Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management
Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distrib...
Saved in:
Published in | International journal of production economics Vol. 118; no. 1; pp. 95 - 103 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2009
Elsevier Elsevier Sequoia S.A |
Series | International Journal of Production Economics |
Subjects | |
Online Access | Get full text |
ISSN | 0925-5273 1873-7579 |
DOI | 10.1016/j.ijpe.2008.08.027 |
Cover
Abstract | Inventories of optional components in discrete manufacturing are often subject to so-called
low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application. |
---|---|
AbstractList | Inventories of optional components in discrete manufacturing are often subject to so-called
low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application. Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application. [PUBLICATION ABSTRACT] Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application. |
Author | Yelland, Phillip M. |
Author_xml | – sequence: 1 givenname: Phillip M. surname: Yelland fullname: Yelland, Phillip M. email: phillip.yelland@sun.com organization: Sun Microsystems Laboratories, 16 Network Circle, Menlo Park, CA 94025, USA |
BackLink | http://econpapers.repec.org/article/eeeproeco/v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95-103.htm$$DView record in RePEc |
BookMark | eNp9UU1v1DAQtapW6rblD3CyuGcZ2_ky4lKqQkGVuMDZ8jqT4iixg-1slX-P04ULh0ozHn-89zyad0XOnXdIyFsGewasfj_s7TDjngO0-y14c0Z2rG1E0VSNPCc7kLwqKt6IS3IV4wAADWvbHVk_6RWj1Y72PqDRMVn3tO3p6J8L4xeXaLIT0ojBYqRL3N5j0gmLOGuDdPIdjvEDvXUUp9kGa_RI8ajHRSfrX3SpdUd0yYeVTtrpJ5zy6YZc9HqM-OZvvSY_P9__uHsoHr9_-Xp3-1iYsqpTUXXCMNCcYcPbWtS87DUYI6SAqutrAQcQ5aHsoIMDCtGLToIsBaDuJW9FI67Ju5PuHPzvBWNSg1-Cy18qJiXwsqxZBn07gQLOaNQc7KTDqhAxs9B4dVRCM9bmdc2Z5yxzsdtlzjmnrBQDoX6lKYu1JzETfIwBe2VsehlGCtqOGac209SgNtPUZpragm_N8v-o_1p5lfTxRMo-4NFiUNFYdAY7my1NqvP2NfofI160IA |
CODEN | IJPCEY |
CitedBy_id | crossref_primary_10_1007_s10799_011_0106_5 crossref_primary_10_1002_asmb_2675 crossref_primary_10_1016_j_ijforecast_2009_11_001 crossref_primary_10_1371_journal_pone_0259764 crossref_primary_10_1080_07350015_2019_1604372 crossref_primary_10_1287_deca_2022_0462 crossref_primary_10_1007_s10463_019_00741_3 crossref_primary_10_1016_j_ijforecast_2019_07_007 crossref_primary_10_1016_j_ejor_2021_07_040 crossref_primary_10_1016_j_arcontrol_2020_04_005 |
Cites_doi | 10.2307/1391639 10.2307/3214650 10.1093/biomet/82.2.339 10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2 10.1002/for.3980040103 10.1080/03610919908813583 10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2 10.1057/jors.1972.50 10.1016/j.ijforecast.2004.11.001 |
ContentType | Journal Article |
Copyright | 2008 Elsevier B.V. Copyright Elsevier Sequoia S.A. Mar 2009 |
Copyright_xml | – notice: 2008 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Mar 2009 |
DBID | AAYXX CITATION DKI X2L 7TA 7TB 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijpe.2008.08.027 |
DatabaseName | CrossRef RePEc IDEAS RePEc Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Materials Business File |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Business |
EISSN | 1873-7579 |
EndPage | 103 |
ExternalDocumentID | 1660906191 eeeproeco_v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95_103_htm 10_1016_j_ijpe_2008_08_027 S0925527308002521 |
Genre | Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARIN AAXUO ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ACROA ADBBV ADEZE ADFHU ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEYQN AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BJAXD BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLX HVGLF HZ~ IHE IXIXF J1W JJJVA KOM LG8 LY1 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBM SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSF SST SSZ T5K TAE TN5 U5U VH1 WUQ YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 02 0R 1 1AW 8P AAPBV ADALY DKI G- HZ IPNFZ K M MS PQEST TAF X X2L 7TA 7TB 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c456t-5d3c10a21e72863624fa0cc39305df630b034b4d0d0be33f3d909430eaf928373 |
IEDL.DBID | .~1 |
ISSN | 0925-5273 |
IngestDate | Wed Aug 13 11:25:40 EDT 2025 Wed Aug 18 03:12:48 EDT 2021 Thu Apr 24 22:52:06 EDT 2025 Tue Jul 01 00:43:14 EDT 2025 Fri Feb 23 02:19:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Inventory management Low-count time series Bayesian statistics State-space models |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-5d3c10a21e72863624fa0cc39305df630b034b4d0d0be33f3d909430eaf928373 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 199024461 |
PQPubID | 45063 |
PageCount | 9 |
ParticipantIDs | proquest_journals_199024461 repec_primary_eeeproeco_v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95_103_htm crossref_citationtrail_10_1016_j_ijpe_2008_08_027 crossref_primary_10_1016_j_ijpe_2008_08_027 elsevier_sciencedirect_doi_10_1016_j_ijpe_2008_08_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-01 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | International Journal of Production Economics |
PublicationTitle | International journal of production economics |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
References | Willemain (bib22) 2006; 4 Cameron, Trivedi (bib3) 1998 Fahrmeir, Tutz (bib9) 1994 McKenzie (bib16) 2003; vol. 21 Tanizaki, Geweke (bib19) 1999; 28 Winkelmann (bib23) 1997 Hamill (bib11) 1997; 12 Croston (bib6) 1972; 23 Shenstone, L., Hyndman, R.J., 2003. Stochastic models underlying Croston's method for intermittent demand forecasting. Monash Econometrics and Business Statistics Working Papers 1/03, Department of Econometrics and Business Statistics, Monash University, February. Wilks (bib21) 1995 Boylan (bib2) 2005; 1 de Jong, Shephard (bib7) 1995; 82 Harvey, Fernandes (bib13) 1989; 7 McDonald, Zucchini (bib15) 1997 Cox (bib5) 1981; 8 Al-Osh, Alzaid (bib1) 1990; 27 Yelland, P.M., 2004. A model of the product lifecycle for sales forecasting. Technical Report 127, Sun Microsystems Laboratories Durbin, Koopman (bib8) 2001 Murphy (bib17) 1969; 8 McCabe, Martin (bib14) 2005; 21 Clement, Coldrick, Sari (bib4) 1995 . Gardner (bib10) 1985; 4 Harvey (bib12) 1989 West, Harrison (bib20) 1997 McDonald (10.1016/j.ijpe.2008.08.027_bib15) 1997 Tanizaki (10.1016/j.ijpe.2008.08.027_bib19) 1999; 28 Al-Osh (10.1016/j.ijpe.2008.08.027_bib1) 1990; 27 Murphy (10.1016/j.ijpe.2008.08.027_bib17) 1969; 8 McCabe (10.1016/j.ijpe.2008.08.027_bib14) 2005; 21 Gardner (10.1016/j.ijpe.2008.08.027_bib10) 1985; 4 Harvey (10.1016/j.ijpe.2008.08.027_bib12) 1989 Cameron (10.1016/j.ijpe.2008.08.027_bib3) 1998 Hamill (10.1016/j.ijpe.2008.08.027_bib11) 1997; 12 Clement (10.1016/j.ijpe.2008.08.027_bib4) 1995 de Jong (10.1016/j.ijpe.2008.08.027_bib7) 1995; 82 10.1016/j.ijpe.2008.08.027_bib24 Fahrmeir (10.1016/j.ijpe.2008.08.027_bib9) 1994 Harvey (10.1016/j.ijpe.2008.08.027_bib13) 1989; 7 Durbin (10.1016/j.ijpe.2008.08.027_bib8) 2001 Boylan (10.1016/j.ijpe.2008.08.027_bib2) 2005; 1 West (10.1016/j.ijpe.2008.08.027_bib20) 1997 Willemain (10.1016/j.ijpe.2008.08.027_bib22) 2006; 4 10.1016/j.ijpe.2008.08.027_bib18 Croston (10.1016/j.ijpe.2008.08.027_bib6) 1972; 23 Wilks (10.1016/j.ijpe.2008.08.027_bib21) 1995 Winkelmann (10.1016/j.ijpe.2008.08.027_bib23) 1997 Cox (10.1016/j.ijpe.2008.08.027_bib5) 1981; 8 McKenzie (10.1016/j.ijpe.2008.08.027_bib16) 2003; vol. 21 |
References_xml | – year: 1989 ident: bib12 article-title: Forecasting, Structural Time Series Models and the Kalman Filter – volume: 7 start-page: 407 year: 1989 end-page: 417 ident: bib13 article-title: Time series models for count or qualitative observations publication-title: Journal of Business and Economic Statistics – volume: 12 start-page: 736 year: 1997 end-page: 741 ident: bib11 article-title: Reliability diagrams for multicategory probabilistic forecasts publication-title: Weather and Forecasting – year: 1997 ident: bib15 article-title: Hidden Markov and Other Models for Discrete-Valued Time Series – reference: Shenstone, L., Hyndman, R.J., 2003. Stochastic models underlying Croston's method for intermittent demand forecasting. Monash Econometrics and Business Statistics Working Papers 1/03, Department of Econometrics and Business Statistics, Monash University, February. – year: 1997 ident: bib20 article-title: Bayesian Forecasting and Dynamic Models – volume: 27 start-page: 314 year: 1990 end-page: 324 ident: bib1 article-title: An integer-valued publication-title: Journal of Applied Probability – volume: 21 start-page: 315 year: 2005 end-page: 330 ident: bib14 article-title: Bayesian predictions of low count time series publication-title: International Journal of Forecasting – volume: 8 start-page: 988 year: 1969 end-page: 989 ident: bib17 article-title: On the ranked probability score publication-title: Journal of Applied Meteorology – year: 1995 ident: bib4 article-title: Manufacturing Data Structures: Building Foundations for Excellence with Bills of Materials and Process Information – volume: 82 start-page: 339 year: 1995 end-page: 350 ident: bib7 article-title: The simulation smoother for time series models publication-title: Biometrika – volume: 23 start-page: 289 year: 1972 end-page: 303 ident: bib6 article-title: Forecasting and stock control for intermittent demand publication-title: Operational Research Quarterly – year: 1998 ident: bib3 article-title: Regression Analysis of Count Data – volume: 4 start-page: 1 year: 1985 end-page: 28 ident: bib10 article-title: Exponential smoothing: The state of the art publication-title: Journal of Forecasting – year: 2001 ident: bib8 article-title: Time Series Analysis by State Space Methods – year: 1994 ident: bib9 article-title: Multivariate Statistical Modeling Based on Generalized Linear Models – volume: vol. 21 start-page: 573 year: 2003 end-page: 606 ident: bib16 article-title: Discrete variate time series publication-title: Handbook of Statistics – volume: 1 start-page: 36 year: 2005 end-page: 42 ident: bib2 article-title: Intermittent and lumpy demand: A forecasting challenge publication-title: Foresight: The International Journal of Applied Forecasting – year: 1995 ident: bib21 article-title: Statistical Methods in the Atmospheric Sciences: An Introduction – year: 1997 ident: bib23 article-title: Econometric Analysis of Count Data – volume: 4 start-page: 36 year: 2006 end-page: 38 ident: bib22 article-title: Forecast-accuracy metrics for intermittent demands: Look at the entire distribution publication-title: Foresight: The International Journal of Applied Forecasting – volume: 8 start-page: 93 year: 1981 end-page: 115 ident: bib5 article-title: Statistical analysis of time series: Some recent developments publication-title: Scandinavian Journal of Statistics – reference: . – volume: 28 start-page: 867 year: 1999 end-page: 894 ident: bib19 article-title: On Markov chain Monte Carlo methods for nonlinear and non-Gaussian state-space models publication-title: Communications in Statistics, Simulation and Computation – reference: Yelland, P.M., 2004. A model of the product lifecycle for sales forecasting. Technical Report 127, Sun Microsystems Laboratories – volume: 7 start-page: 407 issue: 4 year: 1989 ident: 10.1016/j.ijpe.2008.08.027_bib13 article-title: Time series models for count or qualitative observations publication-title: Journal of Business and Economic Statistics doi: 10.2307/1391639 – volume: 27 start-page: 314 issue: 2 year: 1990 ident: 10.1016/j.ijpe.2008.08.027_bib1 article-title: An integer-valued pth order autoregressive structure (INAR(p)) process publication-title: Journal of Applied Probability doi: 10.2307/3214650 – volume: 1 start-page: 36 year: 2005 ident: 10.1016/j.ijpe.2008.08.027_bib2 article-title: Intermittent and lumpy demand: A forecasting challenge publication-title: Foresight: The International Journal of Applied Forecasting – volume: 4 start-page: 36 year: 2006 ident: 10.1016/j.ijpe.2008.08.027_bib22 article-title: Forecast-accuracy metrics for intermittent demands: Look at the entire distribution publication-title: Foresight: The International Journal of Applied Forecasting – volume: 8 start-page: 93 year: 1981 ident: 10.1016/j.ijpe.2008.08.027_bib5 article-title: Statistical analysis of time series: Some recent developments publication-title: Scandinavian Journal of Statistics – year: 1997 ident: 10.1016/j.ijpe.2008.08.027_bib15 – year: 1995 ident: 10.1016/j.ijpe.2008.08.027_bib4 – volume: 82 start-page: 339 issue: 2 year: 1995 ident: 10.1016/j.ijpe.2008.08.027_bib7 article-title: The simulation smoother for time series models publication-title: Biometrika doi: 10.1093/biomet/82.2.339 – volume: 12 start-page: 736 year: 1997 ident: 10.1016/j.ijpe.2008.08.027_bib11 article-title: Reliability diagrams for multicategory probabilistic forecasts publication-title: Weather and Forecasting doi: 10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2 – ident: 10.1016/j.ijpe.2008.08.027_bib24 – year: 2001 ident: 10.1016/j.ijpe.2008.08.027_bib8 – year: 1994 ident: 10.1016/j.ijpe.2008.08.027_bib9 – volume: 4 start-page: 1 issue: 4 year: 1985 ident: 10.1016/j.ijpe.2008.08.027_bib10 article-title: Exponential smoothing: The state of the art publication-title: Journal of Forecasting doi: 10.1002/for.3980040103 – year: 1997 ident: 10.1016/j.ijpe.2008.08.027_bib20 – year: 1989 ident: 10.1016/j.ijpe.2008.08.027_bib12 – volume: 28 start-page: 867 issue: 4 year: 1999 ident: 10.1016/j.ijpe.2008.08.027_bib19 article-title: On Markov chain Monte Carlo methods for nonlinear and non-Gaussian state-space models publication-title: Communications in Statistics, Simulation and Computation doi: 10.1080/03610919908813583 – volume: 8 start-page: 988 year: 1969 ident: 10.1016/j.ijpe.2008.08.027_bib17 article-title: On the ranked probability score publication-title: Journal of Applied Meteorology doi: 10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2 – volume: 23 start-page: 289 year: 1972 ident: 10.1016/j.ijpe.2008.08.027_bib6 article-title: Forecasting and stock control for intermittent demand publication-title: Operational Research Quarterly doi: 10.1057/jors.1972.50 – volume: 21 start-page: 315 issue: 2 year: 2005 ident: 10.1016/j.ijpe.2008.08.027_bib14 article-title: Bayesian predictions of low count time series publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2004.11.001 – ident: 10.1016/j.ijpe.2008.08.027_bib18 – volume: vol. 21 start-page: 573 year: 2003 ident: 10.1016/j.ijpe.2008.08.027_bib16 article-title: Discrete variate time series – year: 1997 ident: 10.1016/j.ijpe.2008.08.027_bib23 – year: 1995 ident: 10.1016/j.ijpe.2008.08.027_bib21 – year: 1998 ident: 10.1016/j.ijpe.2008.08.027_bib3 |
SSID | ssj0007188 |
Score | 1.9848334 |
Snippet | Inventories of optional components in discrete manufacturing are often subject to so-called
low-count demand patterns. Quantities demanded from such... Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such... |
SourceID | proquest repec crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | Bayesian analysis Bayesian statistics Computer industry Forecasting techniques Inventory Inventory management Inventory management Low-count time series Bayesian statistics State-space models Low-count time series Network computers State-space models Studies Time series |
Title | Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management |
URI | https://dx.doi.org/10.1016/j.ijpe.2008.08.027 http://econpapers.repec.org/article/eeeproeco/v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95-103.htm https://www.proquest.com/docview/199024461 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELamTULwgLYBomxMfuANmTpx4iS8lcLUMTQhYNLeLMe5QKa1jdoC6gu_nTvH6ToJ7QEpjiPnnFixc_dF-e6OsVd5VVd4Sok8splIKudE6Sol0PbJrCw1SPAE2Qs9uUw-XqVXO2zc-8IQrTLo_k6ne20dWobhaQ7bphl-lUXsw4d5zJN6Z_IkyWitv_lzS_NA3eu1MQoLkg6OMx3Hq7luIfApcaPMMv82Tlvgc28BLbgtG3S6zx4H8MhH3fgO2A7MDtmDnrt-yB5tRRd8wtbv7BrIR5IjMAVnl8RwpmN-M_8tfJIITqnlOa1CWHK6zHfuPYwE6hkH3KfJWb7loxmHadv4aCL8Nj64v1bjWevzxZpPN0yap-zy9MO38USETAvCIYBaibRSLpI2jiCLc402LamtdE4VqA2qWitZSpWUSSUrWYJStaoKYiRKsHVB4XPUM7Y7m8_gOeOxrRG0p7ouQCXa5rkulM4KAK0zhAswYFH_iI0LYcgpG8aN6flm14amJeTHxC3OBuz1pk_bBeG4VzrtZ87cWUoGrcS9_Y76aTbhRV6aCK01IiAdDdjYz_xmAACA4uDm5pdRFr_TcL_GQr-bsGqoEUuLpUjxnsr8WE1f_OfYjtjD7jcWkd-O2e5q8RNeIhpalSd-uZ-wvdH4y6fPVJ-dTy6w9f352V-M1QzN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVuJxQKWAWMrDB27IrBMnTsKtrFotUHqhlXqzEntSUnV3o91t0V762zvjONtFQj0gxUnk2I5lOzNf5G9mGPuYu9rhIyXyqMxE4qwVlXVKoO6TWVVpkOAJsid6fJZ8P0_Pt9iot4UhWmWQ_Z1M99I65AzDaA7bphn-kkXs3Yd5zJOSMflOkqqMeH2fb-95Hih8vTjG0oKKB8uZjuTVXLYQCJV4UGiZf2unDfS5M4cW7IYSOtplzwJ65AddB5-zLZjusUc9eX2PPd1wL_iCrb6WKyAjSY7IFGy5IIoz3fOr2R_ho0Rwii3PaRnCglMzF9ybGAkUNBa4j5Oz-MIPphwmbePdifB7B-G-rcbT1mfzFZ-sqTQv2dnR4eloLEKoBWERQS1F6pSNZBlHkMW5RqWW1KW0VhUoDlytlaykSqrESScrUKpWriBKooSyLsh_jnrFtqezKbxmPC5rRO2prgtQiS7zXBdKZwWA1hniBRiwqB9iY4MfcgqHcWV6wtmloWkJATLxiLMB-7Su03ZeOB4snfYzZ_5aSwbVxIP19vtpNuFLXpgI1TVCIB0N2MjP_LoDAIDFwc7MjVEl_qjheYWJ9pvw0lAmphZTkeI7lfm9nLz5z759YI_Hpz-PzfG3kx_77Em3p0VMuLdsezm_hncIjZbVe7_07wD0vgvS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+forecasting+for+low-count+time+series+using+state-space+models%3A+An+empirical+evaluation+for+inventory+management&rft.jtitle=International+journal+of+production+economics&rft.au=Yelland%2C+Phillip+M.&rft.date=2009-03-01&rft.pub=Elsevier+B.V&rft.issn=0925-5273&rft.eissn=1873-7579&rft.volume=118&rft.issue=1&rft.spage=95&rft.epage=103&rft_id=info:doi/10.1016%2Fj.ijpe.2008.08.027&rft.externalDocID=S0925527308002521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5273&client=summon |