Design and function of biomimetic multilayer water purification membranes

A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication. Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the prep...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 3; no. 4; p. e1601939
Main Authors Ling, Shengjie, Qin, Zhao, Huang, Wenwen, Cao, Sufeng, Kaplan, David L., Buehler, Markus J.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication. Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
AbstractList Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication. Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.
Author Buehler, Markus J.
Ling, Shengjie
Qin, Zhao
Huang, Wenwen
Kaplan, David L.
Cao, Sufeng
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Ling
  fullname: Ling, Shengjie
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA., Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
– sequence: 2
  givenname: Zhao
  surname: Qin
  fullname: Qin, Zhao
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Wenwen
  orcidid: 0000-0001-8175-9083
  surname: Huang
  fullname: Huang, Wenwen
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
– sequence: 4
  givenname: Sufeng
  surname: Cao
  fullname: Cao, Sufeng
  organization: Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
– sequence: 5
  givenname: David L.
  surname: Kaplan
  fullname: Kaplan, David L.
  organization: Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
– sequence: 6
  givenname: Markus J.
  surname: Buehler
  fullname: Buehler, Markus J.
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA., Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28435877$$D View this record in MEDLINE/PubMed
BookMark eNp1UUlPAyEUJqbG1tqrRzNHL1OBgVkuJqZuTZp40TMBBipmBirM1PTfi12MmpiX8F7Ct8D7TsHAOqsAOEdwihDOr4I0vF5PUQ5RlVVHYISzgqaYknLwYx6CSQhvEEJE8pyi6gQMcUkyWhbFCMxvVTBLm3BbJ7q3sjPOJk4nwrjWtKozMmn7pjMN3yiffPAunqveG20k32Jb1QrPrQpn4FjzJqjJvo_By_3d8-wxXTw9zGc3i1QSmndpKTnSEgtNecExLOoSV7LWuaA4vk5oAitU66xSUuQFolojKYhQWNI8ls6yMbje6a560apaKtt53rCVNy33G-a4Yb9vrHllS7dmNCtRRWkUuNwLePfeq9Cx1gSpmib-wvWBobJChBaUwAi9-On1bXLYXwSQHUB6F4JXmknTbRcTrU3DEGRfSbFdUmyfVKRN_9AOyv8QPgEp2plS
CitedBy_id crossref_primary_10_1002_adma_202005910
crossref_primary_10_1088_1748_605X_aba281
crossref_primary_10_1088_1748_3190_acddc1
crossref_primary_10_1016_j_polymer_2021_123534
crossref_primary_10_1038_s41893_023_01264_9
crossref_primary_10_1039_C9TA12670H
crossref_primary_10_1039_D3CS00367A
crossref_primary_10_1007_s42235_022_00167_3
crossref_primary_10_1021_acsnano_7b04235
crossref_primary_10_1016_j_jmbbm_2023_105910
crossref_primary_10_1021_acsestengg_4c00184
crossref_primary_10_1021_acs_jpcc_0c00548
crossref_primary_10_1088_1361_6528_acbd9f
crossref_primary_10_1038_s41545_020_00090_2
crossref_primary_10_1002_smsc_202000032
crossref_primary_10_1002_adma_202105196
crossref_primary_10_1016_j_progpolymsci_2018_06_004
crossref_primary_10_1039_D1RA07423G
crossref_primary_10_1038_s41467_019_11792_8
crossref_primary_10_1016_j_jtice_2024_105483
crossref_primary_10_1016_j_memsci_2024_122517
crossref_primary_10_1021_acsnano_3c00105
crossref_primary_10_1021_acsnano_2c12385
crossref_primary_10_1038_s41467_022_32204_4
crossref_primary_10_1002_cssc_202301549
crossref_primary_10_1038_natrevmats_2018_16
crossref_primary_10_3390_en15072485
crossref_primary_10_1021_acsnano_4c07409
crossref_primary_10_1126_sciadv_adn8696
crossref_primary_10_1186_s42825_023_00133_7
crossref_primary_10_1038_s41893_024_01282_1
crossref_primary_10_1021_acs_chemmater_3c00847
crossref_primary_10_1021_acsami_9b11964
crossref_primary_10_3390_ijms241713153
crossref_primary_10_1016_j_eurpolymj_2024_112842
crossref_primary_10_1002_adfm_202104088
crossref_primary_10_1002_smll_202205003
crossref_primary_10_1002_smtd_202300236
crossref_primary_10_1007_s43979_024_00110_x
crossref_primary_10_1016_j_actbio_2020_01_045
crossref_primary_10_1007_s10924_022_02741_6
crossref_primary_10_1002_adhm_201800178
crossref_primary_10_1002_adfm_202405918
crossref_primary_10_1016_j_memsci_2023_121498
crossref_primary_10_1039_D1EN00798J
crossref_primary_10_1002_anie_201907708
crossref_primary_10_1039_C9TA12293A
crossref_primary_10_1007_s11664_020_08062_5
crossref_primary_10_1021_acsami_8b09218
crossref_primary_10_3389_fchem_2020_604398
crossref_primary_10_1039_C8NR02159G
crossref_primary_10_1002_adfm_202100299
crossref_primary_10_1021_acsami_8b01952
crossref_primary_10_1021_acs_est_3c02751
crossref_primary_10_1021_acsami_4c19943
crossref_primary_10_1021_acsami_0c19239
crossref_primary_10_1002_ange_202408345
crossref_primary_10_1073_pnas_2003898117
crossref_primary_10_1016_j_resconrec_2021_105849
crossref_primary_10_1038_natrevmats_2017_25
crossref_primary_10_1557_mrs_2018_320
crossref_primary_10_1515_zpch_2018_1169
crossref_primary_10_1063_5_0054637
crossref_primary_10_3390_jfb13020080
crossref_primary_10_1002_advs_202302935
crossref_primary_10_1016_j_jcis_2018_05_106
crossref_primary_10_1126_sciadv_adg6638
crossref_primary_10_1002_ange_201803076
crossref_primary_10_1002_jccs_202100072
crossref_primary_10_3390_gels9110888
crossref_primary_10_23939_ctas2018_01_027
crossref_primary_10_1016_j_memsci_2019_01_014
crossref_primary_10_1016_j_memsci_2019_117761
crossref_primary_10_1021_acsnano_8b03710
crossref_primary_10_1021_acs_biomac_4c01122
crossref_primary_10_1038_s41545_022_00189_8
crossref_primary_10_1039_D4ME00174E
crossref_primary_10_1002_adfm_202207532
crossref_primary_10_3390_app12189152
crossref_primary_10_1002_adom_201801275
crossref_primary_10_1016_j_jcrysgro_2022_126977
crossref_primary_10_1016_j_jallcom_2018_07_042
crossref_primary_10_1002_biot_201700753
crossref_primary_10_1016_j_jwpe_2023_103496
crossref_primary_10_1002_biot_201700754
crossref_primary_10_1021_acsami_4c17903
crossref_primary_10_1088_1361_6528_acbda0
crossref_primary_10_1002_asia_202000013
crossref_primary_10_1126_sciadv_adh0207
crossref_primary_10_1016_j_seppur_2024_126278
crossref_primary_10_1007_s42765_019_00013_y
crossref_primary_10_1039_C8CS00187A
crossref_primary_10_1016_j_carbon_2024_119227
crossref_primary_10_1016_j_cej_2024_152819
crossref_primary_10_1016_j_cej_2020_124667
crossref_primary_10_1021_acs_biomac_0c00097
crossref_primary_10_1016_j_memsci_2019_01_035
crossref_primary_10_1002_pen_25831
crossref_primary_10_1016_j_jclepro_2020_120297
crossref_primary_10_1002_smsc_202400120
crossref_primary_10_1016_j_memsci_2024_122474
crossref_primary_10_1016_j_seppur_2019_01_035
crossref_primary_10_1021_acsabm_0c01375
crossref_primary_10_1021_acsapm_9b00925
crossref_primary_10_1002_adfm_202008552
crossref_primary_10_1016_j_chemosphere_2022_134635
crossref_primary_10_1016_j_chemosphere_2023_138637
crossref_primary_10_1002_anie_201803076
crossref_primary_10_1039_C7TA06800J
crossref_primary_10_1021_acsnano_1c00820
crossref_primary_10_1002_adsu_201900063
crossref_primary_10_1002_adfm_201705291
crossref_primary_10_1021_acssuschemeng_9b03793
crossref_primary_10_1088_1402_4896_aab4e2
crossref_primary_10_1016_j_cej_2024_152375
crossref_primary_10_1002_marc_202000435
crossref_primary_10_1021_acsnano_8b04379
crossref_primary_10_1002_mabi_201800253
crossref_primary_10_1038_s41467_018_04294_6
crossref_primary_10_1016_j_apmt_2019_06_015
crossref_primary_10_1002_adfm_201903055
crossref_primary_10_1016_j_cej_2023_142041
crossref_primary_10_1016_j_scitotenv_2019_135051
crossref_primary_10_1039_C8SC03012J
crossref_primary_10_3390_ijms232113459
crossref_primary_10_1039_C9TA07296A
crossref_primary_10_1016_j_coco_2019_03_004
crossref_primary_10_1016_j_cscee_2022_100205
crossref_primary_10_1016_j_jcis_2020_04_079
crossref_primary_10_1021_acsabm_3c00189
crossref_primary_10_1007_s41745_019_00114_y
crossref_primary_10_1002_adfm_201805305
crossref_primary_10_1016_j_jhazmat_2021_127561
crossref_primary_10_1016_j_carpta_2022_100262
crossref_primary_10_1016_j_seppur_2024_130617
crossref_primary_10_1002_EXP_20220050
crossref_primary_10_1021_acsami_8b21847
crossref_primary_10_1007_s11431_018_9403_8
crossref_primary_10_1021_acs_langmuir_3c00602
crossref_primary_10_1002_adma_202003206
crossref_primary_10_1016_j_cej_2021_131021
crossref_primary_10_1002_adhm_201901287
crossref_primary_10_1021_acsami_0c00440
crossref_primary_10_1002_admt_202201660
crossref_primary_10_1016_j_seppur_2024_128413
crossref_primary_10_1038_s41598_018_34150_y
crossref_primary_10_1016_j_ijbiomac_2023_129099
crossref_primary_10_1016_j_pmatsci_2017_10_006
crossref_primary_10_1038_s41598_021_82855_4
crossref_primary_10_1002_adma_201802306
crossref_primary_10_1002_anie_202408345
crossref_primary_10_1039_D2EN00155A
crossref_primary_10_1002_sstr_202300080
crossref_primary_10_1021_acs_nanolett_4c02816
crossref_primary_10_1016_j_memsci_2019_117667
crossref_primary_10_1038_s41467_021_23388_2
crossref_primary_10_1016_j_memsci_2019_117309
crossref_primary_10_1016_j_watres_2022_118469
crossref_primary_10_3390_nano13020247
crossref_primary_10_1039_C8NR04864A
crossref_primary_10_1016_j_coco_2019_11_017
crossref_primary_10_1016_j_cej_2020_127721
crossref_primary_10_1021_acsami_0c21817
crossref_primary_10_1007_s11356_024_33226_9
crossref_primary_10_1021_acsomega_3c07725
crossref_primary_10_1039_D1RA09044E
crossref_primary_10_1021_acs_langmuir_2c00999
crossref_primary_10_1039_C9CC04532E
crossref_primary_10_1016_j_seppur_2025_131650
crossref_primary_10_3389_fchem_2019_00069
crossref_primary_10_5004_dwt_2022_28869
crossref_primary_10_1016_j_isci_2022_103940
crossref_primary_10_1021_acsnano_8b02430
crossref_primary_10_1039_C7TA09898G
crossref_primary_10_1039_C9CC00902G
crossref_primary_10_3390_polym13030450
crossref_primary_10_1021_acsbiomaterials_9b00305
crossref_primary_10_1021_acs_chemrev_9b00416
crossref_primary_10_1007_s10565_020_09527_3
crossref_primary_10_1007_s12274_020_3256_0
crossref_primary_10_1002_anie_201912848
crossref_primary_10_1021_acs_chemrev_1c00683
crossref_primary_10_15446_dyna_v87n214_82163
crossref_primary_10_1002_admt_202400547
crossref_primary_10_3390_membranes10120386
crossref_primary_10_3390_polym15030658
crossref_primary_10_1016_j_envres_2022_114998
crossref_primary_10_1038_s41467_017_00613_5
crossref_primary_10_1016_j_isci_2023_107290
crossref_primary_10_1021_acsami_0c07846
crossref_primary_10_1002_adma_202404418
crossref_primary_10_3390_cryst11040353
crossref_primary_10_1016_j_carbpol_2019_115642
crossref_primary_10_1016_j_apsusc_2024_160590
crossref_primary_10_1002_ange_201907708
crossref_primary_10_1016_j_carbpol_2019_115512
crossref_primary_10_1016_j_cej_2019_05_163
crossref_primary_10_3390_ijms22116090
crossref_primary_10_1016_j_progpolymsci_2024_101874
crossref_primary_10_1016_j_seppur_2021_120440
crossref_primary_10_1016_j_ijbiomac_2023_126863
crossref_primary_10_1016_j_nanoen_2023_109066
crossref_primary_10_3390_ijms20123054
crossref_primary_10_1002_adma_202305755
crossref_primary_10_1016_j_memsci_2022_120761
crossref_primary_10_1093_nsr_nwz077
crossref_primary_10_1039_D2NR01989B
crossref_primary_10_1038_s41378_021_00261_2
crossref_primary_10_1016_j_seppur_2024_131338
crossref_primary_10_1016_j_carbpol_2021_118754
crossref_primary_10_1002_ange_201912848
crossref_primary_10_1016_j_memsci_2019_117223
crossref_primary_10_1016_j_cej_2021_133823
crossref_primary_10_3390_polym11121933
crossref_primary_10_1021_acs_est_3c07030
crossref_primary_10_3390_su16031286
crossref_primary_10_1002_aesr_202100008
crossref_primary_10_1016_j_jhazmat_2021_125677
crossref_primary_10_1039_D1TC00607J
crossref_primary_10_1038_s41467_018_07888_2
crossref_primary_10_1021_acsomega_2c02400
crossref_primary_10_1002_adfm_202002192
crossref_primary_10_1038_s41598_023_37461_x
crossref_primary_10_1016_j_jclepro_2018_08_286
crossref_primary_10_1016_j_memsci_2019_117353
crossref_primary_10_1016_j_mser_2018_01_002
crossref_primary_10_1016_j_cej_2021_132721
Cites_doi 10.1016/j.memsci.2013.07.068
10.1038/natrevmats.2016.18
10.1126/science.1245711
10.1016/j.jhazmat.2008.08.089
10.1016/j.jcis.2007.07.075
10.1002/adma.201100475
10.1002/adma.201305862
10.1061/(ASCE)0733-9372(2006)132:7(709)
10.1016/S0142-9612(01)00358-1
10.1021/la00024a055
10.1002/jctb.1626
10.1021/bm2005752
10.1038/nnano.2010.274
10.1016/j.watres.2016.01.008
10.1016/S0008-6223(02)00440-2
10.1080/01496390903183329
10.1016/j.watres.2004.11.004
10.1039/c3nr01872e
10.1016/j.jenvman.2010.11.011
10.1038/nature05532
10.1021/nn501786m
10.1006/jcph.1995.1039
10.1016/j.jhazmat.2010.04.019
10.1002/9781118359686
10.1038/nnano.2009.90
10.1021/jp0732918
10.1039/c2cs35107b
10.1016/S0009-2614(02)00502-X
10.1016/j.cej.2013.02.054
10.1039/b409619c
10.1021/ja021448y
10.1021/ie060791z
10.1021/nl200841a
10.1126/science.1212101
10.1039/C6RA12818A
10.1039/c3cc46136j
10.1039/b108013j
10.1007/BF00353102
10.1038/ncomms3187
10.1016/j.msec.2016.03.113
10.1073/pnas.2433456100
10.1021/jp0534333
10.1007/s10570-009-9296-y
10.1016/j.pmatsci.2012.03.001
10.1038/nature06599
10.1039/B610848M
10.1243/03093247JSA533
10.1021/bm2006032
10.1021/la061124d
10.1021/la304574e
10.1016/j.ces.2005.08.007
10.1021/acs.nanolett.6b01195
10.1021/jp101553x
10.1016/j.jhazmat.2013.05.024
10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K
10.1039/B403389B
10.1016/S0008-6223(03)00392-0
10.1021/la9021432
10.1038/ncomms3979
10.1016/j.seppur.2013.02.011
10.1002/adfm.201503858
10.1016/j.carbpol.2011.01.007
10.1016/S1001-0742(12)60145-4
10.1002/app.33059
10.1016/j.biomaterials.2009.12.026
10.1021/cr030698
10.1002/adfm.200500658
10.1016/j.watres.2005.05.051
10.1039/c3nr03362g
10.1021/acs.jpcc.5b12504
10.1021/cm034559k
10.1039/C0JM03334K
10.1016/j.memsci.2010.03.045
10.1021/ar300029v
10.1016/j.memsci.2013.12.006
10.1016/j.jhazmat.2007.11.064
10.1021/es203439v
10.1002/adfm.200600911
10.1039/c0jm01024c
10.1016/S0032-9592(02)00051-1
10.1016/j.jhazmat.2010.05.089
10.1016/j.jcis.2010.03.050
10.1246/cl.2005.788
10.1002/adma.201001863
10.1002/adma.201601783
10.1021/cr400531v
10.1002/adma.201306198
10.1038/nnano.2015.310
10.1002/adma.201400730
10.1016/j.seppur.2009.08.014
10.1039/C5TA00366K
10.1021/bm4014149
10.1021/cm070200a
10.1021/ma0116349
10.1126/science.aaa2491
10.1016/S1001-0742(08)62305-0
10.1039/C3PY01262J
ContentType Journal Article
Copyright Copyright © 2017, The Authors 2017 The Authors
Copyright_xml – notice: Copyright © 2017, The Authors 2017 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1126/sciadv.1601939
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC5381955
28435877
10_1126_sciadv_1601939
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: U01 EB014976
– fundername: ;
  grantid: ID0EVKCI15174; FA9550-11-1-0199
– fundername: ;
  grantid: ID0EXFCI15172; U01 EB014976
– fundername: ;
  grantid: ID0EGGCI15173; N00014-16-1-2333
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
ADPDF
BCGUY
NPM
OVEED
7X8
5PM
ID FETCH-LOGICAL-c456t-8ca1fc2bf5a7a207d829cdf6b52665bf4091df39ecb6715ff1cb4be2c56565f33
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:15:02 EDT 2025
Fri Jul 11 09:47:45 EDT 2025
Mon Jul 21 05:53:19 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Tue Jul 01 03:52:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Engineering
filtration
multilayer
environmental
hierarchical materials
biomimetic
nanotechnology
bioinspired
water
food
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-8ca1fc2bf5a7a207d829cdf6b52665bf4091df39ecb6715ff1cb4be2c56565f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-8175-9083
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1601939
PMID 28435877
PQID 1891457540
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5381955
proquest_miscellaneous_1891457540
pubmed_primary_28435877
crossref_citationtrail_10_1126_sciadv_1601939
crossref_primary_10_1126_sciadv_1601939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2017
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References Liang P. (e_1_3_2_94_2) 2004; 19
Farhat T. R. (e_1_3_2_31_2) 2003; 125
Werber J. R. (e_1_3_2_2_2) 2016
Jung J.-M. (e_1_3_2_60_2) 2010; 26
e_1_3_2_20_2
Ling S. (e_1_3_2_38_2) 2014; 26
Matsumoto T. (e_1_3_2_64_2) 2002; 23
Reichert J. (e_1_3_2_51_2) 1996; 31
Banerjee I. A. (e_1_3_2_70_2) 2003; 100
Li Y. (e_1_3_2_37_2) 2012; 41
e_1_3_2_47_2
Isobe N. (e_1_3_2_88_2) 2013; 260
Koivulaa R. (e_1_3_2_78_2) 2009; 70
Chen Y.-H. (e_1_3_2_75_2) 2010; 347
Li Y.-H. (e_1_3_2_93_2) 2005; 39
Eguizábal A. (e_1_3_2_25_2) 2014; 454
Glavee G. N. (e_1_3_2_72_2) 1994; 10
e_1_3_2_39_2
Wang H. (e_1_3_2_100_2) 2007; 316
Hokkanen S. (e_1_3_2_85_2) 2016; 91
Lee Y. M. (e_1_3_2_19_2) 2014; 26
Yu X. (e_1_3_2_86_2) 2013; 25
e_1_3_2_3_2
Liang H.-W. (e_1_3_2_16_2) 2010; 22
Cheng C. (e_1_3_2_33_2) 2013; 29
Hu J. (e_1_3_2_76_2) 2005; 39
Hu X.-J. (e_1_3_2_102_2) 2013; 108
Kowshik M. (e_1_3_2_73_2) 2002; 14
Kabbashi N. A. (e_1_3_2_91_2) 2009; 21
e_1_3_2_48_2
Zhang Q. (e_1_3_2_5_2) 2011; 21
Zhang Q. G. (e_1_3_2_11_2) 2016; 26
Qin Z. (e_1_3_2_54_2) 2013; 4
Cao C.-Y. (e_1_3_2_84_2) 2010; 114
Lu C. (e_1_3_2_98_2) 2006; 61
Peng X. S. (e_1_3_2_8_2) 2007; 17
Numata K. (e_1_3_2_74_2) 2010; 31
Zhao G. (e_1_3_2_101_2) 2011; 45
Fang G. (e_1_3_2_66_2) 2016; 64
Hu J. (e_1_3_2_77_2) 2006; 132
Braeken L. (e_1_3_2_44_2) 2006; 110
Krieg E. (e_1_3_2_7_2) 2011; 6
Mourhatch R. (e_1_3_2_27_2) 2010; 356
Choi H. (e_1_3_2_23_2) 2006; 16
Deng C. (e_1_3_2_6_2) 2013; 5
Joseph N. (e_1_3_2_28_2) 2014; 5
Lin T.-J. (e_1_3_2_59_2) 2016; 120
Brauman K. A. (e_1_3_2_34_2) 2007
Qu X. (e_1_3_2_52_2) 2013; 46
Hirota M. (e_1_3_2_89_2) 2009; 16
Richardson J. J. (e_1_3_2_36_2) 2015; 348
Pakarinen J. (e_1_3_2_79_2) 2010; 180
Gao S. J. (e_1_3_2_17_2) 2015; 3
Fei X. (e_1_3_2_69_2) 2013; 14
Ling S. (e_1_3_2_12_2) 2016; 16
Karan S. (e_1_3_2_15_2) 2013; 448
Lu Y. (e_1_3_2_43_2) 2007; 19
Hokkanen S. (e_1_3_2_87_2) 2013; 223
Aksu Z. (e_1_3_2_56_2) 2002; 38
e_1_3_2_26_2
e_1_3_2_49_2
Peng X. (e_1_3_2_10_2) 2009; 4
Lu C. (e_1_3_2_97_2) 2006; 81
Liu X. (e_1_3_2_30_2) 2004; 16
Smuleac V. (e_1_3_2_32_2) 2006; 22
e_1_3_2_45_2
e_1_3_2_68_2
Chen C. (e_1_3_2_96_2) 2006; 45
Li C. (e_1_3_2_41_2) 2014; 26
Fei X. (e_1_3_2_71_2) 2013; 5
Sun L. (e_1_3_2_22_2) 2014; 8
e_1_3_2_18_2
He J. (e_1_3_2_14_2) 2011; 11
Bertaud J. (e_1_3_2_58_2) 2009; 44
Zhou Y. (e_1_3_2_67_2) 2001; 23
Wang J.-S. (e_1_3_2_57_2) 2011; 84
Bolisetty S. (e_1_3_2_13_2) 2016; 11
Chen C. (e_1_3_2_99_2) 2009; 164
Li Y.-H. (e_1_3_2_90_2) 2002; 357
Li Y.-H. (e_1_3_2_92_2) 2003; 41
e_1_3_2_42_2
Ling S. (e_1_3_2_61_2) 2011; 12
Tao J. (e_1_3_2_62_2) 2007; 111
Pu X. L. (e_1_3_2_81_2) 2004; 19
Koley P. (e_1_3_2_46_2) 2016; 6
Li Y.-H. (e_1_3_2_95_2) 2003; 41
Ling S. (e_1_3_2_65_2) 2016; 28
Borges J. (e_1_3_2_35_2) 2014; 114
Pakarinen J. (e_1_3_2_80_2) 2009; 44
Balachandra A. M. (e_1_3_2_29_2) 2002; 35
Wang Q. (e_1_3_2_9_2) 2011; 23
e_1_3_2_53_2
e_1_3_2_4_2
Chen Z. (e_1_3_2_55_2) 2008; 155
Afkhami A. (e_1_3_2_82_2) 2010; 181
Striemer C. C. (e_1_3_2_24_2) 2007; 445
Wang X. (e_1_3_2_83_2) 2010; 20
Rajkhowa R. (e_1_3_2_50_2) 2011; 119
Zhang H. G. (e_1_3_2_63_2) 2005; 34
Sun L. (e_1_3_2_21_2) 2013; 49
Meier C. (e_1_3_2_40_2) 2011; 12
References_xml – volume: 448
  start-page: 270
  year: 2013
  ident: e_1_3_2_15_2
  article-title: Ultrathin free-standing membranes from metal hydroxide nanostrands
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.07.068
– start-page: 16018
  year: 2016
  ident: e_1_3_2_2_2
  article-title: Materials for next-generation desalination and water purification membranes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.18
– ident: e_1_3_2_48_2
– ident: e_1_3_2_20_2
  doi: 10.1126/science.1245711
– volume: 164
  start-page: 923
  year: 2009
  ident: e_1_3_2_99_2
  article-title: Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.08.089
– volume: 316
  start-page: 277
  year: 2007
  ident: e_1_3_2_100_2
  article-title: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II)
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.07.075
– volume: 23
  start-page: 2004
  year: 2011
  ident: e_1_3_2_9_2
  article-title: Ultrafiltration membranes composed of highly cross-linked cationic polymer gel: The network structure and superior separation performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100475
– volume: 26
  start-page: 3899
  year: 2014
  ident: e_1_3_2_19_2
  article-title: Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305862
– volume: 132
  start-page: 709
  year: 2006
  ident: e_1_3_2_77_2
  article-title: Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2006)132:7(709)
– volume: 23
  start-page: 2241
  year: 2002
  ident: e_1_3_2_64_2
  article-title: Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(01)00358-1
– volume: 10
  start-page: 4726
  year: 1994
  ident: e_1_3_2_72_2
  article-title: Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles
  publication-title: Langmuir
  doi: 10.1021/la00024a055
– volume: 81
  start-page: 1932
  year: 2006
  ident: e_1_3_2_97_2
  article-title: Removal of nickel(II) from aqueous solution by carbon nanotubes
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1626
– volume: 12
  start-page: 3453
  year: 2011
  ident: e_1_3_2_40_2
  article-title: Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers
  publication-title: Biomacromolecules
  doi: 10.1021/bm2005752
– ident: e_1_3_2_47_2
– volume: 6
  start-page: 141
  year: 2011
  ident: e_1_3_2_7_2
  article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.274
– volume: 91
  start-page: 156
  year: 2016
  ident: e_1_3_2_85_2
  article-title: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.01.008
– volume: 41
  start-page: 1057
  year: 2003
  ident: e_1_3_2_92_2
  article-title: Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00440-2
– volume: 44
  start-page: 3045
  year: 2009
  ident: e_1_3_2_80_2
  article-title: Behavior of silica-supported manganese oxides in hydrometallurgical separations
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390903183329
– volume: 39
  start-page: 605
  year: 2005
  ident: e_1_3_2_93_2
  article-title: Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.11.004
– volume: 5
  start-page: 7991
  year: 2013
  ident: e_1_3_2_71_2
  article-title: Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach
  publication-title: Nanoscale
  doi: 10.1039/c3nr01872e
– ident: e_1_3_2_49_2
  doi: 10.1016/j.jenvman.2010.11.011
– volume: 445
  start-page: 749
  year: 2007
  ident: e_1_3_2_24_2
  article-title: Charge- and size-based separation of macromolecules using ultrathin silicon membranes
  publication-title: Nature
  doi: 10.1038/nature05532
– volume: 8
  start-page: 6304
  year: 2014
  ident: e_1_3_2_22_2
  article-title: Ultrafast molecule separation through layered WS2 nanosheet membranes
  publication-title: ACS Nano
  doi: 10.1021/nn501786m
– ident: e_1_3_2_53_2
  doi: 10.1006/jcph.1995.1039
– volume: 180
  start-page: 234
  year: 2010
  ident: e_1_3_2_79_2
  article-title: Nanoporous manganese oxides as environmental protective materials—Effect of Ca and Mg on metals sorption
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.04.019
– ident: e_1_3_2_45_2
  doi: 10.1002/9781118359686
– volume: 4
  start-page: 353
  year: 2009
  ident: e_1_3_2_10_2
  article-title: Ultrafast permeation of water through protein-based membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.90
– volume: 111
  start-page: 13410
  year: 2007
  ident: e_1_3_2_62_2
  article-title: Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0732918
– volume: 41
  start-page: 5998
  year: 2012
  ident: e_1_3_2_37_2
  article-title: Layer-by-layer assembly for rapid fabrication of thick polymeric films
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35107b
– volume: 357
  start-page: 263
  year: 2002
  ident: e_1_3_2_90_2
  article-title: Lead adsorption on carbon nanotubes
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00502-X
– volume: 223
  start-page: 40
  year: 2013
  ident: e_1_3_2_87_2
  article-title: Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.054
– volume: 19
  start-page: 1489
  year: 2004
  ident: e_1_3_2_94_2
  article-title: Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/b409619c
– volume: 125
  start-page: 4627
  year: 2003
  ident: e_1_3_2_31_2
  article-title: Doping-controlled ion diffusion in polyelectrolyte multilayers: Mass transport in reluctant exchangers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja021448y
– volume: 45
  start-page: 9144
  year: 2006
  ident: e_1_3_2_96_2
  article-title: Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060791z
– volume: 11
  start-page: 2430
  year: 2011
  ident: e_1_3_2_14_2
  article-title: Diffusion and filtration properties of self-assembled gold nanocrystal membranes
  publication-title: Nano Lett.
  doi: 10.1021/nl200841a
– ident: e_1_3_2_26_2
  doi: 10.1126/science.1212101
– volume: 6
  start-page: 86607
  year: 2016
  ident: e_1_3_2_46_2
  article-title: Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: Excellent adsorption of toxic heavy metals and hazardous dye from wastewater
  publication-title: RSC Adv.
  doi: 10.1039/C6RA12818A
– volume: 49
  start-page: 10718
  year: 2013
  ident: e_1_3_2_21_2
  article-title: Laminar MoS2 membranes for molecule separation
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46136j
– volume: 23
  start-page: 2518
  year: 2001
  ident: e_1_3_2_67_2
  article-title: Preparation of a novel core–shell nanostructured gold colloid–silk fibroin bioconjugate by the protein redox technique at room temperature
  publication-title: Chem. Commun.
  doi: 10.1039/b108013j
– volume: 31
  start-page: 1231
  year: 1996
  ident: e_1_3_2_51_2
  article-title: An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00353102
– volume: 4
  start-page: 2187
  year: 2013
  ident: e_1_3_2_54_2
  article-title: Impact tolerance in mussel thread networks by heterogeneous material distribution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3187
– volume: 64
  start-page: 376
  year: 2016
  ident: e_1_3_2_66_2
  article-title: Formation of different gold nanostructures by silk nanofibrils
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.03.113
– volume: 100
  start-page: 14678
  year: 2003
  ident: e_1_3_2_70_2
  article-title: Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2433456100
– volume: 110
  start-page: 2957
  year: 2006
  ident: e_1_3_2_44_2
  article-title: Flux decline in nanofiltration due to adsorption of dissolved organic compounds: Model prediction of time dependency
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0534333
– volume: 16
  start-page: 841
  year: 2009
  ident: e_1_3_2_89_2
  article-title: Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO2 system
  publication-title: Cellulose
  doi: 10.1007/s10570-009-9296-y
– ident: e_1_3_2_39_2
  doi: 10.1016/j.pmatsci.2012.03.001
– start-page: 32
  year: 2007
  ident: e_1_3_2_34_2
  article-title: The nature and value of ecosystem services: An overview highlighting hydrologic services
  publication-title: Annu. Rev. Environ. Resour.
– ident: e_1_3_2_4_2
  doi: 10.1038/nature06599
– ident: e_1_3_2_3_2
  doi: 10.1039/B610848M
– volume: 44
  start-page: 517
  year: 2009
  ident: e_1_3_2_58_2
  article-title: Amino acid sequence dependence of nanoscale deformation mechanisms in alpha-helical protein filaments
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/03093247JSA533
– volume: 12
  start-page: 3344
  year: 2011
  ident: e_1_3_2_61_2
  article-title: Synchrotron FTIR microspectroscopy of single natural silk fibers
  publication-title: Biomacromolecules
  doi: 10.1021/bm2006032
– volume: 22
  start-page: 10118
  year: 2006
  ident: e_1_3_2_32_2
  article-title: Layer-by-layer-assembled microfiltration membranes for biomolecule immobilization and enzymatic catalysis
  publication-title: Langmuir
  doi: 10.1021/la061124d
– volume: 29
  start-page: 1885
  year: 2013
  ident: e_1_3_2_33_2
  article-title: Fundamentals of selective ion transport through multilayer polyelectrolyte membranes
  publication-title: Langmuir
  doi: 10.1021/la304574e
– volume: 61
  start-page: 1138
  year: 2006
  ident: e_1_3_2_98_2
  article-title: Adsorption of zinc(II) from water with purified carbon nanotubes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.08.007
– volume: 16
  start-page: 3795
  year: 2016
  ident: e_1_3_2_12_2
  article-title: Ultrathin free-standing Bombyx mori silk nanofibril membranes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01195
– volume: 114
  start-page: 9865
  year: 2010
  ident: e_1_3_2_84_2
  article-title: Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101553x
– ident: e_1_3_2_42_2
– volume: 260
  start-page: 195
  year: 2013
  ident: e_1_3_2_88_2
  article-title: TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.05.024
– volume: 14
  start-page: 815
  year: 2002
  ident: e_1_3_2_73_2
  article-title: Microbial synthesis of semiconductor PbS nanocrystallites
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K
– volume: 19
  start-page: 984
  year: 2004
  ident: e_1_3_2_81_2
  article-title: γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/B403389B
– volume: 41
  start-page: 2787
  year: 2003
  ident: e_1_3_2_95_2
  article-title: Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00392-0
– volume: 26
  start-page: 504
  year: 2010
  ident: e_1_3_2_60_2
  article-title: Liquid crystalline phase behavior of protein fibers in water: Experiments versus theory
  publication-title: Langmuir
  doi: 10.1021/la9021432
– ident: e_1_3_2_18_2
  doi: 10.1038/ncomms3979
– volume: 108
  start-page: 189
  year: 2013
  ident: e_1_3_2_102_2
  article-title: Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.02.011
– volume: 26
  start-page: 792
  year: 2016
  ident: e_1_3_2_11_2
  article-title: Sub-10 nm wide cellulose nanofibers for ultrathin nanoporous membranes with high organic permeation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201503858
– volume: 84
  start-page: 1169
  year: 2011
  ident: e_1_3_2_57_2
  article-title: Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.01.007
– volume: 25
  start-page: 933
  year: 2013
  ident: e_1_3_2_86_2
  article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(12)60145-4
– volume: 119
  start-page: 3630
  year: 2011
  ident: e_1_3_2_50_2
  article-title: An investigation into transition metal ion binding properties of silk fibers and particles using radioisotopes
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.33059
– volume: 31
  start-page: 2926
  year: 2010
  ident: e_1_3_2_74_2
  article-title: Mechanism of enzymatic degradation of beta-sheet crystals
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.026
– ident: e_1_3_2_68_2
  doi: 10.1021/cr030698
– volume: 16
  start-page: 1067
  year: 2006
  ident: e_1_3_2_23_2
  article-title: Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500658
– volume: 39
  start-page: 4528
  year: 2005
  ident: e_1_3_2_76_2
  article-title: Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.05.051
– volume: 5
  start-page: 11028
  year: 2013
  ident: e_1_3_2_6_2
  article-title: Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation
  publication-title: Nanoscale
  doi: 10.1039/c3nr03362g
– volume: 120
  start-page: 4975
  year: 2016
  ident: e_1_3_2_59_2
  article-title: Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b12504
– volume: 16
  start-page: 351
  year: 2004
  ident: e_1_3_2_30_2
  article-title: Size-selective transport of uncharged solutes through multilayer polyelectrolyte membranes
  publication-title: Chem. Mater.
  doi: 10.1021/cm034559k
– volume: 21
  start-page: 1684
  year: 2011
  ident: e_1_3_2_5_2
  article-title: Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM03334K
– volume: 356
  start-page: 138
  year: 2010
  ident: e_1_3_2_27_2
  article-title: Network model for the evolution of the pore structure of silicon-carbide membranes during their fabrication
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.03.045
– volume: 46
  start-page: 834
  year: 2013
  ident: e_1_3_2_52_2
  article-title: Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300029v
– volume: 454
  start-page: 243
  year: 2014
  ident: e_1_3_2_25_2
  article-title: Nanoporous PBI membranes by track etching for high temperature PEMs
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.12.006
– volume: 155
  start-page: 327
  year: 2008
  ident: e_1_3_2_55_2
  article-title: Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.11.064
– volume: 45
  start-page: 10454
  year: 2011
  ident: e_1_3_2_101_2
  article-title: Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203439v
– volume: 17
  start-page: 1849
  year: 2007
  ident: e_1_3_2_8_2
  article-title: Mesoporous separation membranes of polymer-coated copper hydroxide nanostrands
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600911
– volume: 20
  start-page: 8582
  year: 2010
  ident: e_1_3_2_83_2
  article-title: Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01024c
– volume: 38
  start-page: 89
  year: 2002
  ident: e_1_3_2_56_2
  article-title: Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(02)00051-1
– volume: 181
  start-page: 836
  year: 2010
  ident: e_1_3_2_82_2
  article-title: Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.089
– volume: 347
  start-page: 277
  year: 2010
  ident: e_1_3_2_75_2
  article-title: Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.03.050
– volume: 34
  start-page: 788
  year: 2005
  ident: e_1_3_2_63_2
  article-title: Glutamic acid-mediated synthesis of ultralong hydroxyapatite nanoribbons under hydrothermal conditions
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2005.788
– volume: 22
  start-page: 4691
  year: 2010
  ident: e_1_3_2_16_2
  article-title: Carbonaceous nanofiber membranes for selective filtration and separation of nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001863
– volume: 28
  start-page: 7783
  year: 2016
  ident: e_1_3_2_65_2
  article-title: Liquid exfoliated natural silk nanofibrils: Applications in optical and electrical devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601783
– volume: 114
  start-page: 8883
  year: 2014
  ident: e_1_3_2_35_2
  article-title: Molecular interactions driving the layer-by-layer assembly of multilayers
  publication-title: Chem. Rev.
  doi: 10.1021/cr400531v
– volume: 26
  start-page: 3207
  year: 2014
  ident: e_1_3_2_41_2
  article-title: Amyloid-hydroxyapatite bone biomimetic composites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306198
– volume: 11
  start-page: 365
  year: 2016
  ident: e_1_3_2_13_2
  article-title: Amyloid–carbon hybrid membranes for universal water purification
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.310
– volume: 26
  start-page: 4569
  year: 2014
  ident: e_1_3_2_38_2
  article-title: Modulating materials by orthogonally oriented β-strands: Composites of amyloid and silk fibroin fibrils
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400730
– volume: 70
  start-page: 53
  year: 2009
  ident: e_1_3_2_78_2
  article-title: Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.08.014
– volume: 3
  start-page: 6649
  year: 2015
  ident: e_1_3_2_17_2
  article-title: SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00366K
– volume: 14
  start-page: 4483
  year: 2013
  ident: e_1_3_2_69_2
  article-title: Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties
  publication-title: Biomacromolecules
  doi: 10.1021/bm4014149
– volume: 19
  start-page: 3194
  year: 2007
  ident: e_1_3_2_43_2
  article-title: Nanofiltration membranes based on rigid star amphiphiles
  publication-title: Chem. Mater.
  doi: 10.1021/cm070200a
– volume: 35
  start-page: 3171
  year: 2002
  ident: e_1_3_2_29_2
  article-title: Enhancing the anion-transport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+
  publication-title: Macromolecules
  doi: 10.1021/ma0116349
– volume: 348
  start-page: aaa2491
  year: 2015
  ident: e_1_3_2_36_2
  article-title: Technology-driven layer-by-layer assembly of nanofilms
  publication-title: Science
  doi: 10.1126/science.aaa2491
– volume: 21
  start-page: 539
  year: 2009
  ident: e_1_3_2_91_2
  article-title: Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)62305-0
– volume: 5
  start-page: 1817
  year: 2014
  ident: e_1_3_2_28_2
  article-title: Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation
  publication-title: Polym. Chem.
  doi: 10.1039/C3PY01262J
SSID ssj0001466519
Score 2.4801779
Snippet A nacre-like multilayer filtration membrane is developed by integration of computational simulation and experimental fabrication. Multilayer architectures in...
Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1601939
SubjectTerms Applied Sciences and Engineering
SciAdv r-articles
Title Design and function of biomimetic multilayer water purification membranes
URI https://www.ncbi.nlm.nih.gov/pubmed/28435877
https://www.proquest.com/docview/1891457540
https://pubmed.ncbi.nlm.nih.gov/PMC5381955
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLlwQZS2bjIQEHIIax46dA0KIrSDBiUq9RY4Ti0ptCl1Y_p4Z1y2U5cIll9iRMs-Tec-ZGROyL0E0ANQ60IlQATdcBZpHtSCxWnPGtVYW9zvu7uN6g982RfMz_8kbsP-rtMPzpBq99vHb8_spOPzJlwIYnb_gPgmwkWSWzENUkuikd57qu_0WHsfAVnzfxp_TsCuwAu6gpJwOUT945_f0yS_x6GqJLHoiSc9GyFfITFEuk4p31T499P2kj1bIzYXL0qC6zCmGMYSCdi3FyvtWB4sYqUsrbGug3_QVyGePPg17mEPkYKOdogOaGr6Jq6RxdflwXg_8CQqBAWI0CJTRoTUss0JLzWoyVywxuY0zAXFZZBbEXZjbKClMFstQWBuajGcFM0jzhI2iNTJXdstig1CwaBFp8GZtBLcKeR9wSVYYCGicybhKgrHRUuPbi-MpF-3UyQwWpyN7p97eVXIwGf80aqzx58i9MQYprH38oQGv3B3201AlIQe-yWtVsj7CZPKsMZhVIqfQmgzAvtrTd8rWo-uvLVDFCrH575lbZIFh9HcJPttkbtAbFjvAXQbZrtP8cL1uhrtugX4Aj4rzgQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+function+of+biomimetic+multilayer+water+purification+membranes&rft.jtitle=Science+advances&rft.au=Ling%2C+Shengjie&rft.au=Qin%2C+Zhao&rft.au=Huang%2C+Wenwen&rft.au=Cao%2C+Sufeng&rft.date=2017-04-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1126%2Fsciadv.1601939&rft_id=info%3Apmid%2F28435877&rft.externalDocID=PMC5381955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon