The CNN model accurately reflected the contextual approach adopted in previous studies by learning information between adjacent matrices from an image. This study also investigates the contribution of temporal and spatial information to the two machine learning techniques by combining input features. Temporal and spatial factors contributed to the reduction in detection latency and false alarms, respectively, and forest fires could be most effectively detected using both types of information. The overall accuracy, precision, recall, and F1-score were 0.97, 0.89, 0.41, and 0.54, respectively, in the best scheme among the RF-based schemes and 0.98, 0.91, 0.63, and 0.74, respectively, in that among the CNN-based schemes. This indicated better performance of the CNN model for forest fire detection that is attributed to its spatial pattern training and data augmentation. The CNN model detected all test forest fires within an average of 12 min, and one case was detected 9 min earlier than the recording time. Moreover, the proposed model outperformed the recent operational satellite-based active fire detection algorithms. Further spatial generality test results showed that the CNN model had reliable generality and was robust under varied environmental conditions. Overall, our results demonstrated the benefits of geostationary satellite-based remote sensing for forest fire monitoring.
Author Im, Jungho
Kwon, Chungeun
Kang, Yoojin
Jang, Eunna
Author_xml – sequence: 1
  givenname: Yoojin
  orcidid: 0000-0003-3006-6994
  surname: Kang
  fullname: Kang, Yoojin
  organization: Ulsan National Institute of Science and Technology
– sequence: 2
  givenname: Eunna
  orcidid: 0000-0002-4474-631X
  surname: Jang
  fullname: Jang, Eunna
  organization: Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology
– sequence: 3
  givenname: Jungho
  orcidid: 0000-0002-4506-6877
  surname: Im
  fullname: Im, Jungho
  email: ersgis@unist.ac.kr
  organization: Ulsan National Institute of Science and Technology
– sequence: 4
  givenname: Chungeun
  surname: Kwon
  fullname: Kwon, Chungeun
  organization: Korea Forest Research Institute
BookMark eNqFUctqHDEQHIIDsZ18QkDHXHaj54yGXGJMHgZDLslZ9EitjYx2tJa0mP37aDJOCDnYh6aboqqa7rrozuY0Y9e9ZXTLqKbvmZKa9VRsOeV8y5kUeuAvunM2SrEZOO_P2tw4m4X0qrso5Y5SoRhT5939FXGIBxIR8hzmHdknh5EcyzLvMJUKNaQZ8okUqBhjqEgcVCA-5aWwVOJDbiBWtAuXPIT6k2R0R4vuHzg2_WxPr7uXHmLBN4_9svvx-dP366-b229fbq6vbjdWqr5uRsYsY3oSzErhGXqt_dhPFLymAifqlaDTNDmwA51QSq_d4EYv_KAG74GJy-5m9XUJ7swhh307wiQI5jeQ8s5ArsFGNCN1Tis-olJaThK0UhJHxznH3ms2NK93q9chp_tjO9nsQ7HtGzBjOhbDtZCcMyEXqlqpNqdSMvq_qxk1S1zmT1xmics8xtV0H_7T2bD-vmYI8Vn1x1Ud5pbJHh5Sjs5UOMWUfYbZhmLE0xa_AC_IsZ0
CitedBy_id crossref_primary_10_1007_s11270_024_07233_y
crossref_primary_10_1016_j_jag_2025_104416
crossref_primary_10_1109_JSTARS_2023_3308041
crossref_primary_10_1080_01431161_2023_2295834
crossref_primary_10_3390_land13101696
crossref_primary_10_1109_ACCESS_2024_3515215
crossref_primary_10_1080_15481603_2023_2287291
crossref_primary_10_3390_fire7020054
crossref_primary_10_3390_rs15061541
crossref_primary_10_3390_rs15143521
crossref_primary_10_1109_JIOT_2024_3401178
crossref_primary_10_1109_JSTARS_2024_3435853
crossref_primary_10_1016_j_heliyon_2023_e23127
crossref_primary_10_1016_j_atmosres_2023_106787
crossref_primary_10_1016_j_jag_2024_103784
crossref_primary_10_1109_TGRS_2024_3418475
crossref_primary_10_3390_f14040778
crossref_primary_10_3390_f15010217
crossref_primary_10_3390_fire6050192
crossref_primary_10_1155_2024_8511649
crossref_primary_10_1016_j_foreco_2024_121712
crossref_primary_10_3390_fire6080291
crossref_primary_10_1109_ACCESS_2024_3383653
crossref_primary_10_1002_qj_4643
crossref_primary_10_1080_15481603_2023_2243671
crossref_primary_10_5572_KOSAE_2024_40_1_103
crossref_primary_10_7780_kjrs_2024_40_6_3_11
crossref_primary_10_1016_j_procs_2024_11_181
crossref_primary_10_1016_j_rse_2023_113814
crossref_primary_10_3390_rs15235435
crossref_primary_10_1016_j_jag_2024_104029
crossref_primary_10_1109_JSTARS_2024_3450714
crossref_primary_10_1016_j_ecolind_2024_112067
crossref_primary_10_1080_00102202_2024_2372689
crossref_primary_10_3390_f14102089
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_1109_ACCESS_2024_3501336
crossref_primary_10_1109_TSMC_2023_3345928
crossref_primary_10_1080_01431161_2023_2255349
crossref_primary_10_3390_rs16142629
crossref_primary_10_3390_computers13020036
crossref_primary_10_1016_j_eswa_2024_124791
crossref_primary_10_1016_j_ufug_2024_128239
Cites_doi 10.1016/j.rse.2019.111600
10.1016/j.rse.2016.02.054
10.3390/rs8110932
10.1080/15481603.2020.1712100
10.1109/ACCESS.2020.2985657
10.1016/j.isprsjprs.2019.09.013
10.1016/j.rse.2017.07.003
10.1080/15481603.2021.1879495
10.3389/fenvs.2022.794028
10.1080/15481603.2021.1960075
10.1080/15481603.2019.1658960
10.1080/15481603.2021.1872228
10.1109/PIERS-Spring46901.2019.9017857
10.1016/j.rse.2016.07.021
10.1023/A:1010933404324
10.1016/j.rse.2013.12.008
10.1016/j.isprsjprs.2021.06.002
10.1080/15481603.2021.1907896
10.3390/rs12010108
10.1016/j.envpol.2019.113395
10.1016/S0034-4257(03)00184-6
10.3390/app10228213
10.5194/essd-13-2753-2021
10.1016/j.jag.2021.102347
10.1080/15481603.2021.1932126
10.3390/rs10121992
10.1016/j.atmosenv.2020.117788
10.1016/j.isprsjprs.2019.09.009
10.1016/j.isprsjprs.2022.07.015
10.3390/rs10050699
10.1016/j.jag.2021.102491
10.1080/15481603.2022.2128251
10.1080/17538947.2017.1391341
10.1016/j.rse.2018.04.027
10.3390/rs14040992
10.1016/j.jag.2019.101928
10.1016/j.envpol.2021.117711
10.3390/rs12182870
10.5194/nhess-18-847-2018
10.1016/j.rse.2015.08.032
10.1080/2150704X.2017.1350303
10.1080/01431161.2017.1295481
10.3390/rs11030271
10.1109/TGRS.2019.2923248
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2022.2143872
DatabaseName Taylor & Francis Free Journals (Free resource, activated by CARLI)
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
EndPage 2035
ExternalDocumentID oai_doaj_org_article_90dd8529e5584b4a8554e9d222e6f817
10_1080_15481603_2022_2143872
2143872
Genre Research Article
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ID FETCH-LOGICAL-c456t-911c118b31c43f1ef88f96b0af803eb0f530bbbdac70be44f8d7d9f3f757ffa13
IEDL.DBID DOA
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:19:30 EDT 2025
Mon May 05 21:01:44 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Tue Jul 01 02:27:28 EDT 2025
Wed Dec 25 09:04:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-911c118b31c43f1ef88f96b0af803eb0f530bbbdac70be44f8d7d9f3f757ffa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4474-631X
0000-0003-3006-6994
0000-0002-4506-6877
OpenAccessLink https://doaj.org/article/90dd8529e5584b4a8554e9d222e6f817
PQID 2834221347
PQPubID 24069
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_15481603_2022_2143872
proquest_miscellaneous_2834221347
crossref_citationtrail_10_1080_15481603_2022_2143872
crossref_primary_10_1080_15481603_2022_2143872
doaj_primary_oai_doaj_org_article_90dd8529e5584b4a8554e9d222e6f817
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Bekkar M. (cit0002) 2013; 3
cit0019
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0044
cit0001
cit0023
cit0045
cit0020
cit0042
cit0021
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0024
cit0003
cit0025
References_xml – ident: cit0028
  doi: 10.1016/j.rse.2019.111600
– ident: cit0010
  doi: 10.1016/j.rse.2016.02.054
– ident: cit0037
  doi: 10.3390/rs8110932
– ident: cit0040
  doi: 10.1080/15481603.2020.1712100
– ident: cit0042
  doi: 10.1109/ACCESS.2020.2985657
– ident: cit0044
  doi: 10.1016/j.isprsjprs.2019.09.013
– ident: cit0035
  doi: 10.1016/j.rse.2017.07.003
– ident: cit0001
  doi: 10.1080/15481603.2021.1879495
– ident: cit0012
  doi: 10.3389/fenvs.2022.794028
– ident: cit0024
  doi: 10.1080/15481603.2021.1960075
– ident: cit0045
  doi: 10.1080/15481603.2019.1658960
– ident: cit0017
  doi: 10.1080/15481603.2021.1872228
– ident: cit0007
  doi: 10.1109/PIERS-Spring46901.2019.9017857
– ident: cit0021
  doi: 10.1016/j.rse.2016.07.021
– ident: cit0003
  doi: 10.1023/A:1010933404324
– volume: 3
  issue: 10
  year: 2013
  ident: cit0002
  publication-title: J Inf Eng Appl
– ident: cit0032
  doi: 10.1016/j.rse.2013.12.008
– ident: cit0008
  doi: 10.1016/j.isprsjprs.2021.06.002
– ident: cit0004
  doi: 10.1080/15481603.2021.1907896
– ident: cit0023
  doi: 10.3390/rs12010108
– ident: cit0029
  doi: 10.1016/j.envpol.2019.113395
– ident: cit0009
  doi: 10.1016/S0034-4257(03)00184-6
– ident: cit0019
  doi: 10.3390/app10228213
– ident: cit0043
  doi: 10.5194/essd-13-2753-2021
– ident: cit0013
  doi: 10.1016/j.jag.2021.102347
– ident: cit0015
  doi: 10.1080/15481603.2021.1932126
– ident: cit0038
  doi: 10.3390/rs10121992
– ident: cit0036
  doi: 10.1016/j.atmosenv.2020.117788
– ident: cit0041
  doi: 10.1016/j.isprsjprs.2019.09.009
– ident: cit0034
  doi: 10.1016/j.isprsjprs.2022.07.015
– ident: cit0025
  doi: 10.3390/rs10050699
– ident: cit0020
  doi: 10.1016/j.jag.2021.102491
– ident: cit0005
  doi: 10.1080/15481603.2022.2128251
– ident: cit0022
  doi: 10.1080/17538947.2017.1391341
– ident: cit0027
  doi: 10.1016/j.rse.2018.04.027
– ident: cit0030
  doi: 10.3390/rs14040992
– ident: cit0011
  doi: 10.1016/j.jag.2019.101928
– ident: cit0018
  doi: 10.1016/j.envpol.2021.117711
– ident: cit0006
  doi: 10.3390/rs12182870
– ident: cit0031
  doi: 10.5194/nhess-18-847-2018
– ident: cit0033
  doi: 10.1016/j.rse.2015.08.032
– ident: cit0039
  doi: 10.1080/2150704X.2017.1350303
– ident: cit0014
  doi: 10.1080/01431161.2017.1295481
– ident: cit0016
  doi: 10.3390/rs11030271
– ident: cit0026
  doi: 10.1109/TGRS.2019.2923248
SSID ssj0035115
Score 2.5036705
Snippet Although remote sensing of active fires is well-researched, their early detection has received less attention. Additionally, simple threshold approaches based...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2019
SubjectTerms algorithms
convolutional neural network
fire detection
Forest fire
forest fires
forests
Himawari-8 AHI
machine learning
neural networks
random forest
remote sensing
satellites
spatial data
statistical analysis
SummonAdditionalLinks – databaseName: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQuXBBQEFdoMhIFbcUx3ES-7hFVCuk9kQlOFn-mr2UpGzSw_57ZpykKiDUA4dIiRVbVsYzfjOevGHsRKgYYmNcEbVMhZJlU7gIptAQEJy6WKvMzn9x2Wyu1Jdv9ZJNOMxpleRDw0QUkW01Kbfzw5IR95FQNlVHRu9OylNJBbxbtMKPJa1WXNLi-2YxxnRMVmfKVIXOEvZZfuL51zC_bU-Zxf8PDtO_bHbeiM6fsaczguTrSeTP2aPUvWBH64Fi2v2PPf_A8_0UshgO2c81jynd8Lk-xJbn4jecEt63fJv6YTqMd7s9H1zm5xwTp8RRjtOhC-fAAS0jDjPmxK2OU_SW74j1NcV7zdeOEPj-Jbs6__z106aYCy0UAfHTSAYvoKPhqzKoCsoEWoNpvHCgRZW8gLoS3vvoQit8Ugp0bKOBCtq6BXBl9YoddH2XjhiXLiYRfVBEA--N8ADKUSHQNmghIayYWr6vDTMLORXDuLblTFa6iMWSWOwslhU7vet2M9FwPNThjIR39zKxaOeGfre1s1JaI2LUtTSpRhjmlaOUvWQiQqbUgC7bFTP3RW_HHESBqeKJrR6YwPtlnVjUWDqGcV3qbweLgE5JItJrX__H-G_YE3qcOCffsoNxd5uOER-N_l3WgF8x0AWR
  priority: 102
  providerName: Taylor & Francis
Title A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2022.2143872
https://www.proquest.com/docview/2834221347
https://doaj.org/article/90dd8529e5584b4a8554e9d222e6f817
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYop16qtrRiaYuMVHELOI6T2MdtBVoh0RNIcLL8mr3QLGzCYf99PXaCtu1hLxwiRVacjDyTeXn8DSHfmfDON8oUXvJQCF42hfGgCgkuOqfG1yKh81__aha34uquvttq9YU1YRkeOC_cuWLey5qrUEdTaYXBsqqgfDRroQFZpnPk0eZNwVTWwbg7ViekVBFjpIZV09kdyc5xDIdibMj5Gcf23y3_yyol8P5_oEv_U9XJ_ly-J-9Gx5HOM8EfyF7oPpLDeY-p7NXvDT2l6T5nKvoD8jSnPoRHOraFWNLU84ZinfuSLsOqz3vwZr2hvUmwnEOgWC9KIzl4RRooRIUYXzOkeq2OYtKWrhHsNfit4QeDjvfmE7m9vLj5uSjG_gqFi27TgHrOxfjCVqUTFZQBpATVWGZAsipYBnXFrLXeuJbZIARI33oFFbR1C2DK6jPZ71ZdOCSUGx-Yt04g-rtVzAIIg_0_WycZBzcjYlpf7UbwceyB8aDLEaN0YotGtuiRLTNy9jLtMaNv7JrwA5n38jCCZ6eBKFJ6FCm9S6RmRG2zXg8pdwK50YmudhBwMsmJjj8q7r6YLqyeex39OMERP689eg0iv5C3-N2MOfmV7A_r5_At-keDPSZv2P3iOP0QfwA1zwjn
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFN-ryNBLilsVJnNg-LohqgXZPrdSb5dfsgZKUTfaw_Ho8TlItRaiHHiJFTmzFjj3-PB5_HyHvGffO18pkXhYh40VeZ8aDyiS4CE6Nr3hi5z9Z1csz_u28Ot87C4NhlbiGhoEoItlqHNzojJ5C4j4izEZ55Li8K4p5gQreIprhu5WqBaoYlGw1WWPcJ6sSZyqPq6WYZzrF879i_pqfEo3_NRLTf4x2momOHhI31WEIQPkx3_Z27n5fo3e8XSUfkQcjUKWLoWc9JndC84QcLjp0nbc_d_QDTfeDZ6R7Sn4tqA_hko4yFGuaNHYoxtWv6Tq03bDnbzY72plEA9oHivGpNFYar1hTCtEAx2L6FB_WUHQS0w2Sywa_l3xhEOjvnpGzoy-nn5fZqOeQuQjTerSrLq5nbJk7XkIeQEpQtWUGJCuDZVCVzFrrjRPMBs5BeuEVlCAqAWDy8jk5aNomHBJaGB-Yt44j27xVzAJwg3qjwklWgJsRPv1F7Uayc9TcuND5yIk6Na_G5tVj887I_Crb5cD2cVOGT9hFrl5Gsu6U0G7Wehz7WjHvZVWoUEW0Z7nByMCgfERmoQaZixlR-x1M98lXA4Owii5v-IB3U2_U0TDgbo9pQrvtdMSNvEC-PvHiFuW_JfeWpyfH-vjr6vtLch8fDTSXr8hBv9mG1xGS9fZNGnN_ACOTKQY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAXylNdysNIiFsWx3ES-7g8VuW14kAlbpZfswdKsmyyh-XX43GSqhShHnqIFDmxFTvj8Tfj8TeEvGTCO18pk3nJQyZ4XmXGg8okuAhOjS9FYuf_sqpOTsXH7-UUTdiNYZVoQ8NAFJF0NU7ujYcpIu41omzMjhytO87nHBN411EL36yQPBxPcbDVpIxxm6xMlKkiGkuxznSI53_N_LU8JRb_Sxym_-jstBAtD4mdujDEn_yY73o7d78vsTteq493yZ0RptLFIFf3yI3Q3CdHiw4d5-3PPX1F0_3gF-kekF8L6kPY0DEJxZqmDDsUo-rXdB3abtjxN9s97UwiAe0DxehUGvuMV-wohah-YzN9ig5rKLqI6RapZYO_UHxmEObvH5LT5ftvb0-yMZtD5iJI61GrumjN2CJ3ooA8gJSgKssMSFYEy6AsmLXWG1czG4QA6WuvoIC6rAFMXjwiB03bhCNCufGBeesEcs1bxSyAMJhttHaScXAzIqafqN1IdY4ZN850PjKiTsOrcXj1OLwzMj-vthm4Pq6q8AYl5PxlpOpOBe12rceZrxXzXpZchTJiPSsMxgUG5SMuCxXIvJ4RdVG-dJ88NTCkVdHFFR_wYhJGHdUC7vWYJrS7TkfUKDiy9dWPr9H-c3Lr67ul_vxh9emY3MYnA8flE3LQb3fhacRjvX2WZtwfVAcnqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+model+using+geostationary+satellite+data+for+forest+fire+detection+with+reduced+detection+latency&rft.jtitle=GIScience+and+remote+sensing&rft.au=Yoojin+Kang&rft.au=Eunna+Jang&rft.au=Jungho+Im&rft.au=Chungeun+Kwon&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=59&rft.issue=1&rft.spage=2019&rft.epage=2035&rft_id=info:doi/10.1080%2F15481603.2022.2143872&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90dd8529e5584b4a8554e9d222e6f817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon