Functions and mechanisms of adenosine and its receptors in sleep regulation
Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many ne...
Saved in:
Published in | Sleep medicine Vol. 115; pp. 210 - 217 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders.
•The current article reviews the functions and mechanisms of adenosine and its receptors in sleep regulation and investigates the effects of adenosine receptors in different brain regions. We demonstrate regulation function of adenosine and its receptors from arousal system, sleep-promoting system, sleep homeostasis and circadian rhythm.•This article is suitable for the audience of Sleep Medicine, as adenosine is widely regarded as an endogenous sleep-regulatory substance nowadays.•This article could provide a valuable resource for researchers and clinicians seeking to better understand the role of adenosine and its receptors in sleep regulation and explore potential therapeutic targets.•We have presented several studies that show the sleep-promoting effects of Prostaglandin D2 or Nitric oxide partially depending on the adenosine system. However, the article would benefit from a more detailed discussion on animal models, human experiments, and even human subjects. And it will be of great significance for researchers and clinicians to provide more information about the current research situation in this field.•The article discusses the popular phytochemicals which exerted sedation and hypnosis action via adenosine receptors. As the demand for a new class of alternative natural products with sleep improving effects is still high, it may have good research value and broad prospects for insomnia treatment. |
---|---|
AbstractList | Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders. Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders. •The current article reviews the functions and mechanisms of adenosine and its receptors in sleep regulation and investigates the effects of adenosine receptors in different brain regions. We demonstrate regulation function of adenosine and its receptors from arousal system, sleep-promoting system, sleep homeostasis and circadian rhythm.•This article is suitable for the audience of Sleep Medicine, as adenosine is widely regarded as an endogenous sleep-regulatory substance nowadays.•This article could provide a valuable resource for researchers and clinicians seeking to better understand the role of adenosine and its receptors in sleep regulation and explore potential therapeutic targets.•We have presented several studies that show the sleep-promoting effects of Prostaglandin D2 or Nitric oxide partially depending on the adenosine system. However, the article would benefit from a more detailed discussion on animal models, human experiments, and even human subjects. And it will be of great significance for researchers and clinicians to provide more information about the current research situation in this field.•The article discusses the popular phytochemicals which exerted sedation and hypnosis action via adenosine receptors. As the demand for a new class of alternative natural products with sleep improving effects is still high, it may have good research value and broad prospects for insomnia treatment. Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders.Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and other symptoms, imposing immense public health and economic burden worldwide. The sleep and awakening regulation system is composed of many nerve nuclei and neurotransmitters in the brain, and it forms a neural network that interacts and restricts each other to regulate the occurrence and maintenance of sleep-wake. Adenosine (AD) is a neurotransmitter in the central nervous system and a driver of sleep. Meanwhile, the functions and mechanisms underlying sleep-promoting effects of adenosine and its receptors are still not entirely clear. However, in recent years, the increasing evidence indicated that adenosine can promote sleep through inhibiting arousal system and activating sleep-promoting system. At the same time, astrocyte-derived adenosine in modulating sleep homeostasis and sleep loss-induced related cognitive and memory deficits plays an important role. This review, therefore, summarizes the current research on the functions and possible mechanisms of adenosine and its receptors in the regulation of sleep and homeostatic control of sleep. Understanding these aspects will provide us better ideas on clinical problems such as insomnia, hypersomnia and other sleep disorders. |
Author | Huang, Lishan Li, Nanxi Li, Sen Xu, Houping Zhang, Bin Zhu, Wenwen Dai, Wenbin |
Author_xml | – sequence: 1 givenname: Lishan surname: Huang fullname: Huang, Lishan email: 2640893688@qq.com organization: Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China – sequence: 2 givenname: Wenwen surname: Zhu fullname: Zhu, Wenwen email: 741963064@qq.com organization: Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China – sequence: 3 givenname: Nanxi surname: Li fullname: Li, Nanxi email: 1101631216@qq.com organization: Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China – sequence: 4 givenname: Bin surname: Zhang fullname: Zhang, Bin email: 834441248@qq.com organization: Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China – sequence: 5 givenname: Wenbin surname: Dai fullname: Dai, Wenbin email: 865455136@qq.com organization: Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China – sequence: 6 givenname: Sen surname: Li fullname: Li, Sen email: jht187@163.com organization: Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China – sequence: 7 givenname: Houping surname: Xu fullname: Xu, Houping email: xuhoupingphd@163.com organization: Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38373361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtPxCAYRYnR-Bj9BSamSzetPNpCY1yYia84iRtdEwa-KmMLI7Qm_nuZGWfjQlcQuOeDe47QrvMOEDoluCCY1BeLInYAy4JiWhaYFpjQHXRIBBd5VeF6N-2ZaPKmrPgBOopxgTHhRJT76IAJxhmrySF6vB2dHqx3MVPOZD3oN-Vs7GPm20wZcD5aB-s7O8QsgIbl4EPMrMvWz6ej17FTqxHHaK9VXYSTn3WCXm5vnqf3-ezp7mF6Pct1WdVDLhrKDCt5-ticCoCK4FrUFehWUEyAlxU1cyU4bwwxNTQpo2jLgDKmgGPFJuh8M3cZ_McIcZC9jRq6TjnwY5Q0IaKqy9Rxgs5-ouO8ByOXwfYqfMmtgBRoNgEdfIwBWqntsG4zBGU7SbBcyZYLuW4rV7IlpjLJTiz7xW7H_01dbShIij4tBBm1BafB2GR3kMbbf_jLX7zurLNade_w9S_9DbZyrPc |
CitedBy_id | crossref_primary_10_1021_acsmedchemlett_4c00285 crossref_primary_10_4062_biomolther_2024_106 crossref_primary_10_59324_ejmhr_2024_2_2__16 crossref_primary_10_2196_58217 crossref_primary_10_3390_foods14071080 |
Cites_doi | 10.1016/j.neuroscience.2008.08.040 10.1073/pnas.1801693115 10.1016/B978-0-444-59427-3.00012-5 10.1038/aps.2016.140 10.1016/S0006-8993(02)03896-9 10.1152/japplphysiol.00766.2001 10.1016/S0014-2999(01)00786-5 10.1523/JNEUROSCI.6730-10.2011 10.1016/j.amjmed.2018.09.021 10.1016/j.smrv.2010.06.004 10.1016/j.coph.2006.09.004 10.1111/jsr.12434 10.1016/j.neulet.2017.08.063 10.3390/biology8010013 10.1016/0028-3908(88)90159-1 10.1111/j.1460-9568.2009.06723.x 10.1523/JNEUROSCI.18-12-04705.1998 10.1111/j.1471-4159.2008.05257.x 10.1111/jnc.14054 10.1038/s41580-019-0179-2 10.1016/S0306-4522(03)00246-X 10.1016/j.jsmc.2017.03.003 10.2174/1381612825666190716112319 10.1016/j.pbb.2012.06.002 10.1111/jnc.14100 10.1016/j.alcohol.2014.07.019 10.1523/JNEUROSCI.6506-10.2011 10.1124/jpet.115.227819 10.1093/sleep/18.6.478 10.1111/ejn.12766 10.1016/j.conb.2017.05.003 10.1111/j.1365-2125.2006.02680.x 10.1007/978-3-540-89615-9_16 10.1523/JNEUROSCI.2341-06.2006 10.1126/science.271.5246.216 10.1113/jphysiol.1967.sp008303 10.3109/15622971003637611 10.1016/j.brainres.2009.09.066 10.1038/srep19107 10.1016/j.neuroscience.2008.01.017 10.1016/S0197-0186(02)00155-9 10.1111/jsr.12336 10.1254/fpj.112.343 10.1523/JNEUROSCI.16-04-01523.1996 10.1016/S0306-4522(01)00383-9 10.1523/JNEUROSCI.5761-10.2011 10.1016/0024-3205(90)90300-G 10.1016/S0166-4328(00)00258-8 10.1002/glia.22465 10.1073/pnas.93.12.5980 10.1111/ejn.12715 10.1111/cns.13190 10.1038/35010109 10.1073/pnas.201398898 10.1016/0024-3205(93)90592-Q 10.1016/j.smrv.2011.08.003 10.1530/JOE-14-0200 10.4062/biomolther.2019.149 10.1038/s41598-021-00271-0 10.1159/000014655 10.1016/0301-0082(81)90014-9 10.1016/j.neuroscience.2005.05.045 10.1097/00001756-200109170-00029 10.1016/j.neuron.2009.01.005 10.1016/j.neuroscience.2003.08.066 10.2174/156802611795347654 10.1016/0006-8993(94)01399-3 10.1523/JNEUROSCI.20-21-08138.2000 10.1002/glia.22422 10.1007/s11302-020-09758-3 10.1152/ajpregu.00402.2012 10.1002/1096-9861(20010122)429:4<638::AID-CNE10>3.0.CO;2-Y 10.1111/j.1471-4159.2004.02991.x 10.1016/j.biopha.2021.112483 10.1053/smrv.2001.0170 10.1139/y95-044 10.1016/j.neuroscience.2010.01.044 10.1126/science.aat2512 10.1126/science.abb0556 10.1523/JNEUROSCI.23-10-04278.2003 10.1212/01.wnl.0000297939.18236.ec 10.1073/pnas.0810926105 10.1038/nn1491 10.1098/rstb.2000.0564 10.1111/j.1471-4159.2008.05400.x 10.1016/j.neuint.2019.01.020 10.1097/00000542-200304000-00018 10.1007/s11064-013-1063-7 10.1016/j.neuropharm.2018.10.022 10.1007/s00429-014-0946-y 10.1038/s41467-021-22179-z 10.1016/0091-3057(88)90182-7 10.5665/sleep.3490 10.1177/0748730410385544 10.1111/j.1469-7793.1999.00679.x 10.1007/s00213-008-1257-x 10.1016/j.nbscr.2018.02.003 10.1016/0306-4522(89)90007-9 10.1152/jn.00675.2016 10.1113/jphysiol.1954.sp005040 10.1046/j.1365-2869.1999.00010.x 10.1007/s00213-015-4108-6 10.1111/j.1460-9568.2009.06620.x |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.sleep.2024.02.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1878-5506 |
EndPage | 217 |
ExternalDocumentID | 38373361 10_1016_j_sleep_2024_02_012 S1389945724000534 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 6PF 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OJ- OV. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SEL SES SEW SJN SPCBC SSH SSN SSZ T5K UHS UNMZH UV1 Z5R ~G- ~S- 6I. AACTN AADPK AAFTH AAIAV ABLVK ABMYL ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c456t-8923d347945b28ee5106865ecf8201e7452dba8779d1d6e928ea2f3e233ae70a3 |
IEDL.DBID | .~1 |
ISSN | 1389-9457 1878-5506 |
IngestDate | Mon Jul 21 11:57:25 EDT 2025 Mon Jul 21 06:04:33 EDT 2025 Tue Jul 01 04:01:20 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Sat Mar 16 16:13:31 EDT 2024 Tue Aug 26 20:39:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sleep disorders Sleep-wake Adenosine Adenosine receptors Insomnia Sleep homeostasis |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-8923d347945b28ee5106865ecf8201e7452dba8779d1d6e928ea2f3e233ae70a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1389945724000534 |
PMID | 38373361 |
PQID | 2928856437 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2928856437 pubmed_primary_38373361 crossref_citationtrail_10_1016_j_sleep_2024_02_012 crossref_primary_10_1016_j_sleep_2024_02_012 elsevier_sciencedirect_doi_10_1016_j_sleep_2024_02_012 elsevier_clinicalkey_doi_10_1016_j_sleep_2024_02_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Sleep medicine |
PublicationTitleAlternate | Sleep Med |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Scammell, Gerashchenko, Mochizuki (bib81) 2001; 107 Blutstein, Haydon (bib10) 2013; 61 Ribeiro, Pfaff, Devidze (bib110) 2009; 29 Kumar, Rai, Hsieh (bib79) 2013; 305 Nishimon, Sakai, Nishino (bib118) 2021; 11 Nagata, Urade (bib68) 2012; 70 Elliott, Todd, Rea (bib101) 2001; 414 Nakamura, Midorikawa, Monoi (bib116) 2016; 25 Luppi (bib75) 2010; 11 Satoh, Matsumura, Suzuki (bib30) 1996; 93 Fredholm, Abbracchio, Burnstock (bib20) 1994; 46 Peng, Wu, Song (bib96) 2020; 369 Scharbarg, Daenens, Lemaitre (bib71) 2016; 6 Vazquez-DeRose, Schwartz, Nguyen (bib48) 2016; 221 Donlea, Alam, Szymusiak (bib93) 2017; 44 Mieda, Hasegawa, Kisanuki (bib44) 2011; 31 Saito, Tsujino, Hasegawa (bib45) 2013; 7 McGinty, Gong, Suntsova (bib74) 2004; 142 Nadjar, Blutstein, Aubert (bib8) 2013; 61 Hirano, Hsu, Zhang (bib43) 2018; 115 Hayaishi (bib112) 2002; 92 Hayaishi (bib107) 1998; 56 Urade (bib104) 2009; 67 Daniello, Fievisohn, Gregory (bib7) 2012; 48 Nagata, Urade (bib61) 2012; 64 Hastings, Maywood, Brancaccio (bib83) 2019; 8 Antle, Steen, Mistlberger (bib97) 2001; 12 Hong, Huang, Qu (bib66) 2005; 92 Lin, Sakai, Jouvet (bib53) 1988; 27 Phillis, Wu (bib16) 1981; 16 Sharma, Sahota, Thakkar (bib39) 2017; 142 Strecker, Morairty, Thakkar (bib38) 2000; 115 Burgess (bib98) 2010; 25 Alanko, Heiskanen, Stenberg (bib11) 2003; 42 Steininger, Gong, McGinty (bib58) 2001; 429 Sherin, Shiromani, McCarley (bib72) 1996; 271 Zhang, Yin, Wu (bib80) 2013; 38 Thakkar, Winston, McCarley (bib92) 2003; 23 Lin, Sakai, Jouvet (bib51) 1986; 303 Kametani, Kawamura (bib36) 1990; 47 Gallopin, Luppi, Cauli (bib76) 2005; 134 Morairty, Rainnie, McCarley (bib25) 2004; 123 Takahashi, Lin, Sakai (bib49) 2006; 26 Alam, Szymusiak, Gong (bib22) 1999; 521 Pt 3 Gvilia, Suntsova, Kostin (bib94) 2017; 117 Panula, Pirvola, Auvinen (bib56) 1989; 28 Monti (bib54) 1993; 53 Zhou, Oishi, Cherasse (bib32) 2019; 124 Hayaishi (bib109) 1999; 8 Franco-Perez, Ballesteros-Zebadua, Custodio (bib4) 2012; 64 Chen, Sun, Luo (bib70) 2016; 356 Jagannath, Varga, Dallmann (bib102) 2021; 12 McGinty, Szymusiak (bib73) 2001; 5 Qiao, Ye, Bai (bib120) 2017; 659 Alam, McGinty (bib40) 2017; 142 van Diepen, Lucassen, Yasenkov (bib99) 2014; 40 Zhang, Huang, Chen (bib108) 2017; 38 Szymusiak (bib34) 1995; 18 Sigworth, Rea (bib100) 2003; 960 Chamberlin, Arrigoni, Chou (bib77) 2003; 119 Richardson, Tate (bib86) 2000; 23 Urade, Hayaishi (bib60) 2011; 15 Naylor, Bergmann, Krauski (bib87) 2000; 20 Chagoya (bib14) 1995; 73 Ren, Wang, Yue (bib46) 2018; 362 Jamwal, Mittal, Kumar (bib18) 2019; 25 Tanase, Baghdoyan, Lydic (bib26) 2003; 98 Kalivas (bib52) 1982; 222 Yasenkov, Deboer (bib89) 2012; 199 Florian, Vecsey, Halassa (bib9) 2011; 31 Chokroverty (bib1) 2010; 131 Kalinchuk, McCarley, Stenberg (bib91) 2008; 157 Korkutata, Saitoh, Cherasse (bib31) 2019; 144 Urade, Mohri (bib67) 2006; 38 Franken, Dijk (bib88) 2009; 29 Basheer, Porkka-Heiskanen, Strecker (bib6) 2000; 9 Onoe (bib105) 1998; 112 Jones (bib12) 2009; 61 Urade (bib103) 2017; 12 Benarroch (bib21) 2008; 70 Sun, Tang (bib95) 2020; 16 Chen, Lin, Cai (bib28) 2022; 16 Feldberg, Sherwood (bib5) 1954; 123 Terao, Huang, Wisor (bib106) 2008; 105 Thakkar, Engemann, Walsh (bib27) 2008; 153 Bailey, Udoh, Young (bib85) 2014; 222 Marrosu, Portas, Mascia (bib37) 1995; 671 Sherin, Elmquist, Torrealba (bib57) 1998; 18 Yum, Cho, Choi (bib62) 2008; 106 K P, Latreille (bib2) 2019; 132 Yin, Liu, Wang (bib69) 2016; 233 Kim, Bormate, Custodio (bib114) 2022; 146 Sharma, Sahota, Thakkar (bib65) 2014; 37 Mizoguchi, Eguchi, Kimura (bib64) 2001; 98 Huang, Qu, Eguchi (bib42) 2005; 8 Szerb (bib35) 1967; 192 Liu, Chen, Li (bib3) 2019; 25 Williams, Jarvis (bib17) 1988; 29 Huang, Urade, Hayaishi (bib29) 2011; 11 Kim, Custodio, Cheong (bib115) 2019; 27 Kalinchuk, Porkka-Heiskanen, McCarley (bib90) 2015; 41 Szabadi (bib33) 2006; 61 Thakkar (bib50) 2011; 15 Zhang, Li, Kang (bib119) 2012; 102 Lazarus, Shen, Cherasse (bib41) 2011; 31 Rai, Kumar, Alam (bib24) 2010; 167 Huang, Urade, Hayaishi (bib59) 2007; 7 Thakkar, Sharma, Sahota (bib13) 2015; 49 Alam, Kumar, Rai (bib47) 2009; 1304 Monoi, Matsuno, Nagamori (bib117) 2016; 25 Lin, Hou, Sakai (bib55) 1996; 16 Hayaishi (bib63) 2000; 355 Sebastiao, Ribeiro (bib19) 2009 Patke, Young, Axelrod (bib82) 2020; 21 Deboer (bib84) 2018; 5 Kostin, Stenberg, Kalinchuk (bib113) 2008; 201 Chagoya, Hernandez, Suarez (bib15) 1993; 612 Gallopin, Fort, Eggermann (bib78) 2000; 404 Oishi, Huang, Fredholm (bib23) 2008; 105 Hayaishi, Urade, Eguchi (bib111) 2004; 142 Thakkar (10.1016/j.sleep.2024.02.012_bib92) 2003; 23 Phillis (10.1016/j.sleep.2024.02.012_bib16) 1981; 16 Huang (10.1016/j.sleep.2024.02.012_bib29) 2011; 11 Alam (10.1016/j.sleep.2024.02.012_bib40) 2017; 142 Chagoya (10.1016/j.sleep.2024.02.012_bib15) 1993; 612 Chamberlin (10.1016/j.sleep.2024.02.012_bib77) 2003; 119 Urade (10.1016/j.sleep.2024.02.012_bib67) 2006; 38 Fredholm (10.1016/j.sleep.2024.02.012_bib20) 1994; 46 Nagata (10.1016/j.sleep.2024.02.012_bib61) 2012; 64 Oishi (10.1016/j.sleep.2024.02.012_bib23) 2008; 105 Nishimon (10.1016/j.sleep.2024.02.012_bib118) 2021; 11 Monti (10.1016/j.sleep.2024.02.012_bib54) 1993; 53 Szymusiak (10.1016/j.sleep.2024.02.012_bib34) 1995; 18 Chen (10.1016/j.sleep.2024.02.012_bib70) 2016; 356 Panula (10.1016/j.sleep.2024.02.012_bib56) 1989; 28 Naylor (10.1016/j.sleep.2024.02.012_bib87) 2000; 20 Zhou (10.1016/j.sleep.2024.02.012_bib32) 2019; 124 Szabadi (10.1016/j.sleep.2024.02.012_bib33) 2006; 61 Jamwal (10.1016/j.sleep.2024.02.012_bib18) 2019; 25 Hong (10.1016/j.sleep.2024.02.012_bib66) 2005; 92 Sherin (10.1016/j.sleep.2024.02.012_bib72) 1996; 271 Lin (10.1016/j.sleep.2024.02.012_bib51) 1986; 303 Saito (10.1016/j.sleep.2024.02.012_bib45) 2013; 7 Chagoya (10.1016/j.sleep.2024.02.012_bib14) 1995; 73 Thakkar (10.1016/j.sleep.2024.02.012_bib27) 2008; 153 Kalinchuk (10.1016/j.sleep.2024.02.012_bib91) 2008; 157 Richardson (10.1016/j.sleep.2024.02.012_bib86) 2000; 23 Blutstein (10.1016/j.sleep.2024.02.012_bib10) 2013; 61 Sharma (10.1016/j.sleep.2024.02.012_bib39) 2017; 142 McGinty (10.1016/j.sleep.2024.02.012_bib74) 2004; 142 Qiao (10.1016/j.sleep.2024.02.012_bib120) 2017; 659 Szerb (10.1016/j.sleep.2024.02.012_bib35) 1967; 192 Tanase (10.1016/j.sleep.2024.02.012_bib26) 2003; 98 Jagannath (10.1016/j.sleep.2024.02.012_bib102) 2021; 12 Nakamura (10.1016/j.sleep.2024.02.012_bib116) 2016; 25 Sigworth (10.1016/j.sleep.2024.02.012_bib100) 2003; 960 Kalinchuk (10.1016/j.sleep.2024.02.012_bib90) 2015; 41 Alam (10.1016/j.sleep.2024.02.012_bib22) 1999; 521 Pt 3 Kametani (10.1016/j.sleep.2024.02.012_bib36) 1990; 47 Huang (10.1016/j.sleep.2024.02.012_bib42) 2005; 8 van Diepen (10.1016/j.sleep.2024.02.012_bib99) 2014; 40 Hayaishi (10.1016/j.sleep.2024.02.012_bib109) 1999; 8 Zhang (10.1016/j.sleep.2024.02.012_bib80) 2013; 38 Hastings (10.1016/j.sleep.2024.02.012_bib83) 2019; 8 Luppi (10.1016/j.sleep.2024.02.012_bib75) 2010; 11 Kalivas (10.1016/j.sleep.2024.02.012_bib52) 1982; 222 Vazquez-DeRose (10.1016/j.sleep.2024.02.012_bib48) 2016; 221 Ren (10.1016/j.sleep.2024.02.012_bib46) 2018; 362 Yum (10.1016/j.sleep.2024.02.012_bib62) 2008; 106 Nagata (10.1016/j.sleep.2024.02.012_bib68) 2012; 70 Bailey (10.1016/j.sleep.2024.02.012_bib85) 2014; 222 Marrosu (10.1016/j.sleep.2024.02.012_bib37) 1995; 671 Lin (10.1016/j.sleep.2024.02.012_bib55) 1996; 16 Monoi (10.1016/j.sleep.2024.02.012_bib117) 2016; 25 Thakkar (10.1016/j.sleep.2024.02.012_bib13) 2015; 49 Elliott (10.1016/j.sleep.2024.02.012_bib101) 2001; 414 Korkutata (10.1016/j.sleep.2024.02.012_bib31) 2019; 144 Donlea (10.1016/j.sleep.2024.02.012_bib93) 2017; 44 Hirano (10.1016/j.sleep.2024.02.012_bib43) 2018; 115 Kostin (10.1016/j.sleep.2024.02.012_bib113) 2008; 201 Onoe (10.1016/j.sleep.2024.02.012_bib105) 1998; 112 Yasenkov (10.1016/j.sleep.2024.02.012_bib89) 2012; 199 Benarroch (10.1016/j.sleep.2024.02.012_bib21) 2008; 70 Urade (10.1016/j.sleep.2024.02.012_bib60) 2011; 15 Feldberg (10.1016/j.sleep.2024.02.012_bib5) 1954; 123 Ribeiro (10.1016/j.sleep.2024.02.012_bib110) 2009; 29 Hayaishi (10.1016/j.sleep.2024.02.012_bib111) 2004; 142 Sun (10.1016/j.sleep.2024.02.012_bib95) 2020; 16 Morairty (10.1016/j.sleep.2024.02.012_bib25) 2004; 123 Hayaishi (10.1016/j.sleep.2024.02.012_bib63) 2000; 355 Daniello (10.1016/j.sleep.2024.02.012_bib7) 2012; 48 Jones (10.1016/j.sleep.2024.02.012_bib12) 2009; 61 Thakkar (10.1016/j.sleep.2024.02.012_bib50) 2011; 15 Yin (10.1016/j.sleep.2024.02.012_bib69) 2016; 233 Chokroverty (10.1016/j.sleep.2024.02.012_bib1) 2010; 131 Gallopin (10.1016/j.sleep.2024.02.012_bib78) 2000; 404 Hayaishi (10.1016/j.sleep.2024.02.012_bib107) 1998; 56 Takahashi (10.1016/j.sleep.2024.02.012_bib49) 2006; 26 Alanko (10.1016/j.sleep.2024.02.012_bib11) 2003; 42 Hayaishi (10.1016/j.sleep.2024.02.012_bib112) 2002; 92 Mizoguchi (10.1016/j.sleep.2024.02.012_bib64) 2001; 98 Steininger (10.1016/j.sleep.2024.02.012_bib58) 2001; 429 Burgess (10.1016/j.sleep.2024.02.012_bib98) 2010; 25 Kumar (10.1016/j.sleep.2024.02.012_bib79) 2013; 305 Urade (10.1016/j.sleep.2024.02.012_bib103) 2017; 12 Sebastiao (10.1016/j.sleep.2024.02.012_bib19) 2009 McGinty (10.1016/j.sleep.2024.02.012_bib73) 2001; 5 Lazarus (10.1016/j.sleep.2024.02.012_bib41) 2011; 31 Scharbarg (10.1016/j.sleep.2024.02.012_bib71) 2016; 6 Gallopin (10.1016/j.sleep.2024.02.012_bib76) 2005; 134 Peng (10.1016/j.sleep.2024.02.012_bib96) 2020; 369 Antle (10.1016/j.sleep.2024.02.012_bib97) 2001; 12 Williams (10.1016/j.sleep.2024.02.012_bib17) 1988; 29 Strecker (10.1016/j.sleep.2024.02.012_bib38) 2000; 115 Urade (10.1016/j.sleep.2024.02.012_bib104) 2009; 67 Nadjar (10.1016/j.sleep.2024.02.012_bib8) 2013; 61 Huang (10.1016/j.sleep.2024.02.012_bib59) 2007; 7 Lin (10.1016/j.sleep.2024.02.012_bib53) 1988; 27 Sharma (10.1016/j.sleep.2024.02.012_bib65) 2014; 37 Basheer (10.1016/j.sleep.2024.02.012_bib6) 2000; 9 Alam (10.1016/j.sleep.2024.02.012_bib47) 2009; 1304 Franken (10.1016/j.sleep.2024.02.012_bib88) 2009; 29 Florian (10.1016/j.sleep.2024.02.012_bib9) 2011; 31 K P (10.1016/j.sleep.2024.02.012_bib2) 2019; 132 Kim (10.1016/j.sleep.2024.02.012_bib114) 2022; 146 Franco-Perez (10.1016/j.sleep.2024.02.012_bib4) 2012; 64 Rai (10.1016/j.sleep.2024.02.012_bib24) 2010; 167 Gvilia (10.1016/j.sleep.2024.02.012_bib94) 2017; 117 Mieda (10.1016/j.sleep.2024.02.012_bib44) 2011; 31 Deboer (10.1016/j.sleep.2024.02.012_bib84) 2018; 5 Chen (10.1016/j.sleep.2024.02.012_bib28) 2022; 16 Satoh (10.1016/j.sleep.2024.02.012_bib30) 1996; 93 Sherin (10.1016/j.sleep.2024.02.012_bib57) 1998; 18 Patke (10.1016/j.sleep.2024.02.012_bib82) 2020; 21 Liu (10.1016/j.sleep.2024.02.012_bib3) 2019; 25 Scammell (10.1016/j.sleep.2024.02.012_bib81) 2001; 107 Zhang (10.1016/j.sleep.2024.02.012_bib119) 2012; 102 Zhang (10.1016/j.sleep.2024.02.012_bib108) 2017; 38 Terao (10.1016/j.sleep.2024.02.012_bib106) 2008; 105 Kim (10.1016/j.sleep.2024.02.012_bib115) 2019; 27 |
References_xml | – volume: 132 start-page: 292 year: 2019 end-page: 299 ident: bib2 article-title: Sleep disorders publication-title: Am J Med – volume: 119 start-page: 913 year: 2003 end-page: 918 ident: bib77 article-title: Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons publication-title: Neuroscience – volume: 11 year: 2021 ident: bib118 article-title: Sake yeast induces the sleep-promoting effects under the stress-induced acute insomnia in mice publication-title: Sci Rep – volume: 115 start-page: 3434 year: 2018 end-page: 3439 ident: bib43 article-title: DEC2 modulates orexin expression and regulates sleep publication-title: Proc Natl Acad Sci U S A – volume: 134 start-page: 1377 year: 2005 end-page: 1390 ident: bib76 article-title: The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus publication-title: Neuroscience – volume: 7 start-page: 33 year: 2007 end-page: 38 ident: bib59 article-title: Prostaglandins and adenosine in the regulation of sleep and wakefulness publication-title: Curr Opin Pharmacol – volume: 8 year: 2019 ident: bib83 article-title: The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker publication-title: Biology – volume: 16 year: 2022 ident: bib28 article-title: Adenosine downregulates the activities of glutamatergic neurons in the paraventricular hypothalamic nucleus required for sleep publication-title: Front Neurosci – start-page: 471 year: 2009 end-page: 534 ident: bib19 article-title: Adenosine receptors and the central nervous system publication-title: Handb Exp Pharmacol – volume: 222 start-page: 37 year: 1982 end-page: 42 ident: bib52 article-title: Histamine-induced arousal in the conscious and pentobarbital-pretreated rat publication-title: J Pharmacol Exp Therapeut – volume: 414 start-page: 45 year: 2001 end-page: 53 ident: bib101 article-title: Adenosine A1 receptors regulate the response of the hamster circadian clock to light publication-title: Eur J Pharmacol – volume: 8 start-page: 858 year: 2005 end-page: 859 ident: bib42 article-title: Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine publication-title: Nat Neurosci – volume: 612 start-page: 115 year: 1993 end-page: 121 ident: bib15 article-title: Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle publication-title: Brain Res – volume: 15 start-page: 65 year: 2011 end-page: 74 ident: bib50 article-title: Histamine in the regulation of wakefulness publication-title: Sleep Med Rev – volume: 98 start-page: 11674 year: 2001 end-page: 11679 ident: bib64 article-title: Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep publication-title: Proc Natl Acad Sci U S A – volume: 233 start-page: 281 year: 2016 end-page: 293 ident: bib69 article-title: Paeoniflorin exerts analgesic and hypnotic effects via adenosine A1 receptors in a mouse neuropathic pain model publication-title: Psychopharmacology (Berl) – volume: 18 start-page: 478 year: 1995 end-page: 500 ident: bib34 article-title: Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation publication-title: Sleep – volume: 18 start-page: 4705 year: 1998 end-page: 4721 ident: bib57 article-title: Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat publication-title: J Neurosci – volume: 53 start-page: 1331 year: 1993 end-page: 1338 ident: bib54 article-title: Involvement of histamine in the control of the waking state publication-title: Life Sci – volume: 16 start-page: 1523 year: 1996 end-page: 1537 ident: bib55 article-title: Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat publication-title: J Neurosci – volume: 67 start-page: 1489 year: 2009 end-page: 1493 ident: bib104 article-title: [Molecular mechanisms of insomnia] publication-title: Nihon Rinsho – volume: 70 start-page: 1227 year: 2012 end-page: 1232 ident: bib68 article-title: [Endogenous sleep-promoting substance] publication-title: Nihon Rinsho – volume: 369 year: 2020 ident: bib96 article-title: Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons publication-title: Science – volume: 27 start-page: 584 year: 2019 end-page: 590 ident: bib115 article-title: Sleep promoting effect of luteolin in mice via adenosine A1 and A2A receptors publication-title: Biomol Ther (Seoul) – volume: 61 start-page: 724 year: 2013 end-page: 731 ident: bib8 article-title: Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response publication-title: Glia – volume: 38 start-page: 469 year: 2017 end-page: 476 ident: bib108 article-title: Adenosine A(2A) receptor deficiency attenuates the somnogenic effect of prostaglandin D(2) in mice publication-title: Acta Pharmacol Sin – volume: 142 start-page: 533 year: 2004 end-page: 539 ident: bib111 article-title: Genes for prostaglandin d synthase and receptor as well as adenosine A2A receptor are involved in the homeostatic regulation of nrem sleep publication-title: Arch Ital Biol – volume: 46 start-page: 143 year: 1994 end-page: 156 ident: bib20 article-title: Nomenclature and classification of purinoceptors publication-title: Pharmacol Rev – volume: 38 start-page: 1616 year: 2013 end-page: 1623 ident: bib80 article-title: Microinjection of adenosine into the hypothalamic ventrolateral preoptic area enhances wakefulness via the A1 receptor in rats publication-title: Neurochem Res – volume: 9 start-page: 319 year: 2000 end-page: 327 ident: bib6 article-title: Adenosine as a biological signal mediating sleepiness following prolonged wakefulness publication-title: Biol Signals Recept – volume: 123 start-page: 148 year: 1954 end-page: 167 ident: bib5 article-title: Injections of drugs into the lateral ventricle of the cat publication-title: J Physiol – volume: 92 start-page: 863 year: 2002 end-page: 868 ident: bib112 article-title: Molecular genetic studies on sleep-wake regulation, with special emphasis on the prostaglandin D(2) system publication-title: J Appl Physiol (1985) – volume: 37 start-page: 525 year: 2014 end-page: 533 ident: bib65 article-title: Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol publication-title: Sleep – volume: 112 start-page: 343 year: 1998 end-page: 349 ident: bib105 article-title: [Molecular and neuroanatomical mechanisms of sleep-wakefulness regulation by prostaglandins D2 and E2] publication-title: Nihon Yakurigaku Zasshi – volume: 20 start-page: 8138 year: 2000 end-page: 8143 ident: bib87 article-title: The circadian clock mutation alters sleep homeostasis in the mouse publication-title: J Neurosci – volume: 25 start-page: 116 year: 2016 end-page: 123 ident: bib117 article-title: Japanese sake yeast supplementation improves the quality of sleep: a double-blind randomised controlled clinical trial publication-title: J Sleep Res – volume: 429 start-page: 638 year: 2001 end-page: 653 ident: bib58 article-title: Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups publication-title: J Comp Neurol – volume: 29 start-page: 1820 year: 2009 end-page: 1829 ident: bib88 article-title: Circadian clock genes and sleep homeostasis publication-title: Eur J Neurosci – volume: 27 start-page: 111 year: 1988 end-page: 122 ident: bib53 article-title: Evidence for histaminergic arousal mechanisms in the hypothalamus of cat publication-title: Neuropharmacology – volume: 12 start-page: 2113 year: 2021 ident: bib102 article-title: Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice publication-title: Nat Commun – volume: 11 start-page: 1047 year: 2011 end-page: 1057 ident: bib29 article-title: The role of adenosine in the regulation of sleep publication-title: Curr Top Med Chem – volume: 64 start-page: 182 year: 2012 end-page: 191 ident: bib4 article-title: [Major neurotransmitters involved in the regulation of sleep-wake cycle] publication-title: Rev Invest Clin – volume: 153 start-page: 875 year: 2008 end-page: 880 ident: bib27 article-title: Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness publication-title: Neuroscience – volume: 25 start-page: 2892 year: 2019 end-page: 2905 ident: bib18 article-title: Therapeutic potential of agonists and antagonists of A1, A2a, A2b and A3 adenosine receptors publication-title: Curr Pharmaceut Des – volume: 671 start-page: 329 year: 1995 end-page: 332 ident: bib37 article-title: Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats publication-title: Brain Res – volume: 271 start-page: 216 year: 1996 end-page: 219 ident: bib72 article-title: Activation of ventrolateral preoptic neurons during sleep publication-title: Science – volume: 92 start-page: 1542 year: 2005 end-page: 1549 ident: bib66 article-title: An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats publication-title: J Neurochem – volume: 305 start-page: R31 year: 2013 end-page: R41 ident: bib79 article-title: Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 25 start-page: 460 year: 2010 end-page: 468 ident: bib98 article-title: Partial sleep deprivation reduces phase advances to light in humans publication-title: J Biol Rhythm – volume: 61 start-page: 129 year: 2013 end-page: 139 ident: bib10 article-title: The Importance of astrocyte-derived purines in the modulation of sleep publication-title: Glia – volume: 40 start-page: 3504 year: 2014 end-page: 3511 ident: bib99 article-title: Caffeine increases light responsiveness of the mouse circadian pacemaker publication-title: Eur J Neurosci – volume: 93 start-page: 5980 year: 1996 end-page: 5984 ident: bib30 article-title: Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats publication-title: Proc Natl Acad Sci U S A – volume: 142 start-page: 501 year: 2004 end-page: 509 ident: bib74 article-title: Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems publication-title: Arch Ital Biol – volume: 31 start-page: 6956 year: 2011 end-page: 6962 ident: bib9 article-title: Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice publication-title: J Neurosci – volume: 12 start-page: 2901 year: 2001 end-page: 2905 ident: bib97 article-title: Adenosine and caffeine modulate circadian rhythms in the Syrian hamster publication-title: Neuroreport – volume: 8 start-page: 60 year: 1999 end-page: 64 ident: bib109 article-title: Prostaglandin D2 and sleep--a molecular genetic approach publication-title: J Sleep Res – volume: 142 start-page: 710 year: 2017 end-page: 720 ident: bib39 article-title: Lesion of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption publication-title: J Neurochem – volume: 64 start-page: 621 year: 2012 end-page: 628 ident: bib61 article-title: [Sleep-wake regulation by prostaglandin D2 and adenosine] publication-title: Brain Nerve – volume: 25 start-page: 899 year: 2019 end-page: 910 ident: bib3 article-title: Research progress on adenosine in central nervous system diseases publication-title: CNS Neurosci Ther – volume: 124 start-page: 256 year: 2019 end-page: 263 ident: bib32 article-title: Extracellular adenosine and slow-wave sleep are increased after ablation of nucleus accumbens core astrocytes and neurons in mice publication-title: Neurochem Int – volume: 56 start-page: 285 year: 1998 end-page: 289 ident: bib107 article-title: [Prostaglandins and sleep] publication-title: Nihon Rinsho – volume: 6 year: 2016 ident: bib71 article-title: Astrocyte-derived adenosine is central to the hypnogenic effect of glucose publication-title: Sci Rep – volume: 404 start-page: 992 year: 2000 end-page: 995 ident: bib78 article-title: Identification of sleep-promoting neurons in vitro publication-title: Nature – volume: 31 start-page: 10067 year: 2011 end-page: 10075 ident: bib41 article-title: Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens publication-title: J Neurosci – volume: 117 start-page: 327 year: 2017 end-page: 335 ident: bib94 article-title: The role of adenosine in the maturation of sleep homeostasis in rats publication-title: J Neurophysiol – volume: 41 start-page: 182 year: 2015 end-page: 195 ident: bib90 article-title: Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis publication-title: Eur J Neurosci – volume: 42 start-page: 449 year: 2003 end-page: 454 ident: bib11 article-title: Adenosine kinase and 5'-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat publication-title: Neurochem Int – volume: 29 start-page: 433 year: 1988 end-page: 441 ident: bib17 article-title: Adenosine antagonists as potential therapeutic agents publication-title: Pharmacol Biochem Behav – volume: 23 start-page: 4278 year: 2003 end-page: 4287 ident: bib92 article-title: A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain publication-title: J Neurosci – volume: 142 start-page: 620 year: 2017 end-page: 623 ident: bib40 article-title: Acute effects of alcohol on sleep are mediated by components of homeostatic sleep regulatory system: an Editorial Highlight for 'Lesions of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption' on page 710 publication-title: J Neurochem – volume: 102 start-page: 450 year: 2012 end-page: 457 ident: bib119 article-title: NHBA isolated from Gastrodia elata exerts sedative and hypnotic effects in sodium pentobarbital-treated mice publication-title: Pharmacol Biochem Behav – volume: 15 start-page: 411 year: 2011 end-page: 418 ident: bib60 article-title: Prostaglandin D2 and sleep/wake regulation publication-title: Sleep Med Rev – volume: 107 start-page: 653 year: 2001 end-page: 663 ident: bib81 article-title: An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons publication-title: Neuroscience – volume: 115 start-page: 183 year: 2000 end-page: 204 ident: bib38 article-title: Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state publication-title: Behav Brain Res – volume: 106 start-page: 361 year: 2008 end-page: 371 ident: bib62 article-title: Adenosine A1 receptors inhibit GABAergic transmission in rat tuberomammillary nucleus neurons publication-title: J Neurochem – volume: 11 start-page: 4 year: 2010 end-page: 8 ident: bib75 article-title: Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep publication-title: World J Biol Psychiatr – volume: 16 start-page: 187 year: 1981 end-page: 239 ident: bib16 article-title: The role of adenosine and its nucleotides in central synaptic transmission publication-title: Prog Neurobiol – volume: 70 start-page: 231 year: 2008 end-page: 236 ident: bib21 article-title: Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease publication-title: Neurology – volume: 521 Pt 3 start-page: 679 year: 1999 end-page: 690 ident: bib22 article-title: Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis publication-title: J Physiol – volume: 7 start-page: 192 year: 2013 ident: bib45 article-title: GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons publication-title: Front Neural Circ – volume: 98 start-page: 912 year: 2003 end-page: 920 ident: bib26 article-title: Dialysis delivery of an adenosine A1 receptor agonist to the pontine reticular formation decreases acetylcholine release and increases anesthesia recovery time publication-title: Anesthesiology – volume: 21 start-page: 67 year: 2020 end-page: 84 ident: bib82 article-title: Molecular mechanisms and physiological importance of circadian rhythms publication-title: Nat Rev Mol Cell Biol – volume: 355 start-page: 275 year: 2000 end-page: 280 ident: bib63 article-title: Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2 publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 23 start-page: S77 year: 2000 end-page: S85 ident: bib86 article-title: Hormonal and pharmacological manipulation of the circadian clock: recent developments and future strategies publication-title: Sleep – volume: 1304 start-page: 96 year: 2009 end-page: 104 ident: bib47 article-title: Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats publication-title: Brain Res – volume: 38 start-page: 331 year: 2006 end-page: 333 ident: bib67 article-title: [Sleep and brain function] publication-title: No Hattatsu – volume: 73 start-page: 339 year: 1995 end-page: 355 ident: bib14 article-title: Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? publication-title: Can J Physiol Pharmacol – volume: 144 start-page: 122 year: 2019 end-page: 132 ident: bib31 article-title: Enhancing endogenous adenosine A(2A) receptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function publication-title: Neuropharmacology – volume: 31 start-page: 6518 year: 2011 end-page: 6526 ident: bib44 article-title: Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep publication-title: J Neurosci – volume: 303 start-page: 469 year: 1986 end-page: 474 ident: bib51 article-title: [Role of hypothalamic histaminergic systems in the regulation of vigilance states in cats] publication-title: C R Acad Sci III – volume: 157 start-page: 238 year: 2008 end-page: 253 ident: bib91 article-title: The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions publication-title: Neuroscience – volume: 25 start-page: 746 year: 2016 end-page: 753 ident: bib116 article-title: Oral administration of Japanese sake yeast (Saccharomyces cerevisiae sake) promotes non-rapid eye movement sleep in mice via adenosine A(2A) receptors publication-title: J Sleep Res – volume: 221 start-page: 923 year: 2016 end-page: 940 ident: bib48 article-title: Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain publication-title: Brain Struct Funct – volume: 12 start-page: 265 year: 2017 end-page: 277 ident: bib103 article-title: Neurobiological basis of hypersomnia publication-title: Sleep Med Clin – volume: 192 start-page: 329 year: 1967 end-page: 343 ident: bib35 article-title: Cortical acetylcholine release and electroencephalographic arousal publication-title: J Physiol – volume: 131 start-page: 126 year: 2010 end-page: 140 ident: bib1 article-title: Overview of sleep & sleep disorders publication-title: Indian J Med Res – volume: 105 start-page: 19992 year: 2008 end-page: 19997 ident: bib23 article-title: Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 795 year: 2009 end-page: 801 ident: bib110 article-title: Estradiol modulates behavioral arousal and induces changes in gene expression profiles in brain regions involved in the control of vigilance publication-title: Eur J Neurosci – volume: 199 start-page: 203 year: 2012 end-page: 218 ident: bib89 article-title: Circadian modulation of sleep in rodents publication-title: Prog Brain Res – volume: 26 start-page: 10292 year: 2006 end-page: 10298 ident: bib49 article-title: Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse publication-title: J Neurosci – volume: 960 start-page: 246 year: 2003 end-page: 251 ident: bib100 article-title: Adenosine A1 receptors regulate the response of the mouse circadian clock to light publication-title: Brain Res – volume: 44 start-page: 228 year: 2017 end-page: 235 ident: bib93 article-title: Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice publication-title: Curr Opin Neurobiol – volume: 123 start-page: 451 year: 2004 end-page: 457 ident: bib25 article-title: Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion publication-title: Neuroscience – volume: 356 start-page: 64 year: 2016 end-page: 73 ident: bib70 article-title: Paeoniflorin promotes non-rapid eye movement sleep via adenosine A1 receptors publication-title: J Pharmacol Exp Therapeut – volume: 61 start-page: 156 year: 2009 end-page: 157 ident: bib12 article-title: Glia, adenosine, and sleep publication-title: Neuron – volume: 5 start-page: 323 year: 2001 end-page: 342 ident: bib73 article-title: Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus publication-title: Sleep Med Rev – volume: 222 start-page: R75 year: 2014 end-page: R96 ident: bib85 article-title: Circadian regulation of metabolism publication-title: J Endocrinol – volume: 5 start-page: 68 year: 2018 end-page: 77 ident: bib84 article-title: Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other's functioning? publication-title: Neurobiol Sleep Circadian Rhythms – volume: 48 start-page: 73 year: 2012 end-page: 80 ident: bib7 article-title: Modeling the effects of caffeine on the sleep/wake cycle publication-title: Biomed Sci Instrum – volume: 47 start-page: 421 year: 1990 end-page: 426 ident: bib36 article-title: Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis publication-title: Life Sci – volume: 201 start-page: 147 year: 2008 end-page: 160 ident: bib113 article-title: Nitric oxide modulates the discharge rate of basal forebrain neurons publication-title: Psychopharmacology (Berl) – volume: 16 start-page: 475 year: 2020 end-page: 476 ident: bib95 article-title: Extracellular levels of the sleep homeostasis mediator, adenosine, are regulated by glutamatergic neurons during wakefulness and sleep publication-title: Purinergic Signal – volume: 659 start-page: 48 year: 2017 end-page: 53 ident: bib120 article-title: Theacrine: a purine alkaloid from Camellia assamica var. kucha with a hypnotic property via the adenosine system publication-title: Neurosci Lett – volume: 362 start-page: 429 year: 2018 end-page: 434 ident: bib46 article-title: The paraventricular thalamus is a critical thalamic area for wakefulness publication-title: Science – volume: 61 start-page: 761 year: 2006 end-page: 766 ident: bib33 article-title: Drugs for sleep disorders: mechanisms and therapeutic prospects publication-title: Br J Clin Pharmacol – volume: 105 start-page: 1480 year: 2008 end-page: 1498 ident: bib106 article-title: Gene expression in the rat brain during prostaglandin D2 and adenosinergically-induced sleep publication-title: J Neurochem – volume: 167 start-page: 40 year: 2010 end-page: 48 ident: bib24 article-title: A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats publication-title: Neuroscience – volume: 146 year: 2022 ident: bib114 article-title: Involvement of the adenosine A(1) receptor in the hypnotic effect of rosmarinic acid publication-title: Biomed Pharmacother – volume: 49 start-page: 299 year: 2015 end-page: 310 ident: bib13 article-title: Alcohol disrupts sleep homeostasis publication-title: Alcohol – volume: 28 start-page: 585 year: 1989 end-page: 610 ident: bib56 article-title: Histamine-immunoreactive nerve fibers in the rat brain publication-title: Neuroscience – volume: 157 start-page: 238 issue: 1 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib91 article-title: The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.08.040 – volume: 115 start-page: 3434 issue: 13 year: 2018 ident: 10.1016/j.sleep.2024.02.012_bib43 article-title: DEC2 modulates orexin expression and regulates sleep publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1801693115 – volume: 199 start-page: 203 year: 2012 ident: 10.1016/j.sleep.2024.02.012_bib89 article-title: Circadian modulation of sleep in rodents publication-title: Prog Brain Res doi: 10.1016/B978-0-444-59427-3.00012-5 – volume: 38 start-page: 469 issue: 4 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib108 article-title: Adenosine A(2A) receptor deficiency attenuates the somnogenic effect of prostaglandin D(2) in mice publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2016.140 – volume: 960 start-page: 246 issue: 1–2 year: 2003 ident: 10.1016/j.sleep.2024.02.012_bib100 article-title: Adenosine A1 receptors regulate the response of the mouse circadian clock to light publication-title: Brain Res doi: 10.1016/S0006-8993(02)03896-9 – volume: 92 start-page: 863 issue: 2 year: 2002 ident: 10.1016/j.sleep.2024.02.012_bib112 article-title: Molecular genetic studies on sleep-wake regulation, with special emphasis on the prostaglandin D(2) system publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.00766.2001 – volume: 414 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.sleep.2024.02.012_bib101 article-title: Adenosine A1 receptors regulate the response of the hamster circadian clock to light publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(01)00786-5 – volume: 31 start-page: 10067 issue: 27 year: 2011 ident: 10.1016/j.sleep.2024.02.012_bib41 article-title: Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6730-10.2011 – volume: 132 start-page: 292 issue: 3 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib2 article-title: Sleep disorders publication-title: Am J Med doi: 10.1016/j.amjmed.2018.09.021 – volume: 15 start-page: 65 issue: 1 year: 2011 ident: 10.1016/j.sleep.2024.02.012_bib50 article-title: Histamine in the regulation of wakefulness publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2010.06.004 – volume: 7 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.sleep.2024.02.012_bib59 article-title: Prostaglandins and adenosine in the regulation of sleep and wakefulness publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2006.09.004 – volume: 303 start-page: 469 issue: 11 year: 1986 ident: 10.1016/j.sleep.2024.02.012_bib51 article-title: [Role of hypothalamic histaminergic systems in the regulation of vigilance states in cats] publication-title: C R Acad Sci III – volume: 25 start-page: 746 issue: 6 year: 2016 ident: 10.1016/j.sleep.2024.02.012_bib116 article-title: Oral administration of Japanese sake yeast (Saccharomyces cerevisiae sake) promotes non-rapid eye movement sleep in mice via adenosine A(2A) receptors publication-title: J Sleep Res doi: 10.1111/jsr.12434 – volume: 7 start-page: 192 year: 2013 ident: 10.1016/j.sleep.2024.02.012_bib45 article-title: GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons publication-title: Front Neural Circ – volume: 659 start-page: 48 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib120 article-title: Theacrine: a purine alkaloid from Camellia assamica var. kucha with a hypnotic property via the adenosine system publication-title: Neurosci Lett doi: 10.1016/j.neulet.2017.08.063 – volume: 8 issue: 1 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib83 article-title: The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker publication-title: Biology doi: 10.3390/biology8010013 – volume: 70 start-page: 1227 issue: 7 year: 2012 ident: 10.1016/j.sleep.2024.02.012_bib68 article-title: [Endogenous sleep-promoting substance] publication-title: Nihon Rinsho – volume: 27 start-page: 111 issue: 2 year: 1988 ident: 10.1016/j.sleep.2024.02.012_bib53 article-title: Evidence for histaminergic arousal mechanisms in the hypothalamus of cat publication-title: Neuropharmacology doi: 10.1016/0028-3908(88)90159-1 – volume: 29 start-page: 1820 issue: 9 year: 2009 ident: 10.1016/j.sleep.2024.02.012_bib88 article-title: Circadian clock genes and sleep homeostasis publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2009.06723.x – volume: 18 start-page: 4705 issue: 12 year: 1998 ident: 10.1016/j.sleep.2024.02.012_bib57 article-title: Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-12-04705.1998 – volume: 105 start-page: 1480 issue: 4 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib106 article-title: Gene expression in the rat brain during prostaglandin D2 and adenosinergically-induced sleep publication-title: J Neurochem doi: 10.1111/j.1471-4159.2008.05257.x – volume: 142 start-page: 710 issue: 5 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib39 article-title: Lesion of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption publication-title: J Neurochem doi: 10.1111/jnc.14054 – volume: 21 start-page: 67 issue: 2 year: 2020 ident: 10.1016/j.sleep.2024.02.012_bib82 article-title: Molecular mechanisms and physiological importance of circadian rhythms publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-019-0179-2 – volume: 119 start-page: 913 issue: 4 year: 2003 ident: 10.1016/j.sleep.2024.02.012_bib77 article-title: Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00246-X – volume: 12 start-page: 265 issue: 3 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib103 article-title: Neurobiological basis of hypersomnia publication-title: Sleep Med Clin doi: 10.1016/j.jsmc.2017.03.003 – volume: 25 start-page: 2892 issue: 26 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib18 article-title: Therapeutic potential of agonists and antagonists of A1, A2a, A2b and A3 adenosine receptors publication-title: Curr Pharmaceut Des doi: 10.2174/1381612825666190716112319 – volume: 102 start-page: 450 issue: 3 year: 2012 ident: 10.1016/j.sleep.2024.02.012_bib119 article-title: NHBA isolated from Gastrodia elata exerts sedative and hypnotic effects in sodium pentobarbital-treated mice publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2012.06.002 – volume: 142 start-page: 620 issue: 5 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib40 article-title: Acute effects of alcohol on sleep are mediated by components of homeostatic sleep regulatory system: an Editorial Highlight for 'Lesions of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption' on page 710 publication-title: J Neurochem doi: 10.1111/jnc.14100 – volume: 49 start-page: 299 issue: 4 year: 2015 ident: 10.1016/j.sleep.2024.02.012_bib13 article-title: Alcohol disrupts sleep homeostasis publication-title: Alcohol doi: 10.1016/j.alcohol.2014.07.019 – volume: 31 start-page: 6518 issue: 17 year: 2011 ident: 10.1016/j.sleep.2024.02.012_bib44 article-title: Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6506-10.2011 – volume: 356 start-page: 64 issue: 1 year: 2016 ident: 10.1016/j.sleep.2024.02.012_bib70 article-title: Paeoniflorin promotes non-rapid eye movement sleep via adenosine A1 receptors publication-title: J Pharmacol Exp Therapeut doi: 10.1124/jpet.115.227819 – volume: 18 start-page: 478 issue: 6 year: 1995 ident: 10.1016/j.sleep.2024.02.012_bib34 article-title: Magnocellular nuclei of the basal forebrain: substrates of sleep and arousal regulation publication-title: Sleep doi: 10.1093/sleep/18.6.478 – volume: 41 start-page: 182 issue: 2 year: 2015 ident: 10.1016/j.sleep.2024.02.012_bib90 article-title: Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis publication-title: Eur J Neurosci doi: 10.1111/ejn.12766 – volume: 44 start-page: 228 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib93 article-title: Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2017.05.003 – volume: 61 start-page: 761 issue: 6 year: 2006 ident: 10.1016/j.sleep.2024.02.012_bib33 article-title: Drugs for sleep disorders: mechanisms and therapeutic prospects publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2006.02680.x – volume: 56 start-page: 285 issue: 2 year: 1998 ident: 10.1016/j.sleep.2024.02.012_bib107 article-title: [Prostaglandins and sleep] publication-title: Nihon Rinsho – start-page: 471 issue: 193 year: 2009 ident: 10.1016/j.sleep.2024.02.012_bib19 article-title: Adenosine receptors and the central nervous system publication-title: Handb Exp Pharmacol doi: 10.1007/978-3-540-89615-9_16 – volume: 64 start-page: 621 issue: 6 year: 2012 ident: 10.1016/j.sleep.2024.02.012_bib61 article-title: [Sleep-wake regulation by prostaglandin D2 and adenosine] publication-title: Brain Nerve – volume: 26 start-page: 10292 issue: 40 year: 2006 ident: 10.1016/j.sleep.2024.02.012_bib49 article-title: Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2341-06.2006 – volume: 271 start-page: 216 issue: 5246 year: 1996 ident: 10.1016/j.sleep.2024.02.012_bib72 article-title: Activation of ventrolateral preoptic neurons during sleep publication-title: Science doi: 10.1126/science.271.5246.216 – volume: 46 start-page: 143 issue: 2 year: 1994 ident: 10.1016/j.sleep.2024.02.012_bib20 article-title: Nomenclature and classification of purinoceptors publication-title: Pharmacol Rev – volume: 192 start-page: 329 issue: 2 year: 1967 ident: 10.1016/j.sleep.2024.02.012_bib35 article-title: Cortical acetylcholine release and electroencephalographic arousal publication-title: J Physiol doi: 10.1113/jphysiol.1967.sp008303 – volume: 11 start-page: 4 issue: Suppl 1 year: 2010 ident: 10.1016/j.sleep.2024.02.012_bib75 article-title: Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep publication-title: World J Biol Psychiatr doi: 10.3109/15622971003637611 – volume: 1304 start-page: 96 year: 2009 ident: 10.1016/j.sleep.2024.02.012_bib47 article-title: Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats publication-title: Brain Res doi: 10.1016/j.brainres.2009.09.066 – volume: 6 year: 2016 ident: 10.1016/j.sleep.2024.02.012_bib71 article-title: Astrocyte-derived adenosine is central to the hypnogenic effect of glucose publication-title: Sci Rep doi: 10.1038/srep19107 – volume: 153 start-page: 875 issue: 4 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib27 article-title: Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.01.017 – volume: 38 start-page: 331 issue: 5 year: 2006 ident: 10.1016/j.sleep.2024.02.012_bib67 article-title: [Sleep and brain function] publication-title: No Hattatsu – volume: 142 start-page: 501 issue: 4 year: 2004 ident: 10.1016/j.sleep.2024.02.012_bib74 article-title: Sleep-promoting functions of the hypothalamic median preoptic nucleus: inhibition of arousal systems publication-title: Arch Ital Biol – volume: 42 start-page: 449 issue: 6 year: 2003 ident: 10.1016/j.sleep.2024.02.012_bib11 article-title: Adenosine kinase and 5'-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat publication-title: Neurochem Int doi: 10.1016/S0197-0186(02)00155-9 – volume: 25 start-page: 116 issue: 1 year: 2016 ident: 10.1016/j.sleep.2024.02.012_bib117 article-title: Japanese sake yeast supplementation improves the quality of sleep: a double-blind randomised controlled clinical trial publication-title: J Sleep Res doi: 10.1111/jsr.12336 – volume: 67 start-page: 1489 issue: 8 year: 2009 ident: 10.1016/j.sleep.2024.02.012_bib104 article-title: [Molecular mechanisms of insomnia] publication-title: Nihon Rinsho – volume: 142 start-page: 533 issue: 4 year: 2004 ident: 10.1016/j.sleep.2024.02.012_bib111 article-title: Genes for prostaglandin d synthase and receptor as well as adenosine A2A receptor are involved in the homeostatic regulation of nrem sleep publication-title: Arch Ital Biol – volume: 112 start-page: 343 issue: 6 year: 1998 ident: 10.1016/j.sleep.2024.02.012_bib105 article-title: [Molecular and neuroanatomical mechanisms of sleep-wakefulness regulation by prostaglandins D2 and E2] publication-title: Nihon Yakurigaku Zasshi doi: 10.1254/fpj.112.343 – volume: 16 start-page: 1523 issue: 4 year: 1996 ident: 10.1016/j.sleep.2024.02.012_bib55 article-title: Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-04-01523.1996 – volume: 107 start-page: 653 issue: 4 year: 2001 ident: 10.1016/j.sleep.2024.02.012_bib81 article-title: An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons publication-title: Neuroscience doi: 10.1016/S0306-4522(01)00383-9 – volume: 31 start-page: 6956 issue: 19 year: 2011 ident: 10.1016/j.sleep.2024.02.012_bib9 article-title: Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5761-10.2011 – volume: 47 start-page: 421 issue: 5 year: 1990 ident: 10.1016/j.sleep.2024.02.012_bib36 article-title: Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis publication-title: Life Sci doi: 10.1016/0024-3205(90)90300-G – volume: 115 start-page: 183 issue: 2 year: 2000 ident: 10.1016/j.sleep.2024.02.012_bib38 article-title: Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state publication-title: Behav Brain Res doi: 10.1016/S0166-4328(00)00258-8 – volume: 61 start-page: 724 issue: 5 year: 2013 ident: 10.1016/j.sleep.2024.02.012_bib8 article-title: Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response publication-title: Glia doi: 10.1002/glia.22465 – volume: 93 start-page: 5980 issue: 12 year: 1996 ident: 10.1016/j.sleep.2024.02.012_bib30 article-title: Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.12.5980 – volume: 40 start-page: 3504 issue: 10 year: 2014 ident: 10.1016/j.sleep.2024.02.012_bib99 article-title: Caffeine increases light responsiveness of the mouse circadian pacemaker publication-title: Eur J Neurosci doi: 10.1111/ejn.12715 – volume: 25 start-page: 899 issue: 9 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib3 article-title: Research progress on adenosine in central nervous system diseases publication-title: CNS Neurosci Ther doi: 10.1111/cns.13190 – volume: 404 start-page: 992 issue: 6781 year: 2000 ident: 10.1016/j.sleep.2024.02.012_bib78 article-title: Identification of sleep-promoting neurons in vitro publication-title: Nature doi: 10.1038/35010109 – volume: 16 year: 2022 ident: 10.1016/j.sleep.2024.02.012_bib28 article-title: Adenosine downregulates the activities of glutamatergic neurons in the paraventricular hypothalamic nucleus required for sleep publication-title: Front Neurosci – volume: 98 start-page: 11674 issue: 20 year: 2001 ident: 10.1016/j.sleep.2024.02.012_bib64 article-title: Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.201398898 – volume: 53 start-page: 1331 issue: 17 year: 1993 ident: 10.1016/j.sleep.2024.02.012_bib54 article-title: Involvement of histamine in the control of the waking state publication-title: Life Sci doi: 10.1016/0024-3205(93)90592-Q – volume: 15 start-page: 411 issue: 6 year: 2011 ident: 10.1016/j.sleep.2024.02.012_bib60 article-title: Prostaglandin D2 and sleep/wake regulation publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2011.08.003 – volume: 222 start-page: R75 issue: 2 year: 2014 ident: 10.1016/j.sleep.2024.02.012_bib85 article-title: Circadian regulation of metabolism publication-title: J Endocrinol doi: 10.1530/JOE-14-0200 – volume: 27 start-page: 584 issue: 6 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib115 article-title: Sleep promoting effect of luteolin in mice via adenosine A1 and A2A receptors publication-title: Biomol Ther (Seoul) doi: 10.4062/biomolther.2019.149 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.sleep.2024.02.012_bib118 article-title: Sake yeast induces the sleep-promoting effects under the stress-induced acute insomnia in mice publication-title: Sci Rep doi: 10.1038/s41598-021-00271-0 – volume: 9 start-page: 319 issue: 6 year: 2000 ident: 10.1016/j.sleep.2024.02.012_bib6 article-title: Adenosine as a biological signal mediating sleepiness following prolonged wakefulness publication-title: Biol Signals Recept doi: 10.1159/000014655 – volume: 16 start-page: 187 issue: 3–4 year: 1981 ident: 10.1016/j.sleep.2024.02.012_bib16 article-title: The role of adenosine and its nucleotides in central synaptic transmission publication-title: Prog Neurobiol doi: 10.1016/0301-0082(81)90014-9 – volume: 134 start-page: 1377 issue: 4 year: 2005 ident: 10.1016/j.sleep.2024.02.012_bib76 article-title: The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.05.045 – volume: 12 start-page: 2901 issue: 13 year: 2001 ident: 10.1016/j.sleep.2024.02.012_bib97 article-title: Adenosine and caffeine modulate circadian rhythms in the Syrian hamster publication-title: Neuroreport doi: 10.1097/00001756-200109170-00029 – volume: 61 start-page: 156 issue: 2 year: 2009 ident: 10.1016/j.sleep.2024.02.012_bib12 article-title: Glia, adenosine, and sleep publication-title: Neuron doi: 10.1016/j.neuron.2009.01.005 – volume: 123 start-page: 451 issue: 2 year: 2004 ident: 10.1016/j.sleep.2024.02.012_bib25 article-title: Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion publication-title: Neuroscience doi: 10.1016/j.neuroscience.2003.08.066 – volume: 11 start-page: 1047 issue: 8 year: 2011 ident: 10.1016/j.sleep.2024.02.012_bib29 article-title: The role of adenosine in the regulation of sleep publication-title: Curr Top Med Chem doi: 10.2174/156802611795347654 – volume: 671 start-page: 329 issue: 2 year: 1995 ident: 10.1016/j.sleep.2024.02.012_bib37 article-title: Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats publication-title: Brain Res doi: 10.1016/0006-8993(94)01399-3 – volume: 20 start-page: 8138 issue: 21 year: 2000 ident: 10.1016/j.sleep.2024.02.012_bib87 article-title: The circadian clock mutation alters sleep homeostasis in the mouse publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-21-08138.2000 – volume: 48 start-page: 73 year: 2012 ident: 10.1016/j.sleep.2024.02.012_bib7 article-title: Modeling the effects of caffeine on the sleep/wake cycle publication-title: Biomed Sci Instrum – volume: 61 start-page: 129 issue: 2 year: 2013 ident: 10.1016/j.sleep.2024.02.012_bib10 article-title: The Importance of astrocyte-derived purines in the modulation of sleep publication-title: Glia doi: 10.1002/glia.22422 – volume: 16 start-page: 475 issue: 4 year: 2020 ident: 10.1016/j.sleep.2024.02.012_bib95 article-title: Extracellular levels of the sleep homeostasis mediator, adenosine, are regulated by glutamatergic neurons during wakefulness and sleep publication-title: Purinergic Signal doi: 10.1007/s11302-020-09758-3 – volume: 305 start-page: R31 issue: 1 year: 2013 ident: 10.1016/j.sleep.2024.02.012_bib79 article-title: Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00402.2012 – volume: 429 start-page: 638 issue: 4 year: 2001 ident: 10.1016/j.sleep.2024.02.012_bib58 article-title: Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups publication-title: J Comp Neurol doi: 10.1002/1096-9861(20010122)429:4<638::AID-CNE10>3.0.CO;2-Y – volume: 92 start-page: 1542 issue: 6 year: 2005 ident: 10.1016/j.sleep.2024.02.012_bib66 article-title: An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats publication-title: J Neurochem doi: 10.1111/j.1471-4159.2004.02991.x – volume: 146 year: 2022 ident: 10.1016/j.sleep.2024.02.012_bib114 article-title: Involvement of the adenosine A(1) receptor in the hypnotic effect of rosmarinic acid publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2021.112483 – volume: 5 start-page: 323 issue: 4 year: 2001 ident: 10.1016/j.sleep.2024.02.012_bib73 article-title: Brain structures and mechanisms involved in the generation of NREM sleep: focus on the preoptic hypothalamus publication-title: Sleep Med Rev doi: 10.1053/smrv.2001.0170 – volume: 73 start-page: 339 issue: 3 year: 1995 ident: 10.1016/j.sleep.2024.02.012_bib14 article-title: Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? publication-title: Can J Physiol Pharmacol doi: 10.1139/y95-044 – volume: 167 start-page: 40 issue: 1 year: 2010 ident: 10.1016/j.sleep.2024.02.012_bib24 article-title: A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.01.044 – volume: 362 start-page: 429 issue: 6413 year: 2018 ident: 10.1016/j.sleep.2024.02.012_bib46 article-title: The paraventricular thalamus is a critical thalamic area for wakefulness publication-title: Science doi: 10.1126/science.aat2512 – volume: 369 issue: 6508 year: 2020 ident: 10.1016/j.sleep.2024.02.012_bib96 article-title: Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons publication-title: Science doi: 10.1126/science.abb0556 – volume: 23 start-page: 4278 issue: 10 year: 2003 ident: 10.1016/j.sleep.2024.02.012_bib92 article-title: A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-10-04278.2003 – volume: 70 start-page: 231 issue: 3 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib21 article-title: Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease publication-title: Neurology doi: 10.1212/01.wnl.0000297939.18236.ec – volume: 64 start-page: 182 issue: 2 year: 2012 ident: 10.1016/j.sleep.2024.02.012_bib4 article-title: [Major neurotransmitters involved in the regulation of sleep-wake cycle] publication-title: Rev Invest Clin – volume: 612 start-page: 115 issue: 1–2 year: 1993 ident: 10.1016/j.sleep.2024.02.012_bib15 article-title: Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle publication-title: Brain Res – volume: 105 start-page: 19992 issue: 50 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib23 article-title: Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0810926105 – volume: 8 start-page: 858 issue: 7 year: 2005 ident: 10.1016/j.sleep.2024.02.012_bib42 article-title: Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine publication-title: Nat Neurosci doi: 10.1038/nn1491 – volume: 355 start-page: 275 issue: 1394 year: 2000 ident: 10.1016/j.sleep.2024.02.012_bib63 article-title: Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2000.0564 – volume: 106 start-page: 361 issue: 1 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib62 article-title: Adenosine A1 receptors inhibit GABAergic transmission in rat tuberomammillary nucleus neurons publication-title: J Neurochem doi: 10.1111/j.1471-4159.2008.05400.x – volume: 124 start-page: 256 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib32 article-title: Extracellular adenosine and slow-wave sleep are increased after ablation of nucleus accumbens core astrocytes and neurons in mice publication-title: Neurochem Int doi: 10.1016/j.neuint.2019.01.020 – volume: 98 start-page: 912 issue: 4 year: 2003 ident: 10.1016/j.sleep.2024.02.012_bib26 article-title: Dialysis delivery of an adenosine A1 receptor agonist to the pontine reticular formation decreases acetylcholine release and increases anesthesia recovery time publication-title: Anesthesiology doi: 10.1097/00000542-200304000-00018 – volume: 23 start-page: S77 issue: Suppl 3 year: 2000 ident: 10.1016/j.sleep.2024.02.012_bib86 article-title: Hormonal and pharmacological manipulation of the circadian clock: recent developments and future strategies publication-title: Sleep – volume: 38 start-page: 1616 issue: 8 year: 2013 ident: 10.1016/j.sleep.2024.02.012_bib80 article-title: Microinjection of adenosine into the hypothalamic ventrolateral preoptic area enhances wakefulness via the A1 receptor in rats publication-title: Neurochem Res doi: 10.1007/s11064-013-1063-7 – volume: 144 start-page: 122 year: 2019 ident: 10.1016/j.sleep.2024.02.012_bib31 article-title: Enhancing endogenous adenosine A(2A) receptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.10.022 – volume: 221 start-page: 923 issue: 2 year: 2016 ident: 10.1016/j.sleep.2024.02.012_bib48 article-title: Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain publication-title: Brain Struct Funct doi: 10.1007/s00429-014-0946-y – volume: 12 start-page: 2113 issue: 1 year: 2021 ident: 10.1016/j.sleep.2024.02.012_bib102 article-title: Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice publication-title: Nat Commun doi: 10.1038/s41467-021-22179-z – volume: 29 start-page: 433 issue: 2 year: 1988 ident: 10.1016/j.sleep.2024.02.012_bib17 article-title: Adenosine antagonists as potential therapeutic agents publication-title: Pharmacol Biochem Behav doi: 10.1016/0091-3057(88)90182-7 – volume: 37 start-page: 525 issue: 3 year: 2014 ident: 10.1016/j.sleep.2024.02.012_bib65 article-title: Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol publication-title: Sleep doi: 10.5665/sleep.3490 – volume: 25 start-page: 460 issue: 6 year: 2010 ident: 10.1016/j.sleep.2024.02.012_bib98 article-title: Partial sleep deprivation reduces phase advances to light in humans publication-title: J Biol Rhythm doi: 10.1177/0748730410385544 – volume: 131 start-page: 126 year: 2010 ident: 10.1016/j.sleep.2024.02.012_bib1 article-title: Overview of sleep & sleep disorders publication-title: Indian J Med Res – volume: 521 Pt 3 start-page: 679 issue: Pt 3 year: 1999 ident: 10.1016/j.sleep.2024.02.012_bib22 article-title: Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.00679.x – volume: 201 start-page: 147 issue: 1 year: 2008 ident: 10.1016/j.sleep.2024.02.012_bib113 article-title: Nitric oxide modulates the discharge rate of basal forebrain neurons publication-title: Psychopharmacology (Berl) doi: 10.1007/s00213-008-1257-x – volume: 222 start-page: 37 issue: 1 year: 1982 ident: 10.1016/j.sleep.2024.02.012_bib52 article-title: Histamine-induced arousal in the conscious and pentobarbital-pretreated rat publication-title: J Pharmacol Exp Therapeut – volume: 5 start-page: 68 year: 2018 ident: 10.1016/j.sleep.2024.02.012_bib84 article-title: Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other's functioning? publication-title: Neurobiol Sleep Circadian Rhythms doi: 10.1016/j.nbscr.2018.02.003 – volume: 28 start-page: 585 issue: 3 year: 1989 ident: 10.1016/j.sleep.2024.02.012_bib56 article-title: Histamine-immunoreactive nerve fibers in the rat brain publication-title: Neuroscience doi: 10.1016/0306-4522(89)90007-9 – volume: 117 start-page: 327 issue: 1 year: 2017 ident: 10.1016/j.sleep.2024.02.012_bib94 article-title: The role of adenosine in the maturation of sleep homeostasis in rats publication-title: J Neurophysiol doi: 10.1152/jn.00675.2016 – volume: 123 start-page: 148 issue: 1 year: 1954 ident: 10.1016/j.sleep.2024.02.012_bib5 article-title: Injections of drugs into the lateral ventricle of the cat publication-title: J Physiol doi: 10.1113/jphysiol.1954.sp005040 – volume: 8 start-page: 60 issue: Suppl 1 year: 1999 ident: 10.1016/j.sleep.2024.02.012_bib109 article-title: Prostaglandin D2 and sleep--a molecular genetic approach publication-title: J Sleep Res doi: 10.1046/j.1365-2869.1999.00010.x – volume: 233 start-page: 281 issue: 2 year: 2016 ident: 10.1016/j.sleep.2024.02.012_bib69 article-title: Paeoniflorin exerts analgesic and hypnotic effects via adenosine A1 receptors in a mouse neuropathic pain model publication-title: Psychopharmacology (Berl) doi: 10.1007/s00213-015-4108-6 – volume: 29 start-page: 795 issue: 4 year: 2009 ident: 10.1016/j.sleep.2024.02.012_bib110 article-title: Estradiol modulates behavioral arousal and induces changes in gene expression profiles in brain regions involved in the control of vigilance publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2009.06620.x |
SSID | ssj0017184 |
Score | 2.4615371 |
SecondaryResourceType | review_article |
Snippet | Sleep is a natural and recurring state of life. Long-term insomnia can lead to physical and mental fatigue, inattention, memory loss, anxiety, depression and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 210 |
SubjectTerms | Adenosine Adenosine receptors Brain - physiology Humans Insomnia Neurotransmitter Agents - physiology Sleep - physiology Sleep disorders Sleep homeostasis Sleep Initiation and Maintenance Disorders Sleep-wake Wakefulness - physiology |
Title | Functions and mechanisms of adenosine and its receptors in sleep regulation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1389945724000534 https://dx.doi.org/10.1016/j.sleep.2024.02.012 https://www.ncbi.nlm.nih.gov/pubmed/38373361 https://www.proquest.com/docview/2928856437 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9wwDI4Qe9kLArHBwXbKpD2uXJukTfqITpwO2NA0QOItShsXFUHvtB6v_PbZaXvSHg4knqqmsZo4ju0o9mfGvhfkZrjKRE7HOlI5oB70BiJTxjGotEpcqFry6yqb36qLu_Rui02HXBgKq-x1f6fTg7buWyY9NyfLup5c0xVbrlJNUZAoSoQJqpQmKT95WYd5JKh7u8K2Jo-o94A8FGK82kcAAq0UKgB3JmKTddrkfQYrNNtlO737yE-7Ee6xLWj22eUMjVOQH-4az5-Asnnr9qnli4o7T3Dg6EuGb_Wq5ThfWFKRHV43PIwNm-77Ml6f2O3s7GY6j_oiCVGJvs8qMuiheUoHVWkhDADuscxkKZQV2XbQKhW-cEbr3Cc-gxz7OFFJEFI60LGTn9l2s2jgkHGP1rp0uSzJZnsti8yZuFRJkeUyj0sxYmJgji17BHEqZPFoh1CxBxtGbYmjNhYWOTpiP9ZEyw5A4_XuauC6HXJDUZtZVPCvk2Vrsv_E523Cb8PSWtxYdFviGlg8t1Ygq0xK95ojdtCt-XoCdKyXMkuO3vvbY_aR3rpgti9se_X3Gb6id7MqxkF8x-zD6fTPz9_0PL-cX_0D4dv5Mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6OLALAvGxbmwzEkdCE9tJnOOEVpUVuNBKvVlO_IKCIK2WcuVv33tOUmmHMmlX20-xn5_f-0Xvi7GLnGCGLXVg0zANVAaoB52GQBdhCCouI-u7ltzdJ5O5-rWIFwN23efCUFhlp_tbne61dTcy6rg5WlXV6IFcbJmKU4qCRFFSH9iuwudLbQyu3jZxHhEq37azrc4CWt6XHvJBXs0zAFWtFMpX7ozENvO0DX56MzQ-YPsdfuQ_2i0esgHUR2w6RuvkBYjb2vEXoHTeqnlp-LLk1lE9cASTfq5aNxwPDCvqssOrmvu94dBj18frmM3HP2fXk6DrkhAUCH7WgUaI5igfVMW50AD4yBKdxFCUZNwhVbFwudVpmrnIJZDhGitKCUJKC2lo5QnbqZc1fGLcobkubCYLMtoulXlidVioKE8ymYWFGDLRM8cUXQlx6mTxbPpYsSfjd22IoyYUBjk6ZJcbolVbQeP95arnuumTQ1GdGdTw75MlG7K_5OffhOf91Rp8WeQusTUsXxsjkFU6JsfmkJ22d745AP3XS5lEn__3s9_Z3mR2d2tub-6nX9hHmmkj287Yzvr3K3xFqLPOv3lR_gPEKvkr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functions+and+mechanisms+of+adenosine+and+its+receptors+in+sleep+regulation&rft.jtitle=Sleep+medicine&rft.au=Huang%2C+Lishan&rft.au=Zhu%2C+Wenwen&rft.au=Li%2C+Nanxi&rft.au=Zhang%2C+Bin&rft.date=2024-03-01&rft.issn=1878-5506&rft.eissn=1878-5506&rft.volume=115&rft.spage=210&rft_id=info:doi/10.1016%2Fj.sleep.2024.02.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-9457&client=summon |