Design and function of biomimetic multilayer water purification membranes
A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication. Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the prep...
Saved in:
Published in | Science advances Vol. 3; no. 4; p. e1601939 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication.
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. |
---|---|
AbstractList | Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication. Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. |
Author | Buehler, Markus J. Ling, Shengjie Qin, Zhao Huang, Wenwen Kaplan, David L. Cao, Sufeng |
Author_xml | – sequence: 1 givenname: Shengjie surname: Ling fullname: Ling, Shengjie organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA., Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA – sequence: 2 givenname: Zhao surname: Qin fullname: Qin, Zhao organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA – sequence: 3 givenname: Wenwen orcidid: 0000-0001-8175-9083 surname: Huang fullname: Huang, Wenwen organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA – sequence: 4 givenname: Sufeng surname: Cao fullname: Cao, Sufeng organization: Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA – sequence: 5 givenname: David L. surname: Kaplan fullname: Kaplan, David L. organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA – sequence: 6 givenname: Markus J. surname: Buehler fullname: Buehler, Markus J. organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA., Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28435877$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUlPAyEUJqbG1tqrRzNHL1OBgVkuJqZuTZp40TMBBipmBirM1PTfi12MmpiX8F7Ct8D7TsHAOqsAOEdwihDOr4I0vF5PUQ5RlVVHYISzgqaYknLwYx6CSQhvEEJE8pyi6gQMcUkyWhbFCMxvVTBLm3BbJ7q3sjPOJk4nwrjWtKozMmn7pjMN3yiffPAunqveG20k32Jb1QrPrQpn4FjzJqjJvo_By_3d8-wxXTw9zGc3i1QSmndpKTnSEgtNecExLOoSV7LWuaA4vk5oAitU66xSUuQFolojKYhQWNI8ls6yMbje6a560apaKtt53rCVNy33G-a4Yb9vrHllS7dmNCtRRWkUuNwLePfeq9Cx1gSpmib-wvWBobJChBaUwAi9-On1bXLYXwSQHUB6F4JXmknTbRcTrU3DEGRfSbFdUmyfVKRN_9AOyv8QPgEp2plS |
CitedBy_id | crossref_primary_10_1002_adma_202005910 crossref_primary_10_1088_1748_605X_aba281 crossref_primary_10_1088_1748_3190_acddc1 crossref_primary_10_1016_j_polymer_2021_123534 crossref_primary_10_1038_s41893_023_01264_9 crossref_primary_10_1039_C9TA12670H crossref_primary_10_1039_D3CS00367A crossref_primary_10_1007_s42235_022_00167_3 crossref_primary_10_1021_acsnano_7b04235 crossref_primary_10_1016_j_jmbbm_2023_105910 crossref_primary_10_1021_acsestengg_4c00184 crossref_primary_10_1021_acs_jpcc_0c00548 crossref_primary_10_1088_1361_6528_acbd9f crossref_primary_10_1038_s41545_020_00090_2 crossref_primary_10_1002_smsc_202000032 crossref_primary_10_1002_adma_202105196 crossref_primary_10_1016_j_progpolymsci_2018_06_004 crossref_primary_10_1039_D1RA07423G crossref_primary_10_1038_s41467_019_11792_8 crossref_primary_10_1016_j_jtice_2024_105483 crossref_primary_10_1016_j_memsci_2024_122517 crossref_primary_10_1021_acsnano_3c00105 crossref_primary_10_1021_acsnano_2c12385 crossref_primary_10_1038_s41467_022_32204_4 crossref_primary_10_1002_cssc_202301549 crossref_primary_10_1038_natrevmats_2018_16 crossref_primary_10_3390_en15072485 crossref_primary_10_1021_acsnano_4c07409 crossref_primary_10_1126_sciadv_adn8696 crossref_primary_10_1186_s42825_023_00133_7 crossref_primary_10_1038_s41893_024_01282_1 crossref_primary_10_1021_acs_chemmater_3c00847 crossref_primary_10_1021_acsami_9b11964 crossref_primary_10_3390_ijms241713153 crossref_primary_10_1016_j_eurpolymj_2024_112842 crossref_primary_10_1002_adfm_202104088 crossref_primary_10_1002_smll_202205003 crossref_primary_10_1002_smtd_202300236 crossref_primary_10_1007_s43979_024_00110_x crossref_primary_10_1016_j_actbio_2020_01_045 crossref_primary_10_1007_s10924_022_02741_6 crossref_primary_10_1002_adhm_201800178 crossref_primary_10_1002_adfm_202405918 crossref_primary_10_1016_j_memsci_2023_121498 crossref_primary_10_1039_D1EN00798J crossref_primary_10_1002_anie_201907708 crossref_primary_10_1039_C9TA12293A crossref_primary_10_1007_s11664_020_08062_5 crossref_primary_10_1021_acsami_8b09218 crossref_primary_10_3389_fchem_2020_604398 crossref_primary_10_1039_C8NR02159G crossref_primary_10_1002_adfm_202100299 crossref_primary_10_1021_acsami_8b01952 crossref_primary_10_1021_acs_est_3c02751 crossref_primary_10_1021_acsami_4c19943 crossref_primary_10_1021_acsami_0c19239 crossref_primary_10_1002_ange_202408345 crossref_primary_10_1073_pnas_2003898117 crossref_primary_10_1016_j_resconrec_2021_105849 crossref_primary_10_1038_natrevmats_2017_25 crossref_primary_10_1557_mrs_2018_320 crossref_primary_10_1515_zpch_2018_1169 crossref_primary_10_1063_5_0054637 crossref_primary_10_3390_jfb13020080 crossref_primary_10_1002_advs_202302935 crossref_primary_10_1016_j_jcis_2018_05_106 crossref_primary_10_1126_sciadv_adg6638 crossref_primary_10_1002_ange_201803076 crossref_primary_10_1002_jccs_202100072 crossref_primary_10_3390_gels9110888 crossref_primary_10_23939_ctas2018_01_027 crossref_primary_10_1016_j_memsci_2019_01_014 crossref_primary_10_1016_j_memsci_2019_117761 crossref_primary_10_1021_acsnano_8b03710 crossref_primary_10_1021_acs_biomac_4c01122 crossref_primary_10_1038_s41545_022_00189_8 crossref_primary_10_1039_D4ME00174E crossref_primary_10_1002_adfm_202207532 crossref_primary_10_3390_app12189152 crossref_primary_10_1002_adom_201801275 crossref_primary_10_1016_j_jcrysgro_2022_126977 crossref_primary_10_1016_j_jallcom_2018_07_042 crossref_primary_10_1002_biot_201700753 crossref_primary_10_1016_j_jwpe_2023_103496 crossref_primary_10_1002_biot_201700754 crossref_primary_10_1021_acsami_4c17903 crossref_primary_10_1088_1361_6528_acbda0 crossref_primary_10_1002_asia_202000013 crossref_primary_10_1126_sciadv_adh0207 crossref_primary_10_1016_j_seppur_2024_126278 crossref_primary_10_1007_s42765_019_00013_y crossref_primary_10_1039_C8CS00187A crossref_primary_10_1016_j_carbon_2024_119227 crossref_primary_10_1016_j_cej_2024_152819 crossref_primary_10_1016_j_cej_2020_124667 crossref_primary_10_1021_acs_biomac_0c00097 crossref_primary_10_1016_j_memsci_2019_01_035 crossref_primary_10_1002_pen_25831 crossref_primary_10_1016_j_jclepro_2020_120297 crossref_primary_10_1002_smsc_202400120 crossref_primary_10_1016_j_memsci_2024_122474 crossref_primary_10_1016_j_seppur_2019_01_035 crossref_primary_10_1021_acsabm_0c01375 crossref_primary_10_1021_acsapm_9b00925 crossref_primary_10_1002_adfm_202008552 crossref_primary_10_1016_j_chemosphere_2022_134635 crossref_primary_10_1016_j_chemosphere_2023_138637 crossref_primary_10_1002_anie_201803076 crossref_primary_10_1039_C7TA06800J crossref_primary_10_1021_acsnano_1c00820 crossref_primary_10_1002_adsu_201900063 crossref_primary_10_1002_adfm_201705291 crossref_primary_10_1021_acssuschemeng_9b03793 crossref_primary_10_1088_1402_4896_aab4e2 crossref_primary_10_1016_j_cej_2024_152375 crossref_primary_10_1002_marc_202000435 crossref_primary_10_1021_acsnano_8b04379 crossref_primary_10_1002_mabi_201800253 crossref_primary_10_1038_s41467_018_04294_6 crossref_primary_10_1016_j_apmt_2019_06_015 crossref_primary_10_1002_adfm_201903055 crossref_primary_10_1016_j_cej_2023_142041 crossref_primary_10_1016_j_scitotenv_2019_135051 crossref_primary_10_1039_C8SC03012J crossref_primary_10_3390_ijms232113459 crossref_primary_10_1039_C9TA07296A crossref_primary_10_1016_j_coco_2019_03_004 crossref_primary_10_1016_j_cscee_2022_100205 crossref_primary_10_1016_j_jcis_2020_04_079 crossref_primary_10_1021_acsabm_3c00189 crossref_primary_10_1007_s41745_019_00114_y crossref_primary_10_1002_adfm_201805305 crossref_primary_10_1016_j_jhazmat_2021_127561 crossref_primary_10_1016_j_carpta_2022_100262 crossref_primary_10_1016_j_seppur_2024_130617 crossref_primary_10_1002_EXP_20220050 crossref_primary_10_1021_acsami_8b21847 crossref_primary_10_1007_s11431_018_9403_8 crossref_primary_10_1021_acs_langmuir_3c00602 crossref_primary_10_1002_adma_202003206 crossref_primary_10_1016_j_cej_2021_131021 crossref_primary_10_1002_adhm_201901287 crossref_primary_10_1021_acsami_0c00440 crossref_primary_10_1002_admt_202201660 crossref_primary_10_1016_j_seppur_2024_128413 crossref_primary_10_1038_s41598_018_34150_y crossref_primary_10_1016_j_ijbiomac_2023_129099 crossref_primary_10_1016_j_pmatsci_2017_10_006 crossref_primary_10_1038_s41598_021_82855_4 crossref_primary_10_1002_adma_201802306 crossref_primary_10_1002_anie_202408345 crossref_primary_10_1039_D2EN00155A crossref_primary_10_1002_sstr_202300080 crossref_primary_10_1021_acs_nanolett_4c02816 crossref_primary_10_1016_j_memsci_2019_117667 crossref_primary_10_1038_s41467_021_23388_2 crossref_primary_10_1016_j_memsci_2019_117309 crossref_primary_10_1016_j_watres_2022_118469 crossref_primary_10_3390_nano13020247 crossref_primary_10_1039_C8NR04864A crossref_primary_10_1016_j_coco_2019_11_017 crossref_primary_10_1016_j_cej_2020_127721 crossref_primary_10_1021_acsami_0c21817 crossref_primary_10_1007_s11356_024_33226_9 crossref_primary_10_1021_acsomega_3c07725 crossref_primary_10_1039_D1RA09044E crossref_primary_10_1021_acs_langmuir_2c00999 crossref_primary_10_1039_C9CC04532E crossref_primary_10_1016_j_seppur_2025_131650 crossref_primary_10_3389_fchem_2019_00069 crossref_primary_10_5004_dwt_2022_28869 crossref_primary_10_1016_j_isci_2022_103940 crossref_primary_10_1021_acsnano_8b02430 crossref_primary_10_1039_C7TA09898G crossref_primary_10_1039_C9CC00902G crossref_primary_10_3390_polym13030450 crossref_primary_10_1021_acsbiomaterials_9b00305 crossref_primary_10_1021_acs_chemrev_9b00416 crossref_primary_10_1007_s10565_020_09527_3 crossref_primary_10_1007_s12274_020_3256_0 crossref_primary_10_1002_anie_201912848 crossref_primary_10_1021_acs_chemrev_1c00683 crossref_primary_10_15446_dyna_v87n214_82163 crossref_primary_10_1002_admt_202400547 crossref_primary_10_3390_membranes10120386 crossref_primary_10_3390_polym15030658 crossref_primary_10_1016_j_envres_2022_114998 crossref_primary_10_1038_s41467_017_00613_5 crossref_primary_10_1016_j_isci_2023_107290 crossref_primary_10_1021_acsami_0c07846 crossref_primary_10_1002_adma_202404418 crossref_primary_10_3390_cryst11040353 crossref_primary_10_1016_j_carbpol_2019_115642 crossref_primary_10_1016_j_apsusc_2024_160590 crossref_primary_10_1002_ange_201907708 crossref_primary_10_1016_j_carbpol_2019_115512 crossref_primary_10_1016_j_cej_2019_05_163 crossref_primary_10_3390_ijms22116090 crossref_primary_10_1016_j_progpolymsci_2024_101874 crossref_primary_10_1016_j_seppur_2021_120440 crossref_primary_10_1016_j_ijbiomac_2023_126863 crossref_primary_10_1016_j_nanoen_2023_109066 crossref_primary_10_3390_ijms20123054 crossref_primary_10_1002_adma_202305755 crossref_primary_10_1016_j_memsci_2022_120761 crossref_primary_10_1093_nsr_nwz077 crossref_primary_10_1039_D2NR01989B crossref_primary_10_1038_s41378_021_00261_2 crossref_primary_10_1016_j_seppur_2024_131338 crossref_primary_10_1016_j_carbpol_2021_118754 crossref_primary_10_1002_ange_201912848 crossref_primary_10_1016_j_memsci_2019_117223 crossref_primary_10_1016_j_cej_2021_133823 crossref_primary_10_3390_polym11121933 crossref_primary_10_1021_acs_est_3c07030 crossref_primary_10_3390_su16031286 crossref_primary_10_1002_aesr_202100008 crossref_primary_10_1016_j_jhazmat_2021_125677 crossref_primary_10_1039_D1TC00607J crossref_primary_10_1038_s41467_018_07888_2 crossref_primary_10_1021_acsomega_2c02400 crossref_primary_10_1002_adfm_202002192 crossref_primary_10_1038_s41598_023_37461_x crossref_primary_10_1016_j_jclepro_2018_08_286 crossref_primary_10_1016_j_memsci_2019_117353 crossref_primary_10_1016_j_mser_2018_01_002 crossref_primary_10_1016_j_cej_2021_132721 |
Cites_doi | 10.1016/j.memsci.2013.07.068 10.1038/natrevmats.2016.18 10.1126/science.1245711 10.1016/j.jhazmat.2008.08.089 10.1016/j.jcis.2007.07.075 10.1002/adma.201100475 10.1002/adma.201305862 10.1061/(ASCE)0733-9372(2006)132:7(709) 10.1016/S0142-9612(01)00358-1 10.1021/la00024a055 10.1002/jctb.1626 10.1021/bm2005752 10.1038/nnano.2010.274 10.1016/j.watres.2016.01.008 10.1016/S0008-6223(02)00440-2 10.1080/01496390903183329 10.1016/j.watres.2004.11.004 10.1039/c3nr01872e 10.1016/j.jenvman.2010.11.011 10.1038/nature05532 10.1021/nn501786m 10.1006/jcph.1995.1039 10.1016/j.jhazmat.2010.04.019 10.1002/9781118359686 10.1038/nnano.2009.90 10.1021/jp0732918 10.1039/c2cs35107b 10.1016/S0009-2614(02)00502-X 10.1016/j.cej.2013.02.054 10.1039/b409619c 10.1021/ja021448y 10.1021/ie060791z 10.1021/nl200841a 10.1126/science.1212101 10.1039/C6RA12818A 10.1039/c3cc46136j 10.1039/b108013j 10.1007/BF00353102 10.1038/ncomms3187 10.1016/j.msec.2016.03.113 10.1073/pnas.2433456100 10.1021/jp0534333 10.1007/s10570-009-9296-y 10.1016/j.pmatsci.2012.03.001 10.1038/nature06599 10.1039/B610848M 10.1243/03093247JSA533 10.1021/bm2006032 10.1021/la061124d 10.1021/la304574e 10.1016/j.ces.2005.08.007 10.1021/acs.nanolett.6b01195 10.1021/jp101553x 10.1016/j.jhazmat.2013.05.024 10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K 10.1039/B403389B 10.1016/S0008-6223(03)00392-0 10.1021/la9021432 10.1038/ncomms3979 10.1016/j.seppur.2013.02.011 10.1002/adfm.201503858 10.1016/j.carbpol.2011.01.007 10.1016/S1001-0742(12)60145-4 10.1002/app.33059 10.1016/j.biomaterials.2009.12.026 10.1021/cr030698 10.1002/adfm.200500658 10.1016/j.watres.2005.05.051 10.1039/c3nr03362g 10.1021/acs.jpcc.5b12504 10.1021/cm034559k 10.1039/C0JM03334K 10.1016/j.memsci.2010.03.045 10.1021/ar300029v 10.1016/j.memsci.2013.12.006 10.1016/j.jhazmat.2007.11.064 10.1021/es203439v 10.1002/adfm.200600911 10.1039/c0jm01024c 10.1016/S0032-9592(02)00051-1 10.1016/j.jhazmat.2010.05.089 10.1016/j.jcis.2010.03.050 10.1246/cl.2005.788 10.1002/adma.201001863 10.1002/adma.201601783 10.1021/cr400531v 10.1002/adma.201306198 10.1038/nnano.2015.310 10.1002/adma.201400730 10.1016/j.seppur.2009.08.014 10.1039/C5TA00366K 10.1021/bm4014149 10.1021/cm070200a 10.1021/ma0116349 10.1126/science.aaa2491 10.1016/S1001-0742(08)62305-0 10.1039/C3PY01262J |
ContentType | Journal Article |
Copyright | Copyright © 2017, The Authors 2017 The Authors |
Copyright_xml | – notice: Copyright © 2017, The Authors 2017 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1126/sciadv.1601939 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | PMC5381955 28435877 10_1126_sciadv_1601939 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: U01 EB014976 – fundername: ; grantid: ID0EVKCI15174; FA9550-11-1-0199 – fundername: ; grantid: ID0EXFCI15172; U01 EB014976 – fundername: ; grantid: ID0EGGCI15173; N00014-16-1-2333 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADRAZ AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI ADPDF BCGUY NPM OVEED 7X8 5PM |
ID | FETCH-LOGICAL-c456t-8ca1fc2bf5a7a207d829cdf6b52665bf4091df39ecb6715ff1cb4be2c56565f33 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:15:02 EDT 2025 Fri Jul 11 09:47:45 EDT 2025 Mon Jul 21 05:53:19 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Tue Jul 01 03:52:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Engineering filtration multilayer environmental hierarchical materials biomimetic nanotechnology bioinspired water food |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-8ca1fc2bf5a7a207d829cdf6b52665bf4091df39ecb6715ff1cb4be2c56565f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-8175-9083 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1601939 |
PMID | 28435877 |
PQID | 1891457540 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5381955 proquest_miscellaneous_1891457540 pubmed_primary_28435877 crossref_citationtrail_10_1126_sciadv_1601939 crossref_primary_10_1126_sciadv_1601939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2017 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | Liang P. (e_1_3_2_94_2) 2004; 19 Farhat T. R. (e_1_3_2_31_2) 2003; 125 Werber J. R. (e_1_3_2_2_2) 2016 Jung J.-M. (e_1_3_2_60_2) 2010; 26 e_1_3_2_20_2 Ling S. (e_1_3_2_38_2) 2014; 26 Matsumoto T. (e_1_3_2_64_2) 2002; 23 Reichert J. (e_1_3_2_51_2) 1996; 31 Banerjee I. A. (e_1_3_2_70_2) 2003; 100 Li Y. (e_1_3_2_37_2) 2012; 41 e_1_3_2_47_2 Isobe N. (e_1_3_2_88_2) 2013; 260 Koivulaa R. (e_1_3_2_78_2) 2009; 70 Chen Y.-H. (e_1_3_2_75_2) 2010; 347 Li Y.-H. (e_1_3_2_93_2) 2005; 39 Eguizábal A. (e_1_3_2_25_2) 2014; 454 Glavee G. N. (e_1_3_2_72_2) 1994; 10 e_1_3_2_39_2 Wang H. (e_1_3_2_100_2) 2007; 316 Hokkanen S. (e_1_3_2_85_2) 2016; 91 Lee Y. M. (e_1_3_2_19_2) 2014; 26 Yu X. (e_1_3_2_86_2) 2013; 25 e_1_3_2_3_2 Liang H.-W. (e_1_3_2_16_2) 2010; 22 Cheng C. (e_1_3_2_33_2) 2013; 29 Hu J. (e_1_3_2_76_2) 2005; 39 Hu X.-J. (e_1_3_2_102_2) 2013; 108 Kowshik M. (e_1_3_2_73_2) 2002; 14 Kabbashi N. A. (e_1_3_2_91_2) 2009; 21 e_1_3_2_48_2 Zhang Q. (e_1_3_2_5_2) 2011; 21 Zhang Q. G. (e_1_3_2_11_2) 2016; 26 Qin Z. (e_1_3_2_54_2) 2013; 4 Cao C.-Y. (e_1_3_2_84_2) 2010; 114 Lu C. (e_1_3_2_98_2) 2006; 61 Peng X. S. (e_1_3_2_8_2) 2007; 17 Numata K. (e_1_3_2_74_2) 2010; 31 Zhao G. (e_1_3_2_101_2) 2011; 45 Fang G. (e_1_3_2_66_2) 2016; 64 Hu J. (e_1_3_2_77_2) 2006; 132 Braeken L. (e_1_3_2_44_2) 2006; 110 Krieg E. (e_1_3_2_7_2) 2011; 6 Mourhatch R. (e_1_3_2_27_2) 2010; 356 Choi H. (e_1_3_2_23_2) 2006; 16 Deng C. (e_1_3_2_6_2) 2013; 5 Joseph N. (e_1_3_2_28_2) 2014; 5 Lin T.-J. (e_1_3_2_59_2) 2016; 120 Brauman K. A. (e_1_3_2_34_2) 2007 Qu X. (e_1_3_2_52_2) 2013; 46 Hirota M. (e_1_3_2_89_2) 2009; 16 Richardson J. J. (e_1_3_2_36_2) 2015; 348 Pakarinen J. (e_1_3_2_79_2) 2010; 180 Gao S. J. (e_1_3_2_17_2) 2015; 3 Fei X. (e_1_3_2_69_2) 2013; 14 Ling S. (e_1_3_2_12_2) 2016; 16 Karan S. (e_1_3_2_15_2) 2013; 448 Lu Y. (e_1_3_2_43_2) 2007; 19 Hokkanen S. (e_1_3_2_87_2) 2013; 223 Aksu Z. (e_1_3_2_56_2) 2002; 38 e_1_3_2_26_2 e_1_3_2_49_2 Peng X. (e_1_3_2_10_2) 2009; 4 Lu C. (e_1_3_2_97_2) 2006; 81 Liu X. (e_1_3_2_30_2) 2004; 16 Smuleac V. (e_1_3_2_32_2) 2006; 22 e_1_3_2_45_2 e_1_3_2_68_2 Chen C. (e_1_3_2_96_2) 2006; 45 Li C. (e_1_3_2_41_2) 2014; 26 Fei X. (e_1_3_2_71_2) 2013; 5 Sun L. (e_1_3_2_22_2) 2014; 8 e_1_3_2_18_2 He J. (e_1_3_2_14_2) 2011; 11 Bertaud J. (e_1_3_2_58_2) 2009; 44 Zhou Y. (e_1_3_2_67_2) 2001; 23 Wang J.-S. (e_1_3_2_57_2) 2011; 84 Bolisetty S. (e_1_3_2_13_2) 2016; 11 Chen C. (e_1_3_2_99_2) 2009; 164 Li Y.-H. (e_1_3_2_90_2) 2002; 357 Li Y.-H. (e_1_3_2_92_2) 2003; 41 e_1_3_2_42_2 Ling S. (e_1_3_2_61_2) 2011; 12 Tao J. (e_1_3_2_62_2) 2007; 111 Pu X. L. (e_1_3_2_81_2) 2004; 19 Koley P. (e_1_3_2_46_2) 2016; 6 Li Y.-H. (e_1_3_2_95_2) 2003; 41 Ling S. (e_1_3_2_65_2) 2016; 28 Borges J. (e_1_3_2_35_2) 2014; 114 Pakarinen J. (e_1_3_2_80_2) 2009; 44 Balachandra A. M. (e_1_3_2_29_2) 2002; 35 Wang Q. (e_1_3_2_9_2) 2011; 23 e_1_3_2_53_2 e_1_3_2_4_2 Chen Z. (e_1_3_2_55_2) 2008; 155 Afkhami A. (e_1_3_2_82_2) 2010; 181 Striemer C. C. (e_1_3_2_24_2) 2007; 445 Wang X. (e_1_3_2_83_2) 2010; 20 Rajkhowa R. (e_1_3_2_50_2) 2011; 119 Zhang H. G. (e_1_3_2_63_2) 2005; 34 Sun L. (e_1_3_2_21_2) 2013; 49 Meier C. (e_1_3_2_40_2) 2011; 12 |
References_xml | – volume: 448 start-page: 270 year: 2013 ident: e_1_3_2_15_2 article-title: Ultrathin free-standing membranes from metal hydroxide nanostrands publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.07.068 – start-page: 16018 year: 2016 ident: e_1_3_2_2_2 article-title: Materials for next-generation desalination and water purification membranes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.18 – ident: e_1_3_2_48_2 – ident: e_1_3_2_20_2 doi: 10.1126/science.1245711 – volume: 164 start-page: 923 year: 2009 ident: e_1_3_2_99_2 article-title: Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.08.089 – volume: 316 start-page: 277 year: 2007 ident: e_1_3_2_100_2 article-title: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II) publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.07.075 – volume: 23 start-page: 2004 year: 2011 ident: e_1_3_2_9_2 article-title: Ultrafiltration membranes composed of highly cross-linked cationic polymer gel: The network structure and superior separation performance publication-title: Adv. Mater. doi: 10.1002/adma.201100475 – volume: 26 start-page: 3899 year: 2014 ident: e_1_3_2_19_2 article-title: Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film publication-title: Adv. Mater. doi: 10.1002/adma.201305862 – volume: 132 start-page: 709 year: 2006 ident: e_1_3_2_77_2 article-title: Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2006)132:7(709) – volume: 23 start-page: 2241 year: 2002 ident: e_1_3_2_64_2 article-title: Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00358-1 – volume: 10 start-page: 4726 year: 1994 ident: e_1_3_2_72_2 article-title: Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles publication-title: Langmuir doi: 10.1021/la00024a055 – volume: 81 start-page: 1932 year: 2006 ident: e_1_3_2_97_2 article-title: Removal of nickel(II) from aqueous solution by carbon nanotubes publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1626 – volume: 12 start-page: 3453 year: 2011 ident: e_1_3_2_40_2 article-title: Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers publication-title: Biomacromolecules doi: 10.1021/bm2005752 – ident: e_1_3_2_47_2 – volume: 6 start-page: 141 year: 2011 ident: e_1_3_2_7_2 article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.274 – volume: 91 start-page: 156 year: 2016 ident: e_1_3_2_85_2 article-title: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity publication-title: Water Res. doi: 10.1016/j.watres.2016.01.008 – volume: 41 start-page: 1057 year: 2003 ident: e_1_3_2_92_2 article-title: Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes publication-title: Carbon doi: 10.1016/S0008-6223(02)00440-2 – volume: 44 start-page: 3045 year: 2009 ident: e_1_3_2_80_2 article-title: Behavior of silica-supported manganese oxides in hydrometallurgical separations publication-title: Sep. Sci. Technol. doi: 10.1080/01496390903183329 – volume: 39 start-page: 605 year: 2005 ident: e_1_3_2_93_2 article-title: Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2004.11.004 – volume: 5 start-page: 7991 year: 2013 ident: e_1_3_2_71_2 article-title: Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach publication-title: Nanoscale doi: 10.1039/c3nr01872e – ident: e_1_3_2_49_2 doi: 10.1016/j.jenvman.2010.11.011 – volume: 445 start-page: 749 year: 2007 ident: e_1_3_2_24_2 article-title: Charge- and size-based separation of macromolecules using ultrathin silicon membranes publication-title: Nature doi: 10.1038/nature05532 – volume: 8 start-page: 6304 year: 2014 ident: e_1_3_2_22_2 article-title: Ultrafast molecule separation through layered WS2 nanosheet membranes publication-title: ACS Nano doi: 10.1021/nn501786m – ident: e_1_3_2_53_2 doi: 10.1006/jcph.1995.1039 – volume: 180 start-page: 234 year: 2010 ident: e_1_3_2_79_2 article-title: Nanoporous manganese oxides as environmental protective materials—Effect of Ca and Mg on metals sorption publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.04.019 – ident: e_1_3_2_45_2 doi: 10.1002/9781118359686 – volume: 4 start-page: 353 year: 2009 ident: e_1_3_2_10_2 article-title: Ultrafast permeation of water through protein-based membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.90 – volume: 111 start-page: 13410 year: 2007 ident: e_1_3_2_62_2 article-title: Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles publication-title: J. Phys. Chem. B doi: 10.1021/jp0732918 – volume: 41 start-page: 5998 year: 2012 ident: e_1_3_2_37_2 article-title: Layer-by-layer assembly for rapid fabrication of thick polymeric films publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35107b – volume: 357 start-page: 263 year: 2002 ident: e_1_3_2_90_2 article-title: Lead adsorption on carbon nanotubes publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00502-X – volume: 223 start-page: 40 year: 2013 ident: e_1_3_2_87_2 article-title: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.054 – volume: 19 start-page: 1489 year: 2004 ident: e_1_3_2_94_2 article-title: Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry publication-title: J. Anal. At. Spectrom. doi: 10.1039/b409619c – volume: 125 start-page: 4627 year: 2003 ident: e_1_3_2_31_2 article-title: Doping-controlled ion diffusion in polyelectrolyte multilayers: Mass transport in reluctant exchangers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja021448y – volume: 45 start-page: 9144 year: 2006 ident: e_1_3_2_96_2 article-title: Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060791z – volume: 11 start-page: 2430 year: 2011 ident: e_1_3_2_14_2 article-title: Diffusion and filtration properties of self-assembled gold nanocrystal membranes publication-title: Nano Lett. doi: 10.1021/nl200841a – ident: e_1_3_2_26_2 doi: 10.1126/science.1212101 – volume: 6 start-page: 86607 year: 2016 ident: e_1_3_2_46_2 article-title: Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: Excellent adsorption of toxic heavy metals and hazardous dye from wastewater publication-title: RSC Adv. doi: 10.1039/C6RA12818A – volume: 49 start-page: 10718 year: 2013 ident: e_1_3_2_21_2 article-title: Laminar MoS2 membranes for molecule separation publication-title: Chem. Commun. doi: 10.1039/c3cc46136j – volume: 23 start-page: 2518 year: 2001 ident: e_1_3_2_67_2 article-title: Preparation of a novel core–shell nanostructured gold colloid–silk fibroin bioconjugate by the protein redox technique at room temperature publication-title: Chem. Commun. doi: 10.1039/b108013j – volume: 31 start-page: 1231 year: 1996 ident: e_1_3_2_51_2 article-title: An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions publication-title: J. Mater. Sci. doi: 10.1007/BF00353102 – volume: 4 start-page: 2187 year: 2013 ident: e_1_3_2_54_2 article-title: Impact tolerance in mussel thread networks by heterogeneous material distribution publication-title: Nat. Commun. doi: 10.1038/ncomms3187 – volume: 64 start-page: 376 year: 2016 ident: e_1_3_2_66_2 article-title: Formation of different gold nanostructures by silk nanofibrils publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.03.113 – volume: 100 start-page: 14678 year: 2003 ident: e_1_3_2_70_2 article-title: Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2433456100 – volume: 110 start-page: 2957 year: 2006 ident: e_1_3_2_44_2 article-title: Flux decline in nanofiltration due to adsorption of dissolved organic compounds: Model prediction of time dependency publication-title: J. Phys. Chem. B doi: 10.1021/jp0534333 – volume: 16 start-page: 841 year: 2009 ident: e_1_3_2_89_2 article-title: Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO2 system publication-title: Cellulose doi: 10.1007/s10570-009-9296-y – ident: e_1_3_2_39_2 doi: 10.1016/j.pmatsci.2012.03.001 – start-page: 32 year: 2007 ident: e_1_3_2_34_2 article-title: The nature and value of ecosystem services: An overview highlighting hydrologic services publication-title: Annu. Rev. Environ. Resour. – ident: e_1_3_2_4_2 doi: 10.1038/nature06599 – ident: e_1_3_2_3_2 doi: 10.1039/B610848M – volume: 44 start-page: 517 year: 2009 ident: e_1_3_2_58_2 article-title: Amino acid sequence dependence of nanoscale deformation mechanisms in alpha-helical protein filaments publication-title: J. Strain Anal. Eng. Des. doi: 10.1243/03093247JSA533 – volume: 12 start-page: 3344 year: 2011 ident: e_1_3_2_61_2 article-title: Synchrotron FTIR microspectroscopy of single natural silk fibers publication-title: Biomacromolecules doi: 10.1021/bm2006032 – volume: 22 start-page: 10118 year: 2006 ident: e_1_3_2_32_2 article-title: Layer-by-layer-assembled microfiltration membranes for biomolecule immobilization and enzymatic catalysis publication-title: Langmuir doi: 10.1021/la061124d – volume: 29 start-page: 1885 year: 2013 ident: e_1_3_2_33_2 article-title: Fundamentals of selective ion transport through multilayer polyelectrolyte membranes publication-title: Langmuir doi: 10.1021/la304574e – volume: 61 start-page: 1138 year: 2006 ident: e_1_3_2_98_2 article-title: Adsorption of zinc(II) from water with purified carbon nanotubes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.08.007 – volume: 16 start-page: 3795 year: 2016 ident: e_1_3_2_12_2 article-title: Ultrathin free-standing Bombyx mori silk nanofibril membranes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01195 – volume: 114 start-page: 9865 year: 2010 ident: e_1_3_2_84_2 article-title: Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis publication-title: J. Phys. Chem. C doi: 10.1021/jp101553x – ident: e_1_3_2_42_2 – volume: 260 start-page: 195 year: 2013 ident: e_1_3_2_88_2 article-title: TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.05.024 – volume: 14 start-page: 815 year: 2002 ident: e_1_3_2_73_2 article-title: Microbial synthesis of semiconductor PbS nanocrystallites publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K – volume: 19 start-page: 984 year: 2004 ident: e_1_3_2_81_2 article-title: γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry publication-title: J. Anal. At. Spectrom. doi: 10.1039/B403389B – volume: 41 start-page: 2787 year: 2003 ident: e_1_3_2_95_2 article-title: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes publication-title: Carbon doi: 10.1016/S0008-6223(03)00392-0 – volume: 26 start-page: 504 year: 2010 ident: e_1_3_2_60_2 article-title: Liquid crystalline phase behavior of protein fibers in water: Experiments versus theory publication-title: Langmuir doi: 10.1021/la9021432 – ident: e_1_3_2_18_2 doi: 10.1038/ncomms3979 – volume: 108 start-page: 189 year: 2013 ident: e_1_3_2_102_2 article-title: Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.02.011 – volume: 26 start-page: 792 year: 2016 ident: e_1_3_2_11_2 article-title: Sub-10 nm wide cellulose nanofibers for ultrathin nanoporous membranes with high organic permeation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201503858 – volume: 84 start-page: 1169 year: 2011 ident: e_1_3_2_57_2 article-title: Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.01.007 – volume: 25 start-page: 933 year: 2013 ident: e_1_3_2_86_2 article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(12)60145-4 – volume: 119 start-page: 3630 year: 2011 ident: e_1_3_2_50_2 article-title: An investigation into transition metal ion binding properties of silk fibers and particles using radioisotopes publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.33059 – volume: 31 start-page: 2926 year: 2010 ident: e_1_3_2_74_2 article-title: Mechanism of enzymatic degradation of beta-sheet crystals publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.026 – ident: e_1_3_2_68_2 doi: 10.1021/cr030698 – volume: 16 start-page: 1067 year: 2006 ident: e_1_3_2_23_2 article-title: Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500658 – volume: 39 start-page: 4528 year: 2005 ident: e_1_3_2_76_2 article-title: Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2005.05.051 – volume: 5 start-page: 11028 year: 2013 ident: e_1_3_2_6_2 article-title: Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation publication-title: Nanoscale doi: 10.1039/c3nr03362g – volume: 120 start-page: 4975 year: 2016 ident: e_1_3_2_59_2 article-title: Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b12504 – volume: 16 start-page: 351 year: 2004 ident: e_1_3_2_30_2 article-title: Size-selective transport of uncharged solutes through multilayer polyelectrolyte membranes publication-title: Chem. Mater. doi: 10.1021/cm034559k – volume: 21 start-page: 1684 year: 2011 ident: e_1_3_2_5_2 article-title: Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/C0JM03334K – volume: 356 start-page: 138 year: 2010 ident: e_1_3_2_27_2 article-title: Network model for the evolution of the pore structure of silicon-carbide membranes during their fabrication publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.03.045 – volume: 46 start-page: 834 year: 2013 ident: e_1_3_2_52_2 article-title: Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse publication-title: Acc. Chem. Res. doi: 10.1021/ar300029v – volume: 454 start-page: 243 year: 2014 ident: e_1_3_2_25_2 article-title: Nanoporous PBI membranes by track etching for high temperature PEMs publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.12.006 – volume: 155 start-page: 327 year: 2008 ident: e_1_3_2_55_2 article-title: Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.11.064 – volume: 45 start-page: 10454 year: 2011 ident: e_1_3_2_101_2 article-title: Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management publication-title: Environ. Sci. Technol. doi: 10.1021/es203439v – volume: 17 start-page: 1849 year: 2007 ident: e_1_3_2_8_2 article-title: Mesoporous separation membranes of polymer-coated copper hydroxide nanostrands publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600911 – volume: 20 start-page: 8582 year: 2010 ident: e_1_3_2_83_2 article-title: Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation publication-title: J. Mater. Chem. doi: 10.1039/c0jm01024c – volume: 38 start-page: 89 year: 2002 ident: e_1_3_2_56_2 article-title: Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris publication-title: Process Biochem. doi: 10.1016/S0032-9592(02)00051-1 – volume: 181 start-page: 836 year: 2010 ident: e_1_3_2_82_2 article-title: Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.089 – volume: 347 start-page: 277 year: 2010 ident: e_1_3_2_75_2 article-title: Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.03.050 – volume: 34 start-page: 788 year: 2005 ident: e_1_3_2_63_2 article-title: Glutamic acid-mediated synthesis of ultralong hydroxyapatite nanoribbons under hydrothermal conditions publication-title: Chem. Lett. doi: 10.1246/cl.2005.788 – volume: 22 start-page: 4691 year: 2010 ident: e_1_3_2_16_2 article-title: Carbonaceous nanofiber membranes for selective filtration and separation of nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201001863 – volume: 28 start-page: 7783 year: 2016 ident: e_1_3_2_65_2 article-title: Liquid exfoliated natural silk nanofibrils: Applications in optical and electrical devices publication-title: Adv. Mater. doi: 10.1002/adma.201601783 – volume: 114 start-page: 8883 year: 2014 ident: e_1_3_2_35_2 article-title: Molecular interactions driving the layer-by-layer assembly of multilayers publication-title: Chem. Rev. doi: 10.1021/cr400531v – volume: 26 start-page: 3207 year: 2014 ident: e_1_3_2_41_2 article-title: Amyloid-hydroxyapatite bone biomimetic composites publication-title: Adv. Mater. doi: 10.1002/adma.201306198 – volume: 11 start-page: 365 year: 2016 ident: e_1_3_2_13_2 article-title: Amyloid–carbon hybrid membranes for universal water purification publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.310 – volume: 26 start-page: 4569 year: 2014 ident: e_1_3_2_38_2 article-title: Modulating materials by orthogonally oriented β-strands: Composites of amyloid and silk fibroin fibrils publication-title: Adv. Mater. doi: 10.1002/adma.201400730 – volume: 70 start-page: 53 year: 2009 ident: e_1_3_2_78_2 article-title: Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.08.014 – volume: 3 start-page: 6649 year: 2015 ident: e_1_3_2_17_2 article-title: SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00366K – volume: 14 start-page: 4483 year: 2013 ident: e_1_3_2_69_2 article-title: Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties publication-title: Biomacromolecules doi: 10.1021/bm4014149 – volume: 19 start-page: 3194 year: 2007 ident: e_1_3_2_43_2 article-title: Nanofiltration membranes based on rigid star amphiphiles publication-title: Chem. Mater. doi: 10.1021/cm070200a – volume: 35 start-page: 3171 year: 2002 ident: e_1_3_2_29_2 article-title: Enhancing the anion-transport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+ publication-title: Macromolecules doi: 10.1021/ma0116349 – volume: 348 start-page: aaa2491 year: 2015 ident: e_1_3_2_36_2 article-title: Technology-driven layer-by-layer assembly of nanofilms publication-title: Science doi: 10.1126/science.aaa2491 – volume: 21 start-page: 539 year: 2009 ident: e_1_3_2_91_2 article-title: Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)62305-0 – volume: 5 start-page: 1817 year: 2014 ident: e_1_3_2_28_2 article-title: Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation publication-title: Polym. Chem. doi: 10.1039/C3PY01262J |
SSID | ssj0001466519 |
Score | 2.4801779 |
Snippet | A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication.
Multilayer architectures in... Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1601939 |
SubjectTerms | Applied Sciences and Engineering SciAdv r-articles |
Title | Design and function of biomimetic multilayer water purification membranes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28435877 https://www.proquest.com/docview/1891457540 https://pubmed.ncbi.nlm.nih.gov/PMC5381955 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLlwQZS2bjIQEHIIax46dA0KIrSDBiUq9RY4Ti0ptCl1Y_p4Z1y2U5cIll9iRMs-Tec-ZGROyL0E0ANQ60IlQATdcBZpHtSCxWnPGtVYW9zvu7uN6g982RfMz_8kbsP-rtMPzpBq99vHb8_spOPzJlwIYnb_gPgmwkWSWzENUkuikd57qu_0WHsfAVnzfxp_TsCuwAu6gpJwOUT945_f0yS_x6GqJLHoiSc9GyFfITFEuk4p31T499P2kj1bIzYXL0qC6zCmGMYSCdi3FyvtWB4sYqUsrbGug3_QVyGePPg17mEPkYKOdogOaGr6Jq6RxdflwXg_8CQqBAWI0CJTRoTUss0JLzWoyVywxuY0zAXFZZBbEXZjbKClMFstQWBuajGcFM0jzhI2iNTJXdstig1CwaBFp8GZtBLcKeR9wSVYYCGicybhKgrHRUuPbi-MpF-3UyQwWpyN7p97eVXIwGf80aqzx58i9MQYprH38oQGv3B3201AlIQe-yWtVsj7CZPKsMZhVIqfQmgzAvtrTd8rWo-uvLVDFCrH575lbZIFh9HcJPttkbtAbFjvAXQbZrtP8cL1uhrtugX4Aj4rzgQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+function+of+biomimetic+multilayer+water+purification+membranes&rft.jtitle=Science+advances&rft.au=Ling%2C+Shengjie&rft.au=Qin%2C+Zhao&rft.au=Huang%2C+Wenwen&rft.au=Cao%2C+Sufeng&rft.date=2017-04-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1126%2Fsciadv.1601939&rft_id=info%3Apmid%2F28435877&rft.externalDocID=PMC5381955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |