Learning to Combine Bottom-Up and Top-Down Segmentation

Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 81; no. 1; pp. 105 - 118
Main Authors Levin, Anat, Weiss, Yair
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.01.2009
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner. In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train a fragment-based segmentation algorithm which takes into account both bottom-up and top-down cues simultaneously , in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute high quality segmentations.
AbstractList Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner.
Issue Title: Special Issue: Special Issue: Best of the European Conference on Computer Vision 2006 (ECCV'06); Guest Editors: Horst Bischof and Ales Leonardis Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner. In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train a fragment-based segmentation algorithm which takes into account both bottom-up and top-down cues simultaneously, in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute high quality segmentations.[PUBLICATION ABSTRACT]
Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner. In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train a fragment-based segmentation algorithm which takes into account both bottom-up and top-down cues simultaneously , in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute high quality segmentations.
Author Levin, Anat
Weiss, Yair
Author_xml – sequence: 1
  givenname: Anat
  surname: Levin
  fullname: Levin, Anat
  organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem
– sequence: 2
  givenname: Yair
  surname: Weiss
  fullname: Weiss, Yair
  organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem
BookMark eNp1kM9LwzAYhoNMcJv-Ad4Kgrfo9yVp0h51_oSBB7dzSNN0dKxJbTrE_96WehDB03t53peXZ0FmPnhHyCXCDQKo24jIJKcAGQWUksIJmWOqOEUB6YzMIWdAU5njGVnEuAcAljE-J2rtTOdrv0v6kKxCU9TeJfeh70NDt21ifJlsQksfwqdP3t2ucb43fR38OTmtzCG6i59cku3T42b1Qtdvz6-ruzW1IpU9Ta0UkjlRpjkUVilWFdXw1LJMFCixNKnIAMHYMq8yZV1pK2WkFdyWjKGVfEmup922Cx9HF3vd1NG6w8F4F45R81RIyPgIXv0B9-HY-eGbRkSucsHZSOFE2S7E2LlKt13dmO5LI-hRpJ5E6kGkHkVqGDps6sSB9TvX_Vr-t_QNdjx1iA
CitedBy_id crossref_primary_10_1109_TBME_2012_2188892
crossref_primary_10_1007_s00500_012_0830_8
crossref_primary_10_1109_TCSVT_2014_2379972
crossref_primary_10_3724_SP_J_1004_2011_00427
crossref_primary_10_1007_s13173_013_0102_1
crossref_primary_10_3390_rs6053791
crossref_primary_10_1109_TPAMI_2011_208
crossref_primary_10_1109_TCE_2012_6227465
crossref_primary_10_1007_s11263_011_0449_8
crossref_primary_10_1109_TPAMI_2012_262
crossref_primary_10_1145_2629637
crossref_primary_10_1016_j_patcog_2011_04_003
crossref_primary_10_1007_s11263_011_0507_2
crossref_primary_10_1109_TPAMI_2013_31
crossref_primary_10_1016_j_cviu_2011_07_006
crossref_primary_10_1016_j_cviu_2016_01_002
crossref_primary_10_1007_s11220_018_0206_y
crossref_primary_10_1007_s11042_016_3409_z
crossref_primary_10_37394_232028_2022_2_8
crossref_primary_10_1007_s10044_013_0342_x
crossref_primary_10_1109_TPAMI_2009_199
crossref_primary_10_1007_s10462_019_09750_3
crossref_primary_10_1007_s11390_013_1385_6
crossref_primary_10_1109_TPAMI_2011_231
crossref_primary_10_1007_s10846_020_01254_5
crossref_primary_10_1016_j_neucom_2014_04_006
crossref_primary_10_1016_j_biosystemseng_2021_10_008
crossref_primary_10_1111_j_1467_8659_2011_01893_x
crossref_primary_10_1007_s10851_016_0651_y
crossref_primary_10_1007_s11263_010_0346_6
crossref_primary_10_1109_TIP_2013_2246519
crossref_primary_10_1016_j_patcog_2016_04_011
Cites_doi 10.1109/CVPR.2003.1211450
10.1109/TIT.2005.850085
10.1109/ICCV.2003.1238362
10.1007/11744023_27
10.1145/1015330.1015337
10.1109/TPAMI.2006.79
10.1109/ICCV.2003.1238478
10.1109/CVPR.2004.314
10.1109/ICCV.2005.148
10.1162/neco.1997.9.8.1627
10.1007/3-540-47967-8_8
10.1109/CVPR.2001.990512
10.1007/11744023_1
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2008
Springer Science+Business Media, LLC 2009
Copyright_xml – notice: Springer Science+Business Media, LLC 2008
– notice: Springer Science+Business Media, LLC 2009
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-008-0166-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 118
ExternalDocumentID 2794004891
10_1007_s11263_008_0166_0
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XFK
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
AAYZH
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c456t-5c6462e4d590bc772fbf112c284b161da548010acd9f87cedcf7a6c43cd221c63
IEDL.DBID 8FG
ISSN 0920-5691
IngestDate Sat Oct 26 01:43:41 EDT 2024
Mon Nov 04 10:57:19 EST 2024
Thu Sep 12 16:55:20 EDT 2024
Sat Dec 16 12:12:01 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image segmentation
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-5c6462e4d590bc772fbf112c284b161da548010acd9f87cedcf7a6c43cd221c63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.cs.huji.ac.il/~yweiss/LevinWeissECCV06.pdf
PQID 1113794326
PQPubID 1456341
PageCount 14
ParticipantIDs proquest_miscellaneous_35460836
proquest_journals_1113794326
crossref_primary_10_1007_s11263_008_0166_0
springer_journals_10_1007_s11263_008_0166_0
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2009
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kumar, M. P., Torr, P. H. S., & Zisserman, A. (2004). Objcut. In Proceedings of the IEEE Conference on computer vision and pattern recognition.
Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel conditional random fields: Representation and clique selection. In ICML.
ZhuS. C.WuZ. N.MumfordD.Minimax entropy principle and its application to texture modelingNeural Computation1997981627166010.1162/neco.1997.9.8.1627
Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Borenstein, E., Sharon, E., & Ullman, S. (2004). Combining top-down and bottom-up segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition workshop on perceptual organization in computer vision, June 2004.
Yu, S. X., & Shi, J. (2003). Object-specific figure-ground segregation. In Proceedings of the IEEE conference on computer vision and pattern recognition.
He, X., Zemel, R., & Carreira-Perpinan, M. (2004). Multiscale conditional random fields for image labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition.
MalikJ.BelongieS.LeungT.ShiJ.BoyerK. L.SarkarS.Contour and texture analysis for image segmentationPerceptual organization for artificial vision systems2000DordrechtKluwer Academic
McCallum, A. (2004). Efficiently inducing features of conditional random fields. In UAI.
YedidiaJ. S.FreemanW. T.WeissY.Constructing free-energy approximations and generalized belief propagation algorithmsIEEE Transactions on Information Theory2005512282231210.1109/TIT.2005.8500852246363
Ren, X., Fowlkes, C., & Malik, J. (2005). Cue integration in figure/ground labeling. In Advances in neural information processing systems (NIPS).
Quattoni, A., Collins, M., & Darrell, T. (2004). Conditional random fields for object recognition. In NIPS.
He, X., & Zemel, R. S. Debajyoti, R., (2006). Learning and incorporating top-down cues in image segmentation. In ECCV.
Tu, Z. W., Chen, X. R., Yuille, A. L., & Zhu, S. C. (2003). Image parsing: segmentation, detection, and recognition. In Proceedings of the IEEE international conference on computer vision.
Sharon, E., Brandt, A., & Basri, R. (2001). Segmentation and boundary detection using multiscale intensity measurements. In Proceedings of the IEEE conference on computer vision and pattern recognition.
Winn, J., & Jojic, N. (2005). Locus: Learning object classes with unsupervised segmentation. In Proc. int’l conf. comput. vision.
Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In Proceedings of the workshop on statistical learning in computer vision, Prague, Czech Republic, May 2004.
YuilleA.HallinanP.BlakeA.YuilleA.Deformable templatesActive vision2002CambridgeMIT Press
LaffertyJ.McCallumA.PereiraF.Conditional random fields: Probabilistic models for segmenting and labeling sequence dataProc. 18th international conf. on machine learning2001San FranciscoMorgan Kaufmann282289
LeCun, Y., & Huang, F. J. (2005). Loss functions for discriminative training of energy-based models. In Proc. of the 10th international workshop on artificial intelligence and statistics (AIStats’05).
Kumar, S., & Hebert, M. (2003). Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proceedings of the IEEE international conference on computer vision.
Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV.
Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmentation. In Proc. of the European conf. on comput. vision, May 2002.
Wainwright, M. J., Jaakkola, T., & Willsky, A. S. (2003). Tree-reweighted belief propagation and approximate ml estimation by pseudo-moment matching. In 9th workshop on artificial intelligence and statistics.
Barbu, A., & Zhu, S. C. (2003). Graph partition by swendsen-wang cut. In Proceedings of the IEEE international conference on computer vision.
166_CR5
166_CR6
166_CR7
166_CR8
166_CR1
166_CR16
166_CR2
166_CR17
166_CR3
166_CR14
J. S. Yedidia (166_CR22) 2005; 51
166_CR4
166_CR15
166_CR18
166_CR19
166_CR20
166_CR23
166_CR21
J. Lafferty (166_CR9) 2001
J. Malik (166_CR13) 2000
S. C. Zhu (166_CR25) 1997; 9
166_CR12
A. Yuille (166_CR24) 2002
166_CR10
166_CR11
References_xml – ident: 166_CR20
– ident: 166_CR23
  doi: 10.1109/CVPR.2003.1211450
– ident: 166_CR16
– volume: 51
  start-page: 2282
  year: 2005
  ident: 166_CR22
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2005.850085
  contributor:
    fullname: J. S. Yedidia
– ident: 166_CR12
– ident: 166_CR14
– ident: 166_CR1
  doi: 10.1109/ICCV.2003.1238362
– ident: 166_CR6
  doi: 10.1007/11744023_27
– ident: 166_CR10
  doi: 10.1145/1015330.1015337
– ident: 166_CR4
  doi: 10.1109/TPAMI.2006.79
– ident: 166_CR7
  doi: 10.1109/ICCV.2003.1238478
– ident: 166_CR5
– ident: 166_CR19
– ident: 166_CR3
  doi: 10.1109/CVPR.2004.314
– ident: 166_CR21
  doi: 10.1109/ICCV.2005.148
– volume: 9
  start-page: 1627
  issue: 8
  year: 1997
  ident: 166_CR25
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1627
  contributor:
    fullname: S. C. Zhu
– ident: 166_CR2
  doi: 10.1007/3-540-47967-8_8
– ident: 166_CR15
– start-page: 282
  volume-title: Proc. 18th international conf. on machine learning
  year: 2001
  ident: 166_CR9
  contributor:
    fullname: J. Lafferty
– ident: 166_CR11
– volume-title: Perceptual organization for artificial vision systems
  year: 2000
  ident: 166_CR13
  contributor:
    fullname: J. Malik
– ident: 166_CR17
  doi: 10.1109/CVPR.2001.990512
– volume-title: Active vision
  year: 2002
  ident: 166_CR24
  contributor:
    fullname: A. Yuille
– ident: 166_CR18
  doi: 10.1007/11744023_1
– ident: 166_CR8
SSID ssj0002823
Score 2.2401192
Snippet Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms...
Issue Title: Special Issue: Special Issue: Best of the European Conference on Computer Vision 2006 (ECCV'06); Guest Editors: Horst Bischof and Ales Leonardis...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 105
SubjectTerms Algorithms
Artificial Intelligence
Computer Imaging
Computer Science
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Studies
Vision
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VdmGhPEWggAcmUKo6D6cZC7RUILHQSmWKHNvpgEgqki78es6J0_IcutqRk_h13_nzfQdwKX1Np1FpozVitsepY4e9WNpJQlmfcqUlqvRtiyc2nnoPM3_WAGd1dJG-dmtGstyo17Fu1NGUY3n3iqEXvAUtE3faGty_PA5X-y86EVUCeXSMfBbSmsv8q5Hv1mgNMX-woqWxGbWrAMC81CjUd0xeu8si7oqP3wqOG_zHLuwY7EkG1WTZg4ZK96FtcCgxqzzHojrVQ112AIHRYZ2TIiNYjf60IjdZUeAWO10QnkoyyRb2Hfr05FnN30xEU3oI09Fwcju2Tc4FWyCUKmxfMI85ypM-DplA6J3ECX6xQCsWIziUXOvD0R4XMkz6gVBSJAFnwnOFdBwqmHsEzTRL1TEQTmWANlKKkCmvL2kYIJwTiYdTAE1iElpwVfd9tKikNaK1iLLupahMkYm9FPUs6NSjE5lVlmvvxdUCdw6z4GJVjetDkx48Vdkyj1zfY1qB24Lrejy-NPDf6042evoUtiuSSZ_MdKBZvC_VGWKVIj43k_MTe9fcgw
  priority: 102
  providerName: Springer Nature
Title Learning to Combine Bottom-Up and Top-Down Segmentation
URI https://link.springer.com/article/10.1007/s11263-008-0166-0
https://www.proquest.com/docview/1113794326
https://search.proquest.com/docview/35460836
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1Bu7DwjQiU4oEJZFGnjtNMqIV-CKQKQSuVKUpspxNJoen_55w4LSDBFMmRYuVs373zs98BXCnP0GlMUYxGgvKIuTRoxYomCRMdFmkjUWVOW4zFaMofZ97Mbrgt7bHKyicWjlpl0uyR35qS6EbMzBV3iw9qqkYZdtWW0NiGOnN93yRfncFw7YkxnShLyWOK5ImAVaxmcXWOuYbBLI5yCUyqf8alDdj8xY8WYWewD7sWL5JuOcAHsKXTQ9iz2JHYlbnEpqo8Q9V2BL7VTp2TPCP4GnNgTXpZnqNbnC5IlCoyyRb0AfNw8qrn7_YWUnoM00F_cj-itk4ClQh_cupJwYWrufLQzBLhchIn-HsSI0-MgE5FRtONtSKpgqTjS61k4kdC8rZUrsukaJ9ALc1SfQokYsrHuKZkIDTvKBb4CMFkwnHYMIwlgQPXlZXCRSmHEW6Ej41Jw6KsJZo0bDnQqOwY2pWxDDfj6MDl-jXOaUNURKnOVsuw7XFhVLMduKms_-0Df3V39n9357BTMkFm-6QBtfxzpS8QUORxs5g1Tah3h29PfXz2-uPnF2ydut0v5aHIUA
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BGWDhGxEo1AMTyKJOHKeZEF-lQOlCK7FFqe10Igkk_f-cE6cFJFhtKVbO9r13PvsewJnyTTqNKYpoJCiPmUvD7lTRJGGix2JtSlSZ2xYjMZjwpzf_zR64FfZaZeMTK0etMmnOyC-NJLopZuaKq_yDGtUok121EhqrsMY9xGrzUrz_sPDEGE7UUvIYIvkiZE1Ws3o6x1yTwayucgkMqn_i0pJs_sqPVrDT34ZNyxfJdT3BO7Ci013YstyR2J1ZYFMjz9C07UFga6fOSJkR7MYYWJObrCzRLU5yEqeKjLOc3mEcTl717N2-Qkr3YdK_H98OqNVJoBLpT0l9KbhwNVc-mlkiXU6mCf6eROSZIqFTsanpxrqxVGHSC6RWMgliIbknlesyKbwDaKVZqg-BxEwFiGtKhkLznmJhgBRMJhynDWEsCR04b6wU5XU5jGhZ-NiYNKpkLdGkUdeBdmPHyO6MIlrOowOdRTeuaZOoiFOdzYvI87kwVbMduGis_-0Dfw139P9wHVgfjF-G0fBx9HwMG3VWyByltKFVfs71CZKLcnparaAvHhLHGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oJMaLbyOK0oMnTQNdul32ZEQg-AghCgm3zdIHJ3dRlv_vdOmCmui1TbbZ6XTmm870G4Br5dt0GlMUvZGgPGYeDRtTRY1hosVibSmqbLXFQPTH_GniT1z908KVVRY2MTfUKpX2jrxuW6JbMjNP1I0rixh2enfzD2o7SNlMq2unsQ3lgItmowTldncwfF3bZQwuVo3lMWDyRciKHGf-kI55Np-ZF3YJDLF_eqkN9PyVLc2dUO8A9hx6JPer7T6ELZ0cwb5DksSd0wUOFc0airFjCByT6oxkKcFpjIg1aadZhkZyPCdxosgondMORuXkTc_e3Zuk5ATGve7ooU9d1wQqEQxl1JeCC09z5aPQJYJnMzX4exL90BThnYotwxtrxFKFphVIraQJYiF5UyrPY1I0T6GUpIk-AxIzFaCXUzIUmrcUCwMEZNJw3ER0aiaswE0hpWi-IseINjTIVqRR3uQSRRo1KlAt5Bi5c7KINrtagdp6GjXcpi3iRKfLRdT0ubAc2hW4LaT_7QN_LXf-_3I12EH1iV4eB88XsLtKEdl7lSqUss-lvkSkkU2vnAp9ARZczLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Combine+Bottom-Up+and+Top-Down+Segmentation&rft.jtitle=International+journal+of+computer+vision&rft.au=Levin%2C+Anat&rft.au=Weiss%2C+Yair&rft.date=2009-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=81&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1007%2Fs11263-008-0166-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2794004891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon