Assessing Combinations of Landsat, Sentinel-2 and Sentinel-1 Time series for Detecting Bark Beetle Infestations
Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have increased in frequency and in the size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational monitorin...
Saved in:
Published in | GIScience and remote sensing Vol. 60; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2023
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2023.2226515 |
Cover
Loading…
Abstract | Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have increased in frequency and in the size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational monitoring, as is possible using satellite data. However, while many satellite-based approaches have been developed, the full potential of dense, multi-sensor time series has yet to be fully explored. Here, for the first time, we used all available multispectral data from Landsat and Sentinel-2, Sentinel-1 SAR data, and combinations thereof to detect bark beetle infestations in the Bavarian Forest National Park. Based on a multi-year reference dataset of annual infested areas, we assessed the separability between healthy and infested forests for various vegetation indices calculated from the satellite data. We used two approaches to compute infestation probability time series from the different datasets: Bayesian conditional probabilities, based on the best-separating index from each satellite type, and random forest regression, based on all indices from each satellite type. Five different sensor configurations were tested for their detection capabilities: Landsat alone, Sentinel-1 alone, Sentinel-2 alone, Landsat and Sentinel-2 combined, and data from all satellite types combined. The best overall results in terms of spatial accuracy were achieved with Sentinel-2 (max. overall accuracy: 0.93). The detections of Sentinel-2 also were the closest to the onset of infestation estimated for each year. Sentinel-2 detected infested areas in larger contiguous patches with higher reliability compared to smaller patches. The results achieved with Landsat were somewhat inferior to those of Sentinel-2 (max. accuracy: 0.89). While yielding similar results, the combination of Landsat and Sentinel-2 did not provide any advantages over using Landsat or Sentinel-2 alone (max. accuracy: 0.87), while Sentinel-1 was unable to detect infested areas (max. accuracy: 0.62). The combined data of all three satellite types did not achieve satisfactory results either (max. accuracy: 0.67). Spatial accuracies were typically higher for Bayesian conditional probabilities than for random forest-derived probabilities, but the latter resulted in earlier detections. The approach presented herein provides a flexible disturbance detection pipeline well-suited for the monitoring of bark beetle outbreaks. Furthermore, it can also be applied to other disturbance types. |
---|---|
AbstractList | Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have increased in frequency and in the size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational monitoring, as is possible using satellite data. However, while many satellite-based approaches have been developed, the full potential of dense, multi-sensor time series has yet to be fully explored. Here, for the first time, we used all available multispectral data from Landsat and Sentinel-2, Sentinel-1 SAR data, and combinations thereof to detect bark beetle infestations in the Bavarian Forest National Park. Based on a multi-year reference dataset of annual infested areas, we assessed the separability between healthy and infested forests for various vegetation indices calculated from the satellite data. We used two approaches to compute infestation probability time series from the different datasets: Bayesian conditional probabilities, based on the best-separating index from each satellite type, and random forest regression, based on all indices from each satellite type. Five different sensor configurations were tested for their detection capabilities: Landsat alone, Sentinel-1 alone, Sentinel-2 alone, Landsat and Sentinel-2 combined, and data from all satellite types combined. The best overall results in terms of spatial accuracy were achieved with Sentinel-2 (max. overall accuracy: 0.93). The detections of Sentinel-2 also were the closest to the onset of infestation estimated for each year. Sentinel-2 detected infested areas in larger contiguous patches with higher reliability compared to smaller patches. The results achieved with Landsat were somewhat inferior to those of Sentinel-2 (max. accuracy: 0.89). While yielding similar results, the combination of Landsat and Sentinel-2 did not provide any advantages over using Landsat or Sentinel-2 alone (max. accuracy: 0.87), while Sentinel-1 was unable to detect infested areas (max. accuracy: 0.62). The combined data of all three satellite types did not achieve satisfactory results either (max. accuracy: 0.67). Spatial accuracies were typically higher for Bayesian conditional probabilities than for random forest-derived probabilities, but the latter resulted in earlier detections. The approach presented herein provides a flexible disturbance detection pipeline well-suited for the monitoring of bark beetle outbreaks. Furthermore, it can also be applied to other disturbance types. |
Author | Heurich, Marco König, Simon Förster, Michael Dubovyk, Olena Thonfeld, Frank |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-4924-7544 surname: König fullname: König, Simon email: simon.koenig@npv-bw.bayern.de organization: University of Freiburg – sequence: 2 givenname: Frank orcidid: 0000-0002-3371-7206 surname: Thonfeld fullname: Thonfeld, Frank organization: German Aerospace Center (DLR) – sequence: 3 givenname: Michael orcidid: 0000-0001-6689-5714 surname: Förster fullname: Förster, Michael organization: Technical University of Berlin – sequence: 4 givenname: Olena orcidid: 0000-0002-7338-3167 surname: Dubovyk fullname: Dubovyk, Olena organization: University of Bergen – sequence: 5 givenname: Marco orcidid: 0000-0003-0051-2930 surname: Heurich fullname: Heurich, Marco organization: Inland Norway University of Applied Sciences |
BookMark | eNqFkU1vFSEUhiemTeyHP8GEpQun8jnDxI3t1dqb3MSFdU34ODTUGahAY_rv5XaqTVzoBjgn7_tw4D3uDmKK0HWvCT4jWOJ3RHBJBszOKKZtoXQQRLzojsjEWT-28qCdm6bfi152x6XcYswEIeKoS-elQCkh3qBNWkyIuoYUC0oe7XR0Rde36CvEGiLMPUWt9VwSdB0WQAVygIJ8yugjVLB1D7vQ-Tu6AKgzoG30UOoKPu0OvZ4LvHraT7pvl5-uN1f97svn7eZ811suhtqPbuJSai_9IKkXxE3GWmMFnYjzoB0BYSawjIx09GxgRjBBDTaDMXx0oNlJt125LulbdZfDovODSjqox0bKN0rnGuwMCstBWMf4JKnhBrBxDqzmjEsMss3RWG9W1l1OP-7bU9QSioV51hHSfVEMc8zkNNChScUqtTmVksH_uZpgtQ9L_Q5L7cNST2E13_u_fDasP1azDvN_3R9Wd4gthUX_THl2quqHOWWfdbShDflvxC8rIq_J |
CitedBy_id | crossref_primary_10_1016_j_ecoinf_2025_103074 crossref_primary_10_3390_rs15174234 crossref_primary_10_1007_s10342_024_01687_9 crossref_primary_10_3390_rs16224166 crossref_primary_10_1016_j_jag_2024_103669 crossref_primary_10_3390_data10030030 crossref_primary_10_3390_cli13010001 crossref_primary_10_1093_forestry_cpae005 crossref_primary_10_1088_1755_1315_1412_1_012003 crossref_primary_10_1093_forestry_cpae007 crossref_primary_10_3390_rs16030488 crossref_primary_10_3390_rs16234590 crossref_primary_10_1002_rse2_386 crossref_primary_10_1007_s10661_024_12372_0 crossref_primary_10_1016_j_rse_2024_114162 crossref_primary_10_1016_j_ecolind_2025_113085 crossref_primary_10_1007_s10844_024_00877_6 crossref_primary_10_1109_JSTARS_2024_3412737 crossref_primary_10_1109_JSTARS_2024_3425795 crossref_primary_10_3390_rs16101805 crossref_primary_10_1016_j_rsase_2025_101499 crossref_primary_10_1016_j_foreco_2024_122383 crossref_primary_10_1016_j_rse_2024_114323 |
Cites_doi | 10.1109/TGRS.2016.2530856 10.3390/data4030093 10.1117/1.JRS.14.024515 10.1016/0034-42577990013-0 10.1016/j.foreco.2007.05.020 10.1007/978-1-4614-7138-7 10.1016/j.jag.2014.10.013 10.3390/rs12040727 10.1016/j.foreco.2021.119984 10.1016/j.isprsjprs.2016.01.011 10.3390/rs12182919 10.3390/rs9020129 10.1016/j.rse.2019.02.013 10.1002/rse2.93 10.1080/01621459.1979.10481038 10.1016/j.foreco.2013.07.043 10.3390/rs10020352 10.1016/j.ecolmodel.2011.03.014 10.1007/s40725-021-00142-x 10.1016/j.rse.2014.02.015 10.1038/nclimate3303 10.3390/rs11030257 10.1016/j.rse.2019.111403 10.3390/rs14030562 10.3390/app9040655 10.1016/j.jag.2014.04.001 10.1078/0176-1617-00887 10.1016/j.rse.2019.02.015 10.1007/s10342-008-0208-8 10.1007/s00334-019-00742-5 10.1016/j.rse.2021.112829 10.1016/S0273-11779701133-2 10.1016/j.rse.2008.05.005 10.1016/j.foreco.2016.11.004 10.5558/tfc85032-1 10.1016/j.rse.2005.05.009 10.1016/j.rse.2014.12.014 10.1080/15481603.2018.1458463 10.3390/rs12244191 10.1016/S0034-4257(02)00096-2 10.3390/rs5041912 10.1080/10106049109354290 10.1023/A:1010933404324 10.1021/ac60214a047 10.1016/S0034-42570300112-3 10.1016/j.rse.2020.112240 10.1016/j.rse.2011.09.009 10.3390/f12040456 10.1016/B978-0-12-417156-5.00005-8 10.1016/j.jag.2017.04.004 10.5589/m02-096 10.1016/j.rse.2014.08.037 10.5194/bg-18-5223-2021 10.1109/LGRS.2020.3039875 10.3390/rs13101954 10.3390/rs12213634 10.1016/j.rse.2014.09.002 10.1016/j.rse.2011.11.026 10.1109/LGRS.2015.2390673 10.1080/07038992.1996.10855178 10.1016/j.rse.2015.09.001 10.1016/j.rse.2017.10.034 10.1046/j.1365-2486.2003.00684.x 10.3390/rs11091124 10.3390/rs8121029 10.1016/j.jag.2019.101900 10.1016/j.rse.2017.06.031 10.1016/j.rse.2010.07.008 10.3390/f8070251 10.1016/S0034-42579600067-3 10.1371/journal.pone.0120960 10.1016/j.jag.2011.05.011 10.1016/j.foreco.2005.09.021 10.1201/9780429029608 10.1016/j.rse.2013.01.002 10.1111/brv.12193 10.1016/j.rse.2021.112560 10.1111/2041-210X.13726 10.1016/j.jag.2016.03.005 10.1109/TGRS.2016.2537929 10.1109/TGRS.2012.2216272 10.1016/j.jag.2021.102335 10.1016/j.jag.2017.09.009 10.1016/j.rse.2018.09.002 10.3390/rs10081250 10.1016/j.rse.2018.04.046 10.1007/978-3-319-15967-62 10.1016/j.baae.2020.04.003 10.3390/rs11040398 10.3390/rs12111867 10.1016/j.rse.2011.10.028 10.3390/f12010034 10.1641/B580607 10.1007/s10342-009-0331-1 10.1109/36.964973 10.1111/2041-210X.13695 10.1016/j.ecolmodel.2019.108775 10.1007/978-90-481-8782-9_23 10.3390/rs12213570 10.1016/j.rse.2019.04.034 10.1016/j.rse.2018.03.009 10.1007/978-0-387-84858-7 10.1126/sciadv.abc7447 10.1016/0034-42578590102-6 10.1016/S1002-0160(10)60053-7 10.1088/1748-9326/abd0a8 10.3390/rs70504973 10.3390/rs14133135 10.1007/s40725-019-00098-z 10.1126/science.1244693 10.1126/science.aaa9933 10.1016/j.oneear.2020.05.001 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 |
Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023 |
DBID | 0YH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2023.2226515 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
ExternalDocumentID | oai_doaj_org_article_0865cd34982b4be0bddeca43480e8d94 10_1080_15481603_2023_2226515 2226515 |
Genre | Research Article |
GrantInformation_xml | – fundername: This research was funded by the German Federal Ministry of Transport and Digital Infrastructure through the FirSt 2.0 project under grant number grantid: 19F2127D |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c456t-7d9488af8f682f51d9bccbc5291dfead1e5b9ec31727f363b5352b0b6bb47dea3 |
IEDL.DBID | DOA |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Fri Sep 05 17:28:15 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Tue Jul 01 02:27:29 EDT 2025 Wed Dec 25 09:03:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-7d9488af8f682f51d9bccbc5291dfead1e5b9ec31727f363b5352b0b6bb47dea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7338-3167 0000-0002-4924-7544 0000-0001-6689-5714 0000-0003-0051-2930 0000-0002-3371-7206 |
OpenAccessLink | https://doaj.org/article/0865cd34982b4be0bddeca43480e8d94 |
PQID | 3040389626 |
PQPubID | 24069 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15481603_2023_2226515 proquest_miscellaneous_3040389626 crossref_citationtrail_10_1080_15481603_2023_2226515 crossref_primary_10_1080_15481603_2023_2226515 doaj_primary_oai_doaj_org_article_0865cd34982b4be0bddeca43480e8d94 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_4_3_1 e_1_3_4_110_1 e_1_3_4_114_1 e_1_3_4_61_1 e_1_3_4_84_1 e_1_3_4_42_1 e_1_3_4_80_1 e_1_3_4_7_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_88_1 e_1_3_4_121_1 e_1_3_4_102_1 e_1_3_4_125_1 e_1_3_4_72_1 e_1_3_4_95_1 e_1_3_4_106_1 e_1_3_4_53_1 e_1_3_4_91_1 e_1_3_4_30_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_76_1 e_1_3_4_99_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_2_1 e_1_3_4_113_1 e_1_3_4_62_1 e_1_3_4_117_1 e_1_3_4_85_1 e_1_3_4_6_1 e_1_3_4_81_1 Kavzoglu T. (e_1_3_4_67_1) 2000 e_1_3_4_24_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_66_1 Bundesministerium für Ernährung und Landwirtschaft (e_1_3_4_18_1) 2021 Woodhouse I. H. (e_1_3_4_118_1) 2006 e_1_3_4_47_1 e_1_3_4_89_1 Rouse J. W. (e_1_3_4_101_1) 1973 e_1_3_4_120_1 van Deventer A. P. (e_1_3_4_115_1) 1997; 63 e_1_3_4_124_1 e_1_3_4_73_1 e_1_3_4_105_1 e_1_3_4_31_1 e_1_3_4_109_1 e_1_3_4_50_1 e_1_3_4_92_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_77_1 R Core Team (e_1_3_4_96_1) 2023 e_1_3_4_112_1 e_1_3_4_63_1 e_1_3_4_86_1 e_1_3_4_9_1 van Rossum G. (e_1_3_4_116_1) 2009 e_1_3_4_40_1 e_1_3_4_82_1 e_1_3_4_5_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 e_1_3_4_100_1 e_1_3_4_123_1 e_1_3_4_104_1 e_1_3_4_127_1 e_1_3_4_74_1 e_1_3_4_97_1 e_1_3_4_108_1 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_93_1 e_1_3_4_13_1 e_1_3_4_59_1 König S. (e_1_3_4_69_1) 2020 e_1_3_4_55_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_78_1 e_1_3_4_36_1 e_1_3_4_4_1 e_1_3_4_111_1 e_1_3_4_83_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_119_1 e_1_3_4_41_1 e_1_3_4_60_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_49_1 e_1_3_4_87_1 e_1_3_4_26_1 e_1_3_4_68_1 e_1_3_4_122_1 e_1_3_4_103_1 e_1_3_4_94_1 e_1_3_4_126_1 e_1_3_4_75_1 e_1_3_4_107_1 e_1_3_4_52_1 e_1_3_4_90_1 e_1_3_4_71_1 e_1_3_4_10_1 e_1_3_4_33_1 Charbonneau F. (e_1_3_4_20_1) 2005 e_1_3_4_98_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_79_1 |
References_xml | – ident: e_1_3_4_38_1 doi: 10.1109/TGRS.2016.2530856 – ident: e_1_3_4_36_1 – ident: e_1_3_4_112_1 doi: 10.3390/data4030093 – ident: e_1_3_4_127_1 doi: 10.1117/1.JRS.14.024515 – ident: e_1_3_4_97_1 – ident: e_1_3_4_113_1 doi: 10.1016/0034-42577990013-0 – ident: e_1_3_4_10_1 doi: 10.1016/j.foreco.2007.05.020 – ident: e_1_3_4_65_1 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_3_4_6_1 doi: 10.1016/j.jag.2014.10.013 – ident: e_1_3_4_56_1 doi: 10.3390/rs12040727 – ident: e_1_3_4_12_1 doi: 10.1016/j.foreco.2021.119984 – ident: e_1_3_4_14_1 doi: 10.1016/j.isprsjprs.2016.01.011 – volume-title: Waldbericht der Bundesregierung 2021 year: 2021 ident: e_1_3_4_18_1 – ident: e_1_3_4_60_1 doi: 10.3390/rs12182919 – ident: e_1_3_4_75_1 doi: 10.3390/rs9020129 – ident: e_1_3_4_22_1 doi: 10.1016/j.rse.2019.02.013 – ident: e_1_3_4_5_1 doi: 10.1002/rse2.93 – ident: e_1_3_4_24_1 doi: 10.1080/01621459.1979.10481038 – ident: e_1_3_4_76_1 doi: 10.1016/j.foreco.2013.07.043 – ident: e_1_3_4_29_1 doi: 10.3390/rs10020352 – ident: e_1_3_4_31_1 doi: 10.1016/j.ecolmodel.2011.03.014 – ident: e_1_3_4_57_1 doi: 10.1007/s40725-021-00142-x – ident: e_1_3_4_89_1 doi: 10.1016/j.rse.2014.02.015 – ident: e_1_3_4_105_1 doi: 10.1038/nclimate3303 – ident: e_1_3_4_40_1 doi: 10.3390/rs11030257 – ident: e_1_3_4_52_1 doi: 10.1016/j.rse.2019.111403 – volume-title: Introduction to Microwave Remote Sensing year: 2006 ident: e_1_3_4_118_1 – ident: e_1_3_4_111_1 doi: 10.3390/rs14030562 – ident: e_1_3_4_86_1 doi: 10.3390/app9040655 – ident: e_1_3_4_91_1 doi: 10.1016/j.jag.2014.04.001 – ident: e_1_3_4_43_1 doi: 10.1078/0176-1617-00887 – ident: e_1_3_4_121_1 doi: 10.1016/j.rse.2019.02.015 – ident: e_1_3_4_48_1 doi: 10.1007/s10342-008-0208-8 – ident: e_1_3_4_114_1 doi: 10.1007/s00334-019-00742-5 – ident: e_1_3_4_28_1 doi: 10.1016/j.rse.2021.112829 – ident: e_1_3_4_44_1 doi: 10.1016/S0273-11779701133-2 – ident: e_1_3_4_45_1 doi: 10.1016/j.rse.2008.05.005 – ident: e_1_3_4_34_1 doi: 10.1016/j.foreco.2016.11.004 – ident: e_1_3_4_122_1 doi: 10.5558/tfc85032-1 – ident: e_1_3_4_78_1 – ident: e_1_3_4_51_1 doi: 10.1016/j.rse.2005.05.009 – ident: e_1_3_4_125_1 doi: 10.1016/j.rse.2014.12.014 – ident: e_1_3_4_72_1 doi: 10.1080/15481603.2018.1458463 – ident: e_1_3_4_80_1 doi: 10.3390/rs12244191 – ident: e_1_3_4_63_1 doi: 10.1016/S0034-4257(02)00096-2 – start-page: 1 volume-title: 40. Wissenschaftlich-Technische Jahrestagung Der DGPF in Stuttgart year: 2020 ident: e_1_3_4_69_1 – ident: e_1_3_4_90_1 doi: 10.3390/rs5041912 – ident: e_1_3_4_79_1 doi: 10.1080/10106049109354290 – ident: e_1_3_4_16_1 doi: 10.1023/A:1010933404324 – ident: e_1_3_4_102_1 doi: 10.1021/ac60214a047 – ident: e_1_3_4_108_1 doi: 10.1016/S0034-42570300112-3 – ident: e_1_3_4_64_1 doi: 10.1016/j.rse.2020.112240 – ident: e_1_3_4_83_1 doi: 10.1016/j.rse.2011.09.009 – ident: e_1_3_4_11_1 doi: 10.3390/f12040456 – ident: e_1_3_4_46_1 – ident: e_1_3_4_70_1 doi: 10.1016/B978-0-12-417156-5.00005-8 – ident: e_1_3_4_107_1 doi: 10.1016/j.jag.2017.04.004 – ident: e_1_3_4_95_1 doi: 10.5589/m02-096 – ident: e_1_3_4_58_1 doi: 10.1016/j.rse.2014.08.037 – ident: e_1_3_4_106_1 doi: 10.5194/bg-18-5223-2021 – ident: e_1_3_4_7_1 doi: 10.1109/LGRS.2020.3039875 – ident: e_1_3_4_85_1 doi: 10.3390/rs13101954 – ident: e_1_3_4_32_1 doi: 10.3390/rs12213634 – ident: e_1_3_4_8_1 doi: 10.1016/j.rse.2014.09.002 – start-page: 15 volume-title: Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop year: 2005 ident: e_1_3_4_20_1 – ident: e_1_3_4_30_1 doi: 10.1016/j.rse.2011.11.026 – ident: e_1_3_4_39_1 doi: 10.1109/LGRS.2015.2390673 – ident: e_1_3_4_21_1 doi: 10.1080/07038992.1996.10855178 – ident: e_1_3_4_120_1 doi: 10.1016/j.rse.2015.09.001 – ident: e_1_3_4_99_1 doi: 10.1016/j.rse.2017.10.034 – ident: e_1_3_4_103_1 doi: 10.1046/j.1365-2486.2003.00684.x – volume-title: R: A Language and Environment for Statistical Compting year: 2023 ident: e_1_3_4_96_1 – ident: e_1_3_4_35_1 doi: 10.3390/rs11091124 – ident: e_1_3_4_74_1 doi: 10.3390/rs8121029 – ident: e_1_3_4_4_1 doi: 10.1016/j.jag.2019.101900 – ident: e_1_3_4_47_1 doi: 10.1016/j.rse.2017.06.031 – ident: e_1_3_4_92_1 – ident: e_1_3_4_68_1 doi: 10.1016/j.rse.2010.07.008 – ident: e_1_3_4_87_1 doi: 10.3390/f8070251 – ident: e_1_3_4_42_1 doi: 10.1016/S0034-42579600067-3 – ident: e_1_3_4_54_1 doi: 10.1371/journal.pone.0120960 – volume: 63 start-page: 87 issue: 1 year: 1997 ident: e_1_3_4_115_1 article-title: Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices publication-title: Photogrammetric Engineering and Remote Sensing – ident: e_1_3_4_71_1 doi: 10.1016/j.jag.2011.05.011 – ident: e_1_3_4_119_1 doi: 10.1016/j.foreco.2005.09.021 – ident: e_1_3_4_81_1 doi: 10.1201/9780429029608 – ident: e_1_3_4_82_1 doi: 10.1016/j.rse.2013.01.002 – ident: e_1_3_4_110_1 doi: 10.1111/brv.12193 – ident: e_1_3_4_123_1 doi: 10.1016/j.rse.2021.112560 – ident: e_1_3_4_9_1 doi: 10.1111/2041-210X.13726 – ident: e_1_3_4_33_1 doi: 10.1016/j.jag.2016.03.005 – ident: e_1_3_4_41_1 doi: 10.1109/TGRS.2016.2537929 – ident: e_1_3_4_26_1 doi: 10.1109/TGRS.2012.2216272 – start-page: 309 volume-title: In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at year: 1973 ident: e_1_3_4_101_1 – ident: e_1_3_4_13_1 doi: 10.1016/j.jag.2021.102335 – ident: e_1_3_4_2_1 doi: 10.1016/j.jag.2017.09.009 – ident: e_1_3_4_23_1 doi: 10.1016/j.rse.2018.09.002 – ident: e_1_3_4_15_1 doi: 10.3390/rs10081250 – ident: e_1_3_4_37_1 doi: 10.1016/j.rse.2018.04.046 – ident: e_1_3_4_62_1 doi: 10.1007/978-3-319-15967-62 – volume-title: Proceedings of the 26th Annual Conference of the Remote Sensing Society year: 2000 ident: e_1_3_4_67_1 – ident: e_1_3_4_104_1 doi: 10.1016/j.baae.2020.04.003 – ident: e_1_3_4_3_1 doi: 10.3390/rs11040398 – ident: e_1_3_4_117_1 doi: 10.3390/rs12111867 – ident: e_1_3_4_126_1 doi: 10.1016/j.rse.2011.10.028 – ident: e_1_3_4_17_1 doi: 10.3390/f12010034 – ident: e_1_3_4_94_1 doi: 10.1641/B580607 – ident: e_1_3_4_55_1 doi: 10.1007/s10342-009-0331-1 – ident: e_1_3_4_93_1 doi: 10.1109/36.964973 – ident: e_1_3_4_73_1 doi: 10.1111/2041-210X.13695 – ident: e_1_3_4_88_1 doi: 10.1016/j.ecolmodel.2019.108775 – volume-title: Python 3 Reference Manual year: 2009 ident: e_1_3_4_116_1 – ident: e_1_3_4_53_1 doi: 10.1007/978-90-481-8782-9_23 – ident: e_1_3_4_61_1 doi: 10.3390/rs12213570 – ident: e_1_3_4_124_1 doi: 10.1016/j.rse.2019.04.034 – ident: e_1_3_4_109_1 doi: 10.1016/j.rse.2018.03.009 – ident: e_1_3_4_50_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_3_4_19_1 doi: 10.1126/sciadv.abc7447 – ident: e_1_3_4_25_1 doi: 10.1016/0034-42578590102-6 – ident: e_1_3_4_66_1 doi: 10.1016/S1002-0160(10)60053-7 – ident: e_1_3_4_100_1 doi: 10.1088/1748-9326/abd0a8 – ident: e_1_3_4_98_1 doi: 10.3390/rs70504973 – ident: e_1_3_4_27_1 doi: 10.3390/rs14133135 – ident: e_1_3_4_59_1 doi: 10.1007/s40725-019-00098-z – ident: e_1_3_4_49_1 doi: 10.1126/science.1244693 – ident: e_1_3_4_84_1 doi: 10.1126/science.aaa9933 – ident: e_1_3_4_77_1 doi: 10.1016/j.oneear.2020.05.001 |
SSID | ssj0035115 |
Score | 2.4412434 |
Snippet | Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | algorithms bark beetles Bayesian probabilities Bayesian theory climate change data collection forest damage forest disturbance forests Landsat multispectral national parks probability random forest regression remote sensing SAR time series time series analysis |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoXLhUtAWxhVauVHEiSxI_NjmypWhBLReK1J4s2xlzAJJqEw78e2bihEerikNviRWPrMzDM57xN4x9rpR2UIFIhFYykSWqIto8kWRey2CrILWmu8Pfz_TiQp7-VGM1YTuUVVIMHSJQRG-rSbmta8eKuAPysqk78pRaf09xg6N23q_YWo6OIlX1pb8WozGmNJnqIVMlBks4Z7zE8y8yz7anHsX_DwzTv2x2vxEdb7DXgwfJDyPL37AVqN-y7cOWzrSbmzu-x_vneGTRvmNNzOviFsVR-TEQjmd0vAn8G93ztd0-P6eaoRquk5zj0ONrxumKCCcxhZbj8vgRUNaBiM3t8orPAVDY-EkdoI1J_XaTXRx__fFlkQxtFhKP3lOXzKoStdiGIugiDyqrSue98yovsyqgoGWgXAlekKsThBaOEGFc6rRzclaBFVtstW5q2GbcYzQ3k9qmToG0eWoVeRBITyEVm88mTI5_1_gBg5xaYVybbIAqHZliiClmYMqETR-m_Y4gHC9NmBPrHj4mDO1-oFlemkElDQZzyldClkXupIPUoaX3VgpZpFDgP5mw8injTdcfoYTY78SIFxbwaZQSg_pKSRhbQ3OL89BqopOIceT7_6C_w9bpNSJO7rLVbnkLH9A76tzHXv7vAdOiAt8 priority: 102 providerName: Taylor & Francis |
Title | Assessing Combinations of Landsat, Sentinel-2 and Sentinel-1 Time series for Detecting Bark Beetle Infestations |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2023.2226515 https://www.proquest.com/docview/3040389626 https://doaj.org/article/0865cd34982b4be0bddeca43480e8d94 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29T90wELcoE0vVFipeaZErVZ2ahxN_vGTk0aJHVbq0SDBZtnNeCgkiYeC_5y5OKNDhLd0SK3Ys34fvfL7fMfap1sZDDTKTRqtMVSiKqPNklgejoqujMoZyh09_mtWZ-n6uzx-V-qI7YQkeOC3cAZrcOtRSVWXhlQfhUR6DU1KVAsq6GpBARSUmZyrpYIqO6QEpVaGPZISccndKcUBt1DSnwuFz3B6pGPiTXWkA738GXfqPqh72n-NX7OVoOPLDNOHXbAOaN2z3sKOj7Pbqjn_mw3M6qei2WZvCubgzcZR59H_T0RxvI_9B6b2u_8J_0VWhBi6zgmPT39ecU2YIJ-6EjuP0-FegYAMNtnQ3f_gSAHmMnzQRuhTL73bY2fG330erbKyukAU0mvpsgYtXli6W0ZRF1Hld-RB80EWV1xH5KwftKwiSLJwojfQEBOOFN96rRQ1OvmWbTdvALuMBnbiFMk54DcoVwmkyHHA8jaO4YjFjalpdG0bocaqAcWnzEaF0IoolotiRKDM2f-h2nbA31nVYEukePibo7KEBGcqODGXXMdSMVY8Jb_vh5CSmMidWrpnAx4lLLIopxV5cA-0t9kNlibYhuo_v_sck99gW_TchTr5nm_3NLXxA66j3--yFuFjtD-JwD9SzB4Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFJ8gHPRiFDQsog6J8WTXtvOx7ZFVyYILFyHB02Rm-saD0JptOfjf816nBdQYDtza7s5L0_cx72Pe7zH2rlLaQQUiEVrJRJaoimjzRJJ5LYOtgtSaeoePT_TiTB6dq_M7vTB0rJJi6BCBInpbTcpNyejxSNxHcrNpPPKUZn9PcYejed6P2IYqMJpAmU6_L0ZrTHUy1WOmSoyWcM3YxfM_Mn_sTz2M_18gpv8Y7X4nOnjGng4uJN-PPH_O1qDeZNv7LSW1m8vf_D3vr2POot1iTSzs4h7FUfsxEo5JOt4EvqRGX9t94N_o0FANF0nO8dHtbcapR4STnELL8fX4Z6CyAxGb29VPPgdAaeOHdYA2VvXbF-zs4Mvpp0UyzFlIPLpPXTKrSlRjG4qgizyorCqd986rvMyqgJKWgXIleEG-ThBaOIKEcanTzslZBVa8ZOt1U8M24x4ZMJPapk6BtHlqFbkQSE8hFZvPJkyOX9f4AYScZmFcmGzAKh2ZYogpZmDKhE1vlv2KKBz3LZgT627-TCDa_YNm9cMMOmkwmlO-ErIscicdpA5NvbdSyCKFAr_JhJV3GW-6PocS4sATI-55gb1RSgwqLFVhbA3NFa5Ds4leIgaSOw-g_5Y9XpweL83y8OTrK_aEforwk7tsvVtdwWt0lTr3pteFa9EZBko |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLb9SlPIyEOJGQxI9Njl3KqoWyQoJK3CzbGffQklSb7IH-embipEAR6qG3vDxKJvO0x98w9rpW2kENIhFayURWqIpo80SSey2DrYPUmvYOf17p_SP58buaqgm7sayScugQgSIGW03KfVaHqSLuHUXZ1B05pdbfKTo4aud9k93SGJ5QVZ_IVpMxpmUyNUCmSkyWcMy0ied_ZP5yTwOK_yUM039s9uCIlveYmz4h1p-cpJvepf78Errjtb7xPrs7hql8N8rVA3YDmodse7ejifP2x0_-hg_HcV6ke8TauHiMfpCjhcFsO04E8jbwQ9pMbPu3_CsVJjVwmhQcL_0-zTntQ-GkC9Bx5AHfA1raIGILuz7hCwCUaH7QBOhi5UD3mB0tP3x7v5-MvRwSjyFan8zrCk2FDWXQZRFUXlfOe-dVUeV1QGnOQbkKvKB4KggtHMHOuMxp5-S8BiuesK2mbWCbcY8p41xqmzkF0haZVRSmID2FVGwxnzE5_ULjR6Bz6rdxavIRD3ViriHmmpG5M5ZeDDuLSB9XDViQfFw8TEDdw4V2fWxGvTeYMSpfC1mVhZMOMofuxFspZJlBiTyZsepP6TL9ME8TYlMVI654gVeTKBo0CrTSYxtoNzgOTTNGopisPr0G_Zfs9pe9pTk8WH3aYXfoTkS4fMa2-vUGnmM01rsXg779AlFyJOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Combinations+of+Landsat%2C+Sentinel-2+and+Sentinel-1+Time+series+for+Detecting+Bark+Beetle+Infestations&rft.jtitle=GIScience+and+remote+sensing&rft.au=Simon+K%C3%B6nig&rft.au=Frank+Thonfeld&rft.au=Michael+F%C3%B6rster&rft.au=Olena+Dubovyk&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=60&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2023.2226515&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0865cd34982b4be0bddeca43480e8d94 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |