Learning to Combine Bottom-Up and Top-Down Segmentation
Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be...
Saved in:
Published in | International journal of computer vision Vol. 81; no. 1; pp. 105 - 118 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.01.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner.
In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train a fragment-based segmentation algorithm
which takes into account both bottom-up and top-down cues simultaneously
, in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute high quality segmentations. |
---|---|
AbstractList | Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner. Issue Title: Special Issue: Special Issue: Best of the European Conference on Computer Vision 2006 (ECCV'06); Guest Editors: Horst Bischof and Ales Leonardis Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner. In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train a fragment-based segmentation algorithm which takes into account both bottom-up and top-down cues simultaneously, in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute high quality segmentations.[PUBLICATION ABSTRACT] Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms that are based on class-specific image information. Despite the success of top-down algorithms, they often give coarse segmentations that can be significantly refined using low-level cues. This raises the question of how to combine both top-down and bottom-up cues in a principled manner. In this paper we approach this problem using supervised learning. Given a training set of ground truth segmentations we train a fragment-based segmentation algorithm which takes into account both bottom-up and top-down cues simultaneously , in contrast to most existing algorithms which train top-down and bottom-up modules separately. We formulate the problem in the framework of Conditional Random Fields (CRF) and derive a feature induction algorithm for CRF, which allows us to efficiently search over thousands of candidate fragments. Whereas pure top-down algorithms often require hundreds of fragments, our simultaneous learning procedure yields algorithms with a handful of fragments that are combined with low-level cues to efficiently compute high quality segmentations. |
Author | Levin, Anat Weiss, Yair |
Author_xml | – sequence: 1 givenname: Anat surname: Levin fullname: Levin, Anat organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem – sequence: 2 givenname: Yair surname: Weiss fullname: Weiss, Yair organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem |
BookMark | eNp1kM9LwzAYhoNMcJv-Ad4Kgrfo9yVp0h51_oSBB7dzSNN0dKxJbTrE_96WehDB03t53peXZ0FmPnhHyCXCDQKo24jIJKcAGQWUksIJmWOqOEUB6YzMIWdAU5njGVnEuAcAljE-J2rtTOdrv0v6kKxCU9TeJfeh70NDt21ifJlsQksfwqdP3t2ucb43fR38OTmtzCG6i59cku3T42b1Qtdvz6-ruzW1IpU9Ta0UkjlRpjkUVilWFdXw1LJMFCixNKnIAMHYMq8yZV1pK2WkFdyWjKGVfEmup922Cx9HF3vd1NG6w8F4F45R81RIyPgIXv0B9-HY-eGbRkSucsHZSOFE2S7E2LlKt13dmO5LI-hRpJ5E6kGkHkVqGDps6sSB9TvX_Vr-t_QNdjx1iA |
CitedBy_id | crossref_primary_10_1109_TBME_2012_2188892 crossref_primary_10_1007_s00500_012_0830_8 crossref_primary_10_1109_TCSVT_2014_2379972 crossref_primary_10_3724_SP_J_1004_2011_00427 crossref_primary_10_1007_s13173_013_0102_1 crossref_primary_10_3390_rs6053791 crossref_primary_10_1109_TPAMI_2011_208 crossref_primary_10_1109_TCE_2012_6227465 crossref_primary_10_1007_s11263_011_0449_8 crossref_primary_10_1109_TPAMI_2012_262 crossref_primary_10_1145_2629637 crossref_primary_10_1016_j_patcog_2011_04_003 crossref_primary_10_1007_s11263_011_0507_2 crossref_primary_10_1109_TPAMI_2013_31 crossref_primary_10_1016_j_cviu_2011_07_006 crossref_primary_10_1016_j_cviu_2016_01_002 crossref_primary_10_1007_s11220_018_0206_y crossref_primary_10_1007_s11042_016_3409_z crossref_primary_10_37394_232028_2022_2_8 crossref_primary_10_1007_s10044_013_0342_x crossref_primary_10_1109_TPAMI_2009_199 crossref_primary_10_1007_s10462_019_09750_3 crossref_primary_10_1007_s11390_013_1385_6 crossref_primary_10_1109_TPAMI_2011_231 crossref_primary_10_1007_s10846_020_01254_5 crossref_primary_10_1016_j_neucom_2014_04_006 crossref_primary_10_1016_j_biosystemseng_2021_10_008 crossref_primary_10_1111_j_1467_8659_2011_01893_x crossref_primary_10_1007_s10851_016_0651_y crossref_primary_10_1007_s11263_010_0346_6 crossref_primary_10_1109_TIP_2013_2246519 crossref_primary_10_1016_j_patcog_2016_04_011 |
Cites_doi | 10.1109/CVPR.2003.1211450 10.1109/TIT.2005.850085 10.1109/ICCV.2003.1238362 10.1007/11744023_27 10.1145/1015330.1015337 10.1109/TPAMI.2006.79 10.1109/ICCV.2003.1238478 10.1109/CVPR.2004.314 10.1109/ICCV.2005.148 10.1162/neco.1997.9.8.1627 10.1007/3-540-47967-8_8 10.1109/CVPR.2001.990512 10.1007/11744023_1 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2008 Springer Science+Business Media, LLC 2009 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2008 – notice: Springer Science+Business Media, LLC 2009 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYYUZ Q9U |
DOI | 10.1007/s11263-008-0166-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 118 |
ExternalDocumentID | 2794004891 10_1007_s11263_008_0166_0 |
Genre | Feature |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XFK YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK AAYZH JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c456t-5c6462e4d590bc772fbf112c284b161da548010acd9f87cedcf7a6c43cd221c63 |
IEDL.DBID | 8FG |
ISSN | 0920-5691 |
IngestDate | Sat Oct 26 01:43:41 EDT 2024 Mon Nov 04 10:57:19 EST 2024 Thu Sep 12 16:55:20 EDT 2024 Sat Dec 16 12:12:01 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Image segmentation Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-5c6462e4d590bc772fbf112c284b161da548010acd9f87cedcf7a6c43cd221c63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://www.cs.huji.ac.il/~yweiss/LevinWeissECCV06.pdf |
PQID | 1113794326 |
PQPubID | 1456341 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_35460836 proquest_journals_1113794326 crossref_primary_10_1007_s11263_008_0166_0 springer_journals_10_1007_s11263_008_0166_0 |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2009 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kumar, M. P., Torr, P. H. S., & Zisserman, A. (2004). Objcut. In Proceedings of the IEEE Conference on computer vision and pattern recognition. Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel conditional random fields: Representation and clique selection. In ICML. ZhuS. C.WuZ. N.MumfordD.Minimax entropy principle and its application to texture modelingNeural Computation1997981627166010.1162/neco.1997.9.8.1627 Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence. Borenstein, E., Sharon, E., & Ullman, S. (2004). Combining top-down and bottom-up segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition workshop on perceptual organization in computer vision, June 2004. Yu, S. X., & Shi, J. (2003). Object-specific figure-ground segregation. In Proceedings of the IEEE conference on computer vision and pattern recognition. He, X., Zemel, R., & Carreira-Perpinan, M. (2004). Multiscale conditional random fields for image labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition. MalikJ.BelongieS.LeungT.ShiJ.BoyerK. L.SarkarS.Contour and texture analysis for image segmentationPerceptual organization for artificial vision systems2000DordrechtKluwer Academic McCallum, A. (2004). Efficiently inducing features of conditional random fields. In UAI. YedidiaJ. S.FreemanW. T.WeissY.Constructing free-energy approximations and generalized belief propagation algorithmsIEEE Transactions on Information Theory2005512282231210.1109/TIT.2005.8500852246363 Ren, X., Fowlkes, C., & Malik, J. (2005). Cue integration in figure/ground labeling. In Advances in neural information processing systems (NIPS). Quattoni, A., Collins, M., & Darrell, T. (2004). Conditional random fields for object recognition. In NIPS. He, X., & Zemel, R. S. Debajyoti, R., (2006). Learning and incorporating top-down cues in image segmentation. In ECCV. Tu, Z. W., Chen, X. R., Yuille, A. L., & Zhu, S. C. (2003). Image parsing: segmentation, detection, and recognition. In Proceedings of the IEEE international conference on computer vision. Sharon, E., Brandt, A., & Basri, R. (2001). Segmentation and boundary detection using multiscale intensity measurements. In Proceedings of the IEEE conference on computer vision and pattern recognition. Winn, J., & Jojic, N. (2005). Locus: Learning object classes with unsupervised segmentation. In Proc. int’l conf. comput. vision. Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In Proceedings of the workshop on statistical learning in computer vision, Prague, Czech Republic, May 2004. YuilleA.HallinanP.BlakeA.YuilleA.Deformable templatesActive vision2002CambridgeMIT Press LaffertyJ.McCallumA.PereiraF.Conditional random fields: Probabilistic models for segmenting and labeling sequence dataProc. 18th international conf. on machine learning2001San FranciscoMorgan Kaufmann282289 LeCun, Y., & Huang, F. J. (2005). Loss functions for discriminative training of energy-based models. In Proc. of the 10th international workshop on artificial intelligence and statistics (AIStats’05). Kumar, S., & Hebert, M. (2003). Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proceedings of the IEEE international conference on computer vision. Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV. Borenstein, E., & Ullman, S. (2002). Class-specific, top-down segmentation. In Proc. of the European conf. on comput. vision, May 2002. Wainwright, M. J., Jaakkola, T., & Willsky, A. S. (2003). Tree-reweighted belief propagation and approximate ml estimation by pseudo-moment matching. In 9th workshop on artificial intelligence and statistics. Barbu, A., & Zhu, S. C. (2003). Graph partition by swendsen-wang cut. In Proceedings of the IEEE international conference on computer vision. 166_CR5 166_CR6 166_CR7 166_CR8 166_CR1 166_CR16 166_CR2 166_CR17 166_CR3 166_CR14 J. S. Yedidia (166_CR22) 2005; 51 166_CR4 166_CR15 166_CR18 166_CR19 166_CR20 166_CR23 166_CR21 J. Lafferty (166_CR9) 2001 J. Malik (166_CR13) 2000 S. C. Zhu (166_CR25) 1997; 9 166_CR12 A. Yuille (166_CR24) 2002 166_CR10 166_CR11 |
References_xml | – ident: 166_CR20 – ident: 166_CR23 doi: 10.1109/CVPR.2003.1211450 – ident: 166_CR16 – volume: 51 start-page: 2282 year: 2005 ident: 166_CR22 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2005.850085 contributor: fullname: J. S. Yedidia – ident: 166_CR12 – ident: 166_CR14 – ident: 166_CR1 doi: 10.1109/ICCV.2003.1238362 – ident: 166_CR6 doi: 10.1007/11744023_27 – ident: 166_CR10 doi: 10.1145/1015330.1015337 – ident: 166_CR4 doi: 10.1109/TPAMI.2006.79 – ident: 166_CR7 doi: 10.1109/ICCV.2003.1238478 – ident: 166_CR5 – ident: 166_CR19 – ident: 166_CR3 doi: 10.1109/CVPR.2004.314 – ident: 166_CR21 doi: 10.1109/ICCV.2005.148 – volume: 9 start-page: 1627 issue: 8 year: 1997 ident: 166_CR25 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1627 contributor: fullname: S. C. Zhu – ident: 166_CR2 doi: 10.1007/3-540-47967-8_8 – ident: 166_CR15 – start-page: 282 volume-title: Proc. 18th international conf. on machine learning year: 2001 ident: 166_CR9 contributor: fullname: J. Lafferty – ident: 166_CR11 – volume-title: Perceptual organization for artificial vision systems year: 2000 ident: 166_CR13 contributor: fullname: J. Malik – ident: 166_CR17 doi: 10.1109/CVPR.2001.990512 – volume-title: Active vision year: 2002 ident: 166_CR24 contributor: fullname: A. Yuille – ident: 166_CR18 doi: 10.1007/11744023_1 – ident: 166_CR8 |
SSID | ssj0002823 |
Score | 2.2401192 |
Snippet | Bottom-up segmentation based only on low-level cues is a notoriously difficult problem. This difficulty has lead to recent top-down segmentation algorithms... Issue Title: Special Issue: Special Issue: Best of the European Conference on Computer Vision 2006 (ECCV'06); Guest Editors: Horst Bischof and Ales Leonardis... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 105 |
SubjectTerms | Algorithms Artificial Intelligence Computer Imaging Computer Science Image Processing and Computer Vision Pattern Recognition Pattern Recognition and Graphics Studies Vision |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VdmGhPEWggAcmUKo6D6cZC7RUILHQSmWKHNvpgEgqki78es6J0_IcutqRk_h13_nzfQdwKX1Np1FpozVitsepY4e9WNpJQlmfcqUlqvRtiyc2nnoPM3_WAGd1dJG-dmtGstyo17Fu1NGUY3n3iqEXvAUtE3faGty_PA5X-y86EVUCeXSMfBbSmsv8q5Hv1mgNMX-woqWxGbWrAMC81CjUd0xeu8si7oqP3wqOG_zHLuwY7EkG1WTZg4ZK96FtcCgxqzzHojrVQ112AIHRYZ2TIiNYjf60IjdZUeAWO10QnkoyyRb2Hfr05FnN30xEU3oI09Fwcju2Tc4FWyCUKmxfMI85ypM-DplA6J3ECX6xQCsWIziUXOvD0R4XMkz6gVBSJAFnwnOFdBwqmHsEzTRL1TEQTmWANlKKkCmvL2kYIJwTiYdTAE1iElpwVfd9tKikNaK1iLLupahMkYm9FPUs6NSjE5lVlmvvxdUCdw6z4GJVjetDkx48Vdkyj1zfY1qB24Lrejy-NPDf6042evoUtiuSSZ_MdKBZvC_VGWKVIj43k_MTe9fcgw priority: 102 providerName: Springer Nature |
Title | Learning to Combine Bottom-Up and Top-Down Segmentation |
URI | https://link.springer.com/article/10.1007/s11263-008-0166-0 https://www.proquest.com/docview/1113794326 https://search.proquest.com/docview/35460836 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1Bu7DwjQiU4oEJZFGnjtNMqIV-CKQKQSuVKUpspxNJoen_55w4LSDBFMmRYuVs373zs98BXCnP0GlMUYxGgvKIuTRoxYomCRMdFmkjUWVOW4zFaMofZ97Mbrgt7bHKyicWjlpl0uyR35qS6EbMzBV3iw9qqkYZdtWW0NiGOnN93yRfncFw7YkxnShLyWOK5ImAVaxmcXWOuYbBLI5yCUyqf8alDdj8xY8WYWewD7sWL5JuOcAHsKXTQ9iz2JHYlbnEpqo8Q9V2BL7VTp2TPCP4GnNgTXpZnqNbnC5IlCoyyRb0AfNw8qrn7_YWUnoM00F_cj-itk4ClQh_cupJwYWrufLQzBLhchIn-HsSI0-MgE5FRtONtSKpgqTjS61k4kdC8rZUrsukaJ9ALc1SfQokYsrHuKZkIDTvKBb4CMFkwnHYMIwlgQPXlZXCRSmHEW6Ej41Jw6KsJZo0bDnQqOwY2pWxDDfj6MDl-jXOaUNURKnOVsuw7XFhVLMduKms_-0Df3V39n9357BTMkFm-6QBtfxzpS8QUORxs5g1Tah3h29PfXz2-uPnF2ydut0v5aHIUA |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BGWDhGxEo1AMTyKJOHKeZEF-lQOlCK7FFqe10Igkk_f-cE6cFJFhtKVbO9r13PvsewJnyTTqNKYpoJCiPmUvD7lTRJGGix2JtSlSZ2xYjMZjwpzf_zR64FfZaZeMTK0etMmnOyC-NJLopZuaKq_yDGtUok121EhqrsMY9xGrzUrz_sPDEGE7UUvIYIvkiZE1Ws3o6x1yTwayucgkMqn_i0pJs_sqPVrDT34ZNyxfJdT3BO7Ci013YstyR2J1ZYFMjz9C07UFga6fOSJkR7MYYWJObrCzRLU5yEqeKjLOc3mEcTl717N2-Qkr3YdK_H98OqNVJoBLpT0l9KbhwNVc-mlkiXU6mCf6eROSZIqFTsanpxrqxVGHSC6RWMgliIbknlesyKbwDaKVZqg-BxEwFiGtKhkLznmJhgBRMJhynDWEsCR04b6wU5XU5jGhZ-NiYNKpkLdGkUdeBdmPHyO6MIlrOowOdRTeuaZOoiFOdzYvI87kwVbMduGis_-0Dfw139P9wHVgfjF-G0fBx9HwMG3VWyByltKFVfs71CZKLcnparaAvHhLHGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oJMaLbyOK0oMnTQNdul32ZEQg-AghCgm3zdIHJ3dRlv_vdOmCmui1TbbZ6XTmm870G4Br5dt0GlMUvZGgPGYeDRtTRY1hosVibSmqbLXFQPTH_GniT1z908KVVRY2MTfUKpX2jrxuW6JbMjNP1I0rixh2enfzD2o7SNlMq2unsQ3lgItmowTldncwfF3bZQwuVo3lMWDyRciKHGf-kI55Np-ZF3YJDLF_eqkN9PyVLc2dUO8A9hx6JPer7T6ELZ0cwb5DksSd0wUOFc0airFjCByT6oxkKcFpjIg1aadZhkZyPCdxosgondMORuXkTc_e3Zuk5ATGve7ooU9d1wQqEQxl1JeCC09z5aPQJYJnMzX4exL90BThnYotwxtrxFKFphVIraQJYiF5UyrPY1I0T6GUpIk-AxIzFaCXUzIUmrcUCwMEZNJw3ER0aiaswE0hpWi-IseINjTIVqRR3uQSRRo1KlAt5Bi5c7KINrtagdp6GjXcpi3iRKfLRdT0ubAc2hW4LaT_7QN_LXf-_3I12EH1iV4eB88XsLtKEdl7lSqUss-lvkSkkU2vnAp9ARZczLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Combine+Bottom-Up+and+Top-Down+Segmentation&rft.jtitle=International+journal+of+computer+vision&rft.au=Levin%2C+Anat&rft.au=Weiss%2C+Yair&rft.date=2009-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=81&rft.issue=1&rft.spage=105&rft_id=info:doi/10.1007%2Fs11263-008-0166-0&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2794004891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |