Strain-insensitive intrinsically stretchable transistors and circuits

Intrinsically stretchable electronics can form intimate interfaces with the human body, creating devices that could be used to monitor physiological signals without constraining movement. However, mechanical strain invariably leads to the degradation of the electronic properties of the devices. Here...

Full description

Saved in:
Bibliographic Details
Published inNature electronics Vol. 4; no. 2; pp. 143 - 150
Main Authors Wang, Weichen, Wang, Sihong, Rastak, Reza, Ochiai, Yuto, Niu, Simiao, Jiang, Yuanwen, Arunachala, Prajwal Kammardi, Zheng, Yu, Xu, Jie, Matsuhisa, Naoji, Yan, Xuzhou, Kwon, Soon-Ki, Miyakawa, Masashi, Zhang, Zhitao, Ning, Rui, Foudeh, Amir M, Yun, Youngjun, Linder, Christian, Tok, Jeffrey B.-H, Bao, Zhenan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intrinsically stretchable electronics can form intimate interfaces with the human body, creating devices that could be used to monitor physiological signals without constraining movement. However, mechanical strain invariably leads to the degradation of the electronic properties of the devices. Here we show that strain-insensitive intrinsically stretchable transistor arrays can be created using an all-elastomer strain engineering approach, in which the patterned elastomer layers with tunable stiffnesses are incorporated into the transistor structure. By varying the cross-linking density of the elastomers, areas of increased local stiffness are introduced, reducing strain on the active regions of the devices. This approach can be readily incorporated into existing fabrication processes, and we use it to create arrays with a device density of 340 transistors cm–2 and a strain insensitivity of less than 5% performance variation when stretched to 100% strain. We also show that it can be used to fabricate strain-insensitive circuit elements, including NOR gates, ring oscillators and high-gain amplifiers for the stable monitoring of electrophysiological signals.An all-elastomer strain engineering approach, which uses patterned elastomer layers with tunable stiffnesses, can be used to create intrinsically stretchable transistor arrays with a device density of 340 transistors cm–2 and strain insensitivity of less than 5% performance variation when stretched to 100% strain.
AbstractList Intrinsically stretchable electronics can form intimate interfaces with the human body, creating devices that could be used to monitor physiological signals without constraining movement. However, mechanical strain invariably leads to the degradation of the electronic properties of the devices. Here we show that strain-insensitive intrinsically stretchable transistor arrays can be created using an all-elastomer strain engineering approach, in which the patterned elastomer layers with tunable stiffnesses are incorporated into the transistor structure. By varying the cross-linking density of the elastomers, areas of increased local stiffness are introduced, reducing strain on the active regions of the devices. This approach can be readily incorporated into existing fabrication processes, and we use it to create arrays with a device density of 340 transistors cm–2 and a strain insensitivity of less than 5% performance variation when stretched to 100% strain. We also show that it can be used to fabricate strain-insensitive circuit elements, including NOR gates, ring oscillators and high-gain amplifiers for the stable monitoring of electrophysiological signals.An all-elastomer strain engineering approach, which uses patterned elastomer layers with tunable stiffnesses, can be used to create intrinsically stretchable transistor arrays with a device density of 340 transistors cm–2 and strain insensitivity of less than 5% performance variation when stretched to 100% strain.
Author Yun, Youngjun
Niu, Simiao
Tok, Jeffrey B.-H
Kwon, Soon-Ki
Ochiai, Yuto
Yan, Xuzhou
Bao, Zhenan
Foudeh, Amir M
Miyakawa, Masashi
Wang, Weichen
Arunachala, Prajwal Kammardi
Rastak, Reza
Xu, Jie
Linder, Christian
Zheng, Yu
Zhang, Zhitao
Jiang, Yuanwen
Wang, Sihong
Matsuhisa, Naoji
Ning, Rui
Author_xml – sequence: 1
  givenname: Weichen
  surname: Wang
  fullname: Wang, Weichen
– sequence: 2
  givenname: Sihong
  surname: Wang
  fullname: Wang, Sihong
– sequence: 3
  givenname: Reza
  surname: Rastak
  fullname: Rastak, Reza
– sequence: 4
  givenname: Yuto
  surname: Ochiai
  fullname: Ochiai, Yuto
– sequence: 5
  givenname: Simiao
  surname: Niu
  fullname: Niu, Simiao
– sequence: 6
  givenname: Yuanwen
  surname: Jiang
  fullname: Jiang, Yuanwen
– sequence: 7
  givenname: Prajwal Kammardi
  surname: Arunachala
  fullname: Arunachala, Prajwal Kammardi
– sequence: 8
  givenname: Yu
  surname: Zheng
  fullname: Zheng, Yu
– sequence: 9
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
– sequence: 10
  givenname: Naoji
  surname: Matsuhisa
  fullname: Matsuhisa, Naoji
– sequence: 11
  givenname: Xuzhou
  surname: Yan
  fullname: Yan, Xuzhou
– sequence: 12
  givenname: Soon-Ki
  surname: Kwon
  fullname: Kwon, Soon-Ki
– sequence: 13
  givenname: Masashi
  surname: Miyakawa
  fullname: Miyakawa, Masashi
– sequence: 14
  givenname: Zhitao
  surname: Zhang
  fullname: Zhang, Zhitao
– sequence: 15
  givenname: Rui
  surname: Ning
  fullname: Ning, Rui
– sequence: 16
  givenname: Amir M
  surname: Foudeh
  fullname: Foudeh, Amir M
– sequence: 17
  givenname: Youngjun
  surname: Yun
  fullname: Yun, Youngjun
– sequence: 18
  givenname: Christian
  surname: Linder
  fullname: Linder, Christian
– sequence: 19
  givenname: Jeffrey B.-H
  surname: Tok
  fullname: Tok, Jeffrey B.-H
– sequence: 20
  givenname: Zhenan
  surname: Bao
  fullname: Bao, Zhenan
BookMark eNotjU1LAzEYhIMoWGv_gKcFz9H3zddujlLqBxQ82HvJvomYsmQ1yQr-ewN6Gp6ZYeaKnac5BcZuEO4Q5HBfFFoxcBDAAbTQHM_YSuiGiBIv2aaUE0CLUfa9XrHdW80uJh5TCanEGr9DF1PNjSO5afrpSs2h0ocbp9C1bvNLnXPpXPIdxUxLrOWaXby7qYTNv67Z4XF32D7z_evTy_Zhz0lpU7kJyhthe6OsQYPklYdeW-UVaCQzajs4QBq9owFs8IIsOnIEvQJpjFyz27_Zzzx_LaHU42lecmqPRymEAbQwoPwFIphOkg
CitedBy_id crossref_primary_10_1021_acsami_3c06308
crossref_primary_10_1002_lpor_202400358
crossref_primary_10_1039_D3QM01349A
crossref_primary_10_1002_smm2_1108
crossref_primary_10_1021_acs_chemrev_1c00365
crossref_primary_10_1016_j_mattod_2023_09_001
crossref_primary_10_1002_smll_202202639
crossref_primary_10_1002_adfm_202307475
crossref_primary_10_1080_15980316_2022_2070291
crossref_primary_10_1007_s12274_024_6566_8
crossref_primary_10_1002_admt_202201135
crossref_primary_10_1016_j_vacuum_2023_112212
crossref_primary_10_1002_aelm_202400676
crossref_primary_10_1016_j_jpowsour_2024_235746
crossref_primary_10_1063_5_0205582
crossref_primary_10_1002_adma_202313603
crossref_primary_10_1002_nme_7488
crossref_primary_10_1002_smll_202312283
crossref_primary_10_1016_j_nanoen_2023_108832
crossref_primary_10_1126_sciadv_ade2988
crossref_primary_10_1016_j_matt_2022_07_016
crossref_primary_10_1038_s41598_025_86541_7
crossref_primary_10_3390_s23156910
crossref_primary_10_1021_acsami_4c04349
crossref_primary_10_1038_s41467_023_36885_3
crossref_primary_10_1038_s41467_024_47026_9
crossref_primary_10_1016_j_bios_2022_114298
crossref_primary_10_1002_cjoc_202200447
crossref_primary_10_1002_advs_202304506
crossref_primary_10_3390_mi15010066
crossref_primary_10_1021_acsnano_4c01668
crossref_primary_10_1002_adma_202107370
crossref_primary_10_1021_acsnano_2c12269
crossref_primary_10_1002_adma_202411151
crossref_primary_10_1016_j_cej_2023_145251
crossref_primary_10_1002_adfm_202412418
crossref_primary_10_1016_j_scib_2024_04_070
crossref_primary_10_1039_D1NR08056C
crossref_primary_10_1016_j_nanoen_2023_108170
crossref_primary_10_1021_acsami_3c06767
crossref_primary_10_1016_j_nanoms_2022_08_003
crossref_primary_10_1021_acs_macromol_4c00576
crossref_primary_10_1002_adfm_202202071
crossref_primary_10_1039_D3TA06565K
crossref_primary_10_1039_D4PY00180J
crossref_primary_10_1021_acsami_4c14922
crossref_primary_10_1039_D1PY01154E
crossref_primary_10_1063_5_0067274
crossref_primary_10_1016_j_cej_2022_135644
crossref_primary_10_3390_s22083015
crossref_primary_10_1002_admt_202201119
crossref_primary_10_1002_smm2_1255
crossref_primary_10_1038_s41528_023_00273_0
crossref_primary_10_1126_sciadv_abp8075
crossref_primary_10_1021_acsmaterialslett_2c00743
crossref_primary_10_20517_ss_2024_36
crossref_primary_10_1002_adfm_202212888
crossref_primary_10_1002_aelm_202200512
crossref_primary_10_1016_j_wees_2024_07_003
crossref_primary_10_1088_2631_7990_ad65a0
crossref_primary_10_1002_admt_202400859
crossref_primary_10_1016_j_jmst_2023_02_047
crossref_primary_10_1109_JFLEX_2023_3300997
crossref_primary_10_1002_smm2_1261
crossref_primary_10_1038_s44222_024_00194_1
crossref_primary_10_3390_s23052479
crossref_primary_10_1038_s41467_023_40191_3
crossref_primary_10_1002_rpm_20230022
crossref_primary_10_1002_adma_202407886
crossref_primary_10_1021_acsami_3c00126
crossref_primary_10_1109_ACCESS_2022_3201824
crossref_primary_10_1063_5_0197947
crossref_primary_10_1021_acsnano_4c02303
crossref_primary_10_1039_D4MH01166J
crossref_primary_10_1002_adfm_202105482
crossref_primary_10_1016_j_scib_2023_03_014
crossref_primary_10_1021_acsmaterialslett_1c00799
crossref_primary_10_1016_j_nanoen_2022_107540
crossref_primary_10_1016_j_matt_2022_02_009
crossref_primary_10_1016_j_jallcom_2022_166955
crossref_primary_10_1021_acs_chemmater_2c03400
crossref_primary_10_1038_s41427_022_00384_6
crossref_primary_10_1038_s41563_022_01247_9
crossref_primary_10_1002_adfm_202303970
crossref_primary_10_1002_adma_202104747
crossref_primary_10_1002_admt_202201067
crossref_primary_10_1039_D1TC04384F
crossref_primary_10_1021_acsami_2c10133
crossref_primary_10_1063_5_0099722
crossref_primary_10_1021_acsami_2c07445
crossref_primary_10_1002_admt_202400487
crossref_primary_10_1038_s41467_024_47184_w
crossref_primary_10_20517_ss_2023_12
crossref_primary_10_2139_ssrn_4021780
crossref_primary_10_1002_bkcs_12710
crossref_primary_10_1016_j_cej_2021_134074
crossref_primary_10_1039_D1QM01521D
crossref_primary_10_1002_aelm_202101288
crossref_primary_10_1002_smll_202306749
crossref_primary_10_1016_j_cej_2022_137741
crossref_primary_10_1002_adfm_202406651
crossref_primary_10_1016_j_cap_2024_06_012
crossref_primary_10_1002_aelm_202201021
crossref_primary_10_1002_aelm_202300800
crossref_primary_10_1002_adfm_202413613
crossref_primary_10_1002_adma_202310956
crossref_primary_10_1021_acs_chemrev_3c00374
crossref_primary_10_1002_adma_202100299
crossref_primary_10_1109_JMEMS_2022_3223059
crossref_primary_10_1002_adfm_202314298
crossref_primary_10_1360_SSC_2022_0108
crossref_primary_10_1002_admt_202202140
crossref_primary_10_1002_smll_202311527
crossref_primary_10_1016_j_jmps_2024_105784
crossref_primary_10_1039_D2CS00837H
crossref_primary_10_1002_advs_202414425
crossref_primary_10_1002_gch2_202300062
crossref_primary_10_1002_adma_202104761
crossref_primary_10_1038_s41528_022_00205_4
crossref_primary_10_1021_acsnano_4c15964
crossref_primary_10_1002_adma_202411547
crossref_primary_10_1016_j_wees_2024_09_004
crossref_primary_10_1002_adfm_202209760
crossref_primary_10_1038_s41377_023_01089_3
crossref_primary_10_1002_adma_202312473
crossref_primary_10_1038_s41467_022_32672_8
crossref_primary_10_1002_flm2_27
crossref_primary_10_1002_admt_202500068
crossref_primary_10_1016_j_ijbiomac_2021_05_203
crossref_primary_10_1021_acsami_4c20657
crossref_primary_10_1021_acs_macromol_2c02275
crossref_primary_10_1002_admi_202200259
crossref_primary_10_1002_pssa_202300901
crossref_primary_10_3390_s24061912
crossref_primary_10_1002_adma_202109399
crossref_primary_10_1002_adma_202303401
crossref_primary_10_1007_s40684_023_00565_w
crossref_primary_10_1002_admt_202101126
crossref_primary_10_1016_j_mser_2024_100863
crossref_primary_10_1007_s40843_023_2719_y
crossref_primary_10_1038_s41528_021_00109_9
crossref_primary_10_1016_j_cej_2025_159728
crossref_primary_10_1021_acsmaterialslett_4c00188
crossref_primary_10_1002_pol_20210457
crossref_primary_10_1021_acsapm_4c02597
crossref_primary_10_1002_admi_202200261
crossref_primary_10_1093_nsr_nwac172
crossref_primary_10_1039_D3TC04821G
crossref_primary_10_3390_mi15091115
crossref_primary_10_1002_advs_202302974
crossref_primary_10_1038_s41586_024_07096_7
crossref_primary_10_1038_s41467_024_53654_y
crossref_primary_10_1016_j_cej_2024_148758
crossref_primary_10_1016_j_compositesb_2024_111655
crossref_primary_10_1021_acsnano_1c09288
crossref_primary_10_1038_s41928_023_00918_y
crossref_primary_10_1038_s41528_023_00239_2
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_1039_D4CS00541D
crossref_primary_10_1007_s40843_022_2375_y
crossref_primary_10_1002_admi_202102124
crossref_primary_10_1016_j_wees_2024_05_001
crossref_primary_10_1063_5_0102401
crossref_primary_10_1002_admi_202201367
crossref_primary_10_1007_s42114_024_00906_6
crossref_primary_10_1039_D2TC01132H
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1016_j_cma_2023_116567
crossref_primary_10_1039_D2MH00470D
crossref_primary_10_1002_adma_202207006
crossref_primary_10_1016_j_mtelec_2023_100028
crossref_primary_10_1021_acs_chemrev_4c00571
crossref_primary_10_1126_science_abj9912
crossref_primary_10_1038_s44222_024_00175_4
crossref_primary_10_1109_TED_2024_3377188
crossref_primary_10_1126_sciadv_abl5511
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_1016_j_bios_2024_116444
crossref_primary_10_1002_adma_202408456
crossref_primary_10_1002_smll_202201589
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1007_s40843_022_2331_8
crossref_primary_10_1126_sciadv_adq0171
crossref_primary_10_3390_electronics12030540
crossref_primary_10_1093_nsr_nwae049
crossref_primary_10_1038_s41565_022_01160_x
crossref_primary_10_1126_sciadv_abg9180
crossref_primary_10_1021_acsaelm_3c00232
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1016_j_supmat_2023_100042
crossref_primary_10_1126_sciadv_abi4563
crossref_primary_10_1007_s11814_024_00210_5
crossref_primary_10_1021_acsnano_3c06781
crossref_primary_10_1021_acsnano_4c14026
crossref_primary_10_1007_s12274_022_4622_x
crossref_primary_10_1016_j_device_2024_100426
crossref_primary_10_1016_j_cej_2024_156471
crossref_primary_10_1002_ange_202107395
crossref_primary_10_1002_inf2_12426
crossref_primary_10_1016_j_cej_2024_158414
crossref_primary_10_1002_adsr_202300065
crossref_primary_10_1039_D3TC04485H
crossref_primary_10_1038_s41467_024_51516_1
crossref_primary_10_1038_s41528_024_00351_x
crossref_primary_10_1088_2058_8585_ac4d0f
crossref_primary_10_1007_s12274_022_5014_y
crossref_primary_10_1002_pol_20240090
crossref_primary_10_1016_j_carbon_2022_01_058
crossref_primary_10_1002_aelm_202200442
crossref_primary_10_1002_anie_202107395
crossref_primary_10_1007_s10853_023_08344_3
crossref_primary_10_1109_JSEN_2024_3383872
crossref_primary_10_1021_acsami_1c11891
crossref_primary_10_3390_molecules28155931
crossref_primary_10_1038_s41467_024_50494_8
crossref_primary_10_3390_nano12050882
crossref_primary_10_1002_aelm_202400614
crossref_primary_10_1038_s41928_022_00873_0
crossref_primary_10_1016_j_nanoen_2023_108658
crossref_primary_10_1126_science_ade0086
crossref_primary_10_1002_aisy_202400697
crossref_primary_10_1038_s41586_022_05579_z
crossref_primary_10_1002_adfm_202312034
crossref_primary_10_1016_j_nanoen_2022_108121
crossref_primary_10_1038_s41528_024_00313_3
crossref_primary_10_1002_adma_202414203
crossref_primary_10_1016_j_cej_2023_144504
crossref_primary_10_1002_admt_202300680
crossref_primary_10_1016_j_nanoen_2024_110482
crossref_primary_10_1002_adhm_202302460
crossref_primary_10_1002_adhm_202403637
crossref_primary_10_1002_adfm_202109109
crossref_primary_10_1002_smsc_202400197
crossref_primary_10_1016_j_bmt_2022_11_013
crossref_primary_10_1021_acs_chemmater_1c03007
crossref_primary_10_1038_s41377_024_01524_z
crossref_primary_10_1002_adma_202106787
crossref_primary_10_1021_acsaelm_2c01685
crossref_primary_10_1088_2058_8585_ac20e1
crossref_primary_10_1002_smtd_202500235
crossref_primary_10_1038_s41467_022_34968_1
crossref_primary_10_1038_s41528_024_00359_3
ContentType Journal Article
Copyright Copyright Nature Publishing Group Feb 2021
Copyright_xml – notice: Copyright Nature Publishing Group Feb 2021
DBID 8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41928-020-00525-1
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-1131
EndPage 150
GroupedDBID 0R~
8FE
8FG
AARCD
AAYZH
ABJNI
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BENPR
BGLVJ
BKKNO
CCPQU
DWQXO
EBS
FSGXE
FZEXT
HCIFZ
NNMJJ
O9-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
ID FETCH-LOGICAL-c456t-6e4d62976496161cd4d07594d4051c6b598a01cbdac809ed2c91acac07403663
IEDL.DBID BENPR
IngestDate Sat Aug 23 12:52:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-6e4d62976496161cd4d07594d4051c6b598a01cbdac809ed2c91acac07403663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.osti.gov/biblio/1818209
PQID 3226019081
PQPubID 7343582
PageCount 8
ParticipantIDs proquest_journals_3226019081
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature electronics
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0002013775
Score 2.5853693
Snippet Intrinsically stretchable electronics can form intimate interfaces with the human body, creating devices that could be used to monitor physiological signals...
SourceID proquest
SourceType Aggregation Database
StartPage 143
SubjectTerms Arrays
Crosslinking
Density
Design
Elastomers
Electronics
Gates (circuits)
High gain
Materials selection
Mechanical properties
Receivers & amplifiers
Signal monitoring
Strain
Transistors
Title Strain-insensitive intrinsically stretchable transistors and circuits
URI https://www.proquest.com/docview/3226019081
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vehBfOKjlj14DW12s2n2JCqtRbCIVuitJJldWJCtdrcH_70zMVVB8BxymUnm-_JlHoxdxs7kUoDk-P4BLi1eKYtIwSEBEFZoWzgS9B-mavIi7-fpPAhudUir3MREH6hh6Ugj7-PBU1T3rMXV2zunqVH0uxpGaLRYB0Ow1m3WuRlNH5--VZbYd9RLQ7XMINH9mr49NadXE0miKRd_orCHlvEe2w2cMLr-cuI-28qrA7bzq1PgIRs9-1kOvCQpuPb5PlFZNbjorfz6EVHRB3qAKqGihgDI9_-oI1NB5MqVW5dNfcRm49HsdsLDBATukNg0XOUSVIyMQWYKqZkDCQjxmQSkWcIpm2baDISzYJweZDnELhPGGYe8AJFJJcesXS2r_IRFkAxxu4pNEReysM7QYE5039BRY0lQp6y7McIinOJ68WPzs_-Xz9l2TLkePpu5y9rNap1fIFg3tsdaenzXC375BFJMl6U
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI7GOAAHxFM8BvQAx2hrmmbtASEEjI09LgxptyqPVqqEOlg7of0o_iN21gISEredo-QQO_5sx59NyCXTMuau4RTiH0O5gielACmo8YxxlRuoRGNCfzgS3Rf-NPEnNfJZcWGwrLKyidZQm6nGHHkTFE8g7zlwb97eKU6Nwt_VaoTGUi368eIDQrb8uncP8r1irPMwvuvScqoA1eAsFFTE3AgGKMxDAe6ONtwAbIbcgOviaqH8MJAtVysjddAKY8N06EotNWAtWHvhwbFrZJ17AORITO88fqd0mG3f55fUnJYXNHP8Yw0ohmiYf_Wp-8fkWxzr7JDt0gF1bpcas0tqcbZHtn61JdwnD892cARNMe-c2-IiJ80KWLQifV04yDABcSPtyikQ7WyzkdyRmXF0OtPztMgPyHgVF3NI6tk0i4-IY7w2bBdMJizhidISp4CCrrQ1drE04pg0qkuIyieTRz8CPvl_-YJsdMfDQTTojfqnZJNhkYkto26QejGbx2fgJRTq3MrGIdGKdeEL0qrQeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-insensitive+intrinsically+stretchable+transistors+and+circuits&rft.jtitle=Nature+electronics&rft.au=Wang%2C+Weichen&rft.au=Wang%2C+Sihong&rft.au=Rastak%2C+Reza&rft.au=Ochiai%2C+Yuto&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group&rft.eissn=2520-1131&rft.volume=4&rft.issue=2&rft.spage=143&rft.epage=150&rft_id=info:doi/10.1038%2Fs41928-020-00525-1