On formal limitations of causal ecological networks

Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these methods have limitations often underestimated when used in graphical modelling of ecological systems. In this opinion article, I examine the re...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 379; no. 1909; p. 20230170
Main Author Damos, Petros T.
Format Journal Article
LanguageEnglish
Published England 09.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these methods have limitations often underestimated when used in graphical modelling of ecological systems. In this opinion article, I examine the relationship between formal logic methods used to describe causal networks and their inherent statistical and epistemological limitations. I argue that while these methods offer valuable insights, they are restricted by axiomatic assumptions, statistical constraints and the incompleteness of our knowledge. To prove that, I first consider causal networks as formal systems, define causality and formalize their axioms in terms of modal logic and use ecological counterexamples to question the axioms. I also highlight the statistical limitations when using multivariate time-series analysis and Granger causality to develop ecological networks, including the potential for spurious correlations among other data characteristics. Finally, I draw upon Gödel’s incompleteness theorems to highlight the inherent limits of fully understanding complex networks as formal systems and conclude that causal ecological networks are subject to initial rules and data characteristics and, as any formal system, will never fully capture the intricate complexities of the systems they represent. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’.
AbstractList Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these methods have limitations often underestimated when used in graphical modelling of ecological systems. In this opinion article, I examine the relationship between formal logic methods used to describe causal networks and their inherent statistical and epistemological limitations. I argue that while these methods offer valuable insights, they are restricted by axiomatic assumptions, statistical constraints and the incompleteness of our knowledge. To prove that, I first consider causal networks as formal systems, define causality and formalize their axioms in terms of modal logic and use ecological counterexamples to question the axioms. I also highlight the statistical limitations when using multivariate time-series analysis and Granger causality to develop ecological networks, including the potential for spurious correlations among other data characteristics. Finally, I draw upon Gödel's incompleteness theorems to highlight the inherent limits of fully understanding complex networks as formal systems and conclude that causal ecological networks are subject to initial rules and data characteristics and, as any formal system, will never fully capture the intricate complexities of the systems they represent. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these methods have limitations often underestimated when used in graphical modelling of ecological systems. In this opinion article, I examine the relationship between formal logic methods used to describe causal networks and their inherent statistical and epistemological limitations. I argue that while these methods offer valuable insights, they are restricted by axiomatic assumptions, statistical constraints and the incompleteness of our knowledge. To prove that, I first consider causal networks as formal systems, define causality and formalize their axioms in terms of modal logic and use ecological counterexamples to question the axioms. I also highlight the statistical limitations when using multivariate time-series analysis and Granger causality to develop ecological networks, including the potential for spurious correlations among other data characteristics. Finally, I draw upon Gödel's incompleteness theorems to highlight the inherent limits of fully understanding complex networks as formal systems and conclude that causal ecological networks are subject to initial rules and data characteristics and, as any formal system, will never fully capture the intricate complexities of the systems they represent. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these methods have limitations often underestimated when used in graphical modelling of ecological systems. In this opinion article, I examine the relationship between formal logic methods used to describe causal networks and their inherent statistical and epistemological limitations. I argue that while these methods offer valuable insights, they are restricted by axiomatic assumptions, statistical constraints and the incompleteness of our knowledge. To prove that, I first consider causal networks as formal systems, define causality and formalize their axioms in terms of modal logic and use ecological counterexamples to question the axioms. I also highlight the statistical limitations when using multivariate time-series analysis and Granger causality to develop ecological networks, including the potential for spurious correlations among other data characteristics. Finally, I draw upon Gödel's incompleteness theorems to highlight the inherent limits of fully understanding complex networks as formal systems and conclude that causal ecological networks are subject to initial rules and data characteristics and, as any formal system, will never fully capture the intricate complexities of the systems they represent. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these methods have limitations often underestimated when used in graphical modelling of ecological systems. In this opinion article, I examine the relationship between formal logic methods used to describe causal networks and their inherent statistical and epistemological limitations. I argue that while these methods offer valuable insights, they are restricted by axiomatic assumptions, statistical constraints and the incompleteness of our knowledge. To prove that, I first consider causal networks as formal systems, define causality and formalize their axioms in terms of modal logic and use ecological counterexamples to question the axioms. I also highlight the statistical limitations when using multivariate time-series analysis and Granger causality to develop ecological networks, including the potential for spurious correlations among other data characteristics. Finally, I draw upon Gödel’s incompleteness theorems to highlight the inherent limits of fully understanding complex networks as formal systems and conclude that causal ecological networks are subject to initial rules and data characteristics and, as any formal system, will never fully capture the intricate complexities of the systems they represent. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’.
Author Damos, Petros T.
Author_xml – sequence: 1
  givenname: Petros T.
  orcidid: 0000-0002-4055-0977
  surname: Damos
  fullname: Damos, Petros T.
  organization: Minstry of Education, Religious and Sports, Directorate of Secondary Education Veroia , Ergohori 59132, Greece, Department of Agriculture, School of Agricultural Studies, University of Western Macedonia , Florina, 53100, Greece, Department of Electrical and Computer Engineering, Faculty of Engineering, University of Western Macedonia , Kozani 50100, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39034692$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LxDAQhoOsuN3Vq0fp0Uvr5KNNc5TFL1jYi55DmqQSbZs1aRH_vS27ehA8zfDyvAPzrNCi971F6BJDjkFUNyEOdU6A0BwwhxOUYMZxRgSHBUpAlCSrGC2XaBXjGwCIgrMztKQCKCsFSRDd9WnjQ6fatHWdG9TgfB9T36RajXFKrfatf3V6Wns7fPrwHs_RaaPaaC-Oc41e7u-eN4_ZdvfwtLndZpoV5ZBVleKaGEG4LQzGlVW4ritS40YLzA0YayznXHNiClObKTeGQ1Eyo0BoA3SNrg9398F_jDYOsnNR27ZVvfVjlBQqSjBnjE7o1REd684auQ-uU-FL_jw6AfkB0MHHGGzzi2CQs0k5m5SzSTmbnArsT0Ef7QxBufa_2jdsDXgj
CitedBy_id crossref_primary_10_1098_rstb_2023_0163
Cites_doi 10.1038/srep14750
10.1046/j.1461-0248.2002.00354.x
10.1007/s12038-007-0040-1
10.1098/rsos.172092
10.1007/BF01063984
10.1016/j.ecolind.2020.107096
10.1016/j.ecolmodel.2017.11.021
10.1038/s41598-021-86476-9
10.1080/00031305.1996.10473563
10.1103/PhysRevE.97.042207
10.1017/9781316779651.015
10.1007/s12080-020-00482-7
10.1038/238413a0
10.1038/s41467-020-16238-0
10.1016/0165-1889(80)90069-X
10.1111/j.1558-5646.2007.00203.x
10.1016/j.ecoinf.2021.101216
10.1038/s41598-021-97741-2
10.1090/cbms/107
10.1371/journal.pone.0208078
10.1090/S0002-9904-1947-08785-1
10.1007/978-0-387-79711-3
10.1016/j.marpolbul.2009.09.029
10.1146/annurev.ecolsys.38.091206.095818
10.1016/j.conb.2012.11.010
10.1146/annurev-ecolsys-012220-120819
10.2307/1912791
10.1057/9780230280816_28
10.1016/j.tree.2022.03.008
10.1016/j.neuroimage.2014.07.045
10.1073/pnas.2204405119
10.1007/s10994-006-5833-1
10.1098/rspb.2013.2837
10.1007/s10144-018-0628-3
10.1093/bjps/axi147
10.2307/2270922
10.1016/j.physleta.2004.02.032
10.1016/j.ecolmodel.2022.109964
10.1016/0165-1889(88)90055-3
10.1007/BF01700692
10.1007/s13278-020-00708-w
10.1002/jae.2676
10.1146/annurev.es.04.110173.000245
10.2202/1557-4679.1203
10.1002/ecy.3040
10.2307/5678
10.1016/j.ijppaw.2013.09.001
10.2307/1912559
10.3390/bioengineering10030372
10.1016/0304-4076(74)90034-7
10.1209/0295-5075/119/18003
10.1016/j.envsoft.2022.105489
10.1111/j.1365-2656.2006.01070.x
10.1126/science.5.121.634
10.3389/fevo.2019.00293
10.1007/978-94-009-3997-4_6
10.1038/s41467-022-28761-3
10.1371/journal.pcbi.1007037
10.1038/s41559-020-01298-8
10.1093/biosci/biaa088
10.1016/j.tree.2020.01.004
10.1007/s00382-021-05944-0
10.1111/j.1467-8640.1995.tb00021.x
10.1146/annurev-statistics-040120-010930
10.1080/01621459.1982.10477803
10.1186/s12898-016-0087-7
10.1139/f98-104
10.1111/ele.12775
10.1007/978-3-030-34308-8_15
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1098/rstb.2023.0170
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
EISSN 1471-2970
ExternalDocumentID 39034692
10_1098_rstb_2023_0170
Genre Journal Article
GroupedDBID ---
-~X
0R~
2WC
4.4
53G
AACGO
AANCE
AAYXX
ABPLY
ABTLG
ACPRK
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
E3Z
EBS
F5P
GX1
H13
HZ~
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
RPM
RRY
TN5
V1E
YNT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c456t-88a7c2d927e5d118ea1bb82b1fc917d0dede777c72d5dbdb1fdd70564da09cd03
ISSN 0962-8436
1471-2970
IngestDate Fri Jul 11 07:42:58 EDT 2025
Thu Jul 10 06:23:10 EDT 2025
Thu Apr 24 22:54:38 EDT 2025
Tue Jul 01 03:25:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1909
Keywords web-ecology
granger causality
incompleteness
complex systems
modal logic
ecological interactions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-88a7c2d927e5d118ea1bb82b1fc917d0dede777c72d5dbdb1fdd70564da09cd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4055-0977
PMID 39034692
PQID 3083217443
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3083217443
pubmed_primary_39034692
crossref_primary_10_1098_rstb_2023_0170
crossref_citationtrail_10_1098_rstb_2023_0170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Sep-09
PublicationDateYYYYMMDD 2024-09-09
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sep-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2024
References e_1_3_9_4_2
e_1_3_9_31_2
e_1_3_9_54_2
e_1_3_9_77_2
e_1_3_9_6_2
Lewis DK (e_1_3_9_39_2) 1986
e_1_3_9_56_2
e_1_3_9_79_2
e_1_3_9_12_2
e_1_3_9_35_2
e_1_3_9_50_2
e_1_3_9_73_2
e_1_3_9_2_2
Russell B (e_1_3_9_49_2) 1912
e_1_3_9_52_2
e_1_3_9_75_2
e_1_3_9_71_2
Hume D (e_1_3_9_60_2) 1978
Runge J (e_1_3_9_10_2) 2017; 27
Pearl J (e_1_3_9_43_2) 2000
e_1_3_9_16_2
e_1_3_9_14_2
e_1_3_9_58_2
e_1_3_9_18_2
e_1_3_9_42_2
e_1_3_9_65_2
e_1_3_9_88_2
e_1_3_9_40_2
e_1_3_9_67_2
Suppes P (e_1_3_9_70_2) 1970; 24
Barbero F (e_1_3_9_33_2)
e_1_3_9_23_2
e_1_3_9_46_2
e_1_3_9_61_2
e_1_3_9_84_2
e_1_3_9_21_2
e_1_3_9_63_2
e_1_3_9_86_2
e_1_3_9_82_2
e_1_3_9_25_2
e_1_3_9_48_2
e_1_3_9_69_2
e_1_3_9_29_2
e_1_3_9_3_2
e_1_3_9_30_2
e_1_3_9_55_2
e_1_3_9_76_2
e_1_3_9_5_2
Hughes GE (e_1_3_9_37_2) 1968
e_1_3_9_57_2
e_1_3_9_78_2
Maziarz M (e_1_3_9_44_2) 2015; 8
e_1_3_9_34_2
e_1_3_9_51_2
e_1_3_9_72_2
e_1_3_9_11_2
e_1_3_9_32_2
e_1_3_9_53_2
e_1_3_9_74_2
Levins R (e_1_3_9_27_2) 1988; 3
Solvang HK (e_1_3_9_8_2) 2019; 14
e_1_3_9_17_2
e_1_3_9_38_2
e_1_3_9_15_2
e_1_3_9_36_2
e_1_3_9_7_2
e_1_3_9_9_2
e_1_3_9_19_2
e_1_3_9_20_2
e_1_3_9_41_2
e_1_3_9_66_2
e_1_3_9_87_2
e_1_3_9_68_2
e_1_3_9_45_2
e_1_3_9_62_2
e_1_3_9_83_2
e_1_3_9_22_2
e_1_3_9_64_2
e_1_3_9_85_2
Raatikainen P (e_1_3_9_24_2) 2018
Wiener N (e_1_3_9_59_2) 1956
Yu L (e_1_3_9_81_2) 2021
e_1_3_9_28_2
e_1_3_9_26_2
e_1_3_9_47_2
Krabbe Borregaard M (e_1_3_9_13_2) 2010; 85
Holmes EE (e_1_3_9_80_2) 2023
References_xml – ident: e_1_3_9_68_2
  doi: 10.1038/srep14750
– ident: e_1_3_9_6_2
  doi: 10.1046/j.1461-0248.2002.00354.x
– ident: e_1_3_9_62_2
  doi: 10.1007/s12038-007-0040-1
– ident: e_1_3_9_74_2
  doi: 10.1098/rsos.172092
– ident: e_1_3_9_35_2
  doi: 10.1007/BF01063984
– ident: e_1_3_9_85_2
  doi: 10.1016/j.ecolind.2020.107096
– volume: 27
  year: 2017
  ident: e_1_3_9_10_2
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Sci. Adv.
– ident: e_1_3_9_16_2
  doi: 10.1016/j.ecolmodel.2017.11.021
– volume: 3
  start-page: 149
  year: 1988
  ident: e_1_3_9_27_2
  article-title: The controlling factor in biological communities
  publication-title: Coenoses
– ident: e_1_3_9_31_2
– ident: e_1_3_9_17_2
  doi: 10.1038/s41598-021-86476-9
– volume-title: British moralists, 1650–1800
  year: 1978
  ident: e_1_3_9_60_2
– ident: e_1_3_9_79_2
  doi: 10.1080/00031305.1996.10473563
– ident: e_1_3_9_20_2
  doi: 10.1103/PhysRevE.97.042207
– ident: e_1_3_9_36_2
  doi: 10.1017/9781316779651.015
– start-page: 98
  volume-title: Analysis of multivariate time series using the MARSS package, version 3.11.4
  year: 2023
  ident: e_1_3_9_80_2
– ident: e_1_3_9_57_2
  doi: 10.1007/s12080-020-00482-7
– volume-title: The Stanford encyclopedia of philosophy (fall 2018 edition)
  year: 2018
  ident: e_1_3_9_24_2
– ident: e_1_3_9_5_2
  doi: 10.1038/238413a0
– volume-title: The problems of philosophy
  year: 1912
  ident: e_1_3_9_49_2
– ident: e_1_3_9_69_2
  doi: 10.1038/s41467-020-16238-0
– ident: e_1_3_9_61_2
  doi: 10.1016/0165-1889(80)90069-X
– ident: e_1_3_9_48_2
  doi: 10.1111/j.1558-5646.2007.00203.x
– ident: e_1_3_9_67_2
  doi: 10.1016/j.ecoinf.2021.101216
– ident: e_1_3_9_19_2
  doi: 10.1038/s41598-021-97741-2
– volume: 24
  start-page: 130
  year: 1970
  ident: e_1_3_9_70_2
  article-title: A probabilistic theory of causality
  publication-title: Acta Philos. Fenn.
– ident: e_1_3_9_87_2
  doi: 10.1090/cbms/107
– volume: 8
  start-page: 86
  year: 2015
  ident: e_1_3_9_44_2
  article-title: A review of the Granger-causality fallacy
  publication-title: J. Philos. Econ.
– volume: 14
  year: 2019
  ident: e_1_3_9_8_2
  article-title: An improved methodology for quantifying causality in complex ecological systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0208078
– ident: e_1_3_9_86_2
  doi: 10.1090/S0002-9904-1947-08785-1
– ident: e_1_3_9_88_2
  doi: 10.1007/978-0-387-79711-3
– ident: e_1_3_9_32_2
  doi: 10.1016/j.marpolbul.2009.09.029
– ident: e_1_3_9_65_2
  doi: 10.1146/annurev.ecolsys.38.091206.095818
– ident: e_1_3_9_54_2
  doi: 10.1016/j.conb.2012.11.010
– ident: e_1_3_9_3_2
  doi: 10.1146/annurev-ecolsys-012220-120819
– volume: 85
  start-page: 41
  year: 2010
  ident: e_1_3_9_13_2
  article-title: Causality of the relationship between geographic distribution and species abundance
  publication-title: Q. Rev. Biol.
– ident: e_1_3_9_21_2
  doi: 10.2307/1912791
– ident: e_1_3_9_30_2
  doi: 10.1057/9780230280816_28
– ident: e_1_3_9_45_2
  doi: 10.1016/j.tree.2022.03.008
– ident: e_1_3_9_75_2
  doi: 10.1016/j.neuroimage.2014.07.045
– ident: e_1_3_9_15_2
  doi: 10.1073/pnas.2204405119
– ident: e_1_3_9_40_2
  doi: 10.1007/s10994-006-5833-1
– ident: e_1_3_9_66_2
  doi: 10.1098/rspb.2013.2837
– ident: e_1_3_9_2_2
  doi: 10.1007/s10144-018-0628-3
– ident: e_1_3_9_28_2
  doi: 10.1093/bjps/axi147
– ident: e_1_3_9_38_2
  doi: 10.2307/2270922
– ident: e_1_3_9_77_2
  doi: 10.1016/j.physleta.2004.02.032
– ident: e_1_3_9_82_2
  doi: 10.1016/j.ecolmodel.2022.109964
– ident: e_1_3_9_22_2
  doi: 10.1016/0165-1889(88)90055-3
– ident: e_1_3_9_23_2
  doi: 10.1007/BF01700692
– ident: e_1_3_9_25_2
– start-page: 165
  volume-title: Modern mathematics for engineers
  year: 1956
  ident: e_1_3_9_59_2
– ident: e_1_3_9_41_2
  doi: 10.1007/s13278-020-00708-w
– ident: e_1_3_9_11_2
  doi: 10.1002/jae.2676
– ident: e_1_3_9_50_2
  doi: 10.1146/annurev.es.04.110173.000245
– ident: e_1_3_9_29_2
  doi: 10.2202/1557-4679.1203
– ident: e_1_3_9_83_2
  doi: 10.1002/ecy.3040
– ident: e_1_3_9_26_2
  doi: 10.2307/5678
– ident: e_1_3_9_14_2
  doi: 10.1016/j.ijppaw.2013.09.001
– start-page: 17
  volume-title: Proc. 3rd Int. Worksh. Dynamic Logic (DaLí ’20) (eds MA Martins, I Sedl´ar)
  ident: e_1_3_9_33_2
– ident: e_1_3_9_53_2
  doi: 10.2307/1912559
– ident: e_1_3_9_76_2
  doi: 10.3390/bioengineering10030372
– ident: e_1_3_9_73_2
  doi: 10.1016/0304-4076(74)90034-7
– volume-title: An introduction to modal logic
  year: 1968
  ident: e_1_3_9_37_2
– ident: e_1_3_9_7_2
  doi: 10.1209/0295-5075/119/18003
– ident: e_1_3_9_52_2
  doi: 10.1016/j.envsoft.2022.105489
– ident: e_1_3_9_64_2
  doi: 10.1111/j.1365-2656.2006.01070.x
– ident: e_1_3_9_47_2
  doi: 10.1126/science.5.121.634
– ident: e_1_3_9_51_2
  doi: 10.3389/fevo.2019.00293
– ident: e_1_3_9_71_2
  doi: 10.1007/978-94-009-3997-4_6
– ident: e_1_3_9_12_2
  doi: 10.1038/s41467-022-28761-3
– volume-title: On the plurality of worlds
  year: 1986
  ident: e_1_3_9_39_2
– ident: e_1_3_9_56_2
  doi: 10.1371/journal.pcbi.1007037
– volume-title: Proc. 24th Int. Conf. Artificial Intelligence and Statistics (AISTATS)
  year: 2021
  ident: e_1_3_9_81_2
– ident: e_1_3_9_9_2
  doi: 10.1038/s41559-020-01298-8
– ident: e_1_3_9_46_2
  doi: 10.1093/biosci/biaa088
– ident: e_1_3_9_4_2
  doi: 10.1016/j.tree.2020.01.004
– ident: e_1_3_9_55_2
  doi: 10.1007/s00382-021-05944-0
– ident: e_1_3_9_78_2
  doi: 10.1111/j.1467-8640.1995.tb00021.x
– ident: e_1_3_9_58_2
  doi: 10.1146/annurev-statistics-040120-010930
– ident: e_1_3_9_34_2
– ident: e_1_3_9_72_2
  doi: 10.1080/01621459.1982.10477803
– ident: e_1_3_9_18_2
  doi: 10.1186/s12898-016-0087-7
– ident: e_1_3_9_84_2
  doi: 10.1139/f98-104
– ident: e_1_3_9_63_2
  doi: 10.1111/ele.12775
– ident: e_1_3_9_42_2
  doi: 10.1007/978-3-030-34308-8_15
– volume-title: Correlation and causality: models, reasoning, and inference
  year: 2000
  ident: e_1_3_9_43_2
SSID ssj0009574
Score 2.4669297
Snippet Causal multivariate time-series analysis, combined with network theory, provide a powerful tool for studying complex ecological interactions. However, these...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 20230170
SubjectTerms Causality
Ecology - methods
Ecosystem
Models, Biological
Multivariate Analysis
Title On formal limitations of causal ecological networks
URI https://www.ncbi.nlm.nih.gov/pubmed/39034692
https://www.proquest.com/docview/3083217443
Volume 379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0YumL2POj5xcrCColMbfZdLOPrShFqVVooW8h-3FP11xpcg_61zuT3U2u6oFKIITNbu6YGX6Zyc7MD-CVoSiDG5Wgby0TaoGelLUoMFRxheLOCdPTAZ18OTg-F58uiotICR-qSzqdmh9_rCv5H63iGOqVqmT_QbPDQ3EAr1G_eEYN4_mvdHza-OLDxf6C6pTGrDZTr1ocdWaAtsane7frzujXSGPQz-hG5vA2Zg74jwsxs5O2E3r2j5QgBkPs_aM0kFmOxZVmnar-0ifxEW3Xsg352OETAxd9DpUHMudhEV9hCVee4iPiZu5ZYKKBqLAiACHFNjO_4DeUzhRVHqB3q1Oal_46EaV8ddnrLFdZjgE8H99WQw5hvHUb7nAMEYi94vO3cq3hshRDk87y3c0f24HtuPymP7IhyOidjbP7cC9ECezQq3wXbrlmAne9qL9PYPskZERMYDeAc8vehA7ibx9AftowbxhszTDYcs68YbDRMFg0jIdw_vHD2fvjJLBjJAad3i4py1oabhWXrrAYJrp6pnXJ9WxuMAS3mXXWSSmN5Law2uK4tRLdXWHrTBmb5Y9gq1k2bg9YVgvajc30vECHTjkt9ewA0dxoPCxXU0iijCoT_jQxmCwqn8JQViTeisRbkXin8HqYf-Wbpmyc-TKKvEJco82qunHLVVvlGXFoSSHyKTz2uhieFXX3ZOOdp7AzGvIz2OquV-45eo-dftGbyU_G5G46
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+formal+limitations+of+causal+ecological+networks&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Damos%2C+Petros+T&rft.date=2024-09-09&rft.eissn=1471-2970&rft.volume=379&rft.issue=1909&rft.spage=20230170&rft_id=info:doi/10.1098%2Frstb.2023.0170&rft_id=info%3Apmid%2F39034692&rft.externalDocID=39034692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon