Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence

Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable st...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 26; no. 6; pp. 1483 - 1525
Main Author Austin, Tim
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in H of the cocycle-image of an element of G must have finite integral over its domain (a subset of the G -system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in G . ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements.
AbstractList Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in H of the cocycle-image of an element of G must have finite integral over its domain (a subset of the G -system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in G . ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements.
Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in H of the cocycle-image of an element of G must have finite integral over its domain (a subset of the G-system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in G. ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements.
Author Austin, Tim
Author_xml – sequence: 1
  givenname: Tim
  surname: Austin
  fullname: Austin, Tim
  email: tim@cims.nyu.edu, tim.tda22@gmail.com
  organization: Courant Institute of Mathematical Sciences, New York University
BookMark eNp9kEFLwzAUx4NMcJt-AG8Bz9WXtmnToxtTB8IuDryFtHmZHTXZkm6wb29GPYigp_-D_H95j9-EjKyzSMgtg3sGUD4EAMiqBFiRxEwTfkHGLE8hEVUJozifX_I8e78ikxC2sc15zsdkPsMPdWzdwVNn6ML23u1OdG01ejpzh5iaKqvp0va48arukK583fZ0sT-0R9WhbfCaXBrVBbz5zilZPy3e5i_J6-p5OX98TZqcF31S6ForU5U16AIrnWeggKcClOFoKpVibbACJTjEEUtshECTacVjuakLyKbkbvh3593-gKGX23i3jSslEwJEmqdMxBYbWo13IXg0cufbT-VPkoE8u5KDKxmNyLMrySNT_mKatld966IP1Xb_kulAhrjFbtD_uOlP6Avz9IBL
CitedBy_id crossref_primary_10_1017_etds_2021_154
crossref_primary_10_1017_etds_2019_18
crossref_primary_10_1017_etds_2024_118
crossref_primary_10_1017_etds_2024_26
crossref_primary_10_1007_s00208_021_02190_x
crossref_primary_10_1007_s11856_024_2642_9
crossref_primary_10_1016_j_aim_2018_05_008
crossref_primary_10_5802_aif_3443
crossref_primary_10_1007_s00031_020_09630_z
Cites_doi 10.4171/GGD/345
10.1007/s00222-012-0445-9
10.2307/121130
10.1017/S0143385700009846
10.2307/2372852
10.2307/2373108
10.2307/121063
10.1017/S0143385797086288
10.1007/BF02392739
10.4171/GGD/142
10.1112/plms/s3-25.4.603
10.1090/S0894-0347-09-00637-7
10.1007/s006050170003
10.1017/S0143385705000258
10.1090/memo/0262
10.1007/978-1-4684-9488-4
10.1017/S0143385700007069
10.1017/S014338570000136X
10.4007/annals.2010.171.1387
10.1007/978-1-4757-6798-8
10.1017/S0143385700003667
10.1007/978-3-662-04743-9_8
10.1007/BF01299386
10.1017/CBO9780511549908
10.1017/S0143385700002297
10.1007/b99421
10.1017/S0143385700005368
10.1090/memo/0323
10.4310/jdg/1214428658
ContentType Journal Article
Copyright Springer International Publishing 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer International Publishing 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s00039-016-0392-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 1525
ExternalDocumentID 10_1007_s00039_016_0392_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c456t-6dbdaf97b0d6e9d430a05280af5ef9a2ebfe90a8502ebe7ec88ef3da5e9dcb603
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri Jul 25 11:02:56 EDT 2025
Tue Jul 01 02:31:06 EDT 2025
Thu Apr 24 22:50:17 EDT 2025
Fri Feb 21 02:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-6dbdaf97b0d6e9d430a05280af5ef9a2ebfe90a8502ebe7ec88ef3da5e9dcb603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880824218
PQPubID 2044207
PageCount 43
ParticipantIDs proquest_journals_1880824218
crossref_primary_10_1007_s00039_016_0392_5
crossref_citationtrail_10_1007_s00039_016_0392_5
springer_journals_10_1007_s00039_016_0392_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References CR19
Bader, Furman, Sauer (CR7) 2013; 194
CR18
CR39
CR16
CR38
CR13
CR35
Austin (CR4) 2016; 10
CR34
CR11
Abramov, Rohlin (CR3) 1962; 17
CR10
CR32
Gaboriau (CR20) 2005; 25
CR31
CR30
Bowen (CR8) 2010; 23
Adams (CR2) 1990; 10
Rudolph, Weiss (CR33) 2000; 151
Shalom (CR36) 2004; 192
Dye (CR14) 1959; 81
Belinskaya (CR6) 1968; 2
Kammeyer, Rudolph (CR27) 1997; 17
CR28
CR9
CR26
Bass (CR5) 1972; 25
Danilenko (CR12) 2001; 134
CR24
Wolf (CR37) 1968; 2
Dye (CR15) 1963; 85
CR21
Levitt (CR29) 1995; 15
Hasfura-Buenaga (CR23) 1992; 12
Abramov (CR1) 1959; 128
Furman (CR17) 1999; 150
Kerr, Li (CR25) 2011; 5
Guivarc’h (CR22) 1971; 272
S. Adams (392_CR2) 1990; 10
392_CR28
J.W. Kammeyer (392_CR27) 1997; 17
L. Bowen (392_CR8) 2010; 23
D.J. Rudolph (392_CR33) 2000; 151
392_CR21
392_CR26
392_CR24
392_CR30
A. Furman (392_CR17) 1999; 150
J.A. Wolf (392_CR37) 1968; 2
U. Bader (392_CR7) 2013; 194
A.I. Danilenko (392_CR12) 2001; 134
392_CR19
392_CR18
392_CR39
D. Kerr (392_CR25) 2011; 5
R. Belinskaya (392_CR6) 1968; 2
392_CR34
L.M. Abramov (392_CR3) 1962; 17
392_CR11
H. Bass (392_CR5) 1972; 25
392_CR10
392_CR32
H. A. Dye (392_CR14) 1959; 81
H.A. Dye (392_CR15) 1963; 85
Y. Guivarc’h (392_CR22) 1971; 272
392_CR31
392_CR16
392_CR38
L.M. Abramov (392_CR1) 1959; 128
392_CR13
392_CR35
Y. Shalom (392_CR36) 2004; 192
J.R. Hasfura-Buenaga (392_CR23) 1992; 12
392_CR9
T. Austin (392_CR4) 2016; 10
G. Levitt (392_CR29) 1995; 15
D. Gaboriau (392_CR20) 2005; 25
References_xml – volume: 12
  start-page: 725
  issue: 4
  year: 1992
  end-page: 741
  ident: CR23
  article-title: The equivalence theorem for -actions of positive entropy
  publication-title: Ergodic Theory Dynamics Systems
– ident: CR18
– ident: CR39
– ident: CR16
– ident: CR30
– volume: 17
  start-page: 5
  issue: 7
  year: 1962
  end-page: 13
  ident: CR3
  article-title: Entropy of a skew product of mappings with invariant measure
  publication-title: Vestnik Leningrad University
– ident: CR10
– volume: 2
  start-page: 421
  year: 1968
  end-page: 446
  ident: CR37
  article-title: Growth of finitely generated solvable groups and curvature of Riemanniann manifolds
  publication-title: Journal of Differential Geometry
– ident: CR35
– volume: 10
  start-page: 117
  issue: 1
  year: 2016
  end-page: 154
  ident: CR4
  article-title: Integrable measure equivalence for groups of polynomial growth
  publication-title: Groups, Geometry, and Dynamics
  doi: 10.4171/GGD/345
– volume: 194
  start-page: 313
  issue: 2
  year: 2013
  end-page: 379
  ident: CR7
  article-title: Integrable measure equivalence and rigidity of hyperbolic lattices
  publication-title: Invent. Math.
  doi: 10.1007/s00222-012-0445-9
– volume: 151
  start-page: 1119
  issue: 3
  year: 2000
  end-page: 1150
  ident: CR33
  article-title: Entropy and mixing for amenable group actions (2)
  publication-title: Annals of Mathematics
  doi: 10.2307/121130
– volume: 15
  start-page: 1173
  issue: 6
  year: 1995
  end-page: 1181
  ident: CR29
  article-title: On the cost of generating an equivalence relation
  publication-title: Ergodic Theory Dynamic Systems
  doi: 10.1017/S0143385700009846
– volume: 10
  start-page: 1
  issue: 1
  year: 1990
  end-page: 14
  ident: CR2
  article-title: Trees and amenable equivalence relations
  publication-title: Ergodic Theory Dynamic Systems
– volume: 81
  start-page: 119
  year: 1959
  end-page: 159
  ident: CR14
  article-title: On groups of measure preserving transformation. I
  publication-title: American Journal of Mathematics
  doi: 10.2307/2372852
– ident: CR21
– volume: 85
  start-page: 551
  year: 1963
  end-page: 576
  ident: CR15
  article-title: On groups of measure preserving transformations. II
  publication-title: American Journal of Mathematics
  doi: 10.2307/2373108
– volume: 150
  start-page: 1083
  issue: 3
  year: 1999
  end-page: 1108
  ident: CR17
  article-title: Orbit equivalence rigidity
  publication-title: Annals of Mathematics (2)
  doi: 10.2307/121063
– ident: CR19
– volume: 2
  start-page: 4
  year: 1968
  end-page: 16
  ident: CR6
  article-title: Partitions of lebesgue space in trajectories defined by ergodic automorphisms
  publication-title: Functional Analysis and Its Applications
– ident: CR38
– volume: 17
  start-page: 1083
  issue: 5
  year: 1997
  end-page: 1129
  ident: CR27
  article-title: Restricted orbit equivalence for ergodic actions. I
  publication-title: Ergodic Theory Dynamic Systems
  doi: 10.1017/S0143385797086288
– ident: CR31
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR34
– volume: 192
  start-page: 119
  issue: 2
  year: 2004
  end-page: 185
  ident: CR36
  article-title: Harmonic analysis, cohomology, and the large-scale geometry of amenable groups
  publication-title: Acta Mathematics
  doi: 10.1007/BF02392739
– volume: 5
  start-page: 663
  issue: 3
  year: 2011
  end-page: 672
  ident: CR25
  article-title: Bernoulli actions and infinite entropy
  publication-title: Groups, Geometry, and Dynamics
  doi: 10.4171/GGD/142
– volume: 128
  start-page: 647
  year: 1959
  end-page: 650
  ident: CR1
  article-title: The entropy of a derived automorphism
  publication-title: Doklady Akademii Nauk SSSR
– volume: 25
  start-page: 603
  year: 1972
  end-page: 614
  ident: CR5
  article-title: The degree of polynomial growth of finitely generated nilpotent groups
  publication-title: Proceedings of the London Mathematical Society (3)
  doi: 10.1112/plms/s3-25.4.603
– volume: 272
  start-page: A1695
  year: 1971
  end-page: A1696
  ident: CR22
  article-title: Groupes de Lie à croissance polynomiale
  publication-title: Comptes Rendus de l’Acadmie des Sciences
– volume: 23
  start-page: 217
  issue: 1
  year: 2010
  end-page: 245
  ident: CR8
  article-title: Measure conjugacy invariants for actions of countable sofic groups
  publication-title: Journal of the American Mathematical Society
  doi: 10.1090/S0894-0347-09-00637-7
– volume: 134
  start-page: 121
  issue: 2
  year: 2001
  end-page: 141
  ident: CR12
  article-title: Entropy theory from the orbital point of view
  publication-title: Monatshefte für Mathematik
  doi: 10.1007/s006050170003
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 25
  start-page: 1809
  issue: 6
  year: 2005
  end-page: 1827
  ident: CR20
  article-title: Examples of groups that are measure equivalent to the free group
  publication-title: Ergodic Theory Dynamics Systems
  doi: 10.1017/S0143385705000258
– ident: 392_CR24
– volume: 17
  start-page: 5
  issue: 7
  year: 1962
  ident: 392_CR3
  publication-title: Vestnik Leningrad University
– ident: 392_CR31
  doi: 10.1090/memo/0262
– ident: 392_CR39
  doi: 10.1007/978-1-4684-9488-4
– volume: 12
  start-page: 725
  issue: 4
  year: 1992
  ident: 392_CR23
  publication-title: Ergodic Theory Dynamics Systems
  doi: 10.1017/S0143385700007069
– volume: 194
  start-page: 313
  issue: 2
  year: 2013
  ident: 392_CR7
  publication-title: Invent. Math.
  doi: 10.1007/s00222-012-0445-9
– volume: 25
  start-page: 603
  year: 1972
  ident: 392_CR5
  publication-title: Proceedings of the London Mathematical Society (3)
  doi: 10.1112/plms/s3-25.4.603
– volume: 81
  start-page: 119
  year: 1959
  ident: 392_CR14
  publication-title: American Journal of Mathematics
  doi: 10.2307/2372852
– volume: 85
  start-page: 551
  year: 1963
  ident: 392_CR15
  publication-title: American Journal of Mathematics
  doi: 10.2307/2373108
– volume: 17
  start-page: 1083
  issue: 5
  year: 1997
  ident: 392_CR27
  publication-title: Ergodic Theory Dynamic Systems
  doi: 10.1017/S0143385797086288
– ident: 392_CR10
  doi: 10.1017/S014338570000136X
– ident: 392_CR9
  doi: 10.4007/annals.2010.171.1387
– ident: 392_CR11
  doi: 10.1007/978-1-4757-6798-8
– volume: 5
  start-page: 663
  issue: 3
  year: 2011
  ident: 392_CR25
  publication-title: Groups, Geometry, and Dynamics
  doi: 10.4171/GGD/142
– volume: 134
  start-page: 121
  issue: 2
  year: 2001
  ident: 392_CR12
  publication-title: Monatshefte für Mathematik
  doi: 10.1007/s006050170003
– ident: 392_CR16
  doi: 10.1017/S0143385700003667
– ident: 392_CR19
  doi: 10.1007/978-3-662-04743-9_8
– ident: 392_CR30
– ident: 392_CR38
  doi: 10.1007/BF01299386
– volume: 23
  start-page: 217
  issue: 1
  year: 2010
  ident: 392_CR8
  publication-title: Journal of the American Mathematical Society
  doi: 10.1090/S0894-0347-09-00637-7
– ident: 392_CR34
– volume: 25
  start-page: 1809
  issue: 6
  year: 2005
  ident: 392_CR20
  publication-title: Ergodic Theory Dynamics Systems
  doi: 10.1017/S0143385705000258
– ident: 392_CR28
  doi: 10.1017/CBO9780511549908
– volume: 2
  start-page: 4
  year: 1968
  ident: 392_CR6
  publication-title: Functional Analysis and Its Applications
– ident: 392_CR21
– volume: 150
  start-page: 1083
  issue: 3
  year: 1999
  ident: 392_CR17
  publication-title: Annals of Mathematics (2)
  doi: 10.2307/121063
– volume: 15
  start-page: 1173
  issue: 6
  year: 1995
  ident: 392_CR29
  publication-title: Ergodic Theory Dynamic Systems
  doi: 10.1017/S0143385700009846
– volume: 151
  start-page: 1119
  issue: 3
  year: 2000
  ident: 392_CR33
  publication-title: Annals of Mathematics
  doi: 10.2307/121130
– volume: 10
  start-page: 117
  issue: 1
  year: 2016
  ident: 392_CR4
  publication-title: Groups, Geometry, and Dynamics
  doi: 10.4171/GGD/345
– ident: 392_CR13
  doi: 10.1017/S0143385700002297
– volume: 272
  start-page: A1695
  year: 1971
  ident: 392_CR22
  publication-title: Comptes Rendus de l’Acadmie des Sciences
– ident: 392_CR18
– ident: 392_CR26
  doi: 10.1007/b99421
– volume: 10
  start-page: 1
  issue: 1
  year: 1990
  ident: 392_CR2
  publication-title: Ergodic Theory Dynamic Systems
  doi: 10.1017/S0143385700005368
– ident: 392_CR32
  doi: 10.1090/memo/0323
– volume: 2
  start-page: 421
  year: 1968
  ident: 392_CR37
  publication-title: Journal of Differential Geometry
  doi: 10.4310/jdg/1214428658
– volume: 128
  start-page: 647
  year: 1959
  ident: 392_CR1
  publication-title: Doklady Akademii Nauk SSSR
– ident: 392_CR35
– volume: 192
  start-page: 119
  issue: 2
  year: 2004
  ident: 392_CR36
  publication-title: Acta Mathematics
  doi: 10.1007/BF02392739
SSID ssj0005545
Score 2.2424607
Snippet Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel...
Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1483
SubjectTerms Analysis
Entropy
Equivalence
Mathematics
Mathematics and Statistics
Orbital stability
Title Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence
URI https://link.springer.com/article/10.1007/s00039-016-0392-5
https://www.proquest.com/docview/1880824218
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8CBxwAxGFMOnECRQpv0cdymjgFiXJg0TlXSJNIk1I11O_DvSdK0AwRInFqpjivFTm3X9mcALmNJJeEUI4-bv1UsVojzOEAkCwOpDa6kZZXvOBhNyP2UTl0fd1FVu1cpSfulrpvdbB-pDn11BKyNOqLboElN6K6VeOL1NnUd1E4mNlEpIsSfVqnMn1h8NUYbD_NbUtTamuEB2HNOIuyVUj0EWzJvgX3nMEJ3HIsW2H2sQVeLIzBwWIfrJZwrmJgS9MU7tIONYN9MT9JrWS7gXYkQwV8lfFry2Qomb-uZVjjD9BhMhsnzYITcjASUaddnhQLBBVNxyLEIZCyIjxmmXoSZolLFzJNcyRiziGJ9K0OZRZFUvmBUE2c8wP4JaOTzXJ4CmAk_NPhtxFOUMGoCMf_G-HtShCoiURvgarPSzAGImzkWr2kNfWz3NzVFY2Z_U9oGV_WSRYme8Rdxp5JA6g5SkRq4uMikrfXrryupfHr8G7Ozf1Gfgx3PaIUtU-mAxmq5lhfa2VjxLmj2hv3-2FxvXx6SrlW2D0X_zMI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rBH6gRRe3Bk6ZJ3dqtOyKBgAJeIOG2tFubkJCBMA7-97ZdN39ETbwtWdslfW3f9_a-fg-A20hSSQTFyBPmbxWPFBIiChBJwkBqhytpwfIdBb0JeZrSqbvHvS7Z7mVK0p7U1WU3e49Uh746AtZOHdFtsKOxADM8ronX-uB1UFuZ2ESliBB_WqYyfxriqzP6QJjfkqLW13SPwIEDibBVWPUYbMmsDg4dYIRuO67rYH9Yia6uT0DbaR1uVnChYMdQ0Jdv0BY2go-mepLuy7MU9guFCDGX8GUlZjnsvG5mesGZQU_BpNsZt3vI1UhAiYY-OQpSkXIVhQKngYxS4mOOqccwV1SqiHtSKBlhzijWjzKUCWNS-SmnunEiAuyfgVq2yOQ5gEnqh0a_jXiKEk5NIOY_GLwn01AxwhoAl5MVJ05A3NSxmMeV9LGd39iQxsz8xrQB7qouy0I946_GzdICsdtI69jIxTGTttafvy-t8un1b4Nd_Kv1DdjtjYeDeNAfPV-CPc-sEEtZaYJavtrIKw08cnFtF9o7PODMpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOPAaIwYAcOIEisjbp4zjGpo3H4MCk3aqkSaRJUzfW7sC_J2nTDhAgcavUxJVsJ7Zr-zMAl6GkknCKkcPN3yoWKsR56CES-57UBlfSosp36PVH5H5Mx3bOaVpWu5cpyaKnwaA0JdnNXKibqvEt7ynVYbCOhrWBR3QdbOjbuGXUeuS0VzUeNJ9SbCJURIg7LtOaP5H4aphW3ua3BGlud3p7YMc6jLBdSHgfrMmkDnat8wjt0UzrYPupAmBND0DH4h4uF3CmYNeUo8_fYT7kCN6aSUp6L0sEHBRoEXwq4fOCTzLYfVtOtPIZoodg1Ou-dvrIzktAsXaDMuQJLpgKfY6FJ0NBXMwwdQLMFJUqZI7kSoaYBRTrR-nLOAikcgWjenHMPewegVoyS-QxgLFwfYPlRhxFCaMmKHNbxveTwlcBCRoAl8yKYgsmbmZaTKMKBjnnb2QKyAx_I9oAV9WWeYGk8dfiZimByB6qNDLQcYFJYevPX5dS-fT6N2In_1p9ATZf7nrR42D4cAq2HKMgefVKE9SyxVKeaR8k4-e5nn0AWNzQ4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviour+of+Entropy+Under+Bounded+and+Integrable+Orbit+Equivalence&rft.jtitle=Geometric+and+functional+analysis&rft.au=Austin%2C+Tim&rft.date=2016-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=26&rft.issue=6&rft.spage=1483&rft.epage=1525&rft_id=info:doi/10.1007%2Fs00039-016-0392-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon