Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management

Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distrib...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production economics Vol. 118; no. 1; pp. 95 - 103
Main Author Yelland, Phillip M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2009
Elsevier
Elsevier Sequoia S.A
SeriesInternational Journal of Production Economics
Subjects
Online AccessGet full text
ISSN0925-5273
1873-7579
DOI10.1016/j.ijpe.2008.08.027

Cover

Abstract Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application.
AbstractList Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application.
Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application. [PUBLICATION ABSTRACT]
Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such inventories in any given period are sufficiently small that it may be unrealistic to forecast them with conventional models based on the normal distribution, and specialized models may be required. Fortunately, the statistical treatment of low-count time series has been the focus of much recent research. This paper recounts an attempt to apply some of this research to forecasting demands for optional parts at Sun Microsystems, a manufacturer and vendor of network computer products. Specifically, we compare the forecast performance of three simple state-space models using demand data obtained from Sun's inventory management records. The models are estimated using Bayesian methods, producing forecasts in the form of full predictive distributions. The accuracy of these probabilistic forecasts is compared using techniques borrowed from the field of meteorology, allowing us to assess the suitability of the candidate models for this type of application.
Author Yelland, Phillip M.
Author_xml – sequence: 1
  givenname: Phillip M.
  surname: Yelland
  fullname: Yelland, Phillip M.
  email: phillip.yelland@sun.com
  organization: Sun Microsystems Laboratories, 16 Network Circle, Menlo Park, CA 94025, USA
BackLink http://econpapers.repec.org/article/eeeproeco/v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95-103.htm$$DView record in RePEc
BookMark eNp9UU1v1DAQtapW6rblD3CyuGcZ2_ky4lKqQkGVuMDZ8jqT4iixg-1slX-P04ULh0ozHn-89zyad0XOnXdIyFsGewasfj_s7TDjngO0-y14c0Z2rG1E0VSNPCc7kLwqKt6IS3IV4wAADWvbHVk_6RWj1Y72PqDRMVn3tO3p6J8L4xeXaLIT0ojBYqRL3N5j0gmLOGuDdPIdjvEDvXUUp9kGa_RI8ajHRSfrX3SpdUd0yYeVTtrpJ5zy6YZc9HqM-OZvvSY_P9__uHsoHr9_-Xp3-1iYsqpTUXXCMNCcYcPbWtS87DUYI6SAqutrAQcQ5aHsoIMDCtGLToIsBaDuJW9FI67Ju5PuHPzvBWNSg1-Cy18qJiXwsqxZBn07gQLOaNQc7KTDqhAxs9B4dVRCM9bmdc2Z5yxzsdtlzjmnrBQDoX6lKYu1JzETfIwBe2VsehlGCtqOGac209SgNtPUZpragm_N8v-o_1p5lfTxRMo-4NFiUNFYdAY7my1NqvP2NfofI160IA
CODEN IJPCEY
CitedBy_id crossref_primary_10_1007_s10799_011_0106_5
crossref_primary_10_1002_asmb_2675
crossref_primary_10_1016_j_ijforecast_2009_11_001
crossref_primary_10_1371_journal_pone_0259764
crossref_primary_10_1080_07350015_2019_1604372
crossref_primary_10_1287_deca_2022_0462
crossref_primary_10_1007_s10463_019_00741_3
crossref_primary_10_1016_j_ijforecast_2019_07_007
crossref_primary_10_1016_j_ejor_2021_07_040
crossref_primary_10_1016_j_arcontrol_2020_04_005
Cites_doi 10.2307/1391639
10.2307/3214650
10.1093/biomet/82.2.339
10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2
10.1002/for.3980040103
10.1080/03610919908813583
10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2
10.1057/jors.1972.50
10.1016/j.ijforecast.2004.11.001
ContentType Journal Article
Copyright 2008 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Mar 2009
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Mar 2009
DBID AAYXX
CITATION
DKI
X2L
7TA
7TB
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijpe.2008.08.027
DatabaseName CrossRef
RePEc IDEAS
RePEc
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Materials Business File
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISSN 1873-7579
EndPage 103
ExternalDocumentID 1660906191
eeeproeco_v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95_103_htm
10_1016_j_ijpe_2008_08_027
S0925527308002521
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BJAXD
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLX
HVGLF
HZ~
IHE
IXIXF
J1W
JJJVA
KOM
LG8
LY1
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBM
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSF
SST
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
YK3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
02
0R
1
1AW
8P
AAPBV
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
TAF
X
X2L
7TA
7TB
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c456t-5d3c10a21e72863624fa0cc39305df630b034b4d0d0be33f3d909430eaf928373
IEDL.DBID .~1
ISSN 0925-5273
IngestDate Wed Aug 13 11:25:40 EDT 2025
Wed Aug 18 03:12:48 EDT 2021
Thu Apr 24 22:52:06 EDT 2025
Tue Jul 01 00:43:14 EDT 2025
Fri Feb 23 02:19:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Inventory management
Low-count time series
Bayesian statistics
State-space models
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-5d3c10a21e72863624fa0cc39305df630b034b4d0d0be33f3d909430eaf928373
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 199024461
PQPubID 45063
PageCount 9
ParticipantIDs proquest_journals_199024461
repec_primary_eeeproeco_v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95_103_htm
crossref_citationtrail_10_1016_j_ijpe_2008_08_027
crossref_primary_10_1016_j_ijpe_2008_08_027
elsevier_sciencedirect_doi_10_1016_j_ijpe_2008_08_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle International Journal of Production Economics
PublicationTitle International journal of production economics
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Willemain (bib22) 2006; 4
Cameron, Trivedi (bib3) 1998
Fahrmeir, Tutz (bib9) 1994
McKenzie (bib16) 2003; vol. 21
Tanizaki, Geweke (bib19) 1999; 28
Winkelmann (bib23) 1997
Hamill (bib11) 1997; 12
Croston (bib6) 1972; 23
Shenstone, L., Hyndman, R.J., 2003. Stochastic models underlying Croston's method for intermittent demand forecasting. Monash Econometrics and Business Statistics Working Papers 1/03, Department of Econometrics and Business Statistics, Monash University, February.
Wilks (bib21) 1995
Boylan (bib2) 2005; 1
de Jong, Shephard (bib7) 1995; 82
Harvey, Fernandes (bib13) 1989; 7
McDonald, Zucchini (bib15) 1997
Cox (bib5) 1981; 8
Al-Osh, Alzaid (bib1) 1990; 27
Yelland, P.M., 2004. A model of the product lifecycle for sales forecasting. Technical Report 127, Sun Microsystems Laboratories
Durbin, Koopman (bib8) 2001
Murphy (bib17) 1969; 8
McCabe, Martin (bib14) 2005; 21
Clement, Coldrick, Sari (bib4) 1995
.
Gardner (bib10) 1985; 4
Harvey (bib12) 1989
West, Harrison (bib20) 1997
McDonald (10.1016/j.ijpe.2008.08.027_bib15) 1997
Tanizaki (10.1016/j.ijpe.2008.08.027_bib19) 1999; 28
Al-Osh (10.1016/j.ijpe.2008.08.027_bib1) 1990; 27
Murphy (10.1016/j.ijpe.2008.08.027_bib17) 1969; 8
McCabe (10.1016/j.ijpe.2008.08.027_bib14) 2005; 21
Gardner (10.1016/j.ijpe.2008.08.027_bib10) 1985; 4
Harvey (10.1016/j.ijpe.2008.08.027_bib12) 1989
Cameron (10.1016/j.ijpe.2008.08.027_bib3) 1998
Hamill (10.1016/j.ijpe.2008.08.027_bib11) 1997; 12
Clement (10.1016/j.ijpe.2008.08.027_bib4) 1995
de Jong (10.1016/j.ijpe.2008.08.027_bib7) 1995; 82
10.1016/j.ijpe.2008.08.027_bib24
Fahrmeir (10.1016/j.ijpe.2008.08.027_bib9) 1994
Harvey (10.1016/j.ijpe.2008.08.027_bib13) 1989; 7
Durbin (10.1016/j.ijpe.2008.08.027_bib8) 2001
Boylan (10.1016/j.ijpe.2008.08.027_bib2) 2005; 1
West (10.1016/j.ijpe.2008.08.027_bib20) 1997
Willemain (10.1016/j.ijpe.2008.08.027_bib22) 2006; 4
10.1016/j.ijpe.2008.08.027_bib18
Croston (10.1016/j.ijpe.2008.08.027_bib6) 1972; 23
Wilks (10.1016/j.ijpe.2008.08.027_bib21) 1995
Winkelmann (10.1016/j.ijpe.2008.08.027_bib23) 1997
Cox (10.1016/j.ijpe.2008.08.027_bib5) 1981; 8
McKenzie (10.1016/j.ijpe.2008.08.027_bib16) 2003; vol. 21
References_xml – year: 1989
  ident: bib12
  article-title: Forecasting, Structural Time Series Models and the Kalman Filter
– volume: 7
  start-page: 407
  year: 1989
  end-page: 417
  ident: bib13
  article-title: Time series models for count or qualitative observations
  publication-title: Journal of Business and Economic Statistics
– volume: 12
  start-page: 736
  year: 1997
  end-page: 741
  ident: bib11
  article-title: Reliability diagrams for multicategory probabilistic forecasts
  publication-title: Weather and Forecasting
– year: 1997
  ident: bib15
  article-title: Hidden Markov and Other Models for Discrete-Valued Time Series
– reference: Shenstone, L., Hyndman, R.J., 2003. Stochastic models underlying Croston's method for intermittent demand forecasting. Monash Econometrics and Business Statistics Working Papers 1/03, Department of Econometrics and Business Statistics, Monash University, February.
– year: 1997
  ident: bib20
  article-title: Bayesian Forecasting and Dynamic Models
– volume: 27
  start-page: 314
  year: 1990
  end-page: 324
  ident: bib1
  article-title: An integer-valued
  publication-title: Journal of Applied Probability
– volume: 21
  start-page: 315
  year: 2005
  end-page: 330
  ident: bib14
  article-title: Bayesian predictions of low count time series
  publication-title: International Journal of Forecasting
– volume: 8
  start-page: 988
  year: 1969
  end-page: 989
  ident: bib17
  article-title: On the ranked probability score
  publication-title: Journal of Applied Meteorology
– year: 1995
  ident: bib4
  article-title: Manufacturing Data Structures: Building Foundations for Excellence with Bills of Materials and Process Information
– volume: 82
  start-page: 339
  year: 1995
  end-page: 350
  ident: bib7
  article-title: The simulation smoother for time series models
  publication-title: Biometrika
– volume: 23
  start-page: 289
  year: 1972
  end-page: 303
  ident: bib6
  article-title: Forecasting and stock control for intermittent demand
  publication-title: Operational Research Quarterly
– year: 1998
  ident: bib3
  article-title: Regression Analysis of Count Data
– volume: 4
  start-page: 1
  year: 1985
  end-page: 28
  ident: bib10
  article-title: Exponential smoothing: The state of the art
  publication-title: Journal of Forecasting
– year: 2001
  ident: bib8
  article-title: Time Series Analysis by State Space Methods
– year: 1994
  ident: bib9
  article-title: Multivariate Statistical Modeling Based on Generalized Linear Models
– volume: vol. 21
  start-page: 573
  year: 2003
  end-page: 606
  ident: bib16
  article-title: Discrete variate time series
  publication-title: Handbook of Statistics
– volume: 1
  start-page: 36
  year: 2005
  end-page: 42
  ident: bib2
  article-title: Intermittent and lumpy demand: A forecasting challenge
  publication-title: Foresight: The International Journal of Applied Forecasting
– year: 1995
  ident: bib21
  article-title: Statistical Methods in the Atmospheric Sciences: An Introduction
– year: 1997
  ident: bib23
  article-title: Econometric Analysis of Count Data
– volume: 4
  start-page: 36
  year: 2006
  end-page: 38
  ident: bib22
  article-title: Forecast-accuracy metrics for intermittent demands: Look at the entire distribution
  publication-title: Foresight: The International Journal of Applied Forecasting
– volume: 8
  start-page: 93
  year: 1981
  end-page: 115
  ident: bib5
  article-title: Statistical analysis of time series: Some recent developments
  publication-title: Scandinavian Journal of Statistics
– reference: .
– volume: 28
  start-page: 867
  year: 1999
  end-page: 894
  ident: bib19
  article-title: On Markov chain Monte Carlo methods for nonlinear and non-Gaussian state-space models
  publication-title: Communications in Statistics, Simulation and Computation
– reference: Yelland, P.M., 2004. A model of the product lifecycle for sales forecasting. Technical Report 127, Sun Microsystems Laboratories
– volume: 7
  start-page: 407
  issue: 4
  year: 1989
  ident: 10.1016/j.ijpe.2008.08.027_bib13
  article-title: Time series models for count or qualitative observations
  publication-title: Journal of Business and Economic Statistics
  doi: 10.2307/1391639
– volume: 27
  start-page: 314
  issue: 2
  year: 1990
  ident: 10.1016/j.ijpe.2008.08.027_bib1
  article-title: An integer-valued pth order autoregressive structure (INAR(p)) process
  publication-title: Journal of Applied Probability
  doi: 10.2307/3214650
– volume: 1
  start-page: 36
  year: 2005
  ident: 10.1016/j.ijpe.2008.08.027_bib2
  article-title: Intermittent and lumpy demand: A forecasting challenge
  publication-title: Foresight: The International Journal of Applied Forecasting
– volume: 4
  start-page: 36
  year: 2006
  ident: 10.1016/j.ijpe.2008.08.027_bib22
  article-title: Forecast-accuracy metrics for intermittent demands: Look at the entire distribution
  publication-title: Foresight: The International Journal of Applied Forecasting
– volume: 8
  start-page: 93
  year: 1981
  ident: 10.1016/j.ijpe.2008.08.027_bib5
  article-title: Statistical analysis of time series: Some recent developments
  publication-title: Scandinavian Journal of Statistics
– year: 1997
  ident: 10.1016/j.ijpe.2008.08.027_bib15
– year: 1995
  ident: 10.1016/j.ijpe.2008.08.027_bib4
– volume: 82
  start-page: 339
  issue: 2
  year: 1995
  ident: 10.1016/j.ijpe.2008.08.027_bib7
  article-title: The simulation smoother for time series models
  publication-title: Biometrika
  doi: 10.1093/biomet/82.2.339
– volume: 12
  start-page: 736
  year: 1997
  ident: 10.1016/j.ijpe.2008.08.027_bib11
  article-title: Reliability diagrams for multicategory probabilistic forecasts
  publication-title: Weather and Forecasting
  doi: 10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2
– ident: 10.1016/j.ijpe.2008.08.027_bib24
– year: 2001
  ident: 10.1016/j.ijpe.2008.08.027_bib8
– year: 1994
  ident: 10.1016/j.ijpe.2008.08.027_bib9
– volume: 4
  start-page: 1
  issue: 4
  year: 1985
  ident: 10.1016/j.ijpe.2008.08.027_bib10
  article-title: Exponential smoothing: The state of the art
  publication-title: Journal of Forecasting
  doi: 10.1002/for.3980040103
– year: 1997
  ident: 10.1016/j.ijpe.2008.08.027_bib20
– year: 1989
  ident: 10.1016/j.ijpe.2008.08.027_bib12
– volume: 28
  start-page: 867
  issue: 4
  year: 1999
  ident: 10.1016/j.ijpe.2008.08.027_bib19
  article-title: On Markov chain Monte Carlo methods for nonlinear and non-Gaussian state-space models
  publication-title: Communications in Statistics, Simulation and Computation
  doi: 10.1080/03610919908813583
– volume: 8
  start-page: 988
  year: 1969
  ident: 10.1016/j.ijpe.2008.08.027_bib17
  article-title: On the ranked probability score
  publication-title: Journal of Applied Meteorology
  doi: 10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2
– volume: 23
  start-page: 289
  year: 1972
  ident: 10.1016/j.ijpe.2008.08.027_bib6
  article-title: Forecasting and stock control for intermittent demand
  publication-title: Operational Research Quarterly
  doi: 10.1057/jors.1972.50
– volume: 21
  start-page: 315
  issue: 2
  year: 2005
  ident: 10.1016/j.ijpe.2008.08.027_bib14
  article-title: Bayesian predictions of low count time series
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2004.11.001
– ident: 10.1016/j.ijpe.2008.08.027_bib18
– volume: vol. 21
  start-page: 573
  year: 2003
  ident: 10.1016/j.ijpe.2008.08.027_bib16
  article-title: Discrete variate time series
– year: 1997
  ident: 10.1016/j.ijpe.2008.08.027_bib23
– year: 1995
  ident: 10.1016/j.ijpe.2008.08.027_bib21
– year: 1998
  ident: 10.1016/j.ijpe.2008.08.027_bib3
SSID ssj0007188
Score 1.9848334
Snippet Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such...
Inventories of optional components in discrete manufacturing are often subject to so-called low-count demand patterns. Quantities demanded from such...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms Bayesian analysis
Bayesian statistics
Computer industry
Forecasting techniques
Inventory
Inventory management
Inventory management Low-count time series Bayesian statistics State-space models
Low-count time series
Network computers
State-space models
Studies
Time series
Title Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management
URI https://dx.doi.org/10.1016/j.ijpe.2008.08.027
http://econpapers.repec.org/article/eeeproeco/v_3a118_3ay_3a2009_3ai_3a1_3ap_3a95-103.htm
https://www.proquest.com/docview/199024461
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELamTULwgLYBomxMfuANmTpx4iS8lcLUMTQhYNLeLMe5QKa1jdoC6gu_nTvH6ToJ7QEpjiPnnFixc_dF-e6OsVd5VVd4Sok8splIKudE6Sol0PbJrCw1SPAE2Qs9uUw-XqVXO2zc-8IQrTLo_k6ne20dWobhaQ7bphl-lUXsw4d5zJN6Z_IkyWitv_lzS_NA3eu1MQoLkg6OMx3Hq7luIfApcaPMMv82Tlvgc28BLbgtG3S6zx4H8MhH3fgO2A7MDtmDnrt-yB5tRRd8wtbv7BrIR5IjMAVnl8RwpmN-M_8tfJIITqnlOa1CWHK6zHfuPYwE6hkH3KfJWb7loxmHadv4aCL8Nj64v1bjWevzxZpPN0yap-zy9MO38USETAvCIYBaibRSLpI2jiCLc402LamtdE4VqA2qWitZSpWUSSUrWYJStaoKYiRKsHVB4XPUM7Y7m8_gOeOxrRG0p7ouQCXa5rkulM4KAK0zhAswYFH_iI0LYcgpG8aN6flm14amJeTHxC3OBuz1pk_bBeG4VzrtZ87cWUoGrcS9_Y76aTbhRV6aCK01IiAdDdjYz_xmAACA4uDm5pdRFr_TcL_GQr-bsGqoEUuLpUjxnsr8WE1f_OfYjtjD7jcWkd-O2e5q8RNeIhpalSd-uZ-wvdH4y6fPVJ-dTy6w9f352V-M1QzN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVuJxQKWAWMrDB27IrBMnTsKtrFotUHqhlXqzEntSUnV3o91t0V762zvjONtFQj0gxUnk2I5lOzNf5G9mGPuYu9rhIyXyqMxE4qwVlXVKoO6TWVVpkOAJsid6fJZ8P0_Pt9iot4UhWmWQ_Z1M99I65AzDaA7bphn-kkXs3Yd5zJOSMflOkqqMeH2fb-95Hih8vTjG0oKKB8uZjuTVXLYQCJV4UGiZf2unDfS5M4cW7IYSOtplzwJ65AddB5-zLZjusUc9eX2PPd1wL_iCrb6WKyAjSY7IFGy5IIoz3fOr2R_ho0Rwii3PaRnCglMzF9ybGAkUNBa4j5Oz-MIPphwmbePdifB7B-G-rcbT1mfzFZ-sqTQv2dnR4eloLEKoBWERQS1F6pSNZBlHkMW5RqWW1KW0VhUoDlytlaykSqrESScrUKpWriBKooSyLsh_jnrFtqezKbxmPC5rRO2prgtQiS7zXBdKZwWA1hniBRiwqB9iY4MfcgqHcWV6wtmloWkJATLxiLMB-7Su03ZeOB4snfYzZ_5aSwbVxIP19vtpNuFLXpgI1TVCIB0N2MjP_LoDAIDFwc7MjVEl_qjheYWJ9pvw0lAmphZTkeI7lfm9nLz5z759YI_Hpz-PzfG3kx_77Em3p0VMuLdsezm_hncIjZbVe7_07wD0vgvS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+forecasting+for+low-count+time+series+using+state-space+models%3A+An+empirical+evaluation+for+inventory+management&rft.jtitle=International+journal+of+production+economics&rft.au=Yelland%2C+Phillip+M.&rft.date=2009-03-01&rft.pub=Elsevier+B.V&rft.issn=0925-5273&rft.eissn=1873-7579&rft.volume=118&rft.issue=1&rft.spage=95&rft.epage=103&rft_id=info:doi/10.1016%2Fj.ijpe.2008.08.027&rft.externalDocID=S0925527308002521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5273&client=summon