MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy
Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor N...
Saved in:
Published in | Journal of the American Society of Nephrology Vol. 28; no. 9; pp. 2631 - 2640 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Nephrology
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24–2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24–2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly,
in silico
miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24–2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass. |
---|---|
AbstractList | Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24–2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24–2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly,
in silico
miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24–2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass. Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass.Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, in silico miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass. Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and miR-27a in the regulation of muscle mass in mice with CKD. These miRs are located in a gene cluster that is regulated by the transcription factor NFAT. CKD mice expressed less miR-23a in muscle than controls, and resistance exercise (muscle overload) increased the levels of miR-23a and miR-27a in CKD mice. Injection of an adeno-associated virus encoding the miR-23a/27a/24-2 precursor RNA into the tibialis anterior muscles of normal and CKD mice led to increases in mature miR-23a and miR-27a but not miR-24-2 in the muscles of both cohorts. Overexpression of miR-23a/miR-27a in CKD mice attenuated muscle loss, improved grip strength, increased the phosphorylation of Akt and FoxO1, and decreased the activation of phosphatase and tensin homolog (PTEN) and FoxO1 and the expression of TRIM63/MuRF1 and FBXO32/atrogin-1 proteins. Provision of miR-23a/miR-27a also reduced myostatin expression and downstream SMAD-2/3 signaling, decreased activation of caspase-3 and -7, and increased the expression of markers of muscle regeneration. Lastly, miR target analysis and luciferase reporter assays in primary satellite cells identified PTEN and caspase-7 as targets of miR-23a and FoxO1 as a target of miR-27a in muscle. These findings provide new insights about the roles of the miR-23a/27a-24-2 cluster in CKD-induced muscle atrophy in mice and suggest a mechanism by which exercise helps to maintain muscle mass. |
Author | Zhang, Cong Zhang, Aiqing Wang, Xiaonan H. Price, S. Russ Cai, Hui Wang, Bin |
Author_xml | – sequence: 1 givenname: Bin surname: Wang fullname: Wang, Bin organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China – sequence: 2 givenname: Cong surname: Zhang fullname: Zhang, Cong organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Division of Nephrology, China-Japan Friendship Hospital, Beijing, China – sequence: 3 givenname: Aiqing surname: Zhang fullname: Zhang, Aiqing organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; and – sequence: 4 givenname: Hui surname: Cai fullname: Cai, Hui organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia – sequence: 5 givenname: S. Russ surname: Price fullname: Price, S. Russ organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia;, Research Service Line, Atlanta Veterans Affairs Medical Center, Decatur, Georgia – sequence: 6 givenname: Xiaonan H. surname: Wang fullname: Wang, Xiaonan H. organization: Department of Medicine, Renal Division, Emory University, Atlanta, Georgia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28400445$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1P3DAUtBAIFsq1xypHLtn6284FKdpCQcBWaos4Wo5jg6sk3toJ6v57jHYLFKmn957fzDxr5hDsDmGwAHxEcI64RJ_rH8s5hogjhDAiO2CGGCEloQzu5h5SXnIuyAE4TOkXhIhhIfbBAZYUQkrZDNzdeBPD92VdYqILPbTF64PQeei9Kc7-2Gh8skWzLuredj5EPfrhvlhcfSkvh3YyNvOmZDpb1GMMq4f1B7DndJfs8bYegdvzs5-Li_L629fLRX1dGsr4WHJDSQuJM6giCDvJK1xJSUjbMtk0DROVk64ixllBsbNVi4ypNMOtcVpiQckRON3orqamt62xwxh1p1bR9zquVdBe_bsZ_IO6D4-KMcErIrPAyVYght-TTaPqfTK26_Rgw5QUklJAhiVHGfrp7a2XI3_dzID5BpAdTCla9wJBUD3HpXJc6jWuTKDvCMaP2drw_Fff_Y_2BP7PlsY |
CitedBy_id | crossref_primary_10_1038_s41598_020_72542_1 crossref_primary_10_3389_fcell_2020_585644 crossref_primary_10_1016_j_nbd_2021_105559 crossref_primary_10_36660_abc_20200330 crossref_primary_10_1016_j_jacbts_2019_10_011 crossref_primary_10_1002_prp2_1049 crossref_primary_10_1096_fj_201901981R crossref_primary_10_1016_j_biopha_2021_111820 crossref_primary_10_3390_cells10123527 crossref_primary_10_1016_j_ajpath_2022_09_003 crossref_primary_10_1186_s40798_023_00573_9 crossref_primary_10_3390_ani9110859 crossref_primary_10_3390_ijms19113608 crossref_primary_10_3390_ijms25158362 crossref_primary_10_1111_jcmm_15030 crossref_primary_10_1038_s41598_024_77691_1 crossref_primary_10_1096_fj_202000214RR crossref_primary_10_3390_ijms242015318 crossref_primary_10_1080_21655979_2021_2024688 crossref_primary_10_1097_MCO_0000000000000503 crossref_primary_10_1002_jcsm_12296 crossref_primary_10_1096_fj_201901936RR crossref_primary_10_1096_fj_201900884R crossref_primary_10_1681_ASN_2017060631 crossref_primary_10_1007_s10974_021_09612_y crossref_primary_10_1016_j_exger_2022_111761 crossref_primary_10_3390_toxins12120811 crossref_primary_10_1186_s12882_025_04057_8 crossref_primary_10_1089_hum_2019_287 crossref_primary_10_3389_fcell_2020_577010 crossref_primary_10_1038_s41581_021_00498_0 crossref_primary_10_1016_j_smhs_2024_02_004 crossref_primary_10_1111_jcmm_17626 crossref_primary_10_3390_ijms23116047 crossref_primary_10_3390_ijms251910773 crossref_primary_10_1038_s41598_022_23723_7 crossref_primary_10_1042_CS20200279 crossref_primary_10_1080_00207454_2020_1810030 crossref_primary_10_1186_s12860_019_0194_3 crossref_primary_10_1016_j_lfs_2020_118666 crossref_primary_10_1016_j_bcp_2022_115407 crossref_primary_10_1016_j_bbrc_2018_02_144 crossref_primary_10_12677_ACM_2022_123231 crossref_primary_10_1038_s41598_021_92489_1 crossref_primary_10_1113_JP282663 crossref_primary_10_1002_jcsm_12512 crossref_primary_10_3390_biomedicines12020468 crossref_primary_10_1016_j_ymthe_2019_01_008 crossref_primary_10_3389_fphys_2018_01648 crossref_primary_10_1016_j_biopha_2018_07_097 crossref_primary_10_3389_fcvm_2020_593429 crossref_primary_10_1134_S1990519X25010018 crossref_primary_10_1016_j_lfs_2021_119926 crossref_primary_10_3390_biom12020191 crossref_primary_10_3390_biomedicines13020352 crossref_primary_10_3390_cells13191620 crossref_primary_10_1016_j_semnephrol_2023_151409 crossref_primary_10_1248_bpb_b19_00513 crossref_primary_10_3390_ijms20081962 crossref_primary_10_1038_s41536_021_00127_1 crossref_primary_10_3389_fcell_2022_951837 crossref_primary_10_1186_s40779_024_00540_9 crossref_primary_10_1016_j_freeradbiomed_2024_01_036 crossref_primary_10_1038_s41401_023_01140_4 crossref_primary_10_1093_ndt_gfaa025 crossref_primary_10_3892_mmr_2019_9845 crossref_primary_10_1053_j_jrn_2022_09_009 crossref_primary_10_3390_ijms25105117 crossref_primary_10_1093_ndt_gfz193 crossref_primary_10_1038_s41574_025_01088_x crossref_primary_10_1016_j_pcad_2017_06_003 crossref_primary_10_1002_rco2_82 crossref_primary_10_1096_fj_201700861R crossref_primary_10_5713_ajas_17_0563 crossref_primary_10_1016_j_jsxm_2018_09_019 crossref_primary_10_3390_ijms25158474 crossref_primary_10_1186_s13048_022_00979_1 crossref_primary_10_1002_jcsm_13112 crossref_primary_10_3390_ijms21176059 |
Cites_doi | 10.1016/j.cellsig.2009.08.002 10.1111/apha.12228 10.1681/ASN.2014020144 10.1681/ASN.2006020131 10.1073/pnas.0811371106 10.1016/j.biocel.2013.06.029 10.1681/ASN.2008060628 10.1152/ajpcell.00066.2013 10.1371/journal.pone.0159181 10.1210/en.2007-0183 10.1371/journal.pone.0134511 10.1152/ajpcell.00395.2013 10.1186/1476-4598-9-232 10.1007/s00125-014-3337-2 10.1681/ASN.2010121278 10.1681/ASN.2009101011 10.1152/ajpcell.00542.2005 10.1074/jbc.M109.041707 10.1038/ki.2009.260 10.1152/ajpcell.00142.2010 10.3389/fphys.2016.00087 10.1681/ASN.2009060571 10.1172/JCI18330 10.1038/nrneph.2014.112 10.1097/01.ASN.0000127211.86206.E1 10.1016/j.biocel.2013.06.027 10.1161/HYPERTENSIONAHA.110.168252 10.1016/j.cmet.2013.07.012 10.1038/ki.2012.84 10.1016/j.celrep.2014.08.035 10.1096/fj.10-176917 10.1097/MCO.0b013e32835f81b9 10.1074/jbc.M114.561845 10.1038/sj.gt.3302927 10.1016/S0092-8674(04)00400-3 10.1016/j.bbrc.2012.05.106 10.18632/aging.100643 10.1016/j.bbamcr.2010.03.019 10.1152/ajpcell.00266.2013 10.1074/jbc.M111.271270 10.1177/1545968314562117 10.1016/S0899-9007(96)00141-4 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by the American Society of Nephrology. Copyright © 2017 by the American Society of Nephrology 2017 |
Copyright_xml | – notice: Copyright © 2017 by the American Society of Nephrology. – notice: Copyright © 2017 by the American Society of Nephrology 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1681/ASN.2016111213 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1533-3450 |
EndPage | 2640 |
ExternalDocumentID | PMC5576938 28400445 10_1681_ASN_2016111213 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK095610 – fundername: BLRD VA grantid: I01 BX001456 – fundername: NCATS NIH HHS grantid: UL1 TR000454 – fundername: NINDS NIH HHS grantid: P30 NS055077 – fundername: NIAMS NIH HHS grantid: R01 AR060268 – fundername: BLRD VA grantid: I01 BX000994 |
GroupedDBID | --- .55 .GJ 0R~ 18M 29L 2WC 34G 39C 53G 5GY 5RE 5VS 6PF AAQQT AAUIN AAWTL AAYXX ABBLC ABJNI ABOCM ABXYN ACGFO ACLDA ACZKN ADBBV AENEX AFEXH AFFNX AFNMH AHOMT AHQVU ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW BYPQX CITATION CS3 DIK DU5 E3Z EBS EJD ERAAH F5P GX1 H13 HYE HZ~ K-O KQ8 O9- OK1 OVD P0W P2P RHI RPM TEORI TNP TR2 W8F X7M XVB YFH ZGI ACIJW CGR CUY CVF ECM EIF NPM RHF 7X8 5PM ADSXY |
ID | FETCH-LOGICAL-c456t-6c43d03fc19312f869298833dd58bbb579f8f93cfe742fe9d1cc9a52dcfa82743 |
ISSN | 1046-6673 1533-3450 |
IngestDate | Thu Aug 21 18:18:33 EDT 2025 Fri Jul 11 02:24:44 EDT 2025 Wed Feb 19 02:33:23 EST 2025 Thu Apr 24 22:58:52 EDT 2025 Tue Jul 01 04:34:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | uremia microRNA TRIM63/MuRF1 exosome FBXO32/atrogin |
Language | English |
License | Copyright © 2017 by the American Society of Nephrology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c456t-6c43d03fc19312f869298833dd58bbb579f8f93cfe742fe9d1cc9a52dcfa82743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 B.W. and C.Z. contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5576938 |
PMID | 28400445 |
PQID | 1887052861 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576938 proquest_miscellaneous_1887052861 pubmed_primary_28400445 crossref_primary_10_1681_ASN_2016111213 crossref_citationtrail_10_1681_ASN_2016111213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Society of Nephrology |
PublicationTitleAlternate | J Am Soc Nephrol |
PublicationYear | 2017 |
Publisher | American Society of Nephrology |
Publisher_xml | – name: American Society of Nephrology |
References | Wang (B8-20230819) 2013; 45 Zhou (B44-20230819) 2007; 148 Sun (B34-20230819) 2009; 21 Hu (B36-20230819) 2014; 6 Wang (B22-20230819) 2013; 16 Wang (B33-20230819) 2007; 14 Zhang (B16-20230819) 2013; 18 Chhabra (B32-20230819) 2010; 9 Xu (B42-20230819) 2012; 82 Zhang (B15-20230819) 2011; 25 Soares (B24-20230819) 2014; 289 Zhang (B11-20230819) 2009; 20 Camera (B40-20230819) 2016; 7 Wang (B3-20230819) 2009; 76 Hudson (B26-20230819) 2014; 306 Allen (B17-20230819) 2007; 292 Wang (B9-20230819) 2014; 10 Lee (B12-20230819) 2004; 15 Du (B19-20230819) 2004; 113 Režen (B41-20230819) 2014; 210 Willand (B7-20230819) 2015; 29 Lin (B29-20230819) 2009; 106 Hudson (B37-20230819) 2013; 45 Griffiths (B2-20230819) 1996; 12 Aswad (B43-20230819) 2014; 57 Hu (B6-20230819) 2015; 26 Workeneh (B20-20230819) 2006; 17 Roberts-Wilson (B31-20230819) 2010; 1803 Fernandes (B39-20230819) 2011; 58 Wang (B21-20230819) 2010; 285 Ehlers (B38-20230819) 2014; 8 Su (B5-20230819) 2015; 10 Sandri (B14-20230819) 2004; 117 Rahnert (B10-20230819) 2016; 11 Allen (B30-20230819) 2011; 300 Hu (B35-20230819) 2010; 21 Wada (B27-20230819) 2011; 286 Huang (B28-20230819) 2012; 423 Du (B45-20230819) 2014; 306 Wang (B23-20230819) 2011; 22 Avram (B1-20230819) 1994; 14 Zhang (B13-20230819) 2010; 21 Hudson (B25-20230819) 2014; 307 28720683 - J Am Soc Nephrol. 2017 Sep;28(9):2557-2559 |
References_xml | – volume: 21 start-page: 1857 year: 2009 ident: B34-20230819 article-title: XIAP associates with GSK3 and inhibits the promotion of intrinsic apoptotic signaling by GSK3. publication-title: Cell Signal doi: 10.1016/j.cellsig.2009.08.002 – volume: 210 start-page: 655 year: 2014 ident: B41-20230819 article-title: Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males. publication-title: Acta Physiol (Oxf) doi: 10.1111/apha.12228 – volume: 26 start-page: 626 year: 2015 ident: B6-20230819 article-title: Low-frequency electrical stimulation attenuates muscle atrophy in CKD--A potential treatment strategy. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2014020144 – volume: 17 start-page: 3233 year: 2006 ident: B20-20230819 article-title: Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2006020131 – volume: 106 start-page: 12103 year: 2009 ident: B29-20230819 article-title: miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811371106 – volume: 45 start-page: 2173 year: 2013 ident: B37-20230819 article-title: Calcineurin: A poorly understood regulator of muscle mass. publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2013.06.029 – volume: 20 start-page: 604 year: 2009 ident: B11-20230819 article-title: IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2008060628 – volume: 306 start-page: C28 year: 2014 ident: B45-20230819 article-title: Aging increases CCN1 expression leading to muscle senescence. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00066.2013 – volume: 11 start-page: e0159181 year: 2016 ident: B10-20230819 article-title: Glucocorticoids alter CRTC-CREB signaling in muscle cells: Impact on PGC-1α expression and atrophy markers. publication-title: PLoS One doi: 10.1371/journal.pone.0159181 – volume: 148 start-page: 5696 year: 2007 ident: B44-20230819 article-title: Evidence for adipose-muscle cross talk: Opposing regulation of muscle proteolysis by adiponectin and Fatty acids. publication-title: Endocrinology doi: 10.1210/en.2007-0183 – volume: 10 start-page: e0134511 year: 2015 ident: B5-20230819 article-title: Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates diabetic myopathy by enhancing muscle regeneration. publication-title: PLoS One doi: 10.1371/journal.pone.0134511 – volume: 307 start-page: C314 year: 2014 ident: B25-20230819 article-title: miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00395.2013 – volume: 9 start-page: 232 year: 2010 ident: B32-20230819 article-title: Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. publication-title: Mol Cancer doi: 10.1186/1476-4598-9-232 – volume: 57 start-page: 2155 year: 2014 ident: B43-20230819 article-title: Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. publication-title: Diabetologia doi: 10.1007/s00125-014-3337-2 – volume: 22 start-page: 2068 year: 2011 ident: B23-20230819 article-title: Decreased miR-29 suppresses myogenesis in CKD. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2010121278 – volume: 21 start-page: 1174 year: 2010 ident: B35-20230819 article-title: XIAP reduces muscle proteolysis induced by CKD. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2009101011 – volume: 292 start-page: C188 year: 2007 ident: B17-20230819 article-title: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00542.2005 – volume: 285 start-page: 21249 year: 2010 ident: B21-20230819 article-title: Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity. publication-title: J Biol Chem doi: 10.1074/jbc.M109.041707 – volume: 76 start-page: 751 year: 2009 ident: B3-20230819 article-title: Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. publication-title: Kidney Int doi: 10.1038/ki.2009.260 – volume: 300 start-page: C124 year: 2011 ident: B30-20230819 article-title: Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00142.2010 – volume: 7 start-page: 87 year: 2016 ident: B40-20230819 article-title: Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. publication-title: Front Physiol doi: 10.3389/fphys.2016.00087 – volume: 21 start-page: 419 year: 2010 ident: B13-20230819 article-title: Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2009060571 – volume: 113 start-page: 115 year: 2004 ident: B19-20230819 article-title: Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. publication-title: J Clin Invest doi: 10.1172/JCI18330 – volume: 10 start-page: 504 year: 2014 ident: B9-20230819 article-title: Mechanisms of muscle wasting in chronic kidney disease. publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2014.112 – volume: 15 start-page: 1537 year: 2004 ident: B12-20230819 article-title: Regulation of muscle protein degradation: Coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. publication-title: J Am Soc Nephrol doi: 10.1097/01.ASN.0000127211.86206.E1 – volume: 45 start-page: 2230 year: 2013 ident: B8-20230819 article-title: Muscle wasting from kidney failure-a model for catabolic conditions. publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2013.06.027 – volume: 58 start-page: 182 year: 2011 ident: B39-20230819 article-title: Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.168252 – volume: 18 start-page: 368 year: 2013 ident: B16-20230819 article-title: Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. publication-title: Cell Metab doi: 10.1016/j.cmet.2013.07.012 – volume: 82 start-page: 401 year: 2012 ident: B42-20230819 article-title: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. publication-title: Kidney Int doi: 10.1038/ki.2012.84 – volume: 8 start-page: 1639 year: 2014 ident: B38-20230819 article-title: NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity. publication-title: Cell Reports doi: 10.1016/j.celrep.2014.08.035 – volume: 25 start-page: 1653 year: 2011 ident: B15-20230819 article-title: Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. publication-title: FASEB J doi: 10.1096/fj.10-176917 – volume: 16 start-page: 258 year: 2013 ident: B22-20230819 article-title: MicroRNA in myogenesis and muscle atrophy. publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/MCO.0b013e32835f81b9 – volume: 289 start-page: 21909 year: 2014 ident: B24-20230819 article-title: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. publication-title: J Biol Chem doi: 10.1074/jbc.M114.561845 – volume: 14 start-page: 711 year: 2007 ident: B33-20230819 article-title: X-chromosome linked inhibitor of apoptosis protein inhibits muscle proteolysis in insulin-deficient mice. publication-title: Gene Ther doi: 10.1038/sj.gt.3302927 – volume: 117 start-page: 399 year: 2004 ident: B14-20230819 article-title: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. publication-title: Cell doi: 10.1016/S0092-8674(04)00400-3 – volume: 423 start-page: 265 year: 2012 ident: B28-20230819 article-title: MicroRNA-27a promotes myoblast proliferation by targeting myostatin. publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2012.05.106 – volume: 6 start-page: 160 year: 2014 ident: B36-20230819 article-title: MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. publication-title: Aging (Albany NY) doi: 10.18632/aging.100643 – volume: 1803 start-page: 960 year: 2010 ident: B31-20230819 article-title: Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes. publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2010.03.019 – volume: 306 start-page: C551 year: 2014 ident: B26-20230819 article-title: miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00266.2013 – volume: 286 start-page: 38456 year: 2011 ident: B27-20230819 article-title: Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. publication-title: J Biol Chem doi: 10.1074/jbc.M111.271270 – volume: 29 start-page: 690 year: 2015 ident: B7-20230819 article-title: Daily electrical muscle stimulation enhances functional recovery following nerve transection and repair in rats. publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968314562117 – volume: 12 start-page: 456 year: 1996 ident: B2-20230819 article-title: Muscle mass, survival, and the elderly ICU patient. publication-title: Nutrition doi: 10.1016/S0899-9007(96)00141-4 – volume: 14 start-page: 238 year: 1994 ident: B1-20230819 article-title: Malnutrition in uremia. publication-title: Semin Nephrol – reference: 28720683 - J Am Soc Nephrol. 2017 Sep;28(9):2557-2559 |
SSID | ssj0015277 |
Score | 2.5391572 |
Snippet | Muscle atrophy is a frequent complication of CKD, and exercise can attenuate the process. This study investigated the role of microRNA-23a (miR-23a) and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2631 |
SubjectTerms | Animals Atrophy - etiology Atrophy - genetics Atrophy - metabolism Atrophy - prevention & control Basic Research Caspase 3 - metabolism Caspase 7 - metabolism Cytokines - genetics Forkhead Box Protein O1 - metabolism Mice MicroRNAs - genetics MicroRNAs - metabolism Muscle Proteins - metabolism Muscle Strength Muscle, Skeletal - drug effects Muscle, Skeletal - pathology Myostatin - metabolism Phosphorylation Physical Conditioning, Animal - physiology Proto-Oncogene Proteins c-akt - metabolism PTEN Phosphohydrolase - metabolism Renal Insufficiency, Chronic - complications RNA, Messenger - metabolism Signal Transduction SKP Cullin F-Box Protein Ligases - metabolism Smad2 Protein - metabolism Smad3 Protein - metabolism Transduction, Genetic Tripartite Motif Proteins - metabolism Ubiquitin-Protein Ligases - metabolism |
Title | MicroRNA-23a and MicroRNA-27a Mimic Exercise by Ameliorating CKD-Induced Muscle Atrophy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28400445 https://www.proquest.com/docview/1887052861 https://pubmed.ncbi.nlm.nih.gov/PMC5576938 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgL4s2Wh4yExAEZNs7LOYalaAXaPUAreoscP0SkNlva7KH8embixOvtUgm4RFnH60j-vsyM7XkQ8jqzppAKVqq5UpYlcaZZkXPNYHk91YVNudQYKLxYZvOj5PNxGhy099ElXf1O_fpjXMn_oAptgCtGyf4Dsn5QaIB7wBeugDBc_wrjBXrTfV2WjMfSeUz4hlzCD_R7PxhqKqGdWZ6ak6bHHA_7v3xkWLgDHQAW6wsY-m3Zna_G9NW7BmsQhNJ6b0_ccDBAiCu7806CfGg89fzG9Gw16MqwsWx-NpvmmSuRPV834Z4E6LnR6QpUyihHYxYnLqfsKGi5CAhVhFIzc5pgR5xnAsV5-W2JPngZiGXuAlcDbM9Oe3BBy-LZdLpRa97ZcHx0k9zisJboI8KPvR8QlvXNh2ye8Lr32y_DXNHD37cNl53VyFWn2sBKObxH7g5o0dJx5T65YdoH5PZicKB4SL6HlKFAGRpShvaUoSNlaH1JQ8rQgDLUUYYOlHlEjj4dHM7mbKitwRSYzB3LVBLraWwVGPARtyIDMxnrTmudirqu07ywwhaxsiZPOHzPOlKqkCnXykrBwex8TPbaVWueEgoaqo6iWBoroiTXpkhkVnMhJdYqKGI9IWycuEoNieex_slJhQtQmPMK5rzazPmEvPH9z1zKlWt7vhpxqEAq4lGXbM1qfVFFoDunKRdZNCFPHC5-rBHQCcm3EPMdMOP69pO2-dFnXk9TLB0q9q8d8xm5s_kenpO97nxtXoDV2tUve9b9BnWlkvA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-23a+and+MicroRNA-27a+Mimic+Exercise+by+Ameliorating+CKD-Induced+Muscle+Atrophy&rft.jtitle=Journal+of+the+American+Society+of+Nephrology&rft.au=Wang%2C+Bin&rft.au=Zhang%2C+Cong&rft.au=Zhang%2C+Aiqing&rft.au=Cai%2C+Hui&rft.date=2017-09-01&rft.eissn=1533-3450&rft.volume=28&rft.issue=9&rft.spage=2631&rft_id=info:doi/10.1681%2FASN.2016111213&rft_id=info%3Apmid%2F28400445&rft.externalDocID=28400445 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-6673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-6673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-6673&client=summon |