A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring

Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors. The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powere...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 2; no. 6; p. e1501624
Main Authors Yi, Fang, Wang, Xiaofeng, Niu, Simiao, Li, Shengming, Yin, Yajiang, Dai, Keren, Zhang, Guangjie, Lin, Long, Wen, Zhen, Guo, Hengyu, Wang, Jie, Yeh, Min-Hsin, Zi, Yunlong, Liao, Qingliang, You, Zheng, Zhang, Yue, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors. The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.
AbstractList The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.
Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors. The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.
The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.
Author Zhang, Guangjie
Niu, Simiao
Guo, Hengyu
Wen, Zhen
Yi, Fang
Dai, Keren
Yeh, Min-Hsin
Zi, Yunlong
You, Zheng
Wang, Jie
Zhang, Yue
Lin, Long
Liao, Qingliang
Wang, Xiaofeng
Wang, Zhong Lin
Li, Shengming
Yin, Yajiang
Author_xml – sequence: 1
  givenname: Fang
  surname: Yi
  fullname: Yi, Fang
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China., School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 2
  givenname: Xiaofeng
  surname: Wang
  fullname: Wang, Xiaofeng
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA., Department of Precision Instrument, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Simiao
  surname: Niu
  fullname: Niu, Simiao
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 4
  givenname: Shengming
  surname: Li
  fullname: Li, Shengming
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 5
  givenname: Yajiang
  surname: Yin
  fullname: Yin, Yajiang
  organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Keren
  surname: Dai
  fullname: Dai, Keren
  organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China
– sequence: 7
  givenname: Guangjie
  surname: Zhang
  fullname: Zhang, Guangjie
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 8
  givenname: Long
  surname: Lin
  fullname: Lin, Long
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 9
  givenname: Zhen
  surname: Wen
  fullname: Wen, Zhen
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 10
  givenname: Hengyu
  surname: Guo
  fullname: Guo, Hengyu
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 11
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 12
  givenname: Min-Hsin
  surname: Yeh
  fullname: Yeh, Min-Hsin
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 13
  givenname: Yunlong
  surname: Zi
  fullname: Zi, Yunlong
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA
– sequence: 14
  givenname: Qingliang
  surname: Liao
  fullname: Liao, Qingliang
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 15
  givenname: Zheng
  surname: You
  fullname: You, Zheng
  organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China
– sequence: 16
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, and Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 17
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA., Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27386560$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFr3DAQhUVJadIk1x6Ljj3UW0m2ZftSCKFJC4FekrOQpZGtIkuOZG_YP9DfXS27CWmhpxmY770Z6b1HJz54QOgDJRtKGf-SlJV6u6E1oZxVb9AZK5u6YHXVnrzqT9FlSr8IIbTivKbdO3TKmrLlNSdn6PcVHu0wuh1Oo5yhkFrOi93CZ5yWCIsaZe8Aa0h28LiXCTQOHqvg9ar2HHb2cbUamxAxeIjDDo8ybiEt1g9Yeo0TOFPM4Qli1vY2TJBNvVXS4Sl4u4SYyQv01kiX4PJYz9HDzbf76-_F3c_bH9dXd4Wqar4UtdKkM8YoSnVf9YSXpTSNaUAxznSj-641Wjec56lhRnVM0471spQZASDlOfp68J3XfgKtwC9ROjFHO8m4E0Fa8ffE21EMYSuqjrVduzf4dDSI4XHNzxSTTQqckx7CmgTNTNNR3lQZ_fh618uS58_PwOYAqBhSimBeEErEPmBxCFgcA86C6h-BsotcbNjfat3_ZH8AEdmwzw
CitedBy_id crossref_primary_10_1002_advs_202106008
crossref_primary_10_1021_acs_chemrev_3c00305
crossref_primary_10_1007_s40820_020_0376_8
crossref_primary_10_3390_s17112621
crossref_primary_10_1002_admt_202100565
crossref_primary_10_1016_j_nanoen_2018_11_022
crossref_primary_10_1016_j_scib_2020_10_002
crossref_primary_10_1007_s40820_019_0271_3
crossref_primary_10_1016_j_sna_2017_12_018
crossref_primary_10_1002_adma_201702648
crossref_primary_10_1002_adma_201705918
crossref_primary_10_1021_acsaelm_0c00724
crossref_primary_10_1016_j_nanoen_2017_08_003
crossref_primary_10_1039_D0TA08780G
crossref_primary_10_1002_adfm_202000411
crossref_primary_10_1016_j_nanoen_2024_109525
crossref_primary_10_1016_j_mattod_2017_12_006
crossref_primary_10_1016_j_nwnano_2024_100062
crossref_primary_10_1038_s41467_021_25047_y
crossref_primary_10_1021_acsami_1c12378
crossref_primary_10_1038_s41467_019_10433_4
crossref_primary_10_1002_adfm_201806379
crossref_primary_10_1007_s12274_022_5273_7
crossref_primary_10_1002_cnma_202200034
crossref_primary_10_1016_j_nanoen_2017_01_004
crossref_primary_10_1126_sciadv_ads2291
crossref_primary_10_1126_sciadv_aav6437
crossref_primary_10_1002_adfm_201909252
crossref_primary_10_1002_adfm_201703801
crossref_primary_10_1021_acsami_8b08337
crossref_primary_10_1088_1361_6528_ab72bd
crossref_primary_10_1063_1_4983353
crossref_primary_10_1126_sciadv_abb4246
crossref_primary_10_1016_j_nanoen_2023_108962
crossref_primary_10_1002_eom2_12093
crossref_primary_10_3390_nanoenergyadv2010002
crossref_primary_10_1002_smll_202403996
crossref_primary_10_1002_adfm_201806388
crossref_primary_10_1002_smsc_202300358
crossref_primary_10_1016_j_nanoen_2020_105027
crossref_primary_10_1016_j_nanoen_2021_106757
crossref_primary_10_1016_j_nanoen_2020_104973
crossref_primary_10_3390_nanoenergyadv2010006
crossref_primary_10_1016_j_nanoen_2019_05_054
crossref_primary_10_1016_j_matt_2021_01_006
crossref_primary_10_1002_adfm_201901069
crossref_primary_10_1016_j_apenergy_2019_113987
crossref_primary_10_1002_adfm_201908252
crossref_primary_10_1039_C8NR02039F
crossref_primary_10_1016_j_cej_2023_147898
crossref_primary_10_1021_acsapm_2c00801
crossref_primary_10_1016_j_jmst_2024_08_047
crossref_primary_10_1126_sciadv_1700015
crossref_primary_10_1016_j_apmt_2019_100496
crossref_primary_10_1016_j_nanoen_2023_109151
crossref_primary_10_1016_j_nantod_2024_102232
crossref_primary_10_1038_s41528_017_0007_8
crossref_primary_10_1002_advs_201700881
crossref_primary_10_2298_FUEE2303411A
crossref_primary_10_1007_s12274_021_3724_1
crossref_primary_10_1007_s40544_020_0390_3
crossref_primary_10_1016_j_mtsust_2022_100219
crossref_primary_10_1063_5_0241082
crossref_primary_10_1002_adfm_201803684
crossref_primary_10_1016_j_nanoen_2019_05_041
crossref_primary_10_3390_polym16172477
crossref_primary_10_1016_j_eml_2020_101100
crossref_primary_10_1021_acsnano_6b07633
crossref_primary_10_1016_j_nanoen_2022_107110
crossref_primary_10_1016_j_nanoen_2022_107475
crossref_primary_10_1002_mame_201900074
crossref_primary_10_3390_ma18020322
crossref_primary_10_1002_aenm_201602832
crossref_primary_10_1007_s12274_018_1992_1
crossref_primary_10_1016_j_dsp_2021_103038
crossref_primary_10_1002_adfm_202404329
crossref_primary_10_1177_2472630319891128
crossref_primary_10_1016_j_nanoen_2018_03_067
crossref_primary_10_1002_admi_202200290
crossref_primary_10_1038_s41467_017_00131_4
crossref_primary_10_1002_aenm_201703133
crossref_primary_10_1002_admt_201700229
crossref_primary_10_1016_j_mtener_2024_101502
crossref_primary_10_1016_j_nanoen_2022_107784
crossref_primary_10_1039_D2TA01209J
crossref_primary_10_1002_admt_202100870
crossref_primary_10_1063_1_4977208
crossref_primary_10_1002_adfm_202405520
crossref_primary_10_1021_acsami_0c11932
crossref_primary_10_1002_adma_201807201
crossref_primary_10_3390_nanoenergyadv1010005
crossref_primary_10_1016_j_nanoen_2022_107778
crossref_primary_10_1016_j_nanoen_2017_05_062
crossref_primary_10_1088_2399_7532_abd4f0
crossref_primary_10_1002_adem_202302214
crossref_primary_10_1016_j_nanoen_2021_106742
crossref_primary_10_1126_sciadv_aax0648
crossref_primary_10_1002_aenm_201802906
crossref_primary_10_1016_j_nanoen_2023_108251
crossref_primary_10_1002_smll_201602790
crossref_primary_10_1016_j_matt_2022_02_013
crossref_primary_10_1088_2631_7990_ad4fca
crossref_primary_10_1038_s41467_020_17345_8
crossref_primary_10_1016_j_jiec_2021_02_016
crossref_primary_10_3390_batteries8110215
crossref_primary_10_1016_j_nanoen_2023_108817
crossref_primary_10_1039_D0TA03215H
crossref_primary_10_1002_adfm_202007221
crossref_primary_10_1002_admt_202200186
crossref_primary_10_1039_D2RA01088G
crossref_primary_10_1039_C8NR08406H
crossref_primary_10_1016_j_nanoen_2021_106715
crossref_primary_10_1002_adfm_201909384
crossref_primary_10_1021_acsaelm_9b00483
crossref_primary_10_1021_acsnano_8b00108
crossref_primary_10_1021_acsmaterialsau_2c00001
crossref_primary_10_1016_j_nanoen_2021_105983
crossref_primary_10_1002_adfm_201807560
crossref_primary_10_1088_2752_5724_ad2f6a
crossref_primary_10_1002_aisy_201900090
crossref_primary_10_1039_C8TC02655F
crossref_primary_10_1002_admt_202301931
crossref_primary_10_1016_j_nanoen_2019_104165
crossref_primary_10_1002_smtd_202300562
crossref_primary_10_1002_aenm_202103571
crossref_primary_10_1016_j_mtcomm_2025_112151
crossref_primary_10_3390_mi12060698
crossref_primary_10_1002_er_7245
crossref_primary_10_1039_D2NR05706A
crossref_primary_10_1002_advs_201801625
crossref_primary_10_1039_C7RA10285B
crossref_primary_10_1063_1_5028478
crossref_primary_10_3390_s23135888
crossref_primary_10_1177_0040517518760759
crossref_primary_10_1016_j_nanoen_2017_05_048
crossref_primary_10_1016_j_nanoen_2019_103997
crossref_primary_10_1039_C7MH00071E
crossref_primary_10_1002_adma_201705195
crossref_primary_10_1016_j_nanoen_2017_07_048
crossref_primary_10_1016_j_nanoen_2017_11_028
crossref_primary_10_1002_cssc_202301718
crossref_primary_10_1007_s12274_017_1716_y
crossref_primary_10_1002_aisy_202000007
crossref_primary_10_1002_adfm_202004181
crossref_primary_10_1038_s41467_020_18086_4
crossref_primary_10_1038_s41928_019_0286_2
crossref_primary_10_1021_acsaelm_3c01487
crossref_primary_10_7498_aps_69_20200867
crossref_primary_10_1007_s12274_016_1275_7
crossref_primary_10_1002_adfm_202005703
crossref_primary_10_1016_j_nanoen_2023_108436
crossref_primary_10_1016_j_eurpolymj_2020_110163
crossref_primary_10_1021_acsami_2c12862
crossref_primary_10_1016_j_nanoen_2022_107067
crossref_primary_10_1016_j_jsamd_2022_100505
crossref_primary_10_1016_j_mseb_2024_117859
crossref_primary_10_1016_j_nanoen_2018_10_078
crossref_primary_10_1016_j_nanoen_2018_09_067
crossref_primary_10_1002_advs_201700029
crossref_primary_10_1002_pat_5493
crossref_primary_10_1021_acsami_4c22054
crossref_primary_10_1007_s11071_022_07563_8
crossref_primary_10_3390_polym15143091
crossref_primary_10_1021_acs_chemmater_9b04041
crossref_primary_10_1016_j_nanoen_2019_03_032
crossref_primary_10_1016_j_nanoen_2018_02_061
crossref_primary_10_1002_aenm_201601529
crossref_primary_10_1016_j_nanoen_2020_104462
crossref_primary_10_1021_acsabm_2c01062
crossref_primary_10_1002_adma_202407859
crossref_primary_10_1016_j_nanoen_2019_104105
crossref_primary_10_1016_j_nanoen_2018_10_044
crossref_primary_10_1364_OL_423496
crossref_primary_10_1016_j_dsp_2022_103570
crossref_primary_10_1016_j_nanoen_2024_110456
crossref_primary_10_1002_pssr_202000050
crossref_primary_10_1016_j_nanoen_2017_04_053
crossref_primary_10_1063_5_0085850
crossref_primary_10_1002_advs_202206950
crossref_primary_10_1016_j_nanoen_2024_110450
crossref_primary_10_1002_smll_202307070
crossref_primary_10_1016_j_nanoen_2020_105303
crossref_primary_10_1016_j_nanoen_2021_106117
crossref_primary_10_1021_acsnano_8b00147
crossref_primary_10_1016_j_nanoen_2017_12_049
crossref_primary_10_1002_app_45674
crossref_primary_10_1016_j_nanoen_2019_103948
crossref_primary_10_1039_C6RA26677K
crossref_primary_10_1021_acssuschemeng_9b03629
crossref_primary_10_1021_acsami_4c02303
crossref_primary_10_1016_j_nanoen_2019_03_048
crossref_primary_10_1016_j_nanoen_2023_108213
crossref_primary_10_1016_j_nanoen_2022_107073
crossref_primary_10_1016_j_nanoen_2022_108041
crossref_primary_10_1016_j_nanoen_2022_108043
crossref_primary_10_1039_D1NR05129F
crossref_primary_10_1007_s40820_022_00898_2
crossref_primary_10_1002_admt_201800054
crossref_primary_10_1007_s11431_020_1808_2
crossref_primary_10_1016_j_nanoen_2020_105414
crossref_primary_10_1039_C7TA03092D
crossref_primary_10_1016_j_cej_2021_132488
crossref_primary_10_1016_j_nanoen_2022_107637
crossref_primary_10_1126_sciadv_adc8845
crossref_primary_10_1002_adfm_201808849
crossref_primary_10_1039_D3CC00431G
crossref_primary_10_1002_advs_202000254
crossref_primary_10_1016_j_nanoen_2019_01_069
crossref_primary_10_1038_srep41396
crossref_primary_10_1016_j_nanoen_2017_07_003
crossref_primary_10_1038_s41467_020_19867_7
crossref_primary_10_1002_aenm_201903024
crossref_primary_10_3390_s23041856
crossref_primary_10_1002_smll_201903089
crossref_primary_10_1016_j_nanoen_2021_105919
crossref_primary_10_1016_j_nanoen_2019_03_068
crossref_primary_10_1016_j_isci_2020_102027
crossref_primary_10_1002_adfm_201604378
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1088_1361_6501_ad9e13
crossref_primary_10_1016_j_carbpol_2022_119586
crossref_primary_10_1016_j_nanoen_2021_106570
crossref_primary_10_1007_s40843_021_2023_x
crossref_primary_10_1016_j_nanoen_2019_104414
crossref_primary_10_1016_j_nanoen_2021_106695
crossref_primary_10_1016_j_nanoen_2021_106575
crossref_primary_10_1016_j_mtener_2018_05_006
crossref_primary_10_1016_j_susmat_2020_e00239
crossref_primary_10_1186_s40580_019_0195_0
crossref_primary_10_1016_j_nanoen_2021_106580
crossref_primary_10_1002_eom2_12062
crossref_primary_10_1016_j_device_2025_100721
crossref_primary_10_1021_acsnano_9b02690
crossref_primary_10_1021_acsnano_0c00675
crossref_primary_10_1016_j_nanoen_2018_11_078
crossref_primary_10_1007_s12274_018_1997_9
crossref_primary_10_1039_D2TA07933J
crossref_primary_10_1149_1945_7111_abdc65
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_3390_s20102925
crossref_primary_10_1002_aenm_201900772
crossref_primary_10_1039_D1RA02010B
crossref_primary_10_1002_aenm_202301832
crossref_primary_10_1016_j_nanoen_2017_07_022
crossref_primary_10_1016_j_nanoen_2018_09_035
crossref_primary_10_1021_acsami_8b15410
crossref_primary_10_1021_acsnano_7b05626
crossref_primary_10_1089_soro_2020_0051
crossref_primary_10_1016_j_enconman_2023_116971
crossref_primary_10_1016_j_joule_2017_09_004
crossref_primary_10_1016_j_carbon_2024_119869
crossref_primary_10_1002_adma_202209117
crossref_primary_10_1002_eom2_12059
crossref_primary_10_1002_adfm_201606695
crossref_primary_10_1039_C9NR01271K
crossref_primary_10_1039_C7TA02680C
crossref_primary_10_1039_C7CS00849J
crossref_primary_10_1002_admt_202000737
crossref_primary_10_1109_TNSRE_2019_2961428
crossref_primary_10_1016_j_nanoen_2020_104770
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1016_j_nanoen_2022_107150
crossref_primary_10_1002_adma_201706790
crossref_primary_10_3390_polym9080303
crossref_primary_10_1016_j_bios_2022_114595
crossref_primary_10_1038_s41467_019_09464_8
crossref_primary_10_1126_sciadv_1700694
crossref_primary_10_1021_acsaelm_2c00118
crossref_primary_10_1088_2515_7639_ac0092
crossref_primary_10_1039_D0NR04868B
crossref_primary_10_1016_j_nanoen_2019_02_057
crossref_primary_10_1007_s11432_018_9384_7
crossref_primary_10_1002_adma_202208139
crossref_primary_10_1016_j_nanoen_2020_105730
crossref_primary_10_1016_j_nanoen_2020_105614
crossref_primary_10_3390_s16091502
crossref_primary_10_1021_acsnano_8b02479
crossref_primary_10_1038_s41467_020_15373_y
crossref_primary_10_1002_ente_202100793
crossref_primary_10_1002_aenm_201801898
Cites_doi 10.1038/nnano.2008.314
10.1038/nature12314
10.1002/adfm.201303799
10.1002/adma.201400373
10.1002/adfm.201500428
10.1021/nl070194h
10.1016/j.nanoen.2014.10.034
10.1038/nnano.2012.192
10.1021/nn5012732
10.1038/nmat2361
10.1126/science.1149860
10.1021/nn4037514
10.1021/nl503402c
10.1021/nl302560k
10.1021/nn404614z
10.1021/jp907072z
10.1021/nl2011559
10.1038/nmat2459
10.1038/ncomms5929
10.1038/nmat3013
10.1021/la00040a030
10.1126/science.1254763
10.1038/ncomms9975
10.1002/adma.201404794
10.1039/C5EE01532D
10.1002/anie.201300437
10.1039/c3ee42571a
10.1016/j.nanoen.2014.11.034
10.1002/adma.201402574
10.1021/acsnano.5b02010
10.1038/ncomms4575
10.1038/ncomms9011
10.1038/ncomms4426
10.1021/nn4007708
10.1002/adfm.201402703
ContentType Journal Article
Copyright Copyright © 2016, The Authors 2016 The Authors
Copyright_xml – notice: Copyright © 2016, The Authors 2016 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1126/sciadv.1501624
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID PMC4928980
27386560
10_1126_sciadv_1501624
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: ID0EX3CI6804
– fundername: ;
  grantid: ID0EK1CI6798
– fundername: ;
  grantid: ID0EX1CI6799; 51432005
– fundername: ;
  grantid: ID0EG3CI6802; 51527802 and 51232001
– fundername: ;
  grantid: ID0E6ZCI6797
– fundername: ;
  grantid: ID0EE4CI6803
– fundername: ;
  grantid: ID0EX2CI6801; B14003
– fundername: ;
  grantid: ID0EI2CI6800; 2013CB932602
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
ADPDF
BBORY
BCGUY
CGR
CUY
CVF
ECM
EIF
NPM
OVEED
RHF
7X8
5PM
ID FETCH-LOGICAL-c456t-5cd09fffc11db4b0633af7f7ec262d7db98fdd766db4f2fc92d192ba3a7ecee03
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:19:44 EDT 2025
Fri Jul 11 05:24:01 EDT 2025
Thu Jan 02 22:22:51 EST 2025
Tue Jul 01 03:52:34 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Stretchable
energy harvesting
wearable
self-powered sensing
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-5cd09fffc11db4b0633af7f7ec262d7db98fdd766db4f2fc92d192ba3a7ecee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1501624
PMID 27386560
PQID 1803791674
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4928980
proquest_miscellaneous_1803791674
pubmed_primary_27386560
crossref_primary_10_1126_sciadv_1501624
crossref_citationtrail_10_1126_sciadv_1501624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2016
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References Zhu G. (e_1_3_2_13_2) 2014; 5
Lin L. (e_1_3_2_20_2) 2013; 7
e_1_3_2_21_2
e_1_3_2_24_2
Bai P. (e_1_3_2_27_2) 2013; 7
Dhiman P. (e_1_3_2_33_2) 2011; 11
Niu S. (e_1_3_2_30_2) 2014; 24
Bae J. (e_1_3_2_11_2) 2014; 5
Yang P.-K. (e_1_3_2_22_2) 2015; 27
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
Xie Y. (e_1_3_2_36_2) 2014; 5
Lin Z.-H. (e_1_3_2_19_2) 2013; 52
Yi F. (e_1_3_2_25_2) 2015; 25
e_1_3_2_10_2
e_1_3_2_31_2
Niu S. (e_1_3_2_32_2) 2015; 14
e_1_3_2_5_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Saurenbach F. (e_1_3_2_29_2) 1992; 8
Jeong C. K. (e_1_3_2_28_2) 2014; 14
Yi F. (e_1_3_2_18_2) 2014; 24
Kim K. N. (e_1_3_2_23_2) 2015; 9
Fang H. (e_1_3_2_26_2) 2009; 113
21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7
24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57
19119280 - Nat Nanotechnol. 2009 Jan;4(1):34-9
21532584 - Nat Mater. 2011 May 01;10(7):532-8
24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6
19430465 - Nat Mater. 2009 Jun;8(6):494-9
23887430 - Nature. 2013 Jul 25;499(7459):458-63
23957827 - ACS Nano. 2013 Sep 24;7(9):8266-74
23484470 - ACS Nano. 2013 Apr 23;7(4):3713-9
25393064 - Nano Lett. 2014 Dec 10;14(12):7031-8
24745893 - ACS Nano. 2014 Jun 24;8(6):6031-7
25256696 - Adv Mater. 2014 Nov 19;26(43):7324-32
25247474 - Nat Commun. 2014 Sep 23;5:4929
18258914 - Science. 2008 Feb 8;319(5864):807-10
25640534 - Adv Mater. 2015 Feb 25;27(8):1316-26
25035487 - Science. 2014 Jul 18;345(6194):295-8
22889363 - Nano Lett. 2012 Sep 12;12(9):4960-5
24709899 - Nat Commun. 2014 Apr 07;5:3575
19165205 - Nat Mater. 2009 Feb;8(2):83-5
17352506 - Nano Lett. 2007 Apr;7(4):1022-5
23568745 - Angew Chem Int Ed Engl. 2013 May 3;52(19):5065-9
26051679 - ACS Nano. 2015 Jun 23;9(6):6394-400
26656252 - Nat Commun. 2015 Dec 11;6:8975
23142944 - Nat Nanotechnol. 2012 Dec;7(12):825-32
24594501 - Nat Commun. 2014 Mar 04;5:3426
26300307 - Nat Commun. 2015 Aug 24;6:8011
References_xml – ident: e_1_3_2_10_2
  doi: 10.1038/nnano.2008.314
– ident: e_1_3_2_5_2
  doi: 10.1038/nature12314
– volume: 24
  start-page: 3332
  year: 2014
  ident: e_1_3_2_30_2
  article-title: Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303799
– ident: e_1_3_2_34_2
  doi: 10.1002/adma.201400373
– volume: 25
  start-page: 3688
  year: 2015
  ident: e_1_3_2_25_2
  article-title: Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500428
– ident: e_1_3_2_37_2
  doi: 10.1021/nl070194h
– ident: e_1_3_2_21_2
  doi: 10.1016/j.nanoen.2014.10.034
– volume: 27
  start-page: 3817
  year: 2015
  ident: e_1_3_2_22_2
  article-title: A Flexible
  publication-title: Adv. Mater.
– ident: e_1_3_2_3_2
  doi: 10.1038/nnano.2012.192
– ident: e_1_3_2_35_2
  doi: 10.1021/nn5012732
– ident: e_1_3_2_9_2
  doi: 10.1038/nmat2361
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1149860
– volume: 7
  start-page: 8266
  year: 2013
  ident: e_1_3_2_20_2
  article-title: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
  publication-title: ACS Nano
  doi: 10.1021/nn4037514
– volume: 14
  start-page: 7031
  year: 2014
  ident: e_1_3_2_28_2
  article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly
  publication-title: Nano Lett.
  doi: 10.1021/nl503402c
– ident: e_1_3_2_15_2
  doi: 10.1021/nl302560k
– ident: e_1_3_2_14_2
  doi: 10.1021/nn404614z
– volume: 113
  start-page: 16571
  year: 2009
  ident: e_1_3_2_26_2
  article-title: Controlled growth of aligned polymer nanowires
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907072z
– volume: 11
  start-page: 3123
  year: 2011
  ident: e_1_3_2_33_2
  article-title: Harvesting energy from water flow over graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl2011559
– ident: e_1_3_2_4_2
  doi: 10.1038/nmat2459
– volume: 5
  start-page: 4929
  year: 2014
  ident: e_1_3_2_11_2
  article-title: Flutter-driven triboelectrification for harvesting wind energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5929
– ident: e_1_3_2_7_2
  doi: 10.1038/nmat3013
– volume: 8
  start-page: 1199
  year: 1992
  ident: e_1_3_2_29_2
  article-title: Force microscopy of ion-containing polymer surfaces: Morphology and charge structure
  publication-title: Langmuir
  doi: 10.1021/la00040a030
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1254763
– ident: e_1_3_2_16_2
  doi: 10.1038/ncomms9975
– ident: e_1_3_2_17_2
  doi: 10.1002/adma.201404794
– ident: e_1_3_2_12_2
  doi: 10.1039/C5EE01532D
– volume: 52
  start-page: 5065
  year: 2013
  ident: e_1_3_2_19_2
  article-title: A self-powered triboelectric nanosensor for mercury ion detection
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300437
– ident: e_1_3_2_31_2
  doi: 10.1039/c3ee42571a
– volume: 14
  start-page: 161
  year: 2015
  ident: e_1_3_2_32_2
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_3_2_24_2
  doi: 10.1002/adma.201402574
– volume: 9
  start-page: 6394
  year: 2015
  ident: e_1_3_2_23_2
  article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02010
– volume: 5
  start-page: 3575
  year: 2014
  ident: e_1_3_2_36_2
  article-title: High-efficiency ballistic electrostatic generator using microdroplets
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4575
– ident: e_1_3_2_2_2
  doi: 10.1038/ncomms9011
– volume: 5
  start-page: 3426
  year: 2014
  ident: e_1_3_2_13_2
  article-title: Radial-arrayed rotary electrification for high performance triboelectric generator
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4426
– volume: 7
  start-page: 3713
  year: 2013
  ident: e_1_3_2_27_2
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
  doi: 10.1021/nn4007708
– volume: 24
  start-page: 7488
  year: 2014
  ident: e_1_3_2_18_2
  article-title: Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402703
– reference: 25256696 - Adv Mater. 2014 Nov 19;26(43):7324-32
– reference: 26656252 - Nat Commun. 2015 Dec 11;6:8975
– reference: 19430465 - Nat Mater. 2009 Jun;8(6):494-9
– reference: 24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57
– reference: 24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6
– reference: 17352506 - Nano Lett. 2007 Apr;7(4):1022-5
– reference: 25035487 - Science. 2014 Jul 18;345(6194):295-8
– reference: 24745893 - ACS Nano. 2014 Jun 24;8(6):6031-7
– reference: 22889363 - Nano Lett. 2012 Sep 12;12(9):4960-5
– reference: 21749100 - Nano Lett. 2011 Aug 10;11(8):3123-7
– reference: 24709899 - Nat Commun. 2014 Apr 07;5:3575
– reference: 25247474 - Nat Commun. 2014 Sep 23;5:4929
– reference: 23568745 - Angew Chem Int Ed Engl. 2013 May 3;52(19):5065-9
– reference: 23484470 - ACS Nano. 2013 Apr 23;7(4):3713-9
– reference: 23887430 - Nature. 2013 Jul 25;499(7459):458-63
– reference: 18258914 - Science. 2008 Feb 8;319(5864):807-10
– reference: 23142944 - Nat Nanotechnol. 2012 Dec;7(12):825-32
– reference: 19165205 - Nat Mater. 2009 Feb;8(2):83-5
– reference: 21532584 - Nat Mater. 2011 May 01;10(7):532-8
– reference: 25393064 - Nano Lett. 2014 Dec 10;14(12):7031-8
– reference: 19119280 - Nat Nanotechnol. 2009 Jan;4(1):34-9
– reference: 24594501 - Nat Commun. 2014 Mar 04;5:3426
– reference: 25640534 - Adv Mater. 2015 Feb 25;27(8):1316-26
– reference: 26300307 - Nat Commun. 2015 Aug 24;6:8011
– reference: 23957827 - ACS Nano. 2013 Sep 24;7(9):8266-74
– reference: 26051679 - ACS Nano. 2015 Jun 23;9(6):6394-400
SSID ssj0001466519
Score 2.4760253
Snippet Researchers report a scalable approach for highly deformable and stretchable energy harvesters and self-powered sensors. The rapid growth of deformable and...
The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1501624
SubjectTerms Aluminum - chemistry
Biomechanical Phenomena
Electric Conductivity
Electrochemical Techniques
Electrodes
Equipment Design
Nanostructures - chemistry
Nylons - chemistry
Polymers - chemistry
SciAdv r-articles
Sustainable Energy
Title A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/27386560
https://www.proquest.com/docview/1803791674
https://pubmed.ncbi.nlm.nih.gov/PMC4928980
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVpcumlNE0_th9BgUBbqIKtXUvWoZRQmoRAeurC3ozskboLjnez3i3JH8jv7oys3W6a5tKLLxoZrCdpnuSZN4wdukxaVWaZAK8NHlDACqukFtaZzPtS6qyifOeL7-psODgfZaM_8U9xANt_Hu2ontRwXh9dX918wQX_eSMBxsKvI6Q2qZKDR2wHvZKmagYXkeqH-5aBUshWom7j_W6kChwKYAaxyg0XdY93_h0-ueGPTp6yJ5FI8uMO-V225ZpnbDcu1ZZ_iHrSH_fY7TEnUeL6hrdjO3PCgp3RJveJU6IIokbZUxxCKAcnrwZ82nA8J5MULNrxenK1nABHestdSBXkYzsP8hzNT24b4K2rvZhRvTXsGxL6KZ-Y4OeXYc-gy8PnbHjy7cfXMxHLL4gKWdVCIEqJ8d5XaQrloEQu07dee-0qqSRoKE3uAbRS2Oqlr4wEpIul7Vs0cS7pv2DbzbRxrxhPSZYwT7IqSR3ioE0FSJe9S51PEgDTY2I14kUVtcmpREZdhDOKVEUHVhHB6rH3a_tZp8rxoOXBCsACFw79DbGNmy7bIs2TvjaUhNFjLztA1-9azYQe03egXhuQKPfdlmYyDuLc-KW5yZPX_93zDXuMpEx14Whv2fZivnTvkPgsyv1wYYDP01G6H2b3b2qcDMk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+shape-adaptive%2C+stretchable+design+based+on+conductive+liquid+for+energy+harvesting+and+self-powered+biomechanical+monitoring&rft.jtitle=Science+advances&rft.au=Yi%2C+Fang&rft.au=Wang%2C+Xiaofeng&rft.au=Niu%2C+Simiao&rft.au=Li%2C+Shengming&rft.date=2016-06-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.eissn=2375-2548&rft.volume=2&rft.issue=6&rft_id=info:doi/10.1126%2Fsciadv.1501624&rft_id=info%3Apmid%2F27386560&rft.externalDocID=PMC4928980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon