A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors. The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powere...
Saved in:
Published in | Science advances Vol. 2; no. 6; p. e1501624 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors.
The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment. |
---|---|
AbstractList | The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment. Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors. The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment. The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment. |
Author | Zhang, Guangjie Niu, Simiao Guo, Hengyu Wen, Zhen Yi, Fang Dai, Keren Yeh, Min-Hsin Zi, Yunlong You, Zheng Wang, Jie Zhang, Yue Lin, Long Liao, Qingliang Wang, Xiaofeng Wang, Zhong Lin Li, Shengming Yin, Yajiang |
Author_xml | – sequence: 1 givenname: Fang surname: Yi fullname: Yi, Fang organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China., School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 2 givenname: Xiaofeng surname: Wang fullname: Wang, Xiaofeng organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA., Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Simiao surname: Niu fullname: Niu, Simiao organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 4 givenname: Shengming surname: Li fullname: Li, Shengming organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 5 givenname: Yajiang surname: Yin fullname: Yin, Yajiang organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Keren surname: Dai fullname: Dai, Keren organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Guangjie surname: Zhang fullname: Zhang, Guangjie organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China – sequence: 8 givenname: Long surname: Lin fullname: Lin, Long organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 9 givenname: Zhen surname: Wen fullname: Wen, Zhen organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 10 givenname: Hengyu surname: Guo fullname: Guo, Hengyu organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 11 givenname: Jie surname: Wang fullname: Wang, Jie organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 12 givenname: Min-Hsin surname: Yeh fullname: Yeh, Min-Hsin organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 13 givenname: Yunlong surname: Zi fullname: Zi, Yunlong organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA – sequence: 14 givenname: Qingliang surname: Liao fullname: Liao, Qingliang organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China – sequence: 15 givenname: Zheng surname: You fullname: You, Zheng organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 16 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China – sequence: 17 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA., Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27386560$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFr3DAQhUVJadIk1x6Ljj3UW0m2ZftSCKFJC4FekrOQpZGtIkuOZG_YP9DfXS27CWmhpxmY770Z6b1HJz54QOgDJRtKGf-SlJV6u6E1oZxVb9AZK5u6YHXVnrzqT9FlSr8IIbTivKbdO3TKmrLlNSdn6PcVHu0wuh1Oo5yhkFrOi93CZ5yWCIsaZe8Aa0h28LiXCTQOHqvg9ar2HHb2cbUamxAxeIjDDo8ybiEt1g9Yeo0TOFPM4Qli1vY2TJBNvVXS4Sl4u4SYyQv01kiX4PJYz9HDzbf76-_F3c_bH9dXd4Wqar4UtdKkM8YoSnVf9YSXpTSNaUAxznSj-641Wjec56lhRnVM0471spQZASDlOfp68J3XfgKtwC9ROjFHO8m4E0Fa8ffE21EMYSuqjrVduzf4dDSI4XHNzxSTTQqckx7CmgTNTNNR3lQZ_fh618uS58_PwOYAqBhSimBeEErEPmBxCFgcA86C6h-BsotcbNjfat3_ZH8AEdmwzw |
CitedBy_id | crossref_primary_10_1002_advs_202106008 crossref_primary_10_1021_acs_chemrev_3c00305 crossref_primary_10_1007_s40820_020_0376_8 crossref_primary_10_3390_s17112621 crossref_primary_10_1002_admt_202100565 crossref_primary_10_1016_j_nanoen_2018_11_022 crossref_primary_10_1016_j_scib_2020_10_002 crossref_primary_10_1007_s40820_019_0271_3 crossref_primary_10_1016_j_sna_2017_12_018 crossref_primary_10_1002_adma_201702648 crossref_primary_10_1002_adma_201705918 crossref_primary_10_1021_acsaelm_0c00724 crossref_primary_10_1016_j_nanoen_2017_08_003 crossref_primary_10_1039_D0TA08780G crossref_primary_10_1002_adfm_202000411 crossref_primary_10_1016_j_nanoen_2024_109525 crossref_primary_10_1016_j_mattod_2017_12_006 crossref_primary_10_1016_j_nwnano_2024_100062 crossref_primary_10_1038_s41467_021_25047_y crossref_primary_10_1021_acsami_1c12378 crossref_primary_10_1038_s41467_019_10433_4 crossref_primary_10_1002_adfm_201806379 crossref_primary_10_1007_s12274_022_5273_7 crossref_primary_10_1002_cnma_202200034 crossref_primary_10_1016_j_nanoen_2017_01_004 crossref_primary_10_1126_sciadv_ads2291 crossref_primary_10_1126_sciadv_aav6437 crossref_primary_10_1002_adfm_201909252 crossref_primary_10_1002_adfm_201703801 crossref_primary_10_1021_acsami_8b08337 crossref_primary_10_1088_1361_6528_ab72bd crossref_primary_10_1063_1_4983353 crossref_primary_10_1126_sciadv_abb4246 crossref_primary_10_1016_j_nanoen_2023_108962 crossref_primary_10_1002_eom2_12093 crossref_primary_10_3390_nanoenergyadv2010002 crossref_primary_10_1002_smll_202403996 crossref_primary_10_1002_adfm_201806388 crossref_primary_10_1002_smsc_202300358 crossref_primary_10_1016_j_nanoen_2020_105027 crossref_primary_10_1016_j_nanoen_2021_106757 crossref_primary_10_1016_j_nanoen_2020_104973 crossref_primary_10_3390_nanoenergyadv2010006 crossref_primary_10_1016_j_nanoen_2019_05_054 crossref_primary_10_1016_j_matt_2021_01_006 crossref_primary_10_1002_adfm_201901069 crossref_primary_10_1016_j_apenergy_2019_113987 crossref_primary_10_1002_adfm_201908252 crossref_primary_10_1039_C8NR02039F crossref_primary_10_1016_j_cej_2023_147898 crossref_primary_10_1021_acsapm_2c00801 crossref_primary_10_1016_j_jmst_2024_08_047 crossref_primary_10_1126_sciadv_1700015 crossref_primary_10_1016_j_apmt_2019_100496 crossref_primary_10_1016_j_nanoen_2023_109151 crossref_primary_10_1016_j_nantod_2024_102232 crossref_primary_10_1038_s41528_017_0007_8 crossref_primary_10_1002_advs_201700881 crossref_primary_10_2298_FUEE2303411A crossref_primary_10_1007_s12274_021_3724_1 crossref_primary_10_1007_s40544_020_0390_3 crossref_primary_10_1016_j_mtsust_2022_100219 crossref_primary_10_1063_5_0241082 crossref_primary_10_1002_adfm_201803684 crossref_primary_10_1016_j_nanoen_2019_05_041 crossref_primary_10_3390_polym16172477 crossref_primary_10_1016_j_eml_2020_101100 crossref_primary_10_1021_acsnano_6b07633 crossref_primary_10_1016_j_nanoen_2022_107110 crossref_primary_10_1016_j_nanoen_2022_107475 crossref_primary_10_1002_mame_201900074 crossref_primary_10_3390_ma18020322 crossref_primary_10_1002_aenm_201602832 crossref_primary_10_1007_s12274_018_1992_1 crossref_primary_10_1016_j_dsp_2021_103038 crossref_primary_10_1002_adfm_202404329 crossref_primary_10_1177_2472630319891128 crossref_primary_10_1016_j_nanoen_2018_03_067 crossref_primary_10_1002_admi_202200290 crossref_primary_10_1038_s41467_017_00131_4 crossref_primary_10_1002_aenm_201703133 crossref_primary_10_1002_admt_201700229 crossref_primary_10_1016_j_mtener_2024_101502 crossref_primary_10_1016_j_nanoen_2022_107784 crossref_primary_10_1039_D2TA01209J crossref_primary_10_1002_admt_202100870 crossref_primary_10_1063_1_4977208 crossref_primary_10_1002_adfm_202405520 crossref_primary_10_1021_acsami_0c11932 crossref_primary_10_1002_adma_201807201 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1016_j_nanoen_2022_107778 crossref_primary_10_1016_j_nanoen_2017_05_062 crossref_primary_10_1088_2399_7532_abd4f0 crossref_primary_10_1002_adem_202302214 crossref_primary_10_1016_j_nanoen_2021_106742 crossref_primary_10_1126_sciadv_aax0648 crossref_primary_10_1002_aenm_201802906 crossref_primary_10_1016_j_nanoen_2023_108251 crossref_primary_10_1002_smll_201602790 crossref_primary_10_1016_j_matt_2022_02_013 crossref_primary_10_1088_2631_7990_ad4fca crossref_primary_10_1038_s41467_020_17345_8 crossref_primary_10_1016_j_jiec_2021_02_016 crossref_primary_10_3390_batteries8110215 crossref_primary_10_1016_j_nanoen_2023_108817 crossref_primary_10_1039_D0TA03215H crossref_primary_10_1002_adfm_202007221 crossref_primary_10_1002_admt_202200186 crossref_primary_10_1039_D2RA01088G crossref_primary_10_1039_C8NR08406H crossref_primary_10_1016_j_nanoen_2021_106715 crossref_primary_10_1002_adfm_201909384 crossref_primary_10_1021_acsaelm_9b00483 crossref_primary_10_1021_acsnano_8b00108 crossref_primary_10_1021_acsmaterialsau_2c00001 crossref_primary_10_1016_j_nanoen_2021_105983 crossref_primary_10_1002_adfm_201807560 crossref_primary_10_1088_2752_5724_ad2f6a crossref_primary_10_1002_aisy_201900090 crossref_primary_10_1039_C8TC02655F crossref_primary_10_1002_admt_202301931 crossref_primary_10_1016_j_nanoen_2019_104165 crossref_primary_10_1002_smtd_202300562 crossref_primary_10_1002_aenm_202103571 crossref_primary_10_1016_j_mtcomm_2025_112151 crossref_primary_10_3390_mi12060698 crossref_primary_10_1002_er_7245 crossref_primary_10_1039_D2NR05706A crossref_primary_10_1002_advs_201801625 crossref_primary_10_1039_C7RA10285B crossref_primary_10_1063_1_5028478 crossref_primary_10_3390_s23135888 crossref_primary_10_1177_0040517518760759 crossref_primary_10_1016_j_nanoen_2017_05_048 crossref_primary_10_1016_j_nanoen_2019_103997 crossref_primary_10_1039_C7MH00071E crossref_primary_10_1002_adma_201705195 crossref_primary_10_1016_j_nanoen_2017_07_048 crossref_primary_10_1016_j_nanoen_2017_11_028 crossref_primary_10_1002_cssc_202301718 crossref_primary_10_1007_s12274_017_1716_y crossref_primary_10_1002_aisy_202000007 crossref_primary_10_1002_adfm_202004181 crossref_primary_10_1038_s41467_020_18086_4 crossref_primary_10_1038_s41928_019_0286_2 crossref_primary_10_1021_acsaelm_3c01487 crossref_primary_10_7498_aps_69_20200867 crossref_primary_10_1007_s12274_016_1275_7 crossref_primary_10_1002_adfm_202005703 crossref_primary_10_1016_j_nanoen_2023_108436 crossref_primary_10_1016_j_eurpolymj_2020_110163 crossref_primary_10_1021_acsami_2c12862 crossref_primary_10_1016_j_nanoen_2022_107067 crossref_primary_10_1016_j_jsamd_2022_100505 crossref_primary_10_1016_j_mseb_2024_117859 crossref_primary_10_1016_j_nanoen_2018_10_078 crossref_primary_10_1016_j_nanoen_2018_09_067 crossref_primary_10_1002_advs_201700029 crossref_primary_10_1002_pat_5493 crossref_primary_10_1021_acsami_4c22054 crossref_primary_10_1007_s11071_022_07563_8 crossref_primary_10_3390_polym15143091 crossref_primary_10_1021_acs_chemmater_9b04041 crossref_primary_10_1016_j_nanoen_2019_03_032 crossref_primary_10_1016_j_nanoen_2018_02_061 crossref_primary_10_1002_aenm_201601529 crossref_primary_10_1016_j_nanoen_2020_104462 crossref_primary_10_1021_acsabm_2c01062 crossref_primary_10_1002_adma_202407859 crossref_primary_10_1016_j_nanoen_2019_104105 crossref_primary_10_1016_j_nanoen_2018_10_044 crossref_primary_10_1364_OL_423496 crossref_primary_10_1016_j_dsp_2022_103570 crossref_primary_10_1016_j_nanoen_2024_110456 crossref_primary_10_1002_pssr_202000050 crossref_primary_10_1016_j_nanoen_2017_04_053 crossref_primary_10_1063_5_0085850 crossref_primary_10_1002_advs_202206950 crossref_primary_10_1016_j_nanoen_2024_110450 crossref_primary_10_1002_smll_202307070 crossref_primary_10_1016_j_nanoen_2020_105303 crossref_primary_10_1016_j_nanoen_2021_106117 crossref_primary_10_1021_acsnano_8b00147 crossref_primary_10_1016_j_nanoen_2017_12_049 crossref_primary_10_1002_app_45674 crossref_primary_10_1016_j_nanoen_2019_103948 crossref_primary_10_1039_C6RA26677K crossref_primary_10_1021_acssuschemeng_9b03629 crossref_primary_10_1021_acsami_4c02303 crossref_primary_10_1016_j_nanoen_2019_03_048 crossref_primary_10_1016_j_nanoen_2023_108213 crossref_primary_10_1016_j_nanoen_2022_107073 crossref_primary_10_1016_j_nanoen_2022_108041 crossref_primary_10_1016_j_nanoen_2022_108043 crossref_primary_10_1039_D1NR05129F crossref_primary_10_1007_s40820_022_00898_2 crossref_primary_10_1002_admt_201800054 crossref_primary_10_1007_s11431_020_1808_2 crossref_primary_10_1016_j_nanoen_2020_105414 crossref_primary_10_1039_C7TA03092D crossref_primary_10_1016_j_cej_2021_132488 crossref_primary_10_1016_j_nanoen_2022_107637 crossref_primary_10_1126_sciadv_adc8845 crossref_primary_10_1002_adfm_201808849 crossref_primary_10_1039_D3CC00431G crossref_primary_10_1002_advs_202000254 crossref_primary_10_1016_j_nanoen_2019_01_069 crossref_primary_10_1038_srep41396 crossref_primary_10_1016_j_nanoen_2017_07_003 crossref_primary_10_1038_s41467_020_19867_7 crossref_primary_10_1002_aenm_201903024 crossref_primary_10_3390_s23041856 crossref_primary_10_1002_smll_201903089 crossref_primary_10_1016_j_nanoen_2021_105919 crossref_primary_10_1016_j_nanoen_2019_03_068 crossref_primary_10_1016_j_isci_2020_102027 crossref_primary_10_1002_adfm_201604378 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1088_1361_6501_ad9e13 crossref_primary_10_1016_j_carbpol_2022_119586 crossref_primary_10_1016_j_nanoen_2021_106570 crossref_primary_10_1007_s40843_021_2023_x crossref_primary_10_1016_j_nanoen_2019_104414 crossref_primary_10_1016_j_nanoen_2021_106695 crossref_primary_10_1016_j_nanoen_2021_106575 crossref_primary_10_1016_j_mtener_2018_05_006 crossref_primary_10_1016_j_susmat_2020_e00239 crossref_primary_10_1186_s40580_019_0195_0 crossref_primary_10_1016_j_nanoen_2021_106580 crossref_primary_10_1002_eom2_12062 crossref_primary_10_1016_j_device_2025_100721 crossref_primary_10_1021_acsnano_9b02690 crossref_primary_10_1021_acsnano_0c00675 crossref_primary_10_1016_j_nanoen_2018_11_078 crossref_primary_10_1007_s12274_018_1997_9 crossref_primary_10_1039_D2TA07933J crossref_primary_10_1149_1945_7111_abdc65 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_3390_s20102925 crossref_primary_10_1002_aenm_201900772 crossref_primary_10_1039_D1RA02010B crossref_primary_10_1002_aenm_202301832 crossref_primary_10_1016_j_nanoen_2017_07_022 crossref_primary_10_1016_j_nanoen_2018_09_035 crossref_primary_10_1021_acsami_8b15410 crossref_primary_10_1021_acsnano_7b05626 crossref_primary_10_1089_soro_2020_0051 crossref_primary_10_1016_j_enconman_2023_116971 crossref_primary_10_1016_j_joule_2017_09_004 crossref_primary_10_1016_j_carbon_2024_119869 crossref_primary_10_1002_adma_202209117 crossref_primary_10_1002_eom2_12059 crossref_primary_10_1002_adfm_201606695 crossref_primary_10_1039_C9NR01271K crossref_primary_10_1039_C7TA02680C crossref_primary_10_1039_C7CS00849J crossref_primary_10_1002_admt_202000737 crossref_primary_10_1109_TNSRE_2019_2961428 crossref_primary_10_1016_j_nanoen_2020_104770 crossref_primary_10_1002_adma_202004832 crossref_primary_10_1016_j_nanoen_2022_107150 crossref_primary_10_1002_adma_201706790 crossref_primary_10_3390_polym9080303 crossref_primary_10_1016_j_bios_2022_114595 crossref_primary_10_1038_s41467_019_09464_8 crossref_primary_10_1126_sciadv_1700694 crossref_primary_10_1021_acsaelm_2c00118 crossref_primary_10_1088_2515_7639_ac0092 crossref_primary_10_1039_D0NR04868B crossref_primary_10_1016_j_nanoen_2019_02_057 crossref_primary_10_1007_s11432_018_9384_7 crossref_primary_10_1002_adma_202208139 crossref_primary_10_1016_j_nanoen_2020_105730 crossref_primary_10_1016_j_nanoen_2020_105614 crossref_primary_10_3390_s16091502 crossref_primary_10_1021_acsnano_8b02479 crossref_primary_10_1038_s41467_020_15373_y crossref_primary_10_1002_ente_202100793 crossref_primary_10_1002_aenm_201801898 |
Cites_doi | 10.1038/nnano.2008.314 10.1038/nature12314 10.1002/adfm.201303799 10.1002/adma.201400373 10.1002/adfm.201500428 10.1021/nl070194h 10.1016/j.nanoen.2014.10.034 10.1038/nnano.2012.192 10.1021/nn5012732 10.1038/nmat2361 10.1126/science.1149860 10.1021/nn4037514 10.1021/nl503402c 10.1021/nl302560k 10.1021/nn404614z 10.1021/jp907072z 10.1021/nl2011559 10.1038/nmat2459 10.1038/ncomms5929 10.1038/nmat3013 10.1021/la00040a030 10.1126/science.1254763 10.1038/ncomms9975 10.1002/adma.201404794 10.1039/C5EE01532D 10.1002/anie.201300437 10.1039/c3ee42571a 10.1016/j.nanoen.2014.11.034 10.1002/adma.201402574 10.1021/acsnano.5b02010 10.1038/ncomms4575 10.1038/ncomms9011 10.1038/ncomms4426 10.1021/nn4007708 10.1002/adfm.201402703 |
ContentType | Journal Article |
Copyright | Copyright © 2016, The Authors 2016 The Authors |
Copyright_xml | – notice: Copyright © 2016, The Authors 2016 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1126/sciadv.1501624 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | PMC4928980 27386560 10_1126_sciadv_1501624 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: ID0EX3CI6804 – fundername: ; grantid: ID0EK1CI6798 – fundername: ; grantid: ID0EX1CI6799; 51432005 – fundername: ; grantid: ID0EG3CI6802; 51527802 and 51232001 – fundername: ; grantid: ID0E6ZCI6797 – fundername: ; grantid: ID0EE4CI6803 – fundername: ; grantid: ID0EX2CI6801; B14003 – fundername: ; grantid: ID0EI2CI6800; 2013CB932602 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADRAZ AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI ADPDF BBORY BCGUY CGR CUY CVF ECM EIF NPM OVEED RHF 7X8 5PM |
ID | FETCH-LOGICAL-c456t-5cd09fffc11db4b0633af7f7ec262d7db98fdd766db4f2fc92d192ba3a7ecee03 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:19:44 EDT 2025 Fri Jul 11 05:24:01 EDT 2025 Thu Jan 02 22:22:51 EST 2025 Tue Jul 01 03:52:34 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Stretchable energy harvesting wearable self-powered sensing |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-5cd09fffc11db4b0633af7f7ec262d7db98fdd766db4f2fc92d192ba3a7ecee03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1501624 |
PMID | 27386560 |
PQID | 1803791674 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4928980 proquest_miscellaneous_1803791674 pubmed_primary_27386560 crossref_primary_10_1126_sciadv_1501624 crossref_citationtrail_10_1126_sciadv_1501624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | Zhu G. (e_1_3_2_13_2) 2014; 5 Lin L. (e_1_3_2_20_2) 2013; 7 e_1_3_2_21_2 e_1_3_2_24_2 Bai P. (e_1_3_2_27_2) 2013; 7 Dhiman P. (e_1_3_2_33_2) 2011; 11 Niu S. (e_1_3_2_30_2) 2014; 24 Bae J. (e_1_3_2_11_2) 2014; 5 Yang P.-K. (e_1_3_2_22_2) 2015; 27 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 Xie Y. (e_1_3_2_36_2) 2014; 5 Lin Z.-H. (e_1_3_2_19_2) 2013; 52 Yi F. (e_1_3_2_25_2) 2015; 25 e_1_3_2_10_2 e_1_3_2_31_2 Niu S. (e_1_3_2_32_2) 2015; 14 e_1_3_2_5_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Saurenbach F. (e_1_3_2_29_2) 1992; 8 Jeong C. K. (e_1_3_2_28_2) 2014; 14 Yi F. (e_1_3_2_18_2) 2014; 24 Kim K. N. (e_1_3_2_23_2) 2015; 9 Fang H. (e_1_3_2_26_2) 2009; 113 21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7 24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57 19119280 - Nat Nanotechnol. 2009 Jan;4(1):34-9 21532584 - Nat Mater. 2011 May 01;10(7):532-8 24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6 19430465 - Nat Mater. 2009 Jun;8(6):494-9 23887430 - Nature. 2013 Jul 25;499(7459):458-63 23957827 - ACS Nano. 2013 Sep 24;7(9):8266-74 23484470 - ACS Nano. 2013 Apr 23;7(4):3713-9 25393064 - Nano Lett. 2014 Dec 10;14(12):7031-8 24745893 - ACS Nano. 2014 Jun 24;8(6):6031-7 25256696 - Adv Mater. 2014 Nov 19;26(43):7324-32 25247474 - Nat Commun. 2014 Sep 23;5:4929 18258914 - Science. 2008 Feb 8;319(5864):807-10 25640534 - Adv Mater. 2015 Feb 25;27(8):1316-26 25035487 - Science. 2014 Jul 18;345(6194):295-8 22889363 - Nano Lett. 2012 Sep 12;12(9):4960-5 24709899 - Nat Commun. 2014 Apr 07;5:3575 19165205 - Nat Mater. 2009 Feb;8(2):83-5 17352506 - Nano Lett. 2007 Apr;7(4):1022-5 23568745 - Angew Chem Int Ed Engl. 2013 May 3;52(19):5065-9 26051679 - ACS Nano. 2015 Jun 23;9(6):6394-400 26656252 - Nat Commun. 2015 Dec 11;6:8975 23142944 - Nat Nanotechnol. 2012 Dec;7(12):825-32 24594501 - Nat Commun. 2014 Mar 04;5:3426 26300307 - Nat Commun. 2015 Aug 24;6:8011 |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1038/nnano.2008.314 – ident: e_1_3_2_5_2 doi: 10.1038/nature12314 – volume: 24 start-page: 3332 year: 2014 ident: e_1_3_2_30_2 article-title: Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303799 – ident: e_1_3_2_34_2 doi: 10.1002/adma.201400373 – volume: 25 start-page: 3688 year: 2015 ident: e_1_3_2_25_2 article-title: Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500428 – ident: e_1_3_2_37_2 doi: 10.1021/nl070194h – ident: e_1_3_2_21_2 doi: 10.1016/j.nanoen.2014.10.034 – volume: 27 start-page: 3817 year: 2015 ident: e_1_3_2_22_2 article-title: A Flexible publication-title: Adv. Mater. – ident: e_1_3_2_3_2 doi: 10.1038/nnano.2012.192 – ident: e_1_3_2_35_2 doi: 10.1021/nn5012732 – ident: e_1_3_2_9_2 doi: 10.1038/nmat2361 – ident: e_1_3_2_6_2 doi: 10.1126/science.1149860 – volume: 7 start-page: 8266 year: 2013 ident: e_1_3_2_20_2 article-title: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging publication-title: ACS Nano doi: 10.1021/nn4037514 – volume: 14 start-page: 7031 year: 2014 ident: e_1_3_2_28_2 article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly publication-title: Nano Lett. doi: 10.1021/nl503402c – ident: e_1_3_2_15_2 doi: 10.1021/nl302560k – ident: e_1_3_2_14_2 doi: 10.1021/nn404614z – volume: 113 start-page: 16571 year: 2009 ident: e_1_3_2_26_2 article-title: Controlled growth of aligned polymer nanowires publication-title: J. Phys. Chem. C doi: 10.1021/jp907072z – volume: 11 start-page: 3123 year: 2011 ident: e_1_3_2_33_2 article-title: Harvesting energy from water flow over graphene publication-title: Nano Lett. doi: 10.1021/nl2011559 – ident: e_1_3_2_4_2 doi: 10.1038/nmat2459 – volume: 5 start-page: 4929 year: 2014 ident: e_1_3_2_11_2 article-title: Flutter-driven triboelectrification for harvesting wind energy publication-title: Nat. Commun. doi: 10.1038/ncomms5929 – ident: e_1_3_2_7_2 doi: 10.1038/nmat3013 – volume: 8 start-page: 1199 year: 1992 ident: e_1_3_2_29_2 article-title: Force microscopy of ion-containing polymer surfaces: Morphology and charge structure publication-title: Langmuir doi: 10.1021/la00040a030 – ident: e_1_3_2_8_2 doi: 10.1126/science.1254763 – ident: e_1_3_2_16_2 doi: 10.1038/ncomms9975 – ident: e_1_3_2_17_2 doi: 10.1002/adma.201404794 – ident: e_1_3_2_12_2 doi: 10.1039/C5EE01532D – volume: 52 start-page: 5065 year: 2013 ident: e_1_3_2_19_2 article-title: A self-powered triboelectric nanosensor for mercury ion detection publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300437 – ident: e_1_3_2_31_2 doi: 10.1039/c3ee42571a – volume: 14 start-page: 161 year: 2015 ident: e_1_3_2_32_2 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_3_2_24_2 doi: 10.1002/adma.201402574 – volume: 9 start-page: 6394 year: 2015 ident: e_1_3_2_23_2 article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments publication-title: ACS Nano doi: 10.1021/acsnano.5b02010 – volume: 5 start-page: 3575 year: 2014 ident: e_1_3_2_36_2 article-title: High-efficiency ballistic electrostatic generator using microdroplets publication-title: Nat. Commun. doi: 10.1038/ncomms4575 – ident: e_1_3_2_2_2 doi: 10.1038/ncomms9011 – volume: 5 start-page: 3426 year: 2014 ident: e_1_3_2_13_2 article-title: Radial-arrayed rotary electrification for high performance triboelectric generator publication-title: Nat. Commun. doi: 10.1038/ncomms4426 – volume: 7 start-page: 3713 year: 2013 ident: e_1_3_2_27_2 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano doi: 10.1021/nn4007708 – volume: 24 start-page: 7488 year: 2014 ident: e_1_3_2_18_2 article-title: Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402703 – reference: 25256696 - Adv Mater. 2014 Nov 19;26(43):7324-32 – reference: 26656252 - Nat Commun. 2015 Dec 11;6:8975 – reference: 19430465 - Nat Mater. 2009 Jun;8(6):494-9 – reference: 24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57 – reference: 24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6 – reference: 17352506 - Nano Lett. 2007 Apr;7(4):1022-5 – reference: 25035487 - Science. 2014 Jul 18;345(6194):295-8 – reference: 24745893 - ACS Nano. 2014 Jun 24;8(6):6031-7 – reference: 22889363 - Nano Lett. 2012 Sep 12;12(9):4960-5 – reference: 21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7 – reference: 24709899 - Nat Commun. 2014 Apr 07;5:3575 – reference: 25247474 - Nat Commun. 2014 Sep 23;5:4929 – reference: 23568745 - Angew Chem Int Ed Engl. 2013 May 3;52(19):5065-9 – reference: 23484470 - ACS Nano. 2013 Apr 23;7(4):3713-9 – reference: 23887430 - Nature. 2013 Jul 25;499(7459):458-63 – reference: 18258914 - Science. 2008 Feb 8;319(5864):807-10 – reference: 23142944 - Nat Nanotechnol. 2012 Dec;7(12):825-32 – reference: 19165205 - Nat Mater. 2009 Feb;8(2):83-5 – reference: 21532584 - Nat Mater. 2011 May 01;10(7):532-8 – reference: 25393064 - Nano Lett. 2014 Dec 10;14(12):7031-8 – reference: 19119280 - Nat Nanotechnol. 2009 Jan;4(1):34-9 – reference: 24594501 - Nat Commun. 2014 Mar 04;5:3426 – reference: 25640534 - Adv Mater. 2015 Feb 25;27(8):1316-26 – reference: 26300307 - Nat Commun. 2015 Aug 24;6:8011 – reference: 23957827 - ACS Nano. 2013 Sep 24;7(9):8266-74 – reference: 26051679 - ACS Nano. 2015 Jun 23;9(6):6394-400 |
SSID | ssj0001466519 |
Score | 2.4760253 |
Snippet | Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors.
The rapid growth of deformable and... The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1501624 |
SubjectTerms | Aluminum - chemistry Biomechanical Phenomena Electric Conductivity Electrochemical Techniques Electrodes Equipment Design Nanostructures - chemistry Nylons - chemistry Polymers - chemistry SciAdv r-articles Sustainable Energy |
Title | A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27386560 https://www.proquest.com/docview/1803791674 https://pubmed.ncbi.nlm.nih.gov/PMC4928980 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVpcumlNE0_th9BgUBbqIKtXUvWoZRQmoRAeurC3ozskboLjnez3i3JH8jv7oys3W6a5tKLLxoZrCdpnuSZN4wdukxaVWaZAK8NHlDACqukFtaZzPtS6qyifOeL7-psODgfZaM_8U9xANt_Hu2ontRwXh9dX918wQX_eSMBxsKvI6Q2qZKDR2wHvZKmagYXkeqH-5aBUshWom7j_W6kChwKYAaxyg0XdY93_h0-ueGPTp6yJ5FI8uMO-V225ZpnbDcu1ZZ_iHrSH_fY7TEnUeL6hrdjO3PCgp3RJveJU6IIokbZUxxCKAcnrwZ82nA8J5MULNrxenK1nABHestdSBXkYzsP8hzNT24b4K2rvZhRvTXsGxL6KZ-Y4OeXYc-gy8PnbHjy7cfXMxHLL4gKWdVCIEqJ8d5XaQrloEQu07dee-0qqSRoKE3uAbRS2Oqlr4wEpIul7Vs0cS7pv2DbzbRxrxhPSZYwT7IqSR3ioE0FSJe9S51PEgDTY2I14kUVtcmpREZdhDOKVEUHVhHB6rH3a_tZp8rxoOXBCsACFw79DbGNmy7bIs2TvjaUhNFjLztA1-9azYQe03egXhuQKPfdlmYyDuLc-KW5yZPX_93zDXuMpEx14Whv2fZivnTvkPgsyv1wYYDP01G6H2b3b2qcDMk |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+shape-adaptive%2C+stretchable+design+based+on+conductive+liquid+for+energy+harvesting+and+self-powered+biomechanical+monitoring&rft.jtitle=Science+advances&rft.au=Yi%2C+Fang&rft.au=Wang%2C+Xiaofeng&rft.au=Niu%2C+Simiao&rft.au=Li%2C+Shengming&rft.date=2016-06-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1126%2Fsciadv.1501624&rft_id=info%3Apmid%2F27386560&rft.externalDocID=PMC4928980 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |