Assessing Combinations of Landsat, Sentinel-2 and Sentinel-1 Time series for Detecting Bark Beetle Infestations

Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have increased in frequency and in the size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational monitorin...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 60; no. 1
Main Authors König, Simon, Thonfeld, Frank, Förster, Michael, Dubovyk, Olena, Heurich, Marco
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2023
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2023.2226515

Cover

Loading…
Abstract Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have increased in frequency and in the size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational monitoring, as is possible using satellite data. However, while many satellite-based approaches have been developed, the full potential of dense, multi-sensor time series has yet to be fully explored. Here, for the first time, we used all available multispectral data from Landsat and Sentinel-2, Sentinel-1 SAR data, and combinations thereof to detect bark beetle infestations in the Bavarian Forest National Park. Based on a multi-year reference dataset of annual infested areas, we assessed the separability between healthy and infested forests for various vegetation indices calculated from the satellite data. We used two approaches to compute infestation probability time series from the different datasets: Bayesian conditional probabilities, based on the best-separating index from each satellite type, and random forest regression, based on all indices from each satellite type. Five different sensor configurations were tested for their detection capabilities: Landsat alone, Sentinel-1 alone, Sentinel-2 alone, Landsat and Sentinel-2 combined, and data from all satellite types combined. The best overall results in terms of spatial accuracy were achieved with Sentinel-2 (max. overall accuracy: 0.93). The detections of Sentinel-2 also were the closest to the onset of infestation estimated for each year. Sentinel-2 detected infested areas in larger contiguous patches with higher reliability compared to smaller patches. The results achieved with Landsat were somewhat inferior to those of Sentinel-2 (max. accuracy: 0.89). While yielding similar results, the combination of Landsat and Sentinel-2 did not provide any advantages over using Landsat or Sentinel-2 alone (max. accuracy: 0.87), while Sentinel-1 was unable to detect infested areas (max. accuracy: 0.62). The combined data of all three satellite types did not achieve satisfactory results either (max. accuracy: 0.67). Spatial accuracies were typically higher for Bayesian conditional probabilities than for random forest-derived probabilities, but the latter resulted in earlier detections. The approach presented herein provides a flexible disturbance detection pipeline well-suited for the monitoring of bark beetle outbreaks. Furthermore, it can also be applied to other disturbance types.
AbstractList Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have increased in frequency and in the size and number of affected areas. Controlling bark beetle outbreaks requires consistent operational monitoring, as is possible using satellite data. However, while many satellite-based approaches have been developed, the full potential of dense, multi-sensor time series has yet to be fully explored. Here, for the first time, we used all available multispectral data from Landsat and Sentinel-2, Sentinel-1 SAR data, and combinations thereof to detect bark beetle infestations in the Bavarian Forest National Park. Based on a multi-year reference dataset of annual infested areas, we assessed the separability between healthy and infested forests for various vegetation indices calculated from the satellite data. We used two approaches to compute infestation probability time series from the different datasets: Bayesian conditional probabilities, based on the best-separating index from each satellite type, and random forest regression, based on all indices from each satellite type. Five different sensor configurations were tested for their detection capabilities: Landsat alone, Sentinel-1 alone, Sentinel-2 alone, Landsat and Sentinel-2 combined, and data from all satellite types combined. The best overall results in terms of spatial accuracy were achieved with Sentinel-2 (max. overall accuracy: 0.93). The detections of Sentinel-2 also were the closest to the onset of infestation estimated for each year. Sentinel-2 detected infested areas in larger contiguous patches with higher reliability compared to smaller patches. The results achieved with Landsat were somewhat inferior to those of Sentinel-2 (max. accuracy: 0.89). While yielding similar results, the combination of Landsat and Sentinel-2 did not provide any advantages over using Landsat or Sentinel-2 alone (max. accuracy: 0.87), while Sentinel-1 was unable to detect infested areas (max. accuracy: 0.62). The combined data of all three satellite types did not achieve satisfactory results either (max. accuracy: 0.67). Spatial accuracies were typically higher for Bayesian conditional probabilities than for random forest-derived probabilities, but the latter resulted in earlier detections. The approach presented herein provides a flexible disturbance detection pipeline well-suited for the monitoring of bark beetle outbreaks. Furthermore, it can also be applied to other disturbance types.
Author Heurich, Marco
König, Simon
Förster, Michael
Dubovyk, Olena
Thonfeld, Frank
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-4924-7544
  surname: König
  fullname: König, Simon
  email: simon.koenig@npv-bw.bayern.de
  organization: University of Freiburg
– sequence: 2
  givenname: Frank
  orcidid: 0000-0002-3371-7206
  surname: Thonfeld
  fullname: Thonfeld, Frank
  organization: German Aerospace Center (DLR)
– sequence: 3
  givenname: Michael
  orcidid: 0000-0001-6689-5714
  surname: Förster
  fullname: Förster, Michael
  organization: Technical University of Berlin
– sequence: 4
  givenname: Olena
  orcidid: 0000-0002-7338-3167
  surname: Dubovyk
  fullname: Dubovyk, Olena
  organization: University of Bergen
– sequence: 5
  givenname: Marco
  orcidid: 0000-0003-0051-2930
  surname: Heurich
  fullname: Heurich, Marco
  organization: Inland Norway University of Applied Sciences
BookMark eNqFkU1vFSEUhiemTeyHP8GEpQun8jnDxI3t1dqb3MSFdU34ODTUGahAY_rv5XaqTVzoBjgn7_tw4D3uDmKK0HWvCT4jWOJ3RHBJBszOKKZtoXQQRLzojsjEWT-28qCdm6bfi152x6XcYswEIeKoS-elQCkh3qBNWkyIuoYUC0oe7XR0Rde36CvEGiLMPUWt9VwSdB0WQAVygIJ8yugjVLB1D7vQ-Tu6AKgzoG30UOoKPu0OvZ4LvHraT7pvl5-uN1f97svn7eZ811suhtqPbuJSai_9IKkXxE3GWmMFnYjzoB0BYSawjIx09GxgRjBBDTaDMXx0oNlJt125LulbdZfDovODSjqox0bKN0rnGuwMCstBWMf4JKnhBrBxDqzmjEsMss3RWG9W1l1OP-7bU9QSioV51hHSfVEMc8zkNNChScUqtTmVksH_uZpgtQ9L_Q5L7cNST2E13_u_fDasP1azDvN_3R9Wd4gthUX_THl2quqHOWWfdbShDflvxC8rIq_J
CitedBy_id crossref_primary_10_1016_j_ecoinf_2025_103074
crossref_primary_10_3390_rs15174234
crossref_primary_10_1007_s10342_024_01687_9
crossref_primary_10_3390_rs16224166
crossref_primary_10_1016_j_jag_2024_103669
crossref_primary_10_3390_data10030030
crossref_primary_10_3390_cli13010001
crossref_primary_10_1093_forestry_cpae005
crossref_primary_10_1088_1755_1315_1412_1_012003
crossref_primary_10_1093_forestry_cpae007
crossref_primary_10_3390_rs16030488
crossref_primary_10_3390_rs16234590
crossref_primary_10_1002_rse2_386
crossref_primary_10_1007_s10661_024_12372_0
crossref_primary_10_1016_j_rse_2024_114162
crossref_primary_10_1016_j_ecolind_2025_113085
crossref_primary_10_1007_s10844_024_00877_6
crossref_primary_10_1109_JSTARS_2024_3412737
crossref_primary_10_1109_JSTARS_2024_3425795
crossref_primary_10_3390_rs16101805
crossref_primary_10_1016_j_rsase_2025_101499
crossref_primary_10_1016_j_foreco_2024_122383
crossref_primary_10_1016_j_rse_2024_114323
Cites_doi 10.1109/TGRS.2016.2530856
10.3390/data4030093
10.1117/1.JRS.14.024515
10.1016/0034-42577990013-0
10.1016/j.foreco.2007.05.020
10.1007/978-1-4614-7138-7
10.1016/j.jag.2014.10.013
10.3390/rs12040727
10.1016/j.foreco.2021.119984
10.1016/j.isprsjprs.2016.01.011
10.3390/rs12182919
10.3390/rs9020129
10.1016/j.rse.2019.02.013
10.1002/rse2.93
10.1080/01621459.1979.10481038
10.1016/j.foreco.2013.07.043
10.3390/rs10020352
10.1016/j.ecolmodel.2011.03.014
10.1007/s40725-021-00142-x
10.1016/j.rse.2014.02.015
10.1038/nclimate3303
10.3390/rs11030257
10.1016/j.rse.2019.111403
10.3390/rs14030562
10.3390/app9040655
10.1016/j.jag.2014.04.001
10.1078/0176-1617-00887
10.1016/j.rse.2019.02.015
10.1007/s10342-008-0208-8
10.1007/s00334-019-00742-5
10.1016/j.rse.2021.112829
10.1016/S0273-11779701133-2
10.1016/j.rse.2008.05.005
10.1016/j.foreco.2016.11.004
10.5558/tfc85032-1
10.1016/j.rse.2005.05.009
10.1016/j.rse.2014.12.014
10.1080/15481603.2018.1458463
10.3390/rs12244191
10.1016/S0034-4257(02)00096-2
10.3390/rs5041912
10.1080/10106049109354290
10.1023/A:1010933404324
10.1021/ac60214a047
10.1016/S0034-42570300112-3
10.1016/j.rse.2020.112240
10.1016/j.rse.2011.09.009
10.3390/f12040456
10.1016/B978-0-12-417156-5.00005-8
10.1016/j.jag.2017.04.004
10.5589/m02-096
10.1016/j.rse.2014.08.037
10.5194/bg-18-5223-2021
10.1109/LGRS.2020.3039875
10.3390/rs13101954
10.3390/rs12213634
10.1016/j.rse.2014.09.002
10.1016/j.rse.2011.11.026
10.1109/LGRS.2015.2390673
10.1080/07038992.1996.10855178
10.1016/j.rse.2015.09.001
10.1016/j.rse.2017.10.034
10.1046/j.1365-2486.2003.00684.x
10.3390/rs11091124
10.3390/rs8121029
10.1016/j.jag.2019.101900
10.1016/j.rse.2017.06.031
10.1016/j.rse.2010.07.008
10.3390/f8070251
10.1016/S0034-42579600067-3
10.1371/journal.pone.0120960
10.1016/j.jag.2011.05.011
10.1016/j.foreco.2005.09.021
10.1201/9780429029608
10.1016/j.rse.2013.01.002
10.1111/brv.12193
10.1016/j.rse.2021.112560
10.1111/2041-210X.13726
10.1016/j.jag.2016.03.005
10.1109/TGRS.2016.2537929
10.1109/TGRS.2012.2216272
10.1016/j.jag.2021.102335
10.1016/j.jag.2017.09.009
10.1016/j.rse.2018.09.002
10.3390/rs10081250
10.1016/j.rse.2018.04.046
10.1007/978-3-319-15967-62
10.1016/j.baae.2020.04.003
10.3390/rs11040398
10.3390/rs12111867
10.1016/j.rse.2011.10.028
10.3390/f12010034
10.1641/B580607
10.1007/s10342-009-0331-1
10.1109/36.964973
10.1111/2041-210X.13695
10.1016/j.ecolmodel.2019.108775
10.1007/978-90-481-8782-9_23
10.3390/rs12213570
10.1016/j.rse.2019.04.034
10.1016/j.rse.2018.03.009
10.1007/978-0-387-84858-7
10.1126/sciadv.abc7447
10.1016/0034-42578590102-6
10.1016/S1002-0160(10)60053-7
10.1088/1748-9326/abd0a8
10.3390/rs70504973
10.3390/rs14133135
10.1007/s40725-019-00098-z
10.1126/science.1244693
10.1126/science.aaa9933
10.1016/j.oneear.2020.05.001
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023
DBID 0YH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2023.2226515
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
ExternalDocumentID oai_doaj_org_article_0865cd34982b4be0bddeca43480e8d94
10_1080_15481603_2023_2226515
2226515
Genre Research Article
GrantInformation_xml – fundername: This research was funded by the German Federal Ministry of Transport and Digital Infrastructure through the FirSt 2.0 project under grant number
  grantid: 19F2127D
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ID FETCH-LOGICAL-c456t-7d9488af8f682f51d9bccbc5291dfead1e5b9ec31727f363b5352b0b6bb47dea3
IEDL.DBID DOA
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:31:18 EDT 2025
Fri Sep 05 17:28:15 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Tue Jul 01 02:27:29 EDT 2025
Wed Dec 25 09:03:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-7d9488af8f682f51d9bccbc5291dfead1e5b9ec31727f363b5352b0b6bb47dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7338-3167
0000-0002-4924-7544
0000-0001-6689-5714
0000-0003-0051-2930
0000-0002-3371-7206
OpenAccessLink https://doaj.org/article/0865cd34982b4be0bddeca43480e8d94
PQID 3040389626
PQPubID 24069
ParticipantIDs informaworld_taylorfrancis_310_1080_15481603_2023_2226515
proquest_miscellaneous_3040389626
crossref_citationtrail_10_1080_15481603_2023_2226515
crossref_primary_10_1080_15481603_2023_2226515
doaj_primary_oai_doaj_org_article_0865cd34982b4be0bddeca43480e8d94
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_110_1
e_1_3_4_114_1
e_1_3_4_61_1
e_1_3_4_84_1
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
e_1_3_4_121_1
e_1_3_4_102_1
e_1_3_4_125_1
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_106_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_2_1
e_1_3_4_113_1
e_1_3_4_62_1
e_1_3_4_117_1
e_1_3_4_85_1
e_1_3_4_6_1
e_1_3_4_81_1
Kavzoglu T. (e_1_3_4_67_1) 2000
e_1_3_4_24_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_66_1
Bundesministerium für Ernährung und Landwirtschaft (e_1_3_4_18_1) 2021
Woodhouse I. H. (e_1_3_4_118_1) 2006
e_1_3_4_47_1
e_1_3_4_89_1
Rouse J. W. (e_1_3_4_101_1) 1973
e_1_3_4_120_1
van Deventer A. P. (e_1_3_4_115_1) 1997; 63
e_1_3_4_124_1
e_1_3_4_73_1
e_1_3_4_105_1
e_1_3_4_31_1
e_1_3_4_109_1
e_1_3_4_50_1
e_1_3_4_92_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
R Core Team (e_1_3_4_96_1) 2023
e_1_3_4_112_1
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
van Rossum G. (e_1_3_4_116_1) 2009
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_100_1
e_1_3_4_123_1
e_1_3_4_104_1
e_1_3_4_127_1
e_1_3_4_74_1
e_1_3_4_97_1
e_1_3_4_108_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_13_1
e_1_3_4_59_1
König S. (e_1_3_4_69_1) 2020
e_1_3_4_55_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_78_1
e_1_3_4_36_1
e_1_3_4_4_1
e_1_3_4_111_1
e_1_3_4_83_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_119_1
e_1_3_4_41_1
e_1_3_4_60_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_49_1
e_1_3_4_87_1
e_1_3_4_26_1
e_1_3_4_68_1
e_1_3_4_122_1
e_1_3_4_103_1
e_1_3_4_94_1
e_1_3_4_126_1
e_1_3_4_75_1
e_1_3_4_107_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_71_1
e_1_3_4_10_1
e_1_3_4_33_1
Charbonneau F. (e_1_3_4_20_1) 2005
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
References_xml – ident: e_1_3_4_38_1
  doi: 10.1109/TGRS.2016.2530856
– ident: e_1_3_4_36_1
– ident: e_1_3_4_112_1
  doi: 10.3390/data4030093
– ident: e_1_3_4_127_1
  doi: 10.1117/1.JRS.14.024515
– ident: e_1_3_4_97_1
– ident: e_1_3_4_113_1
  doi: 10.1016/0034-42577990013-0
– ident: e_1_3_4_10_1
  doi: 10.1016/j.foreco.2007.05.020
– ident: e_1_3_4_65_1
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_3_4_6_1
  doi: 10.1016/j.jag.2014.10.013
– ident: e_1_3_4_56_1
  doi: 10.3390/rs12040727
– ident: e_1_3_4_12_1
  doi: 10.1016/j.foreco.2021.119984
– ident: e_1_3_4_14_1
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume-title: Waldbericht der Bundesregierung 2021
  year: 2021
  ident: e_1_3_4_18_1
– ident: e_1_3_4_60_1
  doi: 10.3390/rs12182919
– ident: e_1_3_4_75_1
  doi: 10.3390/rs9020129
– ident: e_1_3_4_22_1
  doi: 10.1016/j.rse.2019.02.013
– ident: e_1_3_4_5_1
  doi: 10.1002/rse2.93
– ident: e_1_3_4_24_1
  doi: 10.1080/01621459.1979.10481038
– ident: e_1_3_4_76_1
  doi: 10.1016/j.foreco.2013.07.043
– ident: e_1_3_4_29_1
  doi: 10.3390/rs10020352
– ident: e_1_3_4_31_1
  doi: 10.1016/j.ecolmodel.2011.03.014
– ident: e_1_3_4_57_1
  doi: 10.1007/s40725-021-00142-x
– ident: e_1_3_4_89_1
  doi: 10.1016/j.rse.2014.02.015
– ident: e_1_3_4_105_1
  doi: 10.1038/nclimate3303
– ident: e_1_3_4_40_1
  doi: 10.3390/rs11030257
– ident: e_1_3_4_52_1
  doi: 10.1016/j.rse.2019.111403
– volume-title: Introduction to Microwave Remote Sensing
  year: 2006
  ident: e_1_3_4_118_1
– ident: e_1_3_4_111_1
  doi: 10.3390/rs14030562
– ident: e_1_3_4_86_1
  doi: 10.3390/app9040655
– ident: e_1_3_4_91_1
  doi: 10.1016/j.jag.2014.04.001
– ident: e_1_3_4_43_1
  doi: 10.1078/0176-1617-00887
– ident: e_1_3_4_121_1
  doi: 10.1016/j.rse.2019.02.015
– ident: e_1_3_4_48_1
  doi: 10.1007/s10342-008-0208-8
– ident: e_1_3_4_114_1
  doi: 10.1007/s00334-019-00742-5
– ident: e_1_3_4_28_1
  doi: 10.1016/j.rse.2021.112829
– ident: e_1_3_4_44_1
  doi: 10.1016/S0273-11779701133-2
– ident: e_1_3_4_45_1
  doi: 10.1016/j.rse.2008.05.005
– ident: e_1_3_4_34_1
  doi: 10.1016/j.foreco.2016.11.004
– ident: e_1_3_4_122_1
  doi: 10.5558/tfc85032-1
– ident: e_1_3_4_78_1
– ident: e_1_3_4_51_1
  doi: 10.1016/j.rse.2005.05.009
– ident: e_1_3_4_125_1
  doi: 10.1016/j.rse.2014.12.014
– ident: e_1_3_4_72_1
  doi: 10.1080/15481603.2018.1458463
– ident: e_1_3_4_80_1
  doi: 10.3390/rs12244191
– ident: e_1_3_4_63_1
  doi: 10.1016/S0034-4257(02)00096-2
– start-page: 1
  volume-title: 40. Wissenschaftlich-Technische Jahrestagung Der DGPF in Stuttgart
  year: 2020
  ident: e_1_3_4_69_1
– ident: e_1_3_4_90_1
  doi: 10.3390/rs5041912
– ident: e_1_3_4_79_1
  doi: 10.1080/10106049109354290
– ident: e_1_3_4_16_1
  doi: 10.1023/A:1010933404324
– ident: e_1_3_4_102_1
  doi: 10.1021/ac60214a047
– ident: e_1_3_4_108_1
  doi: 10.1016/S0034-42570300112-3
– ident: e_1_3_4_64_1
  doi: 10.1016/j.rse.2020.112240
– ident: e_1_3_4_83_1
  doi: 10.1016/j.rse.2011.09.009
– ident: e_1_3_4_11_1
  doi: 10.3390/f12040456
– ident: e_1_3_4_46_1
– ident: e_1_3_4_70_1
  doi: 10.1016/B978-0-12-417156-5.00005-8
– ident: e_1_3_4_107_1
  doi: 10.1016/j.jag.2017.04.004
– ident: e_1_3_4_95_1
  doi: 10.5589/m02-096
– ident: e_1_3_4_58_1
  doi: 10.1016/j.rse.2014.08.037
– ident: e_1_3_4_106_1
  doi: 10.5194/bg-18-5223-2021
– ident: e_1_3_4_7_1
  doi: 10.1109/LGRS.2020.3039875
– ident: e_1_3_4_85_1
  doi: 10.3390/rs13101954
– ident: e_1_3_4_32_1
  doi: 10.3390/rs12213634
– ident: e_1_3_4_8_1
  doi: 10.1016/j.rse.2014.09.002
– start-page: 15
  volume-title: Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop
  year: 2005
  ident: e_1_3_4_20_1
– ident: e_1_3_4_30_1
  doi: 10.1016/j.rse.2011.11.026
– ident: e_1_3_4_39_1
  doi: 10.1109/LGRS.2015.2390673
– ident: e_1_3_4_21_1
  doi: 10.1080/07038992.1996.10855178
– ident: e_1_3_4_120_1
  doi: 10.1016/j.rse.2015.09.001
– ident: e_1_3_4_99_1
  doi: 10.1016/j.rse.2017.10.034
– ident: e_1_3_4_103_1
  doi: 10.1046/j.1365-2486.2003.00684.x
– volume-title: R: A Language and Environment for Statistical Compting
  year: 2023
  ident: e_1_3_4_96_1
– ident: e_1_3_4_35_1
  doi: 10.3390/rs11091124
– ident: e_1_3_4_74_1
  doi: 10.3390/rs8121029
– ident: e_1_3_4_4_1
  doi: 10.1016/j.jag.2019.101900
– ident: e_1_3_4_47_1
  doi: 10.1016/j.rse.2017.06.031
– ident: e_1_3_4_92_1
– ident: e_1_3_4_68_1
  doi: 10.1016/j.rse.2010.07.008
– ident: e_1_3_4_87_1
  doi: 10.3390/f8070251
– ident: e_1_3_4_42_1
  doi: 10.1016/S0034-42579600067-3
– ident: e_1_3_4_54_1
  doi: 10.1371/journal.pone.0120960
– volume: 63
  start-page: 87
  issue: 1
  year: 1997
  ident: e_1_3_4_115_1
  article-title: Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: e_1_3_4_71_1
  doi: 10.1016/j.jag.2011.05.011
– ident: e_1_3_4_119_1
  doi: 10.1016/j.foreco.2005.09.021
– ident: e_1_3_4_81_1
  doi: 10.1201/9780429029608
– ident: e_1_3_4_82_1
  doi: 10.1016/j.rse.2013.01.002
– ident: e_1_3_4_110_1
  doi: 10.1111/brv.12193
– ident: e_1_3_4_123_1
  doi: 10.1016/j.rse.2021.112560
– ident: e_1_3_4_9_1
  doi: 10.1111/2041-210X.13726
– ident: e_1_3_4_33_1
  doi: 10.1016/j.jag.2016.03.005
– ident: e_1_3_4_41_1
  doi: 10.1109/TGRS.2016.2537929
– ident: e_1_3_4_26_1
  doi: 10.1109/TGRS.2012.2216272
– start-page: 309
  volume-title: In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at
  year: 1973
  ident: e_1_3_4_101_1
– ident: e_1_3_4_13_1
  doi: 10.1016/j.jag.2021.102335
– ident: e_1_3_4_2_1
  doi: 10.1016/j.jag.2017.09.009
– ident: e_1_3_4_23_1
  doi: 10.1016/j.rse.2018.09.002
– ident: e_1_3_4_15_1
  doi: 10.3390/rs10081250
– ident: e_1_3_4_37_1
  doi: 10.1016/j.rse.2018.04.046
– ident: e_1_3_4_62_1
  doi: 10.1007/978-3-319-15967-62
– volume-title: Proceedings of the 26th Annual Conference of the Remote Sensing Society
  year: 2000
  ident: e_1_3_4_67_1
– ident: e_1_3_4_104_1
  doi: 10.1016/j.baae.2020.04.003
– ident: e_1_3_4_3_1
  doi: 10.3390/rs11040398
– ident: e_1_3_4_117_1
  doi: 10.3390/rs12111867
– ident: e_1_3_4_126_1
  doi: 10.1016/j.rse.2011.10.028
– ident: e_1_3_4_17_1
  doi: 10.3390/f12010034
– ident: e_1_3_4_94_1
  doi: 10.1641/B580607
– ident: e_1_3_4_55_1
  doi: 10.1007/s10342-009-0331-1
– ident: e_1_3_4_93_1
  doi: 10.1109/36.964973
– ident: e_1_3_4_73_1
  doi: 10.1111/2041-210X.13695
– ident: e_1_3_4_88_1
  doi: 10.1016/j.ecolmodel.2019.108775
– volume-title: Python 3 Reference Manual
  year: 2009
  ident: e_1_3_4_116_1
– ident: e_1_3_4_53_1
  doi: 10.1007/978-90-481-8782-9_23
– ident: e_1_3_4_61_1
  doi: 10.3390/rs12213570
– ident: e_1_3_4_124_1
  doi: 10.1016/j.rse.2019.04.034
– ident: e_1_3_4_109_1
  doi: 10.1016/j.rse.2018.03.009
– ident: e_1_3_4_50_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_3_4_19_1
  doi: 10.1126/sciadv.abc7447
– ident: e_1_3_4_25_1
  doi: 10.1016/0034-42578590102-6
– ident: e_1_3_4_66_1
  doi: 10.1016/S1002-0160(10)60053-7
– ident: e_1_3_4_100_1
  doi: 10.1088/1748-9326/abd0a8
– ident: e_1_3_4_98_1
  doi: 10.3390/rs70504973
– ident: e_1_3_4_27_1
  doi: 10.3390/rs14133135
– ident: e_1_3_4_59_1
  doi: 10.1007/s40725-019-00098-z
– ident: e_1_3_4_49_1
  doi: 10.1126/science.1244693
– ident: e_1_3_4_84_1
  doi: 10.1126/science.aaa9933
– ident: e_1_3_4_77_1
  doi: 10.1016/j.oneear.2020.05.001
SSID ssj0035115
Score 2.4412434
Snippet Bark beetle infestations are among the most substantial forest disturbance agents worldwide. Moreover, as a consequence of global climate change, they have...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms algorithms
bark beetles
Bayesian probabilities
Bayesian theory
climate change
data collection
forest damage
forest disturbance
forests
Landsat
multispectral
national parks
probability
random forest regression
remote sensing
SAR
time series
time series analysis
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoXLhUtAWxhVauVHEiSxI_NjmypWhBLReK1J4s2xlzAJJqEw78e2bihEerikNviRWPrMzDM57xN4x9rpR2UIFIhFYykSWqIto8kWRey2CrILWmu8Pfz_TiQp7-VGM1YTuUVVIMHSJQRG-rSbmta8eKuAPysqk78pRaf09xg6N23q_YWo6OIlX1pb8WozGmNJnqIVMlBks4Z7zE8y8yz7anHsX_DwzTv2x2vxEdb7DXgwfJDyPL37AVqN-y7cOWzrSbmzu-x_vneGTRvmNNzOviFsVR-TEQjmd0vAn8G93ztd0-P6eaoRquk5zj0ONrxumKCCcxhZbj8vgRUNaBiM3t8orPAVDY-EkdoI1J_XaTXRx__fFlkQxtFhKP3lOXzKoStdiGIugiDyqrSue98yovsyqgoGWgXAlekKsThBaOEGFc6rRzclaBFVtstW5q2GbcYzQ3k9qmToG0eWoVeRBITyEVm88mTI5_1_gBg5xaYVybbIAqHZliiClmYMqETR-m_Y4gHC9NmBPrHj4mDO1-oFlemkElDQZzyldClkXupIPUoaX3VgpZpFDgP5mw8injTdcfoYTY78SIFxbwaZQSg_pKSRhbQ3OL89BqopOIceT7_6C_w9bpNSJO7rLVbnkLH9A76tzHXv7vAdOiAt8
  priority: 102
  providerName: Taylor & Francis
Title Assessing Combinations of Landsat, Sentinel-2 and Sentinel-1 Time series for Detecting Bark Beetle Infestations
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2023.2226515
https://www.proquest.com/docview/3040389626
https://doaj.org/article/0865cd34982b4be0bddeca43480e8d94
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29T90wELcoE0vVFipeaZErVZ2ahxN_vGTk0aJHVbq0SDBZtnNeCgkiYeC_5y5OKNDhLd0SK3Ys34fvfL7fMfap1sZDDTKTRqtMVSiKqPNklgejoqujMoZyh09_mtWZ-n6uzx-V-qI7YQkeOC3cAZrcOtRSVWXhlQfhUR6DU1KVAsq6GpBARSUmZyrpYIqO6QEpVaGPZISccndKcUBt1DSnwuFz3B6pGPiTXWkA738GXfqPqh72n-NX7OVoOPLDNOHXbAOaN2z3sKOj7Pbqjn_mw3M6qei2WZvCubgzcZR59H_T0RxvI_9B6b2u_8J_0VWhBi6zgmPT39ecU2YIJ-6EjuP0-FegYAMNtnQ3f_gSAHmMnzQRuhTL73bY2fG330erbKyukAU0mvpsgYtXli6W0ZRF1Hld-RB80EWV1xH5KwftKwiSLJwojfQEBOOFN96rRQ1OvmWbTdvALuMBnbiFMk54DcoVwmkyHHA8jaO4YjFjalpdG0bocaqAcWnzEaF0IoolotiRKDM2f-h2nbA31nVYEukePibo7KEBGcqODGXXMdSMVY8Jb_vh5CSmMidWrpnAx4lLLIopxV5cA-0t9kNlibYhuo_v_sck99gW_TchTr5nm_3NLXxA66j3--yFuFjtD-JwD9SzB4Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFJ8gHPRiFDQsog6J8WTXtvOx7ZFVyYILFyHB02Rm-saD0JptOfjf816nBdQYDtza7s5L0_cx72Pe7zH2rlLaQQUiEVrJRJaoimjzRJJ5LYOtgtSaeoePT_TiTB6dq_M7vTB0rJJi6BCBInpbTcpNyejxSNxHcrNpPPKUZn9PcYejed6P2IYqMJpAmU6_L0ZrTHUy1WOmSoyWcM3YxfM_Mn_sTz2M_18gpv8Y7X4nOnjGng4uJN-PPH_O1qDeZNv7LSW1m8vf_D3vr2POot1iTSzs4h7FUfsxEo5JOt4EvqRGX9t94N_o0FANF0nO8dHtbcapR4STnELL8fX4Z6CyAxGb29VPPgdAaeOHdYA2VvXbF-zs4Mvpp0UyzFlIPLpPXTKrSlRjG4qgizyorCqd986rvMyqgJKWgXIleEG-ThBaOIKEcanTzslZBVa8ZOt1U8M24x4ZMJPapk6BtHlqFbkQSE8hFZvPJkyOX9f4AYScZmFcmGzAKh2ZYogpZmDKhE1vlv2KKBz3LZgT627-TCDa_YNm9cMMOmkwmlO-ErIscicdpA5NvbdSyCKFAr_JhJV3GW-6PocS4sATI-55gb1RSgwqLFVhbA3NFa5Ds4leIgaSOw-g_5Y9XpweL83y8OTrK_aEforwk7tsvVtdwWt0lTr3pteFa9EZBko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLb9SlPIyEOJGQxI9Njl3KqoWyQoJK3CzbGffQklSb7IH-embipEAR6qG3vDxKJvO0x98w9rpW2kENIhFayURWqIpo80SSey2DrYPUmvYOf17p_SP58buaqgm7sayScugQgSIGW03KfVaHqSLuHUXZ1B05pdbfKTo4aud9k93SGJ5QVZ_IVpMxpmUyNUCmSkyWcMy0ied_ZP5yTwOK_yUM039s9uCIlveYmz4h1p-cpJvepf78Errjtb7xPrs7hql8N8rVA3YDmodse7ejifP2x0_-hg_HcV6ke8TauHiMfpCjhcFsO04E8jbwQ9pMbPu3_CsVJjVwmhQcL_0-zTntQ-GkC9Bx5AHfA1raIGILuz7hCwCUaH7QBOhi5UD3mB0tP3x7v5-MvRwSjyFan8zrCk2FDWXQZRFUXlfOe-dVUeV1QGnOQbkKvKB4KggtHMHOuMxp5-S8BiuesK2mbWCbcY8p41xqmzkF0haZVRSmID2FVGwxnzE5_ULjR6Bz6rdxavIRD3ViriHmmpG5M5ZeDDuLSB9XDViQfFw8TEDdw4V2fWxGvTeYMSpfC1mVhZMOMofuxFspZJlBiTyZsepP6TL9ME8TYlMVI654gVeTKBo0CrTSYxtoNzgOTTNGopisPr0G_Zfs9pe9pTk8WH3aYXfoTkS4fMa2-vUGnmM01rsXg779AlFyJOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Combinations+of+Landsat%2C+Sentinel-2+and+Sentinel-1+Time+series+for+Detecting+Bark+Beetle+Infestations&rft.jtitle=GIScience+and+remote+sensing&rft.au=Simon+K%C3%B6nig&rft.au=Frank+Thonfeld&rft.au=Michael+F%C3%B6rster&rft.au=Olena+Dubovyk&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=60&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2023.2226515&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0865cd34982b4be0bddeca43480e8d94
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon