MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy

Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor N...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society of Nephrology Vol. 28; no. 9; pp. 2631 - 2640
Main Authors Wang, Bin, Zhang, Cong, Zhang, Aiqing, Cai, Hui, Price, S. Russ, Wang, Xiaonan H.
Format Journal Article
LanguageEnglish
Published United States American Society of Nephrology 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24–2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24–2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24–2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.
AbstractList Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24–2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24–2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24–2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.
Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.
Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.
Author Zhang, Cong
Zhang, Aiqing
Wang, Xiaonan H.
Price, S. Russ
Cai, Hui
Wang, Bin
Author_xml – sequence: 1
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
– sequence: 2
  givenname: Cong
  surname: Zhang
  fullname: Zhang, Cong
  organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Division of Nephrology, China-Japan Friendship Hospital, Beijing, China
– sequence: 3
  givenname: Aiqing
  surname: Zhang
  fullname: Zhang, Aiqing
  organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
– sequence: 4
  givenname: Hui
  surname: Cai
  fullname: Cai, Hui
  organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
– sequence: 5
  givenname: S. Russ
  surname: Price
  fullname: Price, S. Russ
  organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
– sequence: 6
  givenname: Xiaonan H.
  surname: Wang
  fullname: Wang, Xiaonan H.
  organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28400445$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1P3DAUtBAIFsq1xypHLtn6284FKdpCQcBWaos4Wo5jg6sk3toJ6v57jHYLFKmn957fzDxr5hDsDmGwAHxEcI64RJ_rH8s5hogjhDAiO2CGGCEloQzu5h5SXnIuyAE4TOkXhIhhIfbBAZYUQkrZDNzdeBPD92VdYqILPbTF64PQeei9Kc7-2Gh8skWzLuredj5EPfrhvlhcfSkvh3YyNvOmZDpb1GMMq4f1B7DndJfs8bYegdvzs5-Li_L629fLRX1dGsr4WHJDSQuJM6giCDvJK1xJSUjbMtk0DROVk64ixllBsbNVi4ypNMOtcVpiQckRON3orqamt62xwxh1p1bR9zquVdBe_bsZ_IO6D4-KMcErIrPAyVYght-TTaPqfTK26_Rgw5QUklJAhiVHGfrp7a2XI3_dzID5BpAdTCla9wJBUD3HpXJc6jWuTKDvCMaP2drw_Fff_Y_2BP7PlsY
CitedBy_id crossref_primary_10_1038_s41598_020_72542_1
crossref_primary_10_3389_fcell_2020_585644
crossref_primary_10_1016_j_nbd_2021_105559
crossref_primary_10_36660_abc_20200330
crossref_primary_10_1016_j_jacbts_2019_10_011
crossref_primary_10_1002_prp2_1049
crossref_primary_10_1096_fj_201901981R
crossref_primary_10_1016_j_biopha_2021_111820
crossref_primary_10_3390_cells10123527
crossref_primary_10_1016_j_ajpath_2022_09_003
crossref_primary_10_1186_s40798_023_00573_9
crossref_primary_10_3390_ani9110859
crossref_primary_10_3390_ijms19113608
crossref_primary_10_3390_ijms25158362
crossref_primary_10_1111_jcmm_15030
crossref_primary_10_1038_s41598_024_77691_1
crossref_primary_10_1096_fj_202000214RR
crossref_primary_10_3390_ijms242015318
crossref_primary_10_1080_21655979_2021_2024688
crossref_primary_10_1097_MCO_0000000000000503
crossref_primary_10_1002_jcsm_12296
crossref_primary_10_1096_fj_201901936RR
crossref_primary_10_1096_fj_201900884R
crossref_primary_10_1681_ASN_2017060631
crossref_primary_10_1007_s10974_021_09612_y
crossref_primary_10_1016_j_exger_2022_111761
crossref_primary_10_3390_toxins12120811
crossref_primary_10_1186_s12882_025_04057_8
crossref_primary_10_1089_hum_2019_287
crossref_primary_10_3389_fcell_2020_577010
crossref_primary_10_1038_s41581_021_00498_0
crossref_primary_10_1016_j_smhs_2024_02_004
crossref_primary_10_1111_jcmm_17626
crossref_primary_10_3390_ijms23116047
crossref_primary_10_3390_ijms251910773
crossref_primary_10_1038_s41598_022_23723_7
crossref_primary_10_1042_CS20200279
crossref_primary_10_1080_00207454_2020_1810030
crossref_primary_10_1186_s12860_019_0194_3
crossref_primary_10_1016_j_lfs_2020_118666
crossref_primary_10_1016_j_bcp_2022_115407
crossref_primary_10_1016_j_bbrc_2018_02_144
crossref_primary_10_12677_ACM_2022_123231
crossref_primary_10_1038_s41598_021_92489_1
crossref_primary_10_1113_JP282663
crossref_primary_10_1002_jcsm_12512
crossref_primary_10_3390_biomedicines12020468
crossref_primary_10_1016_j_ymthe_2019_01_008
crossref_primary_10_3389_fphys_2018_01648
crossref_primary_10_1016_j_biopha_2018_07_097
crossref_primary_10_3389_fcvm_2020_593429
crossref_primary_10_1134_S1990519X25010018
crossref_primary_10_1016_j_lfs_2021_119926
crossref_primary_10_3390_biom12020191
crossref_primary_10_3390_biomedicines13020352
crossref_primary_10_3390_cells13191620
crossref_primary_10_1016_j_semnephrol_2023_151409
crossref_primary_10_1248_bpb_b19_00513
crossref_primary_10_3390_ijms20081962
crossref_primary_10_1038_s41536_021_00127_1
crossref_primary_10_3389_fcell_2022_951837
crossref_primary_10_1186_s40779_024_00540_9
crossref_primary_10_1016_j_freeradbiomed_2024_01_036
crossref_primary_10_1038_s41401_023_01140_4
crossref_primary_10_1093_ndt_gfaa025
crossref_primary_10_3892_mmr_2019_9845
crossref_primary_10_1053_j_jrn_2022_09_009
crossref_primary_10_3390_ijms25105117
crossref_primary_10_1093_ndt_gfz193
crossref_primary_10_1038_s41574_025_01088_x
crossref_primary_10_1016_j_pcad_2017_06_003
crossref_primary_10_1002_rco2_82
crossref_primary_10_1096_fj_201700861R
crossref_primary_10_5713_ajas_17_0563
crossref_primary_10_1016_j_jsxm_2018_09_019
crossref_primary_10_3390_ijms25158474
crossref_primary_10_1186_s13048_022_00979_1
crossref_primary_10_1002_jcsm_13112
crossref_primary_10_3390_ijms21176059
Cites_doi 10.1016/j.cellsig.2009.08.002
10.1111/apha.12228
10.1681/ASN.2014020144
10.1681/ASN.2006020131
10.1073/pnas.0811371106
10.1016/j.biocel.2013.06.029
10.1681/ASN.2008060628
10.1152/ajpcell.00066.2013
10.1371/journal.pone.0159181
10.1210/en.2007-0183
10.1371/journal.pone.0134511
10.1152/ajpcell.00395.2013
10.1186/1476-4598-9-232
10.1007/s00125-014-3337-2
10.1681/ASN.2010121278
10.1681/ASN.2009101011
10.1152/ajpcell.00542.2005
10.1074/jbc.M109.041707
10.1038/ki.2009.260
10.1152/ajpcell.00142.2010
10.3389/fphys.2016.00087
10.1681/ASN.2009060571
10.1172/JCI18330
10.1038/nrneph.2014.112
10.1097/01.ASN.0000127211.86206.E1
10.1016/j.biocel.2013.06.027
10.1161/HYPERTENSIONAHA.110.168252
10.1016/j.cmet.2013.07.012
10.1038/ki.2012.84
10.1016/j.celrep.2014.08.035
10.1096/fj.10-176917
10.1097/MCO.0b013e32835f81b9
10.1074/jbc.M114.561845
10.1038/sj.gt.3302927
10.1016/S0092-8674(04)00400-3
10.1016/j.bbrc.2012.05.106
10.18632/aging.100643
10.1016/j.bbamcr.2010.03.019
10.1152/ajpcell.00266.2013
10.1074/jbc.M111.271270
10.1177/1545968314562117
10.1016/S0899-9007(96)00141-4
ContentType Journal Article
Copyright Copyright © 2017 by the American Society of Nephrology.
Copyright © 2017 by the American Society of Nephrology 2017
Copyright_xml – notice: Copyright © 2017 by the American Society of Nephrology.
– notice: Copyright © 2017 by the American Society of Nephrology 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1681/ASN.2016111213
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1533-3450
EndPage 2640
ExternalDocumentID PMC5576938
28400445
10_1681_ASN_2016111213
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK095610
– fundername: BLRD VA
  grantid: I01 BX001456
– fundername: NCATS NIH HHS
  grantid: UL1 TR000454
– fundername: NINDS NIH HHS
  grantid: P30 NS055077
– fundername: NIAMS NIH HHS
  grantid: R01 AR060268
– fundername: BLRD VA
  grantid: I01 BX000994
GroupedDBID ---
.55
.GJ
0R~
18M
29L
2WC
34G
39C
53G
5GY
5RE
5VS
6PF
AAQQT
AAUIN
AAWTL
AAYXX
ABBLC
ABJNI
ABOCM
ABXYN
ACGFO
ACLDA
ACZKN
ADBBV
AENEX
AFEXH
AFFNX
AFNMH
AHOMT
AHQVU
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
BYPQX
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
ERAAH
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
O9-
OK1
OVD
P0W
P2P
RHI
RPM
TEORI
TNP
TR2
W8F
X7M
XVB
YFH
ZGI
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
5PM
ADSXY
ID FETCH-LOGICAL-c456t-6c43d03fc19312f869298833dd58bbb579f8f93cfe742fe9d1cc9a52dcfa82743
ISSN 1046-6673
1533-3450
IngestDate Thu Aug 21 18:18:33 EDT 2025
Fri Jul 11 02:24:44 EDT 2025
Wed Feb 19 02:33:23 EST 2025
Thu Apr 24 22:58:52 EDT 2025
Tue Jul 01 04:34:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords uremia
microRNA
TRIM63/MuRF1
exosome
FBXO32/atrogin
Language English
License Copyright © 2017 by the American Society of Nephrology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c456t-6c43d03fc19312f869298833dd58bbb579f8f93cfe742fe9d1cc9a52dcfa82743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
B.W. and C.Z. contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5576938
PMID 28400445
PQID 1887052861
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576938
proquest_miscellaneous_1887052861
pubmed_primary_28400445
crossref_primary_10_1681_ASN_2016111213
crossref_citationtrail_10_1681_ASN_2016111213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Society of Nephrology
PublicationTitleAlternate J Am Soc Nephrol
PublicationYear 2017
Publisher American Society of Nephrology
Publisher_xml – name: American Society of Nephrology
References Wang (B8-20230819) 2013; 45
Zhou (B44-20230819) 2007; 148
Sun (B34-20230819) 2009; 21
Hu (B36-20230819) 2014; 6
Wang (B22-20230819) 2013; 16
Wang (B33-20230819) 2007; 14
Zhang (B16-20230819) 2013; 18
Chhabra (B32-20230819) 2010; 9
Xu (B42-20230819) 2012; 82
Zhang (B15-20230819) 2011; 25
Soares (B24-20230819) 2014; 289
Zhang (B11-20230819) 2009; 20
Camera (B40-20230819) 2016; 7
Wang (B3-20230819) 2009; 76
Hudson (B26-20230819) 2014; 306
Allen (B17-20230819) 2007; 292
Wang (B9-20230819) 2014; 10
Lee (B12-20230819) 2004; 15
Du (B19-20230819) 2004; 113
Režen (B41-20230819) 2014; 210
Willand (B7-20230819) 2015; 29
Lin (B29-20230819) 2009; 106
Hudson (B37-20230819) 2013; 45
Griffiths (B2-20230819) 1996; 12
Aswad (B43-20230819) 2014; 57
Hu (B6-20230819) 2015; 26
Workeneh (B20-20230819) 2006; 17
Roberts-Wilson (B31-20230819) 2010; 1803
Fernandes (B39-20230819) 2011; 58
Wang (B21-20230819) 2010; 285
Ehlers (B38-20230819) 2014; 8
Su (B5-20230819) 2015; 10
Sandri (B14-20230819) 2004; 117
Rahnert (B10-20230819) 2016; 11
Allen (B30-20230819) 2011; 300
Hu (B35-20230819) 2010; 21
Wada (B27-20230819) 2011; 286
Huang (B28-20230819) 2012; 423
Du (B45-20230819) 2014; 306
Wang (B23-20230819) 2011; 22
Avram (B1-20230819) 1994; 14
Zhang (B13-20230819) 2010; 21
Hudson (B25-20230819) 2014; 307
28720683 - J Am Soc Nephrol. 2017 Sep;28(9):2557-2559
References_xml – volume: 21
  start-page: 1857
  year: 2009
  ident: B34-20230819
  article-title: XIAP associates with GSK3 and inhibits the promotion of intrinsic apoptotic signaling by GSK3.
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2009.08.002
– volume: 210
  start-page: 655
  year: 2014
  ident: B41-20230819
  article-title: Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males.
  publication-title: Acta Physiol (Oxf)
  doi: 10.1111/apha.12228
– volume: 26
  start-page: 626
  year: 2015
  ident: B6-20230819
  article-title: Low-frequency electrical stimulation attenuates muscle atrophy in CKD--A potential treatment strategy.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2014020144
– volume: 17
  start-page: 3233
  year: 2006
  ident: B20-20230819
  article-title: Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2006020131
– volume: 106
  start-page: 12103
  year: 2009
  ident: B29-20230819
  article-title: miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811371106
– volume: 45
  start-page: 2173
  year: 2013
  ident: B37-20230819
  article-title: Calcineurin: A poorly understood regulator of muscle mass.
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2013.06.029
– volume: 20
  start-page: 604
  year: 2009
  ident: B11-20230819
  article-title: IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2008060628
– volume: 306
  start-page: C28
  year: 2014
  ident: B45-20230819
  article-title: Aging increases CCN1 expression leading to muscle senescence.
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00066.2013
– volume: 11
  start-page: e0159181
  year: 2016
  ident: B10-20230819
  article-title: Glucocorticoids alter CRTC-CREB signaling in muscle cells: Impact on PGC-1α expression and atrophy markers.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0159181
– volume: 148
  start-page: 5696
  year: 2007
  ident: B44-20230819
  article-title: Evidence for adipose-muscle cross talk: Opposing regulation of muscle proteolysis by adiponectin and Fatty acids.
  publication-title: Endocrinology
  doi: 10.1210/en.2007-0183
– volume: 10
  start-page: e0134511
  year: 2015
  ident: B5-20230819
  article-title: Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates diabetic myopathy by enhancing muscle regeneration.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134511
– volume: 307
  start-page: C314
  year: 2014
  ident: B25-20230819
  article-title: miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle.
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00395.2013
– volume: 9
  start-page: 232
  year: 2010
  ident: B32-20230819
  article-title: Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases.
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-9-232
– volume: 57
  start-page: 2155
  year: 2014
  ident: B43-20230819
  article-title: Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice.
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3337-2
– volume: 22
  start-page: 2068
  year: 2011
  ident: B23-20230819
  article-title: Decreased miR-29 suppresses myogenesis in CKD.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2010121278
– volume: 21
  start-page: 1174
  year: 2010
  ident: B35-20230819
  article-title: XIAP reduces muscle proteolysis induced by CKD.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2009101011
– volume: 292
  start-page: C188
  year: 2007
  ident: B17-20230819
  article-title: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00542.2005
– volume: 285
  start-page: 21249
  year: 2010
  ident: B21-20230819
  article-title: Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.041707
– volume: 76
  start-page: 751
  year: 2009
  ident: B3-20230819
  article-title: Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function.
  publication-title: Kidney Int
  doi: 10.1038/ki.2009.260
– volume: 300
  start-page: C124
  year: 2011
  ident: B30-20230819
  article-title: Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle.
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00142.2010
– volume: 7
  start-page: 87
  year: 2016
  ident: B40-20230819
  article-title: Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle.
  publication-title: Front Physiol
  doi: 10.3389/fphys.2016.00087
– volume: 21
  start-page: 419
  year: 2010
  ident: B13-20230819
  article-title: Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2009060571
– volume: 113
  start-page: 115
  year: 2004
  ident: B19-20230819
  article-title: Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions.
  publication-title: J Clin Invest
  doi: 10.1172/JCI18330
– volume: 10
  start-page: 504
  year: 2014
  ident: B9-20230819
  article-title: Mechanisms of muscle wasting in chronic kidney disease.
  publication-title: Nat Rev Nephrol
  doi: 10.1038/nrneph.2014.112
– volume: 15
  start-page: 1537
  year: 2004
  ident: B12-20230819
  article-title: Regulation of muscle protein degradation: Coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase.
  publication-title: J Am Soc Nephrol
  doi: 10.1097/01.ASN.0000127211.86206.E1
– volume: 45
  start-page: 2230
  year: 2013
  ident: B8-20230819
  article-title: Muscle wasting from kidney failure-a model for catabolic conditions.
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2013.06.027
– volume: 58
  start-page: 182
  year: 2011
  ident: B39-20230819
  article-title: Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7).
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.110.168252
– volume: 18
  start-page: 368
  year: 2013
  ident: B16-20230819
  article-title: Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.07.012
– volume: 82
  start-page: 401
  year: 2012
  ident: B42-20230819
  article-title: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486.
  publication-title: Kidney Int
  doi: 10.1038/ki.2012.84
– volume: 8
  start-page: 1639
  year: 2014
  ident: B38-20230819
  article-title: NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity.
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2014.08.035
– volume: 25
  start-page: 1653
  year: 2011
  ident: B15-20230819
  article-title: Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease.
  publication-title: FASEB J
  doi: 10.1096/fj.10-176917
– volume: 16
  start-page: 258
  year: 2013
  ident: B22-20230819
  article-title: MicroRNA in myogenesis and muscle atrophy.
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/MCO.0b013e32835f81b9
– volume: 289
  start-page: 21909
  year: 2014
  ident: B24-20230819
  article-title: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.561845
– volume: 14
  start-page: 711
  year: 2007
  ident: B33-20230819
  article-title: X-chromosome linked inhibitor of apoptosis protein inhibits muscle proteolysis in insulin-deficient mice.
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3302927
– volume: 117
  start-page: 399
  year: 2004
  ident: B14-20230819
  article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy.
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00400-3
– volume: 423
  start-page: 265
  year: 2012
  ident: B28-20230819
  article-title: MicroRNA-27a promotes myoblast proliferation by targeting myostatin.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2012.05.106
– volume: 6
  start-page: 160
  year: 2014
  ident: B36-20230819
  article-title: MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways.
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100643
– volume: 1803
  start-page: 960
  year: 2010
  ident: B31-20230819
  article-title: Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2010.03.019
– volume: 306
  start-page: C551
  year: 2014
  ident: B26-20230819
  article-title: miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export.
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00266.2013
– volume: 286
  start-page: 38456
  year: 2011
  ident: B27-20230819
  article-title: Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.271270
– volume: 29
  start-page: 690
  year: 2015
  ident: B7-20230819
  article-title: Daily electrical muscle stimulation enhances functional recovery following nerve transection and repair in rats.
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968314562117
– volume: 12
  start-page: 456
  year: 1996
  ident: B2-20230819
  article-title: Muscle mass, survival, and the elderly ICU patient.
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(96)00141-4
– volume: 14
  start-page: 238
  year: 1994
  ident: B1-20230819
  article-title: Malnutrition in uremia.
  publication-title: Semin Nephrol
– reference: 28720683 - J Am Soc Nephrol. 2017 Sep;28(9):2557-2559
SSID ssj0015277
Score 2.5391572
Snippet Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2631
SubjectTerms Animals
Atrophy - etiology
Atrophy - genetics
Atrophy - metabolism
Atrophy - prevention & control
Basic Research
Caspase 3 - metabolism
Caspase 7 - metabolism
Cytokines - genetics
Forkhead Box Protein O1 - metabolism
Mice
MicroRNAs - genetics
MicroRNAs - metabolism
Muscle Proteins - metabolism
Muscle Strength
Muscle, Skeletal - drug effects
Muscle, Skeletal - pathology
Myostatin - metabolism
Phosphorylation
Physical Conditioning, Animal - physiology
Proto-Oncogene Proteins c-akt - metabolism
PTEN Phosphohydrolase - metabolism
Renal Insufficiency, Chronic - complications
RNA, Messenger - metabolism
Signal Transduction
SKP Cullin F-Box Protein Ligases - metabolism
Smad2 Protein - metabolism
Smad3 Protein - metabolism
Transduction, Genetic
Tripartite Motif Proteins - metabolism
Ubiquitin-Protein Ligases - metabolism
Title MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy
URI https://www.ncbi.nlm.nih.gov/pubmed/28400445
https://www.proquest.com/docview/1887052861
https://pubmed.ncbi.nlm.nih.gov/PMC5576938
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgL4s2Wh4yExAEZNs7LOYalaAXaPUAreoscP0SkNlva7KH8embixOvtUgm4RFnH60j-vsyM7XkQ8jqzppAKVqq5UpYlcaZZkXPNYHk91YVNudQYKLxYZvOj5PNxGhy099ElXf1O_fpjXMn_oAptgCtGyf4Dsn5QaIB7wBeugDBc_wrjBXrTfV2WjMfSeUz4hlzCD_R7PxhqKqGdWZ6ak6bHHA_7v3xkWLgDHQAW6wsY-m3Zna_G9NW7BmsQhNJ6b0_ccDBAiCu7806CfGg89fzG9Gw16MqwsWx-NpvmmSuRPV834Z4E6LnR6QpUyihHYxYnLqfsKGi5CAhVhFIzc5pgR5xnAsV5-W2JPngZiGXuAlcDbM9Oe3BBy-LZdLpRa97ZcHx0k9zisJboI8KPvR8QlvXNh2ye8Lr32y_DXNHD37cNl53VyFWn2sBKObxH7g5o0dJx5T65YdoH5PZicKB4SL6HlKFAGRpShvaUoSNlaH1JQ8rQgDLUUYYOlHlEjj4dHM7mbKitwRSYzB3LVBLraWwVGPARtyIDMxnrTmudirqu07ywwhaxsiZPOHzPOlKqkCnXykrBwex8TPbaVWueEgoaqo6iWBoroiTXpkhkVnMhJdYqKGI9IWycuEoNieex_slJhQtQmPMK5rzazPmEvPH9z1zKlWt7vhpxqEAq4lGXbM1qfVFFoDunKRdZNCFPHC5-rBHQCcm3EPMdMOP69pO2-dFnXk9TLB0q9q8d8xm5s_kenpO97nxtXoDV2tUve9b9BnWlkvA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-23a+and+MicroRNA-27a+Mimic+Exercise+by+Ameliorating+CKD-Induced+Muscle+Atrophy&rft.jtitle=Journal+of+the+American+Society+of+Nephrology&rft.au=Wang%2C+Bin&rft.au=Zhang%2C+Cong&rft.au=Zhang%2C+Aiqing&rft.au=Cai%2C+Hui&rft.date=2017-09-01&rft.eissn=1533-3450&rft.volume=28&rft.issue=9&rft.spage=2631&rft_id=info:doi/10.1681%2FASN.2016111213&rft_id=info%3Apmid%2F28400445&rft.externalDocID=28400445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-6673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-6673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-6673&client=summon