Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence
Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable st...
Saved in:
Published in | Geometric and functional analysis Vol. 26; no. 6; pp. 1483 - 1525 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
G
and
H
be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in
H
of the cocycle-image of an element of
G
must have finite integral over its domain (a subset of the
G
-system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in
G
. ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements. |
---|---|
AbstractList | Let
G
and
H
be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in
H
of the cocycle-image of an element of
G
must have finite integral over its domain (a subset of the
G
-system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in
G
. ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements. Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel probability spaces. They are defined as stable orbit equivalences in which the associated cocycles satisfy certain tail bounds. In ‘integrable stable orbit equivalence’, the length in H of the cocycle-image of an element of G must have finite integral over its domain (a subset of the G-system), and similarly for the reverse cocycle. In ‘bounded stable orbit equivalence’, these functions must be essentially bounded in terms of the length in G. ‘Integrable’ stable orbit equivalence arises naturally in the study of integrable measure equivalence of groups themselves, as introduced recently by Bader, Furman and Sauer. The main result is a formula relating the Kolmogorov–Sinai entropies of two actions which are equivalent in one of these ways. Under either of these tail assumptions, the entropies stand in a proportion given by the compression constant of the stable orbit equivalence. In particular, in the case of full orbit equivalence subject to such a tail bound, entropy is an invariant. This contrasts with the case of unrestricted orbit equivalence, under which all free ergodic actions of countable amenable groups are equivalent. The proof uses an entropy-bound based on graphings for orbit equivalence relations, and in particular on a new notion of cost which is weighted by the word lengths of group elements. |
Author | Austin, Tim |
Author_xml | – sequence: 1 givenname: Tim surname: Austin fullname: Austin, Tim email: tim@cims.nyu.edu, tim.tda22@gmail.com organization: Courant Institute of Mathematical Sciences, New York University |
BookMark | eNp9kEFLwzAUx4NMcJt-AG8Bz9WXtmnToxtTB8IuDryFtHmZHTXZkm6wb29GPYigp_-D_H95j9-EjKyzSMgtg3sGUD4EAMiqBFiRxEwTfkHGLE8hEVUJozifX_I8e78ikxC2sc15zsdkPsMPdWzdwVNn6ML23u1OdG01ejpzh5iaKqvp0va48arukK583fZ0sT-0R9WhbfCaXBrVBbz5zilZPy3e5i_J6-p5OX98TZqcF31S6ForU5U16AIrnWeggKcClOFoKpVibbACJTjEEUtshECTacVjuakLyKbkbvh3593-gKGX23i3jSslEwJEmqdMxBYbWo13IXg0cufbT-VPkoE8u5KDKxmNyLMrySNT_mKatld966IP1Xb_kulAhrjFbtD_uOlP6Avz9IBL |
CitedBy_id | crossref_primary_10_1017_etds_2021_154 crossref_primary_10_1017_etds_2019_18 crossref_primary_10_1017_etds_2024_118 crossref_primary_10_1017_etds_2024_26 crossref_primary_10_1007_s00208_021_02190_x crossref_primary_10_1007_s11856_024_2642_9 crossref_primary_10_1016_j_aim_2018_05_008 crossref_primary_10_5802_aif_3443 crossref_primary_10_1007_s00031_020_09630_z |
Cites_doi | 10.4171/GGD/345 10.1007/s00222-012-0445-9 10.2307/121130 10.1017/S0143385700009846 10.2307/2372852 10.2307/2373108 10.2307/121063 10.1017/S0143385797086288 10.1007/BF02392739 10.4171/GGD/142 10.1112/plms/s3-25.4.603 10.1090/S0894-0347-09-00637-7 10.1007/s006050170003 10.1017/S0143385705000258 10.1090/memo/0262 10.1007/978-1-4684-9488-4 10.1017/S0143385700007069 10.1017/S014338570000136X 10.4007/annals.2010.171.1387 10.1007/978-1-4757-6798-8 10.1017/S0143385700003667 10.1007/978-3-662-04743-9_8 10.1007/BF01299386 10.1017/CBO9780511549908 10.1017/S0143385700002297 10.1007/b99421 10.1017/S0143385700005368 10.1090/memo/0323 10.4310/jdg/1214428658 |
ContentType | Journal Article |
Copyright | Springer International Publishing 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: Springer International Publishing 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00039-016-0392-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 1525 |
ExternalDocumentID | 10_1007_s00039_016_0392_5 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c456t-6dbdaf97b0d6e9d430a05280af5ef9a2ebfe90a8502ebe7ec88ef3da5e9dcb603 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri Jul 25 11:02:56 EDT 2025 Tue Jul 01 02:31:06 EDT 2025 Thu Apr 24 22:50:17 EDT 2025 Fri Feb 21 02:32:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-6dbdaf97b0d6e9d430a05280af5ef9a2ebfe90a8502ebe7ec88ef3da5e9dcb603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880824218 |
PQPubID | 2044207 |
PageCount | 43 |
ParticipantIDs | proquest_journals_1880824218 crossref_primary_10_1007_s00039_016_0392_5 crossref_citationtrail_10_1007_s00039_016_0392_5 springer_journals_10_1007_s00039_016_0392_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2016 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | CR19 Bader, Furman, Sauer (CR7) 2013; 194 CR18 CR39 CR16 CR38 CR13 CR35 Austin (CR4) 2016; 10 CR34 CR11 Abramov, Rohlin (CR3) 1962; 17 CR10 CR32 Gaboriau (CR20) 2005; 25 CR31 CR30 Bowen (CR8) 2010; 23 Adams (CR2) 1990; 10 Rudolph, Weiss (CR33) 2000; 151 Shalom (CR36) 2004; 192 Dye (CR14) 1959; 81 Belinskaya (CR6) 1968; 2 Kammeyer, Rudolph (CR27) 1997; 17 CR28 CR9 CR26 Bass (CR5) 1972; 25 Danilenko (CR12) 2001; 134 CR24 Wolf (CR37) 1968; 2 Dye (CR15) 1963; 85 CR21 Levitt (CR29) 1995; 15 Hasfura-Buenaga (CR23) 1992; 12 Abramov (CR1) 1959; 128 Furman (CR17) 1999; 150 Kerr, Li (CR25) 2011; 5 Guivarc’h (CR22) 1971; 272 S. Adams (392_CR2) 1990; 10 392_CR28 J.W. Kammeyer (392_CR27) 1997; 17 L. Bowen (392_CR8) 2010; 23 D.J. Rudolph (392_CR33) 2000; 151 392_CR21 392_CR26 392_CR24 392_CR30 A. Furman (392_CR17) 1999; 150 J.A. Wolf (392_CR37) 1968; 2 U. Bader (392_CR7) 2013; 194 A.I. Danilenko (392_CR12) 2001; 134 392_CR19 392_CR18 392_CR39 D. Kerr (392_CR25) 2011; 5 R. Belinskaya (392_CR6) 1968; 2 392_CR34 L.M. Abramov (392_CR3) 1962; 17 392_CR11 H. Bass (392_CR5) 1972; 25 392_CR10 392_CR32 H. A. Dye (392_CR14) 1959; 81 H.A. Dye (392_CR15) 1963; 85 Y. Guivarc’h (392_CR22) 1971; 272 392_CR31 392_CR16 392_CR38 L.M. Abramov (392_CR1) 1959; 128 392_CR13 392_CR35 Y. Shalom (392_CR36) 2004; 192 J.R. Hasfura-Buenaga (392_CR23) 1992; 12 392_CR9 T. Austin (392_CR4) 2016; 10 G. Levitt (392_CR29) 1995; 15 D. Gaboriau (392_CR20) 2005; 25 |
References_xml | – volume: 12 start-page: 725 issue: 4 year: 1992 end-page: 741 ident: CR23 article-title: The equivalence theorem for -actions of positive entropy publication-title: Ergodic Theory Dynamics Systems – ident: CR18 – ident: CR39 – ident: CR16 – ident: CR30 – volume: 17 start-page: 5 issue: 7 year: 1962 end-page: 13 ident: CR3 article-title: Entropy of a skew product of mappings with invariant measure publication-title: Vestnik Leningrad University – ident: CR10 – volume: 2 start-page: 421 year: 1968 end-page: 446 ident: CR37 article-title: Growth of finitely generated solvable groups and curvature of Riemanniann manifolds publication-title: Journal of Differential Geometry – ident: CR35 – volume: 10 start-page: 117 issue: 1 year: 2016 end-page: 154 ident: CR4 article-title: Integrable measure equivalence for groups of polynomial growth publication-title: Groups, Geometry, and Dynamics doi: 10.4171/GGD/345 – volume: 194 start-page: 313 issue: 2 year: 2013 end-page: 379 ident: CR7 article-title: Integrable measure equivalence and rigidity of hyperbolic lattices publication-title: Invent. Math. doi: 10.1007/s00222-012-0445-9 – volume: 151 start-page: 1119 issue: 3 year: 2000 end-page: 1150 ident: CR33 article-title: Entropy and mixing for amenable group actions (2) publication-title: Annals of Mathematics doi: 10.2307/121130 – volume: 15 start-page: 1173 issue: 6 year: 1995 end-page: 1181 ident: CR29 article-title: On the cost of generating an equivalence relation publication-title: Ergodic Theory Dynamic Systems doi: 10.1017/S0143385700009846 – volume: 10 start-page: 1 issue: 1 year: 1990 end-page: 14 ident: CR2 article-title: Trees and amenable equivalence relations publication-title: Ergodic Theory Dynamic Systems – volume: 81 start-page: 119 year: 1959 end-page: 159 ident: CR14 article-title: On groups of measure preserving transformation. I publication-title: American Journal of Mathematics doi: 10.2307/2372852 – ident: CR21 – volume: 85 start-page: 551 year: 1963 end-page: 576 ident: CR15 article-title: On groups of measure preserving transformations. II publication-title: American Journal of Mathematics doi: 10.2307/2373108 – volume: 150 start-page: 1083 issue: 3 year: 1999 end-page: 1108 ident: CR17 article-title: Orbit equivalence rigidity publication-title: Annals of Mathematics (2) doi: 10.2307/121063 – ident: CR19 – volume: 2 start-page: 4 year: 1968 end-page: 16 ident: CR6 article-title: Partitions of lebesgue space in trajectories defined by ergodic automorphisms publication-title: Functional Analysis and Its Applications – ident: CR38 – volume: 17 start-page: 1083 issue: 5 year: 1997 end-page: 1129 ident: CR27 article-title: Restricted orbit equivalence for ergodic actions. I publication-title: Ergodic Theory Dynamic Systems doi: 10.1017/S0143385797086288 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR34 – volume: 192 start-page: 119 issue: 2 year: 2004 end-page: 185 ident: CR36 article-title: Harmonic analysis, cohomology, and the large-scale geometry of amenable groups publication-title: Acta Mathematics doi: 10.1007/BF02392739 – volume: 5 start-page: 663 issue: 3 year: 2011 end-page: 672 ident: CR25 article-title: Bernoulli actions and infinite entropy publication-title: Groups, Geometry, and Dynamics doi: 10.4171/GGD/142 – volume: 128 start-page: 647 year: 1959 end-page: 650 ident: CR1 article-title: The entropy of a derived automorphism publication-title: Doklady Akademii Nauk SSSR – volume: 25 start-page: 603 year: 1972 end-page: 614 ident: CR5 article-title: The degree of polynomial growth of finitely generated nilpotent groups publication-title: Proceedings of the London Mathematical Society (3) doi: 10.1112/plms/s3-25.4.603 – volume: 272 start-page: A1695 year: 1971 end-page: A1696 ident: CR22 article-title: Groupes de Lie à croissance polynomiale publication-title: Comptes Rendus de l’Acadmie des Sciences – volume: 23 start-page: 217 issue: 1 year: 2010 end-page: 245 ident: CR8 article-title: Measure conjugacy invariants for actions of countable sofic groups publication-title: Journal of the American Mathematical Society doi: 10.1090/S0894-0347-09-00637-7 – volume: 134 start-page: 121 issue: 2 year: 2001 end-page: 141 ident: CR12 article-title: Entropy theory from the orbital point of view publication-title: Monatshefte für Mathematik doi: 10.1007/s006050170003 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 25 start-page: 1809 issue: 6 year: 2005 end-page: 1827 ident: CR20 article-title: Examples of groups that are measure equivalent to the free group publication-title: Ergodic Theory Dynamics Systems doi: 10.1017/S0143385705000258 – ident: 392_CR24 – volume: 17 start-page: 5 issue: 7 year: 1962 ident: 392_CR3 publication-title: Vestnik Leningrad University – ident: 392_CR31 doi: 10.1090/memo/0262 – ident: 392_CR39 doi: 10.1007/978-1-4684-9488-4 – volume: 12 start-page: 725 issue: 4 year: 1992 ident: 392_CR23 publication-title: Ergodic Theory Dynamics Systems doi: 10.1017/S0143385700007069 – volume: 194 start-page: 313 issue: 2 year: 2013 ident: 392_CR7 publication-title: Invent. Math. doi: 10.1007/s00222-012-0445-9 – volume: 25 start-page: 603 year: 1972 ident: 392_CR5 publication-title: Proceedings of the London Mathematical Society (3) doi: 10.1112/plms/s3-25.4.603 – volume: 81 start-page: 119 year: 1959 ident: 392_CR14 publication-title: American Journal of Mathematics doi: 10.2307/2372852 – volume: 85 start-page: 551 year: 1963 ident: 392_CR15 publication-title: American Journal of Mathematics doi: 10.2307/2373108 – volume: 17 start-page: 1083 issue: 5 year: 1997 ident: 392_CR27 publication-title: Ergodic Theory Dynamic Systems doi: 10.1017/S0143385797086288 – ident: 392_CR10 doi: 10.1017/S014338570000136X – ident: 392_CR9 doi: 10.4007/annals.2010.171.1387 – ident: 392_CR11 doi: 10.1007/978-1-4757-6798-8 – volume: 5 start-page: 663 issue: 3 year: 2011 ident: 392_CR25 publication-title: Groups, Geometry, and Dynamics doi: 10.4171/GGD/142 – volume: 134 start-page: 121 issue: 2 year: 2001 ident: 392_CR12 publication-title: Monatshefte für Mathematik doi: 10.1007/s006050170003 – ident: 392_CR16 doi: 10.1017/S0143385700003667 – ident: 392_CR19 doi: 10.1007/978-3-662-04743-9_8 – ident: 392_CR30 – ident: 392_CR38 doi: 10.1007/BF01299386 – volume: 23 start-page: 217 issue: 1 year: 2010 ident: 392_CR8 publication-title: Journal of the American Mathematical Society doi: 10.1090/S0894-0347-09-00637-7 – ident: 392_CR34 – volume: 25 start-page: 1809 issue: 6 year: 2005 ident: 392_CR20 publication-title: Ergodic Theory Dynamics Systems doi: 10.1017/S0143385705000258 – ident: 392_CR28 doi: 10.1017/CBO9780511549908 – volume: 2 start-page: 4 year: 1968 ident: 392_CR6 publication-title: Functional Analysis and Its Applications – ident: 392_CR21 – volume: 150 start-page: 1083 issue: 3 year: 1999 ident: 392_CR17 publication-title: Annals of Mathematics (2) doi: 10.2307/121063 – volume: 15 start-page: 1173 issue: 6 year: 1995 ident: 392_CR29 publication-title: Ergodic Theory Dynamic Systems doi: 10.1017/S0143385700009846 – volume: 151 start-page: 1119 issue: 3 year: 2000 ident: 392_CR33 publication-title: Annals of Mathematics doi: 10.2307/121130 – volume: 10 start-page: 117 issue: 1 year: 2016 ident: 392_CR4 publication-title: Groups, Geometry, and Dynamics doi: 10.4171/GGD/345 – ident: 392_CR13 doi: 10.1017/S0143385700002297 – volume: 272 start-page: A1695 year: 1971 ident: 392_CR22 publication-title: Comptes Rendus de l’Acadmie des Sciences – ident: 392_CR18 – ident: 392_CR26 doi: 10.1007/b99421 – volume: 10 start-page: 1 issue: 1 year: 1990 ident: 392_CR2 publication-title: Ergodic Theory Dynamic Systems doi: 10.1017/S0143385700005368 – ident: 392_CR32 doi: 10.1090/memo/0323 – volume: 2 start-page: 421 year: 1968 ident: 392_CR37 publication-title: Journal of Differential Geometry doi: 10.4310/jdg/1214428658 – volume: 128 start-page: 647 year: 1959 ident: 392_CR1 publication-title: Doklady Akademii Nauk SSSR – ident: 392_CR35 – volume: 192 start-page: 119 issue: 2 year: 2004 ident: 392_CR36 publication-title: Acta Mathematics doi: 10.1007/BF02392739 |
SSID | ssj0005545 |
Score | 2.2424607 |
Snippet | Let
G
and
H
be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel... Let G and H be infinite finitely generated amenable groups. This paper studies two notions of equivalence between actions of such groups on standard Borel... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1483 |
SubjectTerms | Analysis Entropy Equivalence Mathematics Mathematics and Statistics Orbital stability |
Title | Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence |
URI | https://link.springer.com/article/10.1007/s00039-016-0392-5 https://www.proquest.com/docview/1880824218 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8CBxwAxGFMOnECRQpv0cdymjgFiXJg0TlXSJNIk1I11O_DvSdK0AwRInFqpjivFTm3X9mcALmNJJeEUI4-bv1UsVojzOEAkCwOpDa6kZZXvOBhNyP2UTl0fd1FVu1cpSfulrpvdbB-pDn11BKyNOqLboElN6K6VeOL1NnUd1E4mNlEpIsSfVqnMn1h8NUYbD_NbUtTamuEB2HNOIuyVUj0EWzJvgX3nMEJ3HIsW2H2sQVeLIzBwWIfrJZwrmJgS9MU7tIONYN9MT9JrWS7gXYkQwV8lfFry2Qomb-uZVjjD9BhMhsnzYITcjASUaddnhQLBBVNxyLEIZCyIjxmmXoSZolLFzJNcyRiziGJ9K0OZRZFUvmBUE2c8wP4JaOTzXJ4CmAk_NPhtxFOUMGoCMf_G-HtShCoiURvgarPSzAGImzkWr2kNfWz3NzVFY2Z_U9oGV_WSRYme8Rdxp5JA6g5SkRq4uMikrfXrryupfHr8G7Ozf1Gfgx3PaIUtU-mAxmq5lhfa2VjxLmj2hv3-2FxvXx6SrlW2D0X_zMI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rBH6gRRe3Bk6ZJ3dqtOyKBgAJeIOG2tFubkJCBMA7-97ZdN39ETbwtWdslfW3f9_a-fg-A20hSSQTFyBPmbxWPFBIiChBJwkBqhytpwfIdBb0JeZrSqbvHvS7Z7mVK0p7U1WU3e49Uh746AtZOHdFtsKOxADM8ronX-uB1UFuZ2ESliBB_WqYyfxriqzP6QJjfkqLW13SPwIEDibBVWPUYbMmsDg4dYIRuO67rYH9Yia6uT0DbaR1uVnChYMdQ0Jdv0BY2go-mepLuy7MU9guFCDGX8GUlZjnsvG5mesGZQU_BpNsZt3vI1UhAiYY-OQpSkXIVhQKngYxS4mOOqccwV1SqiHtSKBlhzijWjzKUCWNS-SmnunEiAuyfgVq2yOQ5gEnqh0a_jXiKEk5NIOY_GLwn01AxwhoAl5MVJ05A3NSxmMeV9LGd39iQxsz8xrQB7qouy0I946_GzdICsdtI69jIxTGTttafvy-t8un1b4Nd_Kv1DdjtjYeDeNAfPV-CPc-sEEtZaYJavtrIKw08cnFtF9o7PODMpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOPAaIwYAcOIEisjbp4zjGpo3H4MCk3aqkSaRJUzfW7sC_J2nTDhAgcavUxJVsJ7Zr-zMAl6GkknCKkcPN3yoWKsR56CES-57UBlfSosp36PVH5H5Mx3bOaVpWu5cpyaKnwaA0JdnNXKibqvEt7ynVYbCOhrWBR3QdbOjbuGXUeuS0VzUeNJ9SbCJURIg7LtOaP5H4aphW3ua3BGlud3p7YMc6jLBdSHgfrMmkDnat8wjt0UzrYPupAmBND0DH4h4uF3CmYNeUo8_fYT7kCN6aSUp6L0sEHBRoEXwq4fOCTzLYfVtOtPIZoodg1Ou-dvrIzktAsXaDMuQJLpgKfY6FJ0NBXMwwdQLMFJUqZI7kSoaYBRTrR-nLOAikcgWjenHMPewegVoyS-QxgLFwfYPlRhxFCaMmKHNbxveTwlcBCRoAl8yKYgsmbmZaTKMKBjnnb2QKyAx_I9oAV9WWeYGk8dfiZimByB6qNDLQcYFJYevPX5dS-fT6N2In_1p9ATZf7nrR42D4cAq2HKMgefVKE9SyxVKeaR8k4-e5nn0AWNzQ4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviour+of+Entropy+Under+Bounded+and+Integrable+Orbit+Equivalence&rft.jtitle=Geometric+and+functional+analysis&rft.au=Austin%2C+Tim&rft.date=2016-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=26&rft.issue=6&rft.spage=1483&rft.epage=1525&rft_id=info:doi/10.1007%2Fs00039-016-0392-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |